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We propose a systematic procedure for constructing effective models of strongly correlated materials. The
parameters, in particular the on-site screened Coulomb interactionU, are calculated from first principles, using
the random-phase approximation. We derive an expression for the frequency-dependentUsvd and show, for the
case of nickel, that its high-frequency part has significant influence on the spectral functions. We propose a
scheme for taking into account the energy dependence ofUsvd, so that a model with an energy-independent
local interaction can still be used for low-energy properties.
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I. INTRODUCTION

Lattice fermion models such as the Hubbard model or the
Anderson impurity model and their extensions have played a
major role in studying electron correlations in systems with
strong on-site correlations. Despite the widespread use of
these models, little justification has been given in using
them. The models are postulated on the basis of physical
intuition. In particular, the models employ parameters, such
as the famous Hubbard interactionU, which are normally
adjusted to serve the given problem. Without judicious
choice of parameters, the model may yield misleading re-
sults, or in the worst case, the model itself is not sufficient to
describe the real system. One can define rigorously these
concepts in the path-integral formulation of the many-body
problem by performing a partial trace over the degrees of
freedom that one wants to eliminate, and ignoring the retar-
dation in the interactions generated by this procedure. How-
ever, this elimination of the degrees of freedom is very hard
to perform for real materials. It is therefore very desirable to
figure out a systematic way of constructing low-energy ef-
fective models with well-defined parameters calculated from
first principles such that the model can quantitatively repro-
duce and predict physical properties of interest of the corre-
sponding real system, especially when the correlation effects
are crucial.

Another important issue that has not received sufficient
attention is the role of energy dependence of the screened
local Coulomb interactionU. Model studies investigating the
importance of high-energy states in the Hubbard model can
be found in Refs. 1–3. A dynamic Hubbard model has also
been considered.4 In most cases, however,U is assumed to
be static, but on the other hand we know that at high energy
the screening becomes weaker and eventually the interaction
approaches the large bare Coulomb value, which is an order
of magnitude larger than the static screened value. Of course,

the high-energy part of the Coulomb interaction has in some
way been downfolded into the HubbardU but it is not clear
how this downfolding is actually accomplished.

A number of authors have addressed the problem of de-
termining the HubbardU from first principles. One of the
earliest works is the constrained local-density approximation
(LDA ) approach,1,5 where the HubbardU is calculated from
the total-energy variation with respect to the occupation
number of the localized orbitals. An approach based on the
random-phase approximation(RPA) was later introduced,6

which allows for the calculations of the matrix elements of
the HubbardU and its energy dependence. This was fol-
lowed by a more refined approach for calculatingU.7 A yet
different approach computes the matrix elements of the Cou-
lomb interactions screened in real space and assumes a
Yukawa form to extract the HubbardU and the other inter-
actions which determine the multiplet splittings.8

The purpose of the present work is to develop a precise
formulation for a systematic construction of effective models
where the parameters are obtained from realistic first-
principles electronic structure calculations. In particular, we
concentrate on the calculation of the HubbardU and demon-
strate the importance of its energy dependence. We show that
a static Hubbard Hamiltonian, obtained from a construction
in which this energy dependence is simply neglected, fails
even at low energy. This static model can be appropriately
modified, however, by taking into account the feedback of
the high-energy part ofU into the one-particle propagator.
We illustrate our scheme in transition metals, concentrating
on Ni as an example, since it is a prototype system consisting
of a narrow 3d band embedded in a wide band. Furthermore,
Ni is one of the most problematic case from the viewpoint of
the LDA.

In summary, in Sec. II we propose a method for calculat-
ing a frequency-dependent HubbardUsvd and derive an ef-
fective model for electrons in a narrow band usingUsvd as

PHYSICAL REVIEW B 70, 195104(2004)

1098-0121/2004/70(19)/195104(8)/$22.50 ©2004 The American Physical Society70 195104-1



an effective interaction between the electrons. In Sec. III we
investigate the influence of the frequency-dependentUsvd on
the self-energy and the spectral function within theGW ap-
proximation(GWA).9,10We then suggest a way of modifying
the static Hubbard model so that it can still give reliable
description of low-energy physics. We also propose a scheme
of taking into account the frequency-dependentUsvd in an
approximate way.

