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We propose a systematic procedure for constructing effective models of strongly correlated materials. The
parameters, in particular the on-site screened Coulomb interddtiare calculated from first principles, using
the random-phase approximation. We derive an expression for the frequency-dep#aemd show, for the
case of nickel, that its high-frequency part has significant influence on the spectral functions. We propose a
scheme for taking into account the energy dependend#(@J, so that a model with an energy-independent
local interaction can still be used for low-energy properties.
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[. INTRODUCTION the high-energy part of the Coulomb interaction has in some
way been downfolded into the Hubbattbut it is not clear
Lattice fermion models such as the Hubbard model or thénow this downfolding is actually accomplished.

Anderson impurity model and their extensions have played a A number of authors have addressed the problem of de-
major role in studying electron correlations in systems withtermining the HubbardJ from first principles. One of the
strong on-site correlations. Despite the widespread use afarliest works is the constrained local-density approximation
these models, little justification has been given in usinglLDA) approact;® where the Hubbartl is calculated from
them. The models are postulated on the basis of physicdhe total-energy variation with respect to the occupation
intuition. In particular, the models employ parameters, suclnumber of the localized orbitals. An approach based on the
as the famous Hubbard interactidh which are normally random-phase approximatiqiRPA) was later introduce#,
adjusted to serve the given problem. Without judiciouswhich allows for the calculations of the matrix elements of
choice of parameters, the model may yield misleading rethe HubbardU and its energy dependence. This was fol-
sults, or in the worst case, the model itself is not sufficient tdowed by a more refined approach for calculatlng A yet
describe the real system. One can define rigorously theggifferent approach computes the matrix elements of the Cou-
concepts in the path-integral formulation of the many-bodylomb interactions screened in real space and assumes a
problem by performing a partial trace over the degrees olrukawa form to extract the Hubbatd and the other inter-
freedom that one wants to eliminate, and ignoring the retaractions which determine the multiplet splittings.
dation in the interactions generated by this procedure. How- The purpose of the present work is to develop a precise
ever, this elimination of the degrees of freedom is very hardormulation for a systematic construction of effective models
to perform for real materials. It is therefore very desirable towhere the parameters are obtained from realistic first-
figure out a systematic way of constructing low-energy ef-principles electronic structure calculations. In particular, we
fective models with well-defined parameters calculated fronconcentrate on the calculation of the Hubbarénd demon-
first principles such that the model can quantitatively repro-strate the importance of its energy dependence. We show that
duce and predict physical properties of interest of the correa static Hubbard Hamiltonian, obtained from a construction
sponding real system, especially when the correlation effects® which this energy dependence is simply neglected, fails
are crucial. even at low energy. This static model can be appropriately
Another important issue that has not received sufficienmodified, however, by taking into account the feedback of
attention is the role of energy dependence of the screendtie high-energy part ob into the one-particle propagator.
local Coulomb interactiot). Model studies investigating the We illustrate our scheme in transition metals, concentrating
importance of high-energy states in the Hubbard model cann Ni as an example, since it is a prototype system consisting
be found in Refs. 1-3. A dynamic Hubbard model has als®f a narrow 8 band embedded in a wide band. Furthermore,
been consideretiln most cases, howeveld is assumed to Ni is one of the most problematic case from the viewpoint of
be static, but on the other hand we know that at high energthe LDA.
the screening becomes weaker and eventually the interaction In summary, in Sec. 1l we propose a method for calculat-
approaches the large bare Coulomb value, which is an ordéng a frequency-dependent Hubbdidw) and derive an ef-
of magnitude larger than the static screened value. Of courséctive model for electrons in a narrow band usldgv) as
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an effective interaction between the electrons. In Sec. Il weBloch functions{s,}, and consider the matrix elements of
investigate the influence of the frequency-depentiat) on  the (partially screenedfrequency-dependent Coulomb inter-
the self-energy and the spectral function within B&/ ap-  action\W,:

