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For some models of interacting fermions the known solution to the notorious sign problem in Monte Carlo
(MC) simulations is to work with macroscopic fermionic determinants; the price, however, is a macroscopic
scaling of the numerical effort spent on elementary local updates. We find that theratio of two macroscopic
determinants can be found with any desired accuracy by considering truncated(local in space and time)
matices. In this respect, MC for interacting fermionic systems becomes similar to that for the sign-problem-free
bosonic systems with system-size independent update cost. We demonstrate the utility of the truncated-
determinant method by simulating the attractive Hubbard model within the MC scheme based on partially
summed Feynman diagrams. We conjecture that similar approach may be useful in other implementations of
the sign-free determinant schemes.
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Monte Carlo(MC) methods are a unique tool for studying
large interacting systems. The most severe limitation on their
applicability is imposed by the so-called sign problem(SP)
when relevant contributions to statistics alternate in sign and
almost exactly compensate each other in the final answer.1

Frustrating interactions and anticommutation relations for
fermion operators are typically at the origin of the sign prob-
lem. In this paper, we address the case when quantum statis-
tics is nonpositive only because of the fermion exchange
cycles.

One solution to the fermion SP is offered by the determi-
nant Monte Carlo(DetMC) (see, e.g., Ref. 2). The idea is
that all contributions to the many-body statistics obtained by
exchanging fermion places(in a certain representation) can
be written as a product of two determinants—for spin-up and
spin-down species—and in cases when the two real determi-
nants coincide the result is positive definite. In Metropolis-
type algorithms,3 MC updates are accepted with probabilities
proportional to the ratio of final and initial configuration
weights; in DetMC the corresponding acceptance ratioR is
based on the ratio of large determinants. Unfortunately, cal-
culating determinants ratio for macroscopically large matri-
ces is very expensive numerically: even with tricks involving
the Hubbard-Stratonovich tranformation the algorithm pro-
posed by Blankenbecler, Scalapino, and Sugar4,5 still re-
quiresL2D operations per update for aD-dimensional system
with L lattice points per dimension. The same scaling is true
for the continuous-time scheme.6 In contrast, for bosonic
systems with local interactions the number of operations per
update is small and system-size independent, i.e., they can be
simulatedL2D times faster.

Since the bottleneck of DetMC is the calculation ofR, one
may question the paradigm of calculating it “exactly:” In any
case, computer operations always involve systematic round-
off errors. The other example is provided by(pseudo)random
number generators—they arealwaysimperfect and result in
systematic errors equivalent to small errors inR which, how-
ever, remain practically undetectable(for good generators) in
final results. The heuristic explanation of why small errors in
R do not ruin the simulation is as follows. The Metropolis

algorithm is a scheme with strong relaxation towards equi-
librium distribution, and local configuration updates may be
viewed as the result of dissipative coupling to the thermal
bath (this picture is often used to model dissipative
kinetics1). Uncontrolled errors inR may then be regarded as
a small stochastic noise in the relaxational dynamics. As
such, it only slightly modifies the equilibrium state and its
properties. This is a standard argument in the linear response
theory.

It seems natural then to suggest that if the goal is to simu-
late the result withn-digit accuracy, there is no need to cal-
culate the acceptance ratio with accuracy much higher thann
digits. Often, we simply ignore this issue because gettingR
with machine precision does not cost any extra CPU time. In
determinant methods, however, there is a potential of huge
efficiency gains if approximate values ofR can be calculated
much faster. We demonstrate the feasibility of this approach
by showing that the ratio of two macroscopic determinants
can be found with high accuracy by considering truncated
matrices dealing only with the local(in space-imaginary
time) structure of the configuration space. The computational
cost of updates in the corresponding “truncated-determinant”
scheme is system-size independent—an efficiency increase
~L2D for largeL.

In what follows, we discuss the solution of the Hubbard
model for fermions within a simple diagrammatic MC
scheme based on Feynman diagrams partially summed over
fermion propagator permutations.6,7 The resulting diagram
weight is the square of the determinant composed of finite-
temperature fermion propagators. We explain how the deter-
minant ratio for local updates may be calculated using trun-
cated matrices, and demonstrate the feasibility of the
proposed approach. We also show that going to larger system
sizes has little effect on the scheme performance. Finally, we
conjecture that large efficiency gains are expected in other
sign-problem free DetMC schemes, e.g., in lattice QCD
simulations with quark fields.8 It is also worth noting that in
the diagrammatic DetMC scheme the update cost does not
depend directly on the lattice period, which is a big advan-
tage for simulations of dilute systems. By “dilute” we mean
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dilute with respect to the lattice, but not necessarily with
respect to the interaction; the latter can be effectively large
due to a resonance on a(quasi) bound state. Correspond-
ingly, the new scheme is very promising for the study of ultra
cold fermionic systems in the regime of strong Feshbach
resonant interaction, including the crossover from the
Bardeen-Cooper-Schrieffer pairing to the Bose-Einstein con-
densation of molecules.16