II. THEORY

Let us suppose that the band structure of a given solid can
be separated into a narrow band near the Fermi level and the
rest, like, for example, in transition metals or 4f metals. Our
aim is to construct an effective model which only includes
the narrow 3d or 4f band. The effective interaction between
the 3d electrons in the Hubbard model can be formally con-
structed as follows. We first divide the complete Hilbert
space into the Hubbard spacehcdj, consisting of the 3d states
or the localized states, and the rest. The bare Green’s func-
tion Gd, spanning thed subspace, is given by

Gdsr ,r 8;vd = o
d

occ
cdsr dcd

*sr 8d
v − «d − i0+ + o

d

unocc
cdsr dcd

*sr 8d
v − «d + i0+ . s1d

Let P be the total(bare) polarization, including the transi-
tions between all bands,

Psr ,r 8;vd = o
i

occ

o
j

unocc

cisr dci
*sr 8dc j

*sr dc jsr 8d

3 H 1

v − « j + «i + i0+ −
1

v + « j − «i − i0+J .

s2d

P can be divided intoP=Pd+Pr, in which Pd includes only
3d to 3d transitions(i.e, limiting the summations in Eq.(2)
to i, j P hcdj), and Pr be the rest of the polarization. The
screened interactionW on the RPA level is given by

W= f1 − vPg−1v = f1 − vPr − vPdg−1v

= fs1 − vPrdh1 − s1 − vPrd−1vPdjg−1v

= h1 − s1 − vPrd−1vPdj−1s1 − vPrd−1v

= f1 − WrPdg−1Wr s3d

where we have defined a screened interactionWr that does
not include the polarization from the 3d-3d transitions:

Wrsvd = f1 − vPrsvdg−1v s4d

(we have not explicitly indicated spatial coordinates in this
equation). The identity in Eq. (3) explicitly shows that the
interaction between the 3d electrons is given by a frequency-
dependent interactionWr. It fits well with the usual physical
argument that the remaining screening channels in the Hub-
bard model associated with the 3d electrons, represented by
the 3d-3d polarizationPd, further screenWr to give the fully
screened interactionW.

We now choose a basis of Wannier functionshfRnj, cen-
tered about atomic positionsR, corresponding to the 3d

Bloch functionshcknj, and consider the matrix elements of
the (partially screened) frequency-dependent Coulomb inter-
actionWr:

UR1nR2n8,R3mR4m8st − t8d

7E d3rd3r8fR1n
* sr dfR2n8sr d

3Wrsr ,r 8;t − t8dfR3m
* sr 8dfR4m8sr 8d. s5d

We would like to obtain an effective model for the 3d de-
grees of freedom. Because of the frequency dependence of
the U’s (corresponding to a retarded interaction), this effec-
tive theory will not take a Hamiltonian form. We can how-
ever, write such a representation in the functional-integral
formalism11 by considering the effective action for the 3d
degrees of freedom given by

S=E dtdt8F− o dRn
† stdGRn,R8n8

−1 st − t8ddRn8st8d

+
1

2 o :dR1n
† stddR2n8std:

3UR1nR2n8,R3mR4m8st − t8d:dR3m
† st8ddR4m8st8d:G , s6d

where:d†d: denotes normal ordering, which accounts for the
Hartree term, and the summation is over repeated indices.
When using a Wannier transformation which does not mix
thed subspace with other bands, the Green’s function can be
taken, to first approximation, to be the bare Green’s function
Gdd

0 constructed from the Bloch eigenvalues and eigenfunc-
tions. If, instead, an LMTO formalism12 is used, one should
in principle perform a downfolding procedure onto thed
subspace, i.e, perform a partial trace overs, p degrees of
freedom.

