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Truncated-determinant diagrammatic Monte Carlo for fermions with contact interaction
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For some models of interacting fermions the known solution to the notorious sign problem in Monte Carlo
(MC) simulations is to work with macroscopic fermionic determinants; the price, however, is a macroscopic
scaling of the numerical effort spent on elementary local updates. We find thedtibeof two macroscopic
determinants can be found with any desired accuracy by considering trur¢atadl in space and time
matices. In this respect, MC for interacting fermionic systems becomes similar to that for the sign-problem-free
bosonic systems with system-size independent update cost. We demonstrate the utility of the truncated-
determinant method by simulating the attractive Hubbard model within the MC scheme based on patrtially
summed Feynman diagrams. We conjecture that similar approach may be useful in other implementations of
the sign-free determinant schemes.
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Monte Carlo(MC) methods are a unique tool for studying algorithm is a scheme with strong relaxation towards equi-
large interacting systems. The most severe limitation on theilibrium distribution, and local configuration updates may be
applicability is imposed by the so-called sign problé&P)  viewed as the result of dissipative coupling to the thermal
when relevant contributions to statistics alternate in sign anéath (this picture is often used to model dissipative
almost exactly compensate each other in the final answerkinetics). Uncontrolled errors ifrR may then be regarded as
Frustrating interactions and anticommutation relations fora small stochastic noise in the relaxational dynamics. As
fermion operators are typically at the origin of the sign prob-such, it only slightly modifies the equilibrium state and its
lem. In this paper, we address the case when quantum statigroperties. This is a standard argument in the linear response
tics is nonpositive only because of the fermion exchangeheory.
cycles. It seems natural then to suggest that if the goal is to simu-

One solution to the fermion SP is offered by the determi-late the result witm-digit accuracy, there is no need to cal-
nant Monte CarloDetMC) (see, e.g., Ref.)2 The idea is culate the acceptance ratio with accuracy much higherthan
that all contributions to the many-body statistics obtained bydigits. Often, we simply ignore this issue because getigng
exchanging fermion placgsn a certain representatiptan  with machine precision does not cost any extra CPU time. In
be written as a product of two determinants—for spin-up andleterminant methods, however, there is a potential of huge
spin-down species—and in cases when the two real determéfficiency gains if approximate values Bfcan be calculated
nants coincide the result is positive definite. In Metropolis-much faster. We demonstrate the feasibility of this approach
type algorithms’ MC updates are accepted with probabilities by showing that the ratio of two macroscopic determinants
proportional to the ratio of final and initial configuration can be found with high accuracy by considering truncated
weights; in DetMC the corresponding acceptance ritie ~ matrices dealing only with the locdin space-imaginary
based on the ratio of large determinants. Unfortunately, caltime) structure of the configuration space. The computational
culating determinants ratio for macroscopically large matri-cost of updates in the corresponding “truncated-determinant”
ces is very expensive numerically: even with tricks involvingscheme is system-size independent—an efficiency increase
the Hubbard-Stratonovich tranformation the algorithm pro-«<L?° for largeL.
posed by Blankenbecler, Scalapino, and Stigjastill re- In what follows, we discuss the solution of the Hubbard
quiresL?P operations per update forxdimensional system model for fermions within a simple diagrammatic MC
with L lattice points per dimension. The same scaling is truescheme based on Feynman diagrams partially summed over
for the continuous-time scherfieln contrast, for bosonic fermion propagator permutatiofié. The resulting diagram
systems with local interactions the number of operations peweight is the square of the determinant composed of finite-
update is small and system-size independent, i.e., they can lbemperature fermion propagators. We explain how the deter-
simulatedL? times faster. minant ratio for local updates may be calculated using trun-