proximation(GWA).>1%We then suggest a way of modifying

the static Hubbard model so that it can still give reliable Urynryn Romrym (7= 7')
description of low-energy physics. We also propose a scheme .
of taking into account the frequency-depend®iit) in an = J d3rd3r’¢Rln(r)¢R2n,(r)

approximate way.
Il. THEORY XW(r 15 7= 7)) (T ) ry (7). (5)
Let us suppose that the band structure of a given solid cali/é would like to obtain an effective model for thel 8le-
be separated into a narrow band near the Fermi level and tHf€€S of freedom. Because of the frequency dependence of
rest, like, for example, in transition metals of dhetals. Our 1€ U’s (corresponding to a retarded interactiothis effec-

aim is to construct an effective model which only includestiVe theory will not take a Hamiltonian form. We can how-
the narrow & or 4f band. The effective interaction between EVEl, Write such a representation in the functional-integral
the 3 electrons in the Hubbard model can be formally con-formalismi! by considering the effective action for thel 3
structed as follows. We first divide the complete Hilbert degrees of freedom given by

space into the Hubbard spajgg,}, consisting of the 8 states .

or the localized states, and the rest. The bare Green’s func- S=f drd7’| - > d}zn(T)GRnR,n,(r— 7 )dry (7)

tion Gy, spanning thel subspace, is given by

Yo r') P ) g(r')

occ unocc

1
+ 5 2 (0, (7):

Gylrir'iow) =2, ————+ —. (1
ol @) %w—sd—lo+ % w-gq+i0" @
_n.-At ’ ry.
Let P be the total(bare polarization, including the transi- XUg nryn oy (7= 7)1 g (™) Ay (7): |, (6)
tions between all bands, ) )
where:d'd: denotes normal ordering, which accounts for the
, gce unoce - / Hartree term, and the summation is over repeated indices.
P(r,r';m) :2 E () (r )y () gy (r') When using a Wannier transformation which does not mix
o thed subspace with other bands, the Green’s function can be
1 1 taken, to first approximation, to be the bare Green’s function
X ot o |- G2, constructed from the Bloch eigenvalues and eigenfunc-
w-g+g+i0" wteg-g-I0 dd

tions. If, instead, an LMTO formalisti is used, one should
2 in principle perform a downfolding procedure onto the
P can be divided intd®=P4+P,, in which P4 includes only ~ subspace, i.e, perform a partial trace oseip degrees of
3d to 3d transitions(i.e, limiting the summations in Eq2)  freedom.
to i, j e {¢y)), and P, be the rest of the polarization. The  In the following, we retain only the local components of

screened interactiow on the RPA level is given by the effective interaction on the same atomic site. This is ex-
pected to be a reasonable approximation because dhe 3
W=[1-vP] ™ =[1-vP, —vPg ™ states are rather localized. The formalism may be easily ex-
=[(1=0P.)1-(1-0P.) WP T2 tended to include intersite Coulomb interactions if necessary.
[(1=vP){1=(1 ~oP)"vPgi] v Hence, we consider the frequency-dependent Hubbard inter-
={1-(1-vP) WP} 1 -vP) ™ actions:
= [1 _Wr l:)d:l_lvvr (3)

Uy )= | &Brd3 b (1) (OW.(r,r" 7= 7
where we have defined a screened interactgrthat does ot (7= 7') f ol0) boe (OWRLT, 175 7= 7')

not include the polarization from thed3d transitions:

Wi(w) =[1 -vP ()]0 (4)