In the following, we retain only the local components of
the effective interaction on the same atomic site. This is ex-
pected to be a reasonable approximation because the 3d
states are rather localized. The formalism may be easily ex-
tended to include intersite Coulomb interactions if necessary.
Hence, we consider the frequency-dependent Hubbard inter-
actions:

Unn8,mm8st − t8d 7E d3rd3r8fn
*sr dfn8sr dWrsr ,r 8;t − t8d

3fm
* sr 8dfm8sr 8d, s7d

with fn being the Wannier orbital forR=0. In order to illus-
trate the procedure within the linear muffin-tin orbital
(LMTO) basis set, we use instead of the Wannier orbital the
normalized function head of the LMTOfH which is a solu-
tion to the radial Shrödinger equation matching to a Hankel
function at zero energy at the atomic sphere boundary. The
Wannier function of thed band is a substantial mixture of the
original LMTO atomicd orbital with others andp orbitals.

In this paper, we investigate the importance of the energy
dependence ofU. Therefore, we shall compare the results
obtained from Eq.(6) with those of a Hamiltonian approach
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in which one would construct a Hubbard model with astatic
interactionU:

H = o
Rn,R8n8

cRn
† hRn,R8n8cR8n8

+
1

2 o
R,nn8,mm8

cRn
† cRn8Unn8,mm8cRm

† cRm8. s8d

It seems natural to identify the static HubbardU with the
(partially) screened local interaction in the low-frequency
limit Wrsv=0d. Note that the Hubbard model(8) has been
constructed in the simplest manner, by simply taking the
quadratic part to be thed block of the noninteracting Hamil-
tonian.

In order to compare the results obtained from the full
dynamicalU to those of the static Hubbard model, we need
to solve Eqs.(6) and(8) within some consistent approxima-
tion scheme. In the following, the exact self-energy for the
solid is assumed to be given by the GWA. Since we are
considering a system with moderate correlation strength
sU /bandwidth<unityd theGW approximation may still be a
reasonable tool to use in solving the effective models(6) and
(8). This allows us to make a proper comparison between the
“exact” self-energy and the Hubbard model self-energy. If
the assumption of staticU is valid, the Hubbard self-energy
and the true self-energy(both within the GWA) should be
close to each other, at least for small energies. Or equiva-
lently, the spectral function for small energies should re-
semble that of the full one.

III. RESULTS AND DISCUSSIONS

A. Comparing self-energies

The screened interaction with and without the 3d-3d tran-
sitions is shown in Fig. 1 in the case of paramagnetic nickel.
Here and in all the following, a spin-unpolarized(paramag-
netic) solution is considered. At low energies, the real part of

the (partially) screened interactionWr without the 3d-3d
transitions is larger than the full oneW, and at high energies
they approach each other, as anticipated. Related calculations
have also been performed by Kotani.7

We first compare the self-energy obtained from aGW
treatment of the full system, given by

Ssr,r8;vd =
i

2p
E dv8eihv8Gsr,r8;v + v8dWsr,r8;v8d

s9d

to the self-energy obtained from the effective model(6) with
an energy-dependent interactionUsvd=Wrsvd. Because of
Eq. (3), the screened interaction corresponding to thisUsvd
is simply W, and the corresponding self-energy reads

Sdsvd =
i

2p
E dv8eihv8Gdsv + v8dWsv8d. s10d

The difference between this expression and the GWA for the
full system[Eq. (9)] is that in Eq.(10) only thed block of
the Green’s function has been included(since the effective
action was written for thed-band only). Hence, the two self-
energies differ by a termGrW, with Gr =G−Gd. We expect
that the wave-function overlap between two 3d states(one
from Gd and the other from the 3d state appearing in the
matrix element ofSd) and other non-3d states is small so that
Sd should be close to the trueS. In Fig. 2, the two self-
energies are displayed(more precisely, in this figure and in
all the following, we display the matrix element of the self-
energy in the lowest 3d state(band number 2), at theG-point,
corresponding to an LDA eigenenergy −1.79 eV). We ob-
serve that the two self-energies are rather close to each other.
Hence, we conclude that the effective Hubbard model(6) for
the d subspace, with an energy-dependent interaction, pro-
vides a reliable description of the real system.

