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Determination of density of electronic states using the potential dependence
of electron density measured at nonzero temperatures
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A method of calculation of one-particle density of states has been developed and tested. Using this method
a density of states can be calculated from a potential dependence of electron density measured at nonzero
temperature. The method can be applied to a system with an externally controlled chemical potential such a as
porous electrode penetrated with an electrolyte.
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In many important materials such as conductingelectrode penetrated with an electrolyte or other conducting
polymerst? quantum dot assemblets,and porous medium so that electrical field is screened &hd—-s¢/e (e
semiconductor$, the one-particle density of stat¢é®OS)  denotes the elementary chaygelowever, the proposed ap-
plays a key role for the description of electrical, photovol-proach can be also applied to the tunneling experiments. At

taic, and thermodynamic properties and determines the ofimite temperature the electron density depends on the ap-
eration of the devices. One of the methods for determlnatlom,"ed potential, DOSg(e), temperature, and distribution

of the DOS is based on the measurement of a variation of gnction f((¢ +eU)/kT):

density of electrongholeg caused by a variation of Fermi

energy(eg).® This method has been applied in many works % c+el o
for investigation of the DOS in conducting polymérguan- n(y) :f g(s)f<—)ds = kTJ g(kTx-eU)f(x)dx,
tum dots! and porous semiconductot-1°Another method - KT -
extracts the DOS from the potential dependence of the cur- (1)

rent tunneling from a metal electrode into an investigating

material through a thin barriét.Finally, in both methods one wheree is the energy, which is taken equal to zero at the
measures the dependence of the amount of cag@ie®unt  bottom of conduction band and decreases downwards in the
of available statgson Fermi energyapplied potentigl Tak-  band gap. An essential assumption is that the energy of a
ing a derivative of this dependence one gets a value usuallstate does not depend on chemical potential, i.e., we neglect
considered to be equal to the density of states. However, th@any-particle effects. The latter allows changing a variable
latter is, in general, valid only at zero temperatyie=0), in the integral.

when a distribution functiorf((e—&g)/kT) is steplike. At Expression(1) is an integral equation with respect to den-
finite temperature the distribution function is smeared in arsity of states. At sufficiently low temperatures its solution
energy range of width aboWT (k denotes the Bolzmann can be obtained in a form of series of powersToffaking a
constant For example, in Fig. (t) a result of such a differ- derivative of Eq.(1) versusU one gets

entiation denoted ag, is shown for a density of states con-
sisting of two Gaussian peaK&ig. 1(@)]. At finite kT, g
looks quite different from the DOS, althoudT is clearly a) b)
less than the distance between peaks. Thus, the temperature
broadening of the distribution function can lead to a signifi-

cant error in the determination of the DOS.

In this paper we describe a method to extract the one- §
particle density of states, which utilizes experimentally mea- &
sured quantities and accounts for nonzero temperature. The
method should be especially useful in systems where mea-
surements cannot be performed at low temperatures, for ex-
ample, in porous electrodes penetrated with electrolytes. As
an example, the experimental results of the measured elec-
tron density in nanostructured Tj@s a function of the po-
tential will be analyzed and discussed. FIG. 1. (a) Simulated DOS(b) Fermi-Dirac distribution func-

In what follows we will, for concreteness, describe thetion at finite T. (c) Simulated DOS and its approximations deter-
determination of the DOS from the dependence of electromined from a dependence of number of occupied states on Fermi
density(n) on the applied potentidlU) measured in a porous energy:go=dn/deg; g; andg,—described in the text.

Density of States Distribution function Density of States
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TABLE |. Comparison of approximate and exact densities of states at energy —0.25 eV.

Temperature Jo o1 O 3 Exact DOS

(eV) (10 cm3/ev) (1009 cm3/eV) (10 cm3/eV) (100 cm3/eV) (10 cmi3/eV)

0.1 0.136 0.126 0.090 0.075 0.082

0.08 0.134 0.107 0.080 0.078 0.082

0.06 0.1243 0.0895 0.0793 0.0817 0.0821

0.04 0.1052 0.0820 0.0817 0.0821 0.0821

0.02 0.087740 0.081751 0.082085 0.082085 0.082085
dn * dg ” df dn <kT>2d3n
— =-ekT| —f(x)dx=e kTx—eU)—dx, (2 el)=———-a|— | —=1. 8
U f ALY Lg( )% 2 6(-eV) {du |\ ) 5@ ®)

where partial integration was used for transformation of the

expression(2) and we take into account thaft()=0,
g(=»)=0, f(-»)=1.

Since the temperature is suggested to be low, one can

expand the integral in expressi@d) in a Taylor series with
respect tokT:

* df
kTx-eU)—d
Lg( X-e )dxx

~ 1 d
= J (- eU>—dx E(kT)I, 30T
* df
X J g(ka—eU)—dx) (3)
( - dx kT=0

Introducing a derivative into each term of expresgi®y one
gets

Eﬂj _ 2Ig o
T e(g( eU)+|§‘1a4 02 :_eu(kﬂ ) 4
where

__ 1 7 ydf

a = (2I)!f_x,x dde. (5)

The solution of Eq(4) has to be found as an expansion in

This procedure can be continued and the solution has a form

d2+1 Kk 2l
g-eUy=-= [ Izb'dum( T) ] )

Some coefficient®, are listed below. The numbers are cal-
culated for usual Fermi-Dirac distribution functiof(x)
=1/[exp(x)+1]:

by=-a,=-1.644493 4,

b,=-(a;—a,%) =0.811 742 4,

by = - (ag— 2a;,a, +a,°) = - 0.190 751 8,

by = - (a, - 2a,a3— a,° + 3a,%a, — a,") = 0.026 147 85,

Expression(9) is valid at least at temperatures less than
Aelk, whereAe is a characteristic width of the change of the
DOS. Although validity of Eq(9) is questionable at higher
temperatures, it is obvious that differentiation rgtJ) will
make features of the density of states hidden at finite tem-
perature more visible.