X ) e (1), (7)

with ¢, being the Wannier orbital foR=0. In order to illus-
(we have not explicitly indicated spatial coordinates in thistrate the procedure within the linear muffin-tin orbital
equation. The identity in Eq. (3) explicitly shows that the (LMTO) basis set, we use instead of the Wannier orbital the
interaction between thed3lectrons is given by a frequency- normalized function head of the LMT@, which is a solu-
dependent interactiow,. It fits well with the usual physical tion to the radial Shrédinger equation matching to a Hankel
argument that the remaining screening channels in the Hulfunction at zero energy at the atomic sphere boundary. The
bard model associated with thel 8lectrons, represented by Wannier function of thel band is a substantial mixture of the
the 3-3d polarizationPy, further screeW, to give the fully  original LMTO atomicd orbital with others and p orbitals.
screened interactiow. In this paper, we investigate the importance of the energy
We now choose a basis of Wannier functides,}, cen- dependence obl. Therefore, we shall compare the results
tered about atomic positionR, corresponding to thedd obtained from Eq(6) with those of a Hamiltonian approach
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in which one would construct a Hubbard model witstatic ~ the (partially) screened interactionV, without the 3i-3d

interactionU: transitions is larger than the full o'W, and at high energies
they approach each other, as anticipated. Related calculations
H= X C;nhRnR/n'CR'n/ have also been performed by Kotdni.
RnR'n’ We first compare the self-energy obtained fronGaV
1 : ) treatment of the full system, given by
+ 5 E CRnCRn'Unn’,mn“{CRmCRm'- (8)
R,nn’,mnY i o
It seems natural to identify the static Hubbaudwith the ~ >(":r3@) = gfdw'é”“ Glr.ro+ o)W o)
(partially) screened local interaction in the low-frequency
limit W.(w=0). Note that the Hubbard modé8) has been ©)

constructed in the simplest manner, by simply taking the
quadratic part to be the block of the noninteracting Hamil- to the self-energy obtained from the effective mo@lwith
tonian. an energy-dependent interactidi w)=W,(w). Because of
In order to compare the results obtained from the fullEqQ. (3), the screened interaction corresponding to this)
dynamicalU to those of the static Hubbard model, we needis simply W, and the corresponding self-energy reads
to solve Eqgs(6) and(8) within some consistent approxima-
tion scheme. In the following, the exact self-energy for the i
solid is assumed to be given by the GWA. Since we are Ed(w):—fdw’e""‘"Gd(w+w’)W(w’). (10
considering a system with moderate correlation strength 2m
(U/bandwidth= unity) the GW approximation may still be a
reasonable tool to use in solving the effective mo@&)sand  The difference between this expression and the GWA for the
(8). This allows us to make a proper comparison between th&ull system[Eg. (9)] is that in Eq.(10) only thed block of
“exact” self-energy and the Hubbard model self-energy. Ifthe Green’s function has been includesince the effective
the assumption of statid is valid, the Hubbard self-energy action was written for the-band only. Hence, the two self-
and the true self-energgboth within the GWA should be  energies differ by a tern®,W, with G,=G-G4. We expect
close to each other, at least for small energies. Or equivahat the wave-function overlap between twd States(one
lently, the spectral function for small energies should re-from G, and the other from the d3state appearing in the
semble that of the full one. matrix element oB) and other non-8states is small so that
34 should be close to the truk. In Fig. 2, the two self-
energies are displaygdnore precisely, in this figure and in
[1l. RESULTS AND DISCUSSIONS all the following, we display the matrix element of the self-
energy in the lowest@state(band number 2 at thel"-point,
corresponding to an LDA eigenenergy —1.79)eWe ob-
The screened interaction with and without tltle 3l tran-  serve that the two self-energies are rather close to each other.
sitions is shown in Fig. 1 in the case of paramagnetic nickelHence, we conclude that the effective Hubbard ma€@gfor
Here and in all the following, a spin-unpolarizgoaramag- the d subspace, with an energy-dependent interaction, pro-
netic) solution is considered. At low energies, the real part ofvides a reliable description of the real system.