FIG. 1. The real and imaginary
parts of the diagonal matrix ele-
ments of the screened interaction
of paramagnetic nickel in thed or-
bital segd. The dashed curves cor-
respond to the fully screened in-
teraction and the solid curves to
the screened interaction without
the d to d transitions. The results
for the t2g orbitals are almost
identical.
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We now turn to the self-energy associated with the static
Hubbard model (8) with U=Wrs0d.3.5 eV. The local
screened interaction for this model, within the GW approxi-
mation, is given by

Wdsvd = f1 − UPdsvdg−1U, s11d

and the self-energy of the Hubbard model in the GWA thus
reads

Sd
Hsr,r8;vd =

i

2p
E dv8eihv8Gdsr,r8;v + v8dWdsr,r8;v8d.

s12d

Note that the difference between this static Hubbard
model self-energy and that of the effective model with a
frequency-dependent interaction(6) relies in the use of a
different form of the screened interactionWd instead of the
full W.

In Fig. 3 the imaginary part of the self-energy is shown.
Here we see that ImSd

H for the Hubbard model is peaked
around 5 eV since there are no states above or below the 3d
band. On the other hand, ImS of the real system is peaked at
around the average plasmon energy around 30 eV(Fig. 2).
But within an energy region spanning about twice the 3d
bandwidth, the imaginary part of the Hubbard model self-
energy is in reasonable agreement with the full one.

In Fig. 4, the real part of this self-energy for nickel is
shown and compared with that of the full GWA self-energy.
In contrast to ImS, the real part of the self-energies obtained
with a static and frequency-dependentU are quite different.
This is understandable from Fig. 3 since ReS is simply the
Hilbert transform of ImS. Since the energy scale of the self-
energy of the real system is determined by the bare Coulomb
interactionv whereas the Hubbard self-energy is set byU,
the latter has been shifted so that it is equal to the former at
the LDA eigenvalues−1.79 eVd of the band we have consid-

FIG. 2. The matrix elements of
the self-energy of paramagnetic
nickel in the lowestd state corre-
sponding to the LDA eigenvalue
of −1.79 eV at theG point. The
solid curves correspond to the real
system(i.e., full GW calculation)
and the dashed curves to the Hub-
bard model with a frequency-
dependentU.

FIG. 3. The imaginary parts of
the self-energy of the real systems
(solid) and the Hubbard model
(dash) in the GWA.
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ered at theG point. The difference in magnitude of the self-
energies is not important since it simply shifts the spectrum
(or, said differently, we have compared differencesS−m
from the values of the chemical potential obtained in the
various schemes). However, the difference in the variation of
the self-energy with respect to energy matters, since it will
give a different quasiparticle weightZ=f1−]ReS /]vg−1 and
affect the spectral function. As can be deduced from the fig-
ure, theZ factor of the Hubbard model taken at the energy of
the quasiparticle band at theG point s.−1.79 eVd is much
closer to unity as compared to the true(full GW) one because
the former already contains the renormalization from the
plasmon. Hence, neglecting frequency dependence directly
affects the physical results,even in the low-energy range. We
shall see below, however, that it is possible to modify the
static model in such a way that an accurate approximation is
obtained at low energy.

These findings can be understood in more detail by con-
sidering explicit expressions of the self-energy obtained
within the GW approximation, for an effective model of the
d subspace defined on the periodic lattice. The imaginary
part reads

Im Snsk,vd = o
q,m

Im Wnmsq,v − ek−q
m dfnFsek−q

m d

+ nBsv − ek−q
m dg. s13d

In this expression,n,m are band indices,ek
n corresponds to

the nth noninteracting band, andnF (resp.nB) is the Fermi
(resp. Bose) function. ImW is the spectral function associ-
ated with the effective interaction(to be taken asW if the
self-energy of the frequency-dependent effective model is
considered, and asWd if that of the static Hubbard model is
considered). From this expression, one sees that if one con-
siders an energyv, the bands contained in the energy inter-
val f0,uvug are the only ones contributing significantly to
Im S. This is the reason why theimaginary partof the self-
energy at low energy will be correctly reproduced by the

effective low-energy model(provided, of course, that the
spectral function ImW is correctly approximated at low en-
ergy). In contrast, the real part of the correlation self-energy
is obtained from the Hilbert transform or the Kramers-
Krönig relation in the form

ReSnsk,vd = −
1

p
PE

−`

+`

dno
q,m

Im Wnmsq,nd
nFsek−q

m d + nBsnd
v − ek−q

m − n
.

s14d

Because the principal-part integral extends over the whole
frequency range, high-frequency contributions influence the
self-energy even at low frequency. As a result, for the case
we are considering, an accurate description of the real part of
the self-energy cannot be obtained within the static Hubbard
model because the effective interaction is not correctly ap-
proximated over the whole frequency range. This formula
also suggests a way to appropriately modify the effective
static model in order to obtain an accurate description at low
energy, as discussed below.

