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A method of calculation of one-particle density of states has been developed and tested. Using this method
a density of states can be calculated from a potential dependence of electron density measured at nonzero
temperature. The method can be applied to a system with an externally controlled chemical potential such a as
porous electrode penetrated with an electrolyte.
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In many important materials such as conducting
polymers,1,2 quantum dot assemblers,3 and porous
semiconductors,4 the one-particle density of states(DOS)
plays a key role for the description of electrical, photovol-
taic, and thermodynamic properties and determines the op-
eration of the devices. One of the methods for determination
of the DOS is based on the measurement of a variation of a
density of electrons(holes) caused by a variation of Fermi
energys«Fd.5 This method has been applied in many works
for investigation of the DOS in conducting polymers,6 quan-
tum dots,7 and porous semiconductors.5,8–10Another method
extracts the DOS from the potential dependence of the cur-
rent tunneling from a metal electrode into an investigating
material through a thin barrier.11 Finally, in both methods one
measures the dependence of the amount of carries(amount
of available states) on Fermi energy(applied potential). Tak-
ing a derivative of this dependence one gets a value usually
considered to be equal to the density of states. However, the
latter is, in general, valid only at zero temperaturesT=0d,
when a distribution functionfss«−«Fd /kTd is steplike. At
finite temperature the distribution function is smeared in an
energy range of width aboutkT (k denotes the Bolzmann
constant). For example, in Fig. 1(c) a result of such a differ-
entiation denoted asg0 is shown for a density of states con-
sisting of two Gaussian peaks[Fig. 1(a)]. At finite kT, g0
looks quite different from the DOS, althoughkT is clearly
less than the distance between peaks. Thus, the temperature
broadening of the distribution function can lead to a signifi-
cant error in the determination of the DOS.

In this paper we describe a method to extract the one-
particle density of states, which utilizes experimentally mea-
sured quantities and accounts for nonzero temperature. The
method should be especially useful in systems where mea-
surements cannot be performed at low temperatures, for ex-
ample, in porous electrodes penetrated with electrolytes. As
an example, the experimental results of the measured elec-
tron density in nanostructured TiO2 as a function of the po-
tential will be analyzed and discussed.

In what follows we will, for concreteness, describe the
determination of the DOS from the dependence of electron
densitysnd on the applied potentialsUd measured in a porous

electrode penetrated with an electrolyte or other conducting
medium so that electrical field is screened andU=−«F /e (e
denotes the elementary charge). However, the proposed ap-
proach can be also applied to the tunneling experiments. At
finite temperature the electron density depends on the ap-
plied potential, DOSgs«d, temperature, and distribution
function fss«+eUd /kTd:

nsUd =E
−`

`

gs«dfS« + eU

kT
Dd« = kTE

−`

`

gskTx− eUdfsxddx,

s1d

where « is the energy, which is taken equal to zero at the
bottom of conduction band and decreases downwards in the
band gap. An essential assumption is that the energy of a
state does not depend on chemical potential, i.e., we neglect
many-particle effects. The latter allows changing a variable
in the integral.

Expression(1) is an integral equation with respect to den-
sity of states. At sufficiently low temperatures its solution
can be obtained in a form of series of powers ofT. Taking a
derivative of Eq.(1) versusU one gets

FIG. 1. (a) Simulated DOS.(b) Fermi-Dirac distribution func-
tion at finite T. (c) Simulated DOS and its approximations deter-
mined from a dependence of number of occupied states on Fermi
energy:g0=dn/d«F; g1 andg2—described in the text.
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where partial integration was used for transformation of the
expression (2) and we take into account thatfs`d=0,
gs−`d=0, fs−`d=1.

Since the temperature is suggested to be low, one can
expand the integral in expression(2) in a Taylor series with
respect tokT:
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Introducing a derivative into each term of expression(3), one
gets

dn

dU
= − eSgs− eUd + o

l=1

`

alUd2lg

d«2lU
«=−eU

skTd2lD , s4d

where

al = −
1

s2ld!E−`

`

x2l df

dx
dx. s5d

The solution of Eq.(4) has to be found as an expansion in
the Taylor series ofkT. This can be done by the method of
series iterations. As a zero-order approximation one has the
result usually applied in which the density of states is given
by the chemical capacitance5,8–10

g0s− eUd = −
1

e

dn

dU
. s6d

Then substitutingg0s−eUd into Eq. (4), the first order ap-
proximationg1s−eUd can be found from the equation

dn

dU
= − eSg1s− eUd + a1skTd2Ud2g0

d«2 U
«=−eU

D . s7d

This gives

g1s− eUd = −
1

e
F dn

dU
− a1SkT

e
D2 d3n

dU3G . s8d

This procedure can be continued and the solution has a form

gs− eUd = −
1

eF dn

dU
+ o

l=1

`

bl
d2l+1n

dU2l+1SkT

e
D2lG . s9d

Some coefficientsbl are listed below. The numbers are cal-
culated for usual Fermi-Dirac distribution functionfsxd
=1/fexpsxd+1g:

b1 = − a1 = − 1.644 493 4,

b2 = − sa2 − a1
2d = 0.811 742 4,

b3 = − sa3 − 2a1a2 + a1
3d = − 0.190 751 8,

b4 = − sa4 − 2a1a3 − a2
2 + 3a1

2a2 − a1
4d = 0.026 147 85,

Expression(9) is valid at least at temperatures less than
D« /k, whereD« is a characteristic width of the change of the
DOS. Although validity of Eq.(9) is questionable at higher
temperatures, it is obvious that differentiation ofnsUd will
make features of the density of states hidden at finite tem-
perature more visible.