A. Comparing self-energies

195104-3



ARYASETIAWAN et al. PHYSICAL REVIEW B 70, 195104(2004)

40 T I T I T T T T T T T T I T I T

— Re X full
30— — Im X full —
--- ReX GW

Im< —— ImZX GdW

FIG. 2. The matrix elements of
the self-energy of paramagnetic
nickel in the lowestd state corre-
sponding to the LDA eigenvalue
of =1.79 eV at thel’ point. The
solid curves correspond to the real
system(i.e., full GW calculation
and the dashed curves to the Hub-
bard model with a frequency-
dependentJ.
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We now turn to the self-energy associated with the static In Fig. 3 the imaginary part of the self-energy is shown.
Hubbard model(8) with U=W,(0)=3.5eV. The local Here we see that IrEE for the Hubbard model is peaked
screened interaction for this model, within the GW approxi-around 5 eV since there are no states above or belowdhe 3

mation, is given by band. On the other hand, IBhof the real system is peaked at
i around the average plasmon energy around 3QrRY. 2).
Wy(w) =[1 - UPy(w)]"U, (12) But within an energy region spanning about twice thee 3
and the self-energy of the Hubbard model in the GWA thustandwidth, the imaginary part of the Hubbard model self-
reads energy is in reasonable agreement with the full one.

_ In Fig. 4, the real part of this self-energy for nickel is

Heo oo 1 ' i . , - shown and compared with that of the full GWA self-energy.
2q(nr'io) = 27 J do’e” Gy(r,r'; @+ 0" )Wy(r,r'; ). In contrast to In%, the real part of the self-energies obtained

(12 with a static and frequency-dependéhtare quite different.
This is understandable from Fig. 3 since Rés simply the
Note that the difference between this static HubbardHilbert transform of Im>. Since the energy scale of the self-
model self-energy and that of the effective model with aenergy of the real system is determined by the bare Coulomb
frequency-dependent interacti@6) relies in the use of a interactionv whereas the Hubbard self-energy is setUy
different form of the screened interactidi instead of the the latter has been shifted so that it is equal to the former at
full W. the LDA eigenvalug-1.79 e\ of the band we have consid-

— FullRe X
== "Hubbard" Re | —

Paramagnetic Niband 2 (1.79 eV) at "

FIG. 3. The imaginary parts of
the self-energy of the real systems
(solidy and the Hubbard model
T (dash in the GWA.
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ered at thd” point. The difference in magnitude of the self- effective low-energy mode(provided, of course, that the
energies is not important since it simply shifts the spectrunspectral function InW is correctly approximated at low en-
(or, said differently, we have compared differencesu  ergy). In contrast, the real part of the correlation self-energy
from the values of the chemical potential obtained in theis obtained from the Hilbert transform or the Kramers-
various schemgsHowever, the difference in the variation of Kronig relation in the form
the self-energy with respect to energy matters, since it will .
give a different quasiparticle weiglt=[1-JRe>/dw] * and
affect the spectral function. As can be deduced from the fig- ReZ(k,w) = — —Pf
ure, theZ factor of the Hubbard model taken at the energy of m
the quasiparticle band at tHeé point (=-1.79 eV} is much
. (14

closer to unity as compared to the triiell GW) one because
the former already contains the renormalization from theBecause the principal-part integral extends over the whole
plasmon. Hence, neglecting frequency dependence directlyequency range, high-frequency contributions influence the
affects the physical resultsyen in the low-energy rangé/e  self-energy even at low frequency. As a result, for the case
shall see below, however, that it is possible to modify thewe are considering, an accurate description of the real part of
static model in such a way that an accurate approximation ithe self-energy cannot be obtained within the static Hubbard
obtained at low energy. model because the effective interaction is not correctly ap-

These findings can be understood in more detail by conproximated over the whole frequency range. This formula
sidering explicit expressions of the self-energy obtainedalso suggests a way to appropriately modify the effective
within the GW approximation, for an effective model of the static model in order to obtain an accurate description at low
d subspace defined on the periodic lattice. The imaginargnergy, as discussed below.