B. The puzzle of the satellite

Figure 5 compares the spectral function obtained for the
full system within the GWA, and that of the static Hubbard
model(8). A striking difference between these two results is
the absence of the 6 eV satellite in the GWA for the full
system, while the static Hubbard model displays a satellite
feature. This is to be expected from the structure of the self-
energy. The GWA self-energy of the full system continues to
grow and reaches a maximum around the plasmon excitation
at around 25–30 eV, while the self-energy of the static Hub-
bard model has a maximum around the width of the 3d band
s4 eVd. In comparison with the true plasmon, the “plasmon”
of the Hubbard model has a much lower energy, of the order
of U, which results in the “6 eV satellite.”

In contrast to the electron gas, where the plasmon excita-
tion contained in ImW is quite distinct in energy and well

FIG. 4. The real parts of the
self-energy of the real system
(solid) and the Hubbard model
(dash) in the GWA.
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separated from the valence band, there is no well-defined
plasmon excitation in transition metals. As can be seen in
Fig. 1, in the case of nickel or transition metals ImW has a
rather broad distribution of weight extending down to the
low-energy region. It is this weight at low energy that gives
a significant contribution to ImS that in turns washes out the
satellite structure presence in the static Hubbard model. If
Im W is dominated by a sharp plasmon well separated from
the valence band, then it follows from Eq.(13) that the cor-
responding ImS has little weight in the region of the valence
band. Consequently, we expect the static Hubbard model to
give a reliable spectrum at low energy. However, when ImW
has a significant weight at low energy, we expect this weight
will contribute to ImS, and consequently influence the spec-
tral function. The preceding argument has been based on the
GWA but it seems quite feasible that the conclusion drawn
from this argument is also true in the exact case. We know,
for instance, that the experimental loss spectrum of nickel,
which is proportional to ImW, is well reproduced by the
RPA.

We may divide the frequency region into three parts: a
low-energy regionv&L, whereL is of the order of thed
bandwidth, an intermediate regionL,v,vp, wherevp is
the average plasmon energy, and a high-energy regionv
&vp. By a judicious choice of a noninteractingG it should
still be possible to construct a Hubbard model with a staticU
that gives a reliable description of the spectrum or quasipar-
ticle energies in the low-energy regionv&L, as proposed in
the following section. For the intermediate and high-energy
regions, however, the static Hubbard model may have a
problem since ImS plays an important role in determining
the structure of the spectrum like the shake-up satellite or the
lower Hubbard band.

One could blame the appearance of a satellite in our static
Hubbard model calculation on the fact that we have used a
(non-self-consistent) GW approximation. However, more ac-
curate treatments of the static Hubbard model[such as dy-
namical mean-field theory(DMFT)] do preserve this feature,
which has in this context a natural interpretation as a lower

Hubbard band. On the other hand, it could be that the experi-
mentally observed nickel satellite has a somewhat different
physical origin and that the satellite obtained in static Hub-
bard model calculations is spurious in the context of nickel
(e.g., because it is not legitimate to use a low-energy effec-
tive model in this energy range). In our view, this issue is an
open problem which deserves further work. Although the
calculations have been carried out within the GWA, our find-
ing indicates a possible problem with a static Hubbard model
even when treated exactly.

C. Improving the effective static model

The preceding discussion shows that an effective model
for the d band can be constructed, which accurately repro-
duces the full results over an extended energy range, pro-
vided the energy dependence ofUsvd is retained. However,
performing calculations with an energy-dependent Hubbard
interaction is exceedingly difficult. A more modest goal is to
obtain an effective model which would apply to some low-
energy range only,uvu,L, with L a cutoff of the order of
thed-bandwidth. In order to achieve this goal, we propose to
adopt a renormalization-group point of view, in which high
energies are integrated out in a systematic way. Following
this procedure, an appropriate low-energy model with a static
U can be appropriately constructed. As we shall see, the bare
Green’s function defining this low-energy model does not
coincide with the noninteracting Green’s function in the
d-subspace(we have seen that this does not lead to a satis-
factory description, even at low energy).