Since the bottleneck of DetMC is the calculatiorRyfone  cated matrices, and demonstrate the feasibility of the
may question the paradigm of calculating it “exactly:” In any proposed approach. We also show that going to larger system
case, computer operations always involve systematic roundizes has little effect on the scheme performance. Finally, we
off errors. The other example is provided (mseudgrandom  conjecture that large efficiency gains are expected in other
number generators—they aatwaysimperfect and result in  sign-problem free DetMC schemes, e.g., in lattice QCD
systematic errors equivalent to small errorRiwhich, how-  simulations with quark field®lt is also worth noting that in
ever, remain practically undetectalgfer good generatojsn the diagrammatic DetMC scheme the update cost does not
final results. The heuristic explanation of why small errors independ directly on the lattice period, which is a big advan-
R do not ruin the simulation is as follows. The Metropolis tage for simulations of dilute systems. By “dilute” we mean
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ard Feynman diagranfsGraphically, each term is a set
-20 0.65 . : . . . .
] ¥ of four-point vertices with two incoming(spin up and
29 0601 spin down, and two outgoing(spin up and spin down
| ‘2 0.55+ lines which connect vertices. Each line is associated with the
o 241 Sos0y imaginary time fermion propagato®,(Xi—X;, 7~ 7j; u, )
> h £o4s| =-Tr{ T,ePMoc,(x7)c! (x;7))].
D -26- B v & A straightforward MC sampling of diagrammatic
2 ] \ i series would be impossible because of the sign problem.
g 289 . o0 05 10 15 20 25 However, if for a given configuration ofp vertices,
2 _30_' cutoffiradius Sy={(x;,7), j=1,... p}, one sums over allp!)? ways of
= ] LN connecting them by propagators, then the result can be writ-
30 - ten as aproduct of two determinantone for spin up, and
| o = =& another for spin dowr(see, e.g., Ref.)2 The differential
34 weight of the vertex configuratiofor vertex diagramis then
0.0 05 10 15 20 25 .
cutoff radius dP(S,) = (- U)P detA (S, detAl Sy T dr,  (4)
i=1

FIG. 1. Energy and density dependence on the imaginary time
cutoff for the Hubbard model fdr=4. Dots represent the MC data,
and solid lines are the exact diagonalization results for 10 particle¥here A%(Sy) are pXxXp matrices Aj=G,(x;=X;, 7= 7).
(Ref. 11). For equal number of up and down particles,
detAl detA'=[detA]? and negativel the vertex diagram
weight is always positive(At half filling, n,+n =1, the sign
%f U changes when hole representation is used for one of the
spin components, so this scheme may be also used for the

dilute with respect to the lattice, but not necessarily with
respect to the interaction; the latter can be effectively larg
due to a resonance on (guas) bound state. Correspond-
ingly, the new scheme is very promising for the study of ultra .
cold fermionic systems in the regime of strong Feshbacﬁepﬁlé've Hulpba_rdtr;onI:[ i i 4eS.)

resonant interaction, including the crossover from the sampling in the vertex configuration spaggo,) can

Bardeen-Cooper-Schrieffer pairing to the Bose-Einstein conP€ Performed by standard MC rulgsee, e.g., Refs. 7 and

densation of molecules. 10) using just one pair of complementary updafesindC:
Model and methadWe consider interacting lattice fermi- in D one selects at random one of the vertices and suggests
ons with the Hubbard Hamiltoniad =Hq+H;: to delete it from the configuration; i@ an additional vertex
is suggested to be inserted at some point randomly selected
Ho= 2 (€~ 1)Ch,Chon H1= U Ny, (1) in the space-time box3XxLP. These updates decrease/
ko X

increase the rank oA by one. The acceptance ratio for the
where ¢! _is the fermion creation Operatonw:CI(,me D/C pair of updates is then based on the ratio of two deter-

Xo

o=1,] is the spin indexx runs over theL® points of the ~Minants

simple cubic latticek runs over the corresponding Brillouin

zone, ek:—ZtZB:1 cosk,a is the tight-binding dispersion Ry = detA(Sy.1)/detA(S,), (5)
law, and u is the chemical potential. For definiteness and

numerical tests, we confine ourselves to De2 spacial  \yhere Spr1={Sp, (Xpr1, Tpe1)} (We omit the spin index for
lattice with periodic boundary conditions. We use the hOp'brevity).

ping amplitudet, and lattice constara as units of energy The bottleneck of this simple scheme is in evaluaiiyg

and distance, respectively. _ o _ whenp is macroscopically large. The typical number of ver-
_ Following Refs. 6 and 7 we start with writing the stais- (jces is determined by the number of particles, interaction
tical operator in the interaction representation strength, and inverse temperaturepasNU. The truncated-
s B determinant idea is to calculal® much faster at the expense
e =e T ex ‘f Hy(nd7 (2)  of accuracy using the following conjecture originating from
0 physical, rather than mathematical, arguments. The vertex
whereH,(7)=e"0"H,e™"o” and 7. is the time ordering opera- cpnfigL_Jration represents a sequence o_f \{irtu_al particle colli-
tor, and expanding it in powers f;: sions in the many-body system, and it is likely thatal
changes in its structure depend only on the immediate neigh-

IE[d ) borhood of the updated regioiWe note that the idea of
Ti employing the local nature of the fermion-boson coupling
has been used in Ref. 4, but it has not been extended to the
T [ P ] @ fermionic determinanf. Quantitatively, we define a norm

r .