ne(egy,) + N
dv>, 1Im W, v) elek )m B(V).
q.m w — Ek_q_ 14

—co

part reads
B. The puzzle of the satellite
Im 2 (k@) = 2 1M Wo(d,0 = e ) [NE(e) Figure 5 compares the spectral function obtained for the
am full system within the GWA, and that of the static Hubbard
+ng(w— gk“_q)]_ (13) model(8). A striking difference between these two results is

the absence of the 6 eV satellite in the GWA for the full
In this expressionn,m are band indicesg, corresponds to system, while the static Hubbard model displays a satellite
the nth noninteracting band, angk (resp.ng) is the Fermi  feature. This is to be expected from the structure of the self-
(resp. Bosg function. ImW is the spectral function associ- energy. The GWA self-energy of the full system continues to
ated with the effective interactio(io be taken adV if the  grow and reaches a maximum around the plasmon excitation
self-energy of the frequency-dependent effective model ist around 25—30 eV, while the self-energy of the static Hub-
considered, and ad/; if that of the static Hubbard model is bard model has a maximum around the width of theband
consideregl From this expression, one sees that if one con{4 eV). In comparison with the true plasmon, the “plasmon”
siders an energw, the bands contained in the energy inter- of the Hubbard model has a much lower energy, of the order
val [0,|w|] are the only ones contributing significantly to of U, which results in the “6 eV satellite.”
Im 3. This is the reason why thienaginary partof the self- In contrast to the electron gas, where the plasmon excita-
energy at low energy will be correctly reproduced by thetion contained in IMW is quite distinct in energy and well
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separated from the valence band, there is no well-definetlubbard band. On the other hand, it could be that the experi-
plasmon excitation in transition metals. As can be seen immentally observed nickel satellite has a somewhat different
Fig. 1, in the case of nickel or transition metals Whhas a  physical origin and that the satellite obtained in static Hub-
rather broad distribution of weight extending down to thebard model calculations is spurious in the context of nickel
low-energy region. It is this weight at low energy that gives(e.g., because it is not legitimate to use a low-energy effec-
a significant contribution to Il that in turns washes out the tive model in this energy rangein our view, this issue is an

satellite structure presence in the static Hubbard model. [pPen problem which deserves further work. Although the

Im W is dominated by a sharp plasmon well separated front@lculations have been carried out within the GWA, our find-
the valence band, then it follows from E@.3) that the cor- ing indicates a possible problem with a static Hubbard model

responding In®, has little weight in the region of the valence even when treated exactly.
band. Consequently, we expect the static Hubbard model to C. Improving the effective static model