Let us illustrate this idea within theGW approximation.
The full Hilbert space is divided into the Hubbard space,
comprising the 3d orbitals, and the downfolded space, com-
prising the rest of the Hilbert space. This approach is
complementary to the one in Refs. 2 and 13, where the divi-
sion is done in real space(on site and off sites). Within the
GWA we may write the full self-energy as follows:

GW= GdWd + GdsW− Wdd + GrW, s15d

whereG=Gd+Gr. The termGdsW−Wdd represents the high-
energy contribution of the screened interaction. This is the

FIG. 5. The spectral functions
of the real system(solid) and the
Hubbard model (dash) in the
GWA.
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main source of error in the static limit, as discussed in the
previous sections. The termGrW is not obtainable within the
Hubbard model, even when a frequency-dependentU is em-
ployed sinceGr resides in the downfolded space. This term
was shown to be small. Its effect at low-energy can also be
taken into account by appropriate modifications of the one-
particle propagator, but we shall neglect it for simplicity.

We consider the following Hubbard model with a static

U=Wrs0d, but a modified one-particle propagatorG̃, defined
by the action

SH = −E dtdt8 o dRn
† stdG̃Rn,R8n8

−1 st − t8ddRn8st8d

+
1

2
E dt o :dR1n

† stddR2n8std:UR1nR2n8,R3mR4m8

:dR3m
† stddR4m8std:. s16d

The self-energy of this static Hubbard model in the GWA is

S̃d
H = G̃dW̃d. s17d

where the new effective interaction isW̃d=Uf1−UP̃dg−1,

with P̃d constructed from the new Green’s functionsG̃d

(schematicallyP̃d=G̃d·G̃d). We request that the interacting
Green’s function of this modified static model coincides with
that of the Green’s function calculated with the frequency-
dependent interactionin the low-energy rangeuvu,L:), that
is

G̃d
−1 − S̃d

H . Gd
−1 − GdWd − GdsW− Wddforuvu , L.

s18d

Using the identityG−1−GW=f1−UPg−1G−1, this can be re-
written as

f1 − UP̃dg−1G̃d
−1 . f1 − UPdg−1Gd

−1 − GdsW− Wdd foruvu , L.

s19d

This is an integral equation which determines, in principle,

the modified bare Green’s functionG̃d to be used in the
“downfolded” static action(16). To first approximation, one
can neglect the polarization terms in this equation, and ob-

tain the first-order modification ofG̃d as

G̃d
−1 = Gd

−1 − GdsW− Wdd + ¯ . s20d

The first correction appearing in this equation is precisely the
contribution coming from the high-energy part of the
screened interaction. We have explained above that this cor-
rection is not small, which is the reason for the failure of the
static Hubbard model using the noninteractingGd. Dividing
the screened interaction into a low-energy part foruvu,L
and a high-energy part foruvu.L, we can use the explicit
forms (13) and(14) given in the preceding section to obtain
this first correction in the form

G̃d
−1sk,vdn = Gd

−1sk,vdn

+
1

p
E

unu.L

dno
q,m

Im Wnmsq,nd
nFsek−q

m d + nBsnd
v − ek−q

m − n

+ ¯ . s21d

In particular, we see by expanding this expression to first
order inv, that the low-frequency expansion of the modified

one-particle propagator readsG̃d
−1sk,v+ i0+dn=s1+ak,ndv

−«k
n+¯. The coefficientak,n is a partial contribution to the

quasiparticle residueak,n=−s1/pdomeunu.LdnIm Wnmsq,nd
3fnFs«k−q

m d+nBsndg / sn−«k−q
m d2. In practice, this integral can

be easily evaluated using the well-known plasmon pole ap-
proximation, which should contain most of the high-energy
contribution. This correction ensures that the quasiparticle
residue is obtained correctly from this “downfolded” static
model. We do not, however, expect that this improvement
solves the problem with the satellite discussed in the preced-
ing section.