Model and method. We consider interacting lattice fermi-
ons with the Hubbard HamiltonianH=H0+H1:

H0 = o
ks

sek − mdcks
† cks, H1 = Uo

x

nx↑nx↓, s1d

where cxs
† is the fermion creation operator,nxs=cxs

† cxs,
s= ↑ ,↓ is the spin index,x runs over theLD points of the
simple cubic lattice,k runs over the corresponding Brillouin
zone, ek =−2toa=1

D coskaa is the tight-binding dispersion
law, and m is the chemical potential. For definiteness and
numerical tests, we confine ourselves to theD=2 spacial
lattice with periodic boundary conditions. We use the hop-
ping amplitude,t, and lattice constanta as units of energy
and distance, respectively.

Following Refs. 6 and 7 we start with writing the statis-
tical operator in the interaction representation

e−bH = e−bH0Tt expH−E
0

b

H1stddtJ , s2d

whereH1std=eH0tH1e
−H0t andTt is the time ordering opera-

tor, and expanding it in powers ofH1:

Z = o
p=0

`

s− Udp o
x1¯xp

E
t1,t2,¯,tp,b

Sp
i=1

p

dtiD
3 TrFe−bH0p

i=1

p

c↑
†sxitidc↑sxitidc↓

†sxitidc↓sxitidG . s3d

This expansion for the partition function generates stand-

ard Feynman diagrams.9 Graphically, each term is a set
of four-point vertices with two incoming(spin up and
spin down), and two outgoing(spin up and spin down)
lines which connect vertices. Each line is associated with the
imaginary time fermion propagatorGssxi −x j ,ti −t j ;m ,bd
=−TrfTte

−bH0cssxitidcs
†sx jt jdg.

A straightforward MC sampling of diagrammatic
series would be impossible because of the sign problem.
However, if for a given configuration ofp vertices,
Sp=hsx j ,t jd , j =1, . . . ,pj, one sums over allsp! d2 ways of
connecting them by propagators, then the result can be writ-
ten as aproduct of two determinants, one for spin up, and
another for spin down(see, e.g., Ref. 2). The differential
weight of the vertex configuration(or vertex diagram) is then

dPsSpd = s− Udp detA↑sSpddetA↓sSpdp
i=1

p

dti , s4d

where AssSpd are p3p matrices Aij
s =Gssxi −x j ,ti −t jd.

For equal number of up and down particles,
detA↑ detA↓=fdetAg2, and negativeU the vertex diagram
weight is always positive.(At half filling, n↑+n↓=1, the sign
of U changes when hole representation is used for one of the
spin components, so this scheme may be also used for the
repulsive Hubbard model.)

MC sampling in the vertex configuration spacesp,Spd can
be performed by standard MC rules(see, e.g., Refs. 7 and
10) using just one pair of complementary updatesD andC:
in D one selects at random one of the vertices and suggests
to delete it from the configuration; inC an additional vertex
is suggested to be inserted at some point randomly selected
in the space-time boxb3LD. These updates decrease/
increase the rank ofA by one. The acceptance ratio for the
D /C pair of updates is then based on the ratio of two deter-
minants

Rp = detAsSp+1d/detAsSpd, s5d

where Sp+1=hSp,sxp+1,tp+1dj (we omit the spin index for
brevity).

The bottleneck of this simple scheme is in evaluatingRp
whenp is macroscopically large. The typical number of ver-
tices is determined by the number of particles, interaction
strength, and inverse temperature asp~NbU. The truncated-
determinant idea is to calculateRp much faster at the expense
of accuracy using the following conjecture originating from
physical, rather than mathematical, arguments. The vertex
configuration represents a sequence of virtual particle colli-
sions in the many-body system, and it is likely thatlocal
changes in its structure depend only on the immediate neigh-
borhood of the updated region.(We note that the idea of
employing the local nature of the fermion-boson coupling
has been used in Ref. 4, but it has not been extended to the
fermionic determinant.) Quantitatively, we define a norm
i…i or a distance, between vertices in space-time(several
choices are discussed below), and construct a truncated ver-
tex configurationSp

sld such that all points inSp
sld satisfy

FIG. 1. Energy and density dependence on the imaginary time
cutoff for the Hubbard model forL=4. Dots represent the MC data,
and solid lines are the exact diagonalization results for 10 particles
(Ref. 11).
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isx j,t jd − sxp+1,tp+1di ø l . s6d

Correspondingly,Sp+1
sld =hSp

sld ,sxp+1tp+1dj. We may now use
truncated configurations to calculate the ratio(5) approxi-
mately as

Rp
sld = detAsSp+1

sld d/detAsSp
sldd. s7d

Clearly, whenl →L we recover the exact ratio. Our conjec-
ture is then thatRp

sld quickly converges toRp and there exists
a healing length in thesx ,td space characterizing this con-
vergence. If this is the case, thenl may be considered as a
microscopic(system-size independent) parameter controlling
the accuracy and efficiency of simulation.