To examine the accuracy of expressi@@ a potential
dependence of electron density was calculated for an expo-
nential distribution of states:

g(e) = Mexp<£)
€p €p

(10

the Taylor series okT. This can be done by the method of and the Fermi-Dirac distribution function using expression
series iterations. As a zero-order approximation one has th@). Derivativesd’n/dUP have been calculated by numerical
result usually applied in which the density of states is givenintegration. Then density of states has been calculated using

by the chemical capacitarc&1°

1dn

Jo(— eU)———m (6)

Then substitutinggy(—eU) into Eq. (4), the first order ap-
proximationg,;(—eU) can be found from the equation

b
e=—eU

dn d?g,
au e(Ql(— eU) +a,(kT)? e

This gives

expression9) with a different number of terms. The result
has been compared with an exact DOS given by expression
(10). The results are listed in Table I. The width of the dis-
tribution &, was taken equal to 0.1 eV, ardj=10" cm™3.
Zero energy corresponds to the bottom of conduction band. It
is seen that the accuracy of the approximation for the DOS
increases quite fast with an increase of number of terms in
series(9). Further, even akT=¢y 10% accuracy is reached
with four terms.

We have also tested the proposed method for a density of
states consisting of two Gaussian pegksy. 1(a)]. For a
smeared distribution functioftig. 1(b)] we calculated first-
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FIG. 2. Experimental cyclic voltamograms recorded in nanopo-

rous TiO, at 5, 20, and 41 °C. Scan rate 0.1 mV/s. FIG. 3. DOS calculated for nanoporous i@ 41 °C from the

cyclic voltamogram using serig€9) with different numbers of term

) . . (1, 9o; 2, 91; and 3,9,). The energy origin is the lower edge of the
and second-order approximatiorgg and g, which are  snquction band.

shown in Fig. 1c) together withgy=dn/der and the exact
DOS. One can see that alreaglyalmost coincides with the the difference betweeg, and g,;, which is evidence of the
exact DOS. convergence of the serig9).

The derivation of the density of states from experimental _If the distribution function is chosen correctly, expression
data requires knowledge of high-order derivatives of func{9) should give the same results for different temperatures.
tion n(U). Since experimental data contain noise, a certair igure 4 presents,, an approximation for the DOS calcu-
smoothing is required to perform digital differentiation of lated usingn(U) curves measured at 5, 20, and 40 °C. Co-
higher orders. A promising alternative approach would peefficientsby calculated for the Fermi-Dirac _dlstr.|but|on have
direct measurement of derivatives by analyzing the highePeen used. One can see that tieapproximation for the
harmonics of ac current. DOS is indeed temperature dependent. The temperature de-

To illustrate the procedure described above we apply it t(pendenc? ofg, persists also for the distribution function
analyze cyclic voltamogrameCV) recorded on nanoporous (X)=1/[3 expx)+1], which is valid for doubly degenerate
TiO, permeated with inerpH 2 HCIO, aqueous solution and once occupied states. The following reasons can explain
containing 0.3 LiClO,. The nanoporous TiQconsisted of the temperature dependencegef (1) The distribution func-

a film with sintered 20-nm-diam anatase crystals, prepared don for some states in the band gap is different from a simple
reported previoush? on a conducting substrate. Experimen- Fermi-Dirac function due to degenera¢ipr example, the

tal curves are presented in Fig. 2. The film potential is meadegeneracy is more than.22) The one-particle density of
sured with respect to a Ag/AgCl reference electrode. Temstates is really temperature dependgot example, due to
perature variation was less than 0.1 °C. The position of th&oulomb interaction between electrons in Ji@nd ions in
TiO, conduction band bottom at thjsH is —0.51 V, as de- electrolyte.
termined by spectroelectrochemical measurenfetitshe 10®
first derivativedn/dU has been calculated from the charging
part of CV using the following expression:

1 (du) ”
du eLS\dt/ '

-
o—n
o

wherel is current,L=1.56 um is the thickness of porous
TiO, layer, S=0.969 crd is the area of porous TiQ and
duU/dt=0.1 mV/s is the scan rate. Higher-order derivatives
have been calculated using the five point averaging proce-
dure. Figure 3 shows the first three approximatigpsg,,

Density of states g, (cm”eV")
=)

and g, for the DOS calculated using expressi@) with 04 03 0.2 0.1

coefficientsb, calculated for the Fermi-Dirac distribution
function. It is seen that features of the DOS become much
more pronounced with an increasing number of terms in the FIG. 4. DOS 0> calculated from the Cyc”c V0|tamogram re-
series. Further, a conclusion can be drawn that the DOS aforded on nanoporous Tilectrodes using the first three terms of
porous TiQ is quite different from exponential distribution. series(9). The energy origin is the lower edge of the conduction
Note that the difference between, andg, is much less than band.

Energy (eV)
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From our determination of the DOS in nanoporous JiO been presented. The method can be applied to the heteroge-
(anataspshown in Fig. 4, we obtain at 41 °C a distribution neous systems with a strong screening of the electrical field
decreasing faster than exponential below the edge of the costch as porous electrodes penetrated with electrolytes or any
duction band, and then displaying a maximum at 350 me\ther system where the chemical potential can be controlled
below the conduction band edge. This last feature is relatey @n external electrical potential.
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