gg’: ;é%ﬁﬁ;ﬁfﬁ{;ﬂ :tt Ilg\\/lvv g::rrg))//. wgﬁigggtmgwggh The preceding discussion shows that an effective model
; . P For the d band can be constructed, which accurately repro-
will contribute to Im3,, and consequently influence the spec- 4 o< the full results over an extended energy range, pro-
tral functhn. The prec_edlng a_rgument has been based on tnﬁded the energy dependence Wfw) is retained. However,
GWA but it seems quite feasible that the conclusion drawrye orming calculations with an energy-dependent Hubbard
from this argument is also true in the exact case. We knowneraction is exceedingly difficult. A more modest goal is to
for.|nst_ance, tha; the experlmgntal loss spectrum of nickelgptain an effective model which would apply to some low-
which is proportional to InW, is well reproduced by the energy range onlylw| <A, with A a cutoff of the order of
RPA. the d-bandwidth. In order to achieve this goal, we propose to
We may divide the frequency region into three parts: aadopt a renormalization-group point of view, in which high
low-energy regionw=<A, whereA is of the order of thed  energies are integrated out in a systematic way. Following
bandwidth, an intermediate regioh<w<w,, wherew, is  this procedure, an appropriate low-energy model with a static
the average plasmon energy, and a high-energy region U can be appropriately constructed. As we shall see, the bare
= w,. By a judicious choice of a noninteractir@g it should ~ Green’s function defining this low-energy model does not
still be possible to construct a Hubbard model with a stdtic coincide with the noninteracting Green’s function in the
that gives a reliable description of the spectrum or quasipard-subspacéwe have seen that this does not lead to a satis-
ticle energies in the low-energy regians A, as proposed in factory description, even at low eneigy
the following section. For the intermediate and high-energy Let us illustrate this idea within th&W approximation.
regions, however, the static Hubbard model may have dhe full Hilbert space is divided into the Hubbard space,
problem since In® plays an important role in determining comprising the @ orbitals, and the downfolded space, com-
the structure of the spectrum like the shake-up satellite or thprising the rest of the Hilbert space. This approach is
lower Hubbard band. complementary to the one in Refs. 2 and 13, where the divi-
One could blame the appearance of a satellite in our statigion is done in real spagen site and off sites Within the
Hubbard model calculation on the fact that we have used &WA we may write the full self-energy as follows:
(non-self-consistentGW approximation. However, more ac- _ _
curate treatments of the static Hubbard mofdeich as dy- CW=GgWy + Gy(W =Wy + G W, (15
namical mean-field theofDMFT)] do preserve this feature, whereG=Gy+G,. The termGy(W-W,) represents the high-
which has in this context a natural interpretation as a loweenergy contribution of the screened interaction. This is the
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main source of error in the static limit, as discussed in ther‘G'—l(k )= Gk, o)
previous sections. The ter@® W is not obtainable within the d AT AT
Hubbard model, even when a frequency-depentkist em- 1
ployed sinceG, resides in the downfolded space. This term * - A
was shown to be small. Its effect at low-energy can also be
taken into account by appropriate modifications of the one- T (21)
particle propagator, but we shall neglect it for simplicity.
We consider the following Hubbard model with a static

U=W,(0), but a modified one-particle propaga'ér defined
by the action

Ne(gelg) + 0
dVE Im an(QaV) F(Gk )m B(V)
am 0= g~V

In particular, we see by expanding this expression to first

order inw, that the low-frequency expansion of the modified

one-particle propagator read@;l(k,w+i0+)n:(1+akvn)w

—ep+--+. The coefficientay , is a partial contribution to the

- quasiparticle residueay ,=—(1/m)Znf|,>2dvim Wi, v)

S, :—f drd7 >, d?;n(T)G;QtR,n,(T— 7)dry (7)) X[Ne(efly) +ng(v)]/ (v-gi )2 In practice, this integral can
be easily evaluated using the well-known plasmon pole ap-

1 . proximation, which should contain most of the high-energy
+§Jd72 :dr (7 AR, (7):UR R, RymRm contribution. This correction ensures that the quasiparticle
residue is obtained correctly from this “downfolded” static
:dL (Mg v (7):. (16) model. We do not, however, expect that this improvement
3 4

solves the problem with the satellite discussed in the preced-
The self-energy of this static Hubbard model in the GWA ising section.

—~ =
2g = GgWo. (17) D. Beyond the GW approximation
where the new effective interaction Tg'/dzu[l_u'ﬁ oL In strongly correlated systems, it is known that the GWA

with "F‘,d constructed from the new Green’s functioﬁa is not sufficient and improvement beyond the GWA is

= = = ) - needed. Much of the shortcoming of the GWA probably
(schematicallyPy=Gq-Gy). We request that the interacting qriginates from the improper treatmentsifort-rangecorre-

Green’s function of this modified static model coincides with|5tions within the RPA. Thus, one would like in the first
that of the Green’s function calculated with the frequency-instance to attempt to improve these short-range correlations,
dependent interactioin the low-energy rangew|<A:), that  \yhich are essentially captured by the Hubbard model. The
IS formula (15) suggests a natural way to do this, as follows.
. The contribution from the frequency-dependehas well as
Gyt - 34 = Gg' - GgWy — Gy(W - Wyfor|w| < A. the contribution from the downfolded Hilbert space are
(18) treated within the GWA. The self-enerdgy,W, correspond-
ing to theGW self-energy of the Hubbard model with a static
Using the identityG*-GW=[1-UP]'G™%, this can be re- U can then be replaced by that obtained from more accurate
written as theories such as DMF{Ref. 14 or from exact methods such
as Lanczos diagonalization and path-integral
S -I=-1 “1~-1_ _ renormalization-groupPIRG) method!’ Thus, if we use the
[1=UPgI"Gq" = [1 - UP4I™Gy "~ Gy(W= W) forlw| < A LDA to constructGg, the correction to the LDA exchange-
(19 correlation potential reads:

This is an integral equation which determines, in principle, AS =3+ Gy(W-W,) + GW-v,g, (22

the modified bare Green's functioBy to be used in the \yheres, is the Hubbard model self-energy obtained from
downfolded” static action(16). To first approximation, one ore accurate methods, replaciGg\W,. We note also that

can neglect the polarization terrns in this equation, and obge scheme in15) avoids the problem of double counting,

tain the first-order modification dB, as inherent in LDA+U® or LDA+DMFT methods'® In this
. way, it is possible to calculate the Hubbdddusing the re-
Gal: Gal - Gg(W—-Wy) + -+ (20) sponse function constructed from the LDA bandstructure.

The application of DMFT requires the Hubbdddfor the
The first correction appearing in this equation is precisely thémpurity model. To calculate the Hubbatdl for an impurity
contribution coming from the high-energy part of the model, it is necessary to downfold contributions to the po-
screened interaction. We have explained above that this colarization P from the neighboring sites. Here, the identity in
rection is not small, which is the reason for the failure of theEg. (3) shows its usefulness. Since the formulation in &j.
static Hubbard model using the noninteracti®g Dividing is quite general, we merely need to redefidgto be the
the screened interaction into a low-energy part [fofr< A on-site polarizations, or equivalently, we redeffdeto also
and a high-energy part fdw|> A, we can use the explicit include polarizations from the neighboring sites. The compu-
forms (13) and(14) given in the preceding section to obtain tational result for Ni shows that the difference between the
this first correction in the form lattice and the impurity Hubbard is rather small, essen-
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tially negligible. Somewhat different but related calculationsdence and using the noninteracting Hamiltonian into a static
of the HubbardJ for the impurity model has also been per- Hubbard model does not provide an accurate description
formed in Ref. 7 for Fe and Ni, which confirm the result even at low energy. However, a proper modification of the
obtained in our formulation. bare propagator, obtained by integrating out high energies,
Another feasible approach for calculating physical quan-allows for the construction of an effective Hubbard model
tities of the derived Hubbard model is by using the pathwhich describes the low-energy physics in a satisfactory
integral renormalization grouPIRG) method!” One advan- manner.
tage of this method is the possibility of using the lattice Although the present study has been based on the GWA,
Hubbard model as opposed to the impurity model, thus ineur finding indicates that a static Hubbard model may have a
cluding spatial fluctuations and possible symmetry breakingproblem in describing the spectrum at intermediate and high-
The method is also suited for studying single-particleenergy regions when the loss spectrum oMhhas a broad
Green’s functions as well as thermodynamic quantities, irdistribution of weight, extending down to low-energy region.
particular for accurate determination of the phase diagraniThis is in contrast to the case where Whis dominated by a
which often requires a determination of the possible symmedistinct plasmon excitation, well separated in energy from
try breaking of the Hubbard Hamiltonian after taking ac-the valence band, in which case the static Hubbard model is
count of spatial and temporal fluctuations on an equal footexpected to work well. It is desirable to carry out more so-
ing. In calculating the self-energy, one may substi@t¥V;  phisticated calculations with a frequency-dependent Hubbard
by the self-energy obtained within the correlator projectionmodel in order to have a clearer insight into the limitations of
method?® together with the PIRG. These form a future chal-the static Hubbard model. Work in this direction is now in
lenge in the field of strongly correlated materials. progress.
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