The proper choice of the normi¯i depends on system
parameters. In the strongly correlated case the natural units
of distance and time are provided by the Fermi momentum
kF and Fermi energyeF. One possibility is then

isx,td − sx8,t8di = ÎkF
2sx − x8d2 + eF

2st − t8d2. s8d

Geometrically, this measure results in a set of verticesSp
sld

inside the space-time ellipsoid centered atsxp+1,tp+1d. For
dense systemsisx ,td−sx8 ,t8di=maxhux−x8u , ut−t8uj is
equally appropriate and our data for the largest system were
obtained using this measure. At temperatures comparable to
eF one may account for all vertices in thet̂ direction and
simply write isx ,td−sx8 ,t8dicyl=kFux−x8u. The correspond-
ing geometrical figure is ab cylinder. Similarly, in small
systems one may consider truncating configurations only in
time direction.

Numerical results and discussion. Our tests of the
truncated-determinant scheme were done for the attractive
Hubbard model withU=−4, m=−2, b=10, and periodic
boundary conditions. First, we simulated a smallL2=42 clus-
ter for which the ground-state energy(of 10 particles) is
known from exact diagonalization studies.11 Since the spatial
dimension is so small we truncate vertex configurations only
in the imaginary time direction. In Fig. 1 we show how the
result for energy converges to the exact value. We stress, that
at all stages of the MC simulation we never even write the
full configuration determinant, which rank is about 2.5 times
larger than typical values ofp for the cutoff radius 2.

In Fig. 2 we present our data for theL2=1002 system—
now, using determinant truncation both in space and in time
directions, Eq.(8). Remarkably, the convergence is achieved
around the same value of the truncation radius, which proves
that the computational cost per update is not subject to mac-
roscopic scaling. It is instructive to see how data conver-
gence for energy correlates with the typical errors introduced
by the approximate calculation ofRp. In Fig. 3 we show
examples ofRp dependence on the truncation radius for a
number of randomly selected MC configurations. Clearly,
quite large fluctuations inRp are statistically “averaged out”
in the final result for energy. We are not aware of any other
method capable of simulating fermionic systems of compa-
rable size.

Apart from the Hubbard model tests, we have also veri-
fied that the use of truncated-determinants for randomly
seeded vertex configurations works as nicely to speed up the
calculation ofRp.

The benchmark DetMC method by Blankenbecler, Scala-
pino, and Sugar4,5 (BSS) is based on the Trotter-Suzuki
imaginary time slicing, and the Hubbard-Stratonovich
transformation.12 The rank of the matrix used in the calcula-
tion of the acceptance ratio equals the number of lattice sites
LD and,L2D operations are required to find its determinant.
The necessity of handling large matrices, although made pos-
sible by this method, requires both elaborate finite-size scal-
ing analysis of MC data,13 and special efforts for the calcu-
lation stabilization at low temperatures.2 The contour-
distortion stabilization techniques(see, e.g., Refs. 14 and 15)
help to alleviate the sign problem, but still suffer from the
severe scaling of the computational cost per update. More
recently, Rombouts, Heide, and Jachowicz6 improved the

FIG. 2. Potential energy dependence on the truncation radius for
the Hubbard model forL=100.

FIG. 3. (Color online) Determinant ratiosRp
sld as functions ofl

for randomly selected MC configurations for theL=100 system.
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BSS scheme by formulating it in thet continuum. It is easy
to directly compare this scheme with ours because the start-
ing point is exactly the same—the expansion of the statistical
operator in powers ofU. Romboutset al. used the auxiliary
Ising variables to decompose four-point vertices into the
sums of arrived at the number of operations for performing
one update scaling asL2D. At this point we notice that while
we work with the same vertex configuration structure, in our
scheme there is no extra summation over the auxiliary vari-
ables, and the calculation of the acceptance ratio is system-
size independent.

Recently, a substantial improvement in lattice QCD simu-
lations has been achieved by including quark-loop effects
(see, e.g., Ref. 8). After the quarks are integrated out, their
effects are described by the macroscopic positive definite
determinant detAsUd, whereU is the configuration of gluon

matrices. The conjecture is that the ratio detAsUd /detAsU8d
for local updates of gluon matricesU→U8 can be calculated
by accounting only for the immediate neighborhood of the
updated lattice bond.

We doubt that the truncated-determinant schemes will
help to speed up simulations with the sign problem. If the
average configuration sign is small, the answer is determined
by small differences between the sign-positive and sign-
negative contributions, i.e., each contribution has to be cal-
culated to much higher accuracy than would be sufficient in
the positive definite case. As a result, higher and higher pre-
cision is required forRp and the advantages of our approach
quickly vanish.
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