To examine the accuracy of expression(9) a potential
dependence of electron density was calculated for an expo-
nential distribution of states:

gs«d =
Nt

«0
expS «

«0
D s10d

and the Fermi-Dirac distribution function using expression
(1). Derivativesdpn/dUp have been calculated by numerical
integration. Then density of states has been calculated using
expression(9) with a different number of terms. The result
has been compared with an exact DOS given by expression
(10). The results are listed in Table I. The width of the dis-
tribution «0 was taken equal to 0.1 eV, andNt=1019 cm−3.
Zero energy corresponds to the bottom of conduction band. It
is seen that the accuracy of the approximation for the DOS
increases quite fast with an increase of number of terms in
series(9). Further, even atkT=«0 10% accuracy is reached
with four terms.

We have also tested the proposed method for a density of
states consisting of two Gaussian peaks[Fig. 1(a)]. For a
smeared distribution function[Fig. 1(b)] we calculated first-

TABLE I. Comparison of approximate and exact densities of states at energy −0.25 eV.

Temperature
(eV)

g0

s1019 cm−3/eVd
g1

s1019 cm−3/eVd
g2

s1019 cm−3/eVd
g3

s1019 cm−3/eVd
Exact DOS

s1019 cm−3/eVd

0.1 0.136 0.126 0.090 0.075 0.082

0.08 0.134 0.107 0.080 0.078 0.082

0.06 0.1243 0.0895 0.0793 0.0817 0.0821

0.04 0.1052 0.0820 0.0817 0.0821 0.0821

0.02 0.087740 0.081751 0.082085 0.082085 0.082085
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and second-order approximationsg1 and g2, which are
shown in Fig. 1(c) together withg0=dn/d«F and the exact
DOS. One can see that alreadyg2 almost coincides with the
exact DOS.

The derivation of the density of states from experimental
data requires knowledge of high-order derivatives of func-
tion nsUd. Since experimental data contain noise, a certain
smoothing is required to perform digital differentiation of
higher orders. A promising alternative approach would be
direct measurement of derivatives by analyzing the higher
harmonics of ac current.

To illustrate the procedure described above we apply it to
analyze cyclic voltamograms(CV) recorded on nanoporous
TiO2 permeated with inertpH 2 HClO4 aqueous solution
containing 0.2M LiClO4. The nanoporous TiO2 consisted of
a film with sintered 20-nm-diam anatase crystals, prepared as
reported previously12 on a conducting substrate. Experimen-
tal curves are presented in Fig. 2. The film potential is mea-
sured with respect to a Ag/AgCl reference electrode. Tem-
perature variation was less than 0.1 °C. The position of the
TiO2 conduction band bottom at thispH is −0.51 V, as de-
termined by spectroelectrochemical measurements.8,13 The
first derivativedn/dU has been calculated from the charging
part of CV using the following expression:

dn

dU
=

I

eLS
SdU

dt
D−1

, s11d

where I is current,L=1.56mm is the thickness of porous
TiO2 layer, S=0.969 cm2 is the area of porous TiO2, and
dU/dt=0.1 mV/s is the scan rate. Higher-order derivatives
have been calculated using the five point averaging proce-
dure. Figure 3 shows the first three approximationsg0, g1,
and g2 for the DOS calculated using expression(9) with
coefficients bl calculated for the Fermi-Dirac distribution
function. It is seen that features of the DOS become much
more pronounced with an increasing number of terms in the
series. Further, a conclusion can be drawn that the DOS of
porous TiO2 is quite different from exponential distribution.
Note that the difference betweeng1, andg2 is much less than

the difference betweeng0 and g1, which is evidence of the
convergence of the series(9).

If the distribution function is chosen correctly, expression
(9) should give the same results for different temperatures.
Figure 4 presentsg2, an approximation for the DOS calcu-
lated usingnsUd curves measured at 5, 20, and 40 °C. Co-
efficientsbl calculated for the Fermi-Dirac distribution have
been used. One can see that theg2 approximation for the
DOS is indeed temperature dependent. The temperature de-
pendence ofg2 persists also for the distribution function
fsxd=1/f 1

2 expsxd+1g, which is valid for doubly degenerate
and once occupied states. The following reasons can explain
the temperature dependence ofg2: (1) The distribution func-
tion for some states in the band gap is different from a simple
Fermi-Dirac function due to degeneracy(for example, the
degeneracy is more than 2). (2) The one-particle density of
states is really temperature dependent(for example, due to
Coulomb interaction between electrons in TiO2 and ions in
electrolyte).

FIG. 2. Experimental cyclic voltamograms recorded in nanopo-
rous TiO2 at 5, 20, and 41 °C. Scan rate 0.1 mV/s. FIG. 3. DOS calculated for nanoporous TiO2 at 41 °C from the

cyclic voltamogram using series(9) with different numbers of term
(1, g0; 2, g1; and 3,g2). The energy origin is the lower edge of the
conduction band.

FIG. 4. DOS g2 calculated from the cyclic voltamogram re-
corded on nanoporous TiO2 electrodes using the first three terms of
series(9). The energy origin is the lower edge of the conduction
band.
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From our determination of the DOS in nanoporous TiO2

(anatase) shown in Fig. 4, we obtain at 41 °C a distribution
decreasing faster than exponential below the edge of the con-
duction band, and then displaying a maximum at 350 meV
below the conduction band edge. This last feature is related
to the uncoordinated Ti4+, which forms a nearly monoener-
getic surface state.10,14–16

In conclusion a method of determination of the one-
particle density of states using derivatives ofnsUd curves
measured in heterogeneous systems at finite temperature has

been presented. The method can be applied to the heteroge-
neous systems with a strong screening of the electrical field
such as porous electrodes penetrated with electrolytes or any
other system where the chemical potential can be controlled
by an external electrical potential.
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