D. Beyond theGW approximation

In strongly correlated systems, it is known that the GWA
is not sufficient and improvement beyond the GWA is
needed. Much of the shortcoming of the GWA probably
originates from the improper treatment ofshort-rangecorre-
lations within the RPA. Thus, one would like in the first
instance to attempt to improve these short-range correlations,
which are essentially captured by the Hubbard model. The
formula (15) suggests a natural way to do this, as follows.
The contribution from the frequency-dependentU as well as
the contribution from the downfolded Hilbert space are
treated within the GWA. The self-energyGdWd correspond-
ing to theGWself-energy of the Hubbard model with a static
U can then be replaced by that obtained from more accurate
theories such as DMFT(Ref. 14) or from exact methods such
as Lanczos diagonalization and path-integral
renormalization-group(PIRG) method.17 Thus, if we use the
LDA to constructGd, the correction to the LDA exchange-
correlation potential reads:

DS = SH + GdsW− Wdd + GrW− vxc, s22d

whereSH is the Hubbard model self-energy obtained from
more accurate methods, replacingGdWd. We note also that
the scheme in(15) avoids the problem of double counting,
inherent in LDA+U15 or LDA+DMFT methods.16 In this
way, it is possible to calculate the HubbardU using the re-
sponse function constructed from the LDA bandstructure.

The application of DMFT requires the HubbardU for the
impurity model. To calculate the HubbardU for an impurity
model, it is necessary to downfold contributions to the po-
larizationP from the neighboring sites. Here, the identity in
Eq. (3) shows its usefulness. Since the formulation in Eq.(3)
is quite general, we merely need to redefinePd to be the
on-site polarizations, or equivalently, we redefinePr to also
include polarizations from the neighboring sites. The compu-
tational result for Ni shows that the difference between the
lattice and the impurity HubbardU is rather small, essen-
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tially negligible. Somewhat different but related calculations
of the HubbardU for the impurity model has also been per-
formed in Ref. 7 for Fe and Ni, which confirm the result
obtained in our formulation.

Another feasible approach for calculating physical quan-
tities of the derived Hubbard model is by using the path
integral renormalization group(PIRG) method.17 One advan-
tage of this method is the possibility of using the lattice
Hubbard model as opposed to the impurity model, thus in-
cluding spatial fluctuations and possible symmetry breaking.
The method is also suited for studying single-particle
Green’s functions as well as thermodynamic quantities, in
particular for accurate determination of the phase diagram,
which often requires a determination of the possible symme-
try breaking of the Hubbard Hamiltonian after taking ac-
count of spatial and temporal fluctuations on an equal foot-
ing. In calculating the self-energy, one may substituteGdWd
by the self-energy obtained within the correlator projection
method18 together with the PIRG. These form a future chal-
lenge in the field of strongly correlated materials.

IV. SUMMARY AND CONCLUSION

In conclusion, we have investigated the construction of
effective models for the correlated orbitals in materials with
a natural separation of bands. In particular, we propose a
simple procedure for calculating the HubbardUsvd, which
can include off-diagonal matrix elements within thed multi-
plets as well as off-site matrix elements. We have shown for
the case of nickel that if one retains the full frequency de-
pendence of the local components of the screened interac-
tion, an accurate effective model can be obtained over an
extended energy range. Simply neglecting this energy depen-

dence and using the noninteracting Hamiltonian into a static
Hubbard model does not provide an accurate description
even at low energy. However, a proper modification of the
bare propagator, obtained by integrating out high energies,
allows for the construction of an effective Hubbard model
which describes the low-energy physics in a satisfactory
manner.

Although the present study has been based on the GWA,
our finding indicates that a static Hubbard model may have a
problem in describing the spectrum at intermediate and high-
energy regions when the loss spectrum or ImW has a broad
distribution of weight, extending down to low-energy region.
This is in contrast to the case where ImW is dominated by a
distinct plasmon excitation, well separated in energy from
the valence band, in which case the static Hubbard model is
expected to work well. It is desirable to carry out more so-
phisticated calculations with a frequency-dependent Hubbard
model in order to have a clearer insight into the limitations of
the static Hubbard model. Work in this direction is now in
progress.
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