z=2(-UP X
p=0

X1 Xp 7'1<7'2<~~<7'p<,8 ( i=1

- t t : A ;
€ ﬁHOH ¢ (xim)c;(xim)c|(xim)e, (xi7) |...| or a distance, between vertices in space-tiseveral
=1 choices are discussed belpvand construct a truncated ver-
This expansion for the partition function generates standtex Configurationsg) such that all points irzSS) satisfy
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||(Xj.7'j) - (Xp+1, Tp+1)|| <l (6) 0.95 |
. N _ el 0.90 e
Correspondmgllyﬁpﬂl—~{Sp ,(Xp+17pe) ). We may now use ] 5% l . ]
truncated configurations to calculate the rat®) approxi- % 084 =
mately as - ] \ "
& 080-
R = detA(S)))/detA(SY). @ 2
O 0.75-
(“ N N -
Clearly, whenl — L we recover the exact ratio. Our conjec- € 0.704 w
ture is then thaR" quickly converges t®, and there exists % T
a healing length in théx,7) space characterizing this con- < 0654
vergence. If this is the case, thémay be considered as a ]
microscopig(system-size independegmtarameter controlling 0.60 I ——
the accuracy and efficiency of simulation. 0.5 1.0 1.5 2.0 25 3.0
The proper choice of the norin-| depends on system cutoff radius

parameters. In the strongly correlated case the natural units
of distance and time are provided by the Fermi momentum FIG. 2. Potential energy dependence on the truncation radius for
ke and Fermi energyr. One possibility is then the Hubbard model fok.=100.

[(x,7) = (X", 7)|| = VKE(x = x")? + €2(7— 7')2. (8) ~ Apart from the Hubbard model tests, we have also veri-

fied that the use of truncated-determinants for randomly

Geometrically, this measure results in a set of vertiSes igﬁ?ﬁ:ﬁ\éirgﬁconflguratlons works as nicely to speed up the
inside the space-time ellipsoid centered(&$,, 7,.1). For P’

q tems|(x, 7)~(x’ . 7')]|=max|x- ,|1| _P+1,|} ) The benchmark DetMC method by Blankenbecler, Scala-
ense - SySems|ix, 7)=X", 7 JI=Max|x=x",|7=7]; 13 pino, and Sugdr (BSS is based on the Trotter-Suzuki
equa_llly appropriate and our data for the largest system we ﬁhaginary time slicing, and the Hubbard-Stratonovich

obtained using this measure. At.tempera'aure's cqmparable tPansformatiori2 The rank of the matrix used in the calcula-
€r one may account for all vertices in thedirection and o of the acceptance ratio equals the number of lattice sites
simply wnte“(x,@—(x 7 )||cyl‘kF|X_X - The correspond- | o 4| 2D gperations are required to find its determinant.
ing geometrical figure is g cylinder. Similarly, in small  1hg necessity of handling large matrices, although made pos-
systems one may consider fruncating configurations only iRjp|e by this method, requires both elaborate finite-size scal-
time direction. _ _ ing analysis of MC dat&3 and special efforts for the calcu-

Numerical results and discussiorOur tests of the |aion stabilization at low temperaturdsThe contour-

truncated-determinant scheme were done for the attractiVgisiortion stabilization techniquésee, e.g., Refs. 14 and 15
Hubbard model withU=-4, u=-2, =10, r?ll%d pzerlod|c help to alleviate the sign problem, but still suffer from the
boundary conditions. First, we simulated a snhak 4° clus-  geyere scaling of the computational cost per update. More

ter for which the ground-state energgf 10 particle$ is recently, Rombouts, Heide, and Jachofitmproved the
known from exact diagonalization studi¥sSince the spatial

dimension is so small we truncate vertex configurations only
in the imaginary time direction. In Fig. 1 we show how the 100F a—a—u . . Avmna g

result for energy converges to the exact value. We stress, the I Y -
. . . 0.98 /.; N D L B |
at all stages of the MC simulation we never even write the ~ ““°[ \\. e
full configuration determinant, which rank is about 2.5 times g gg | / e
larger than typical values g for the cutoff radius 2. 2 [/ Ne___ee —00ose—0
In Fig. 2 we present our data for thé=100 system— O 0.94f //
now, using determinant truncation both in space and in timec [
S . , G 092}
directions, Eq(8). Remarkably, the convergence is achieved c | o

around the same value of the truncation radius, which prove<E 0.90 |-
that the computational cost per update is not subject to mac2 i
roscopic scaling. It is instructive to see how data conver-9 0'88/
gence for energy correlates with the typical errors introduced 7]

by the approximate calculation @®,. In Fig. 3 we show

examples ofR;, dependence on the truncation radius for a L T T T T
number of randomly selected MC configurations. Clearly, 0 1 2 3 4 5
quite large fluctuations iR, are statistically “averaged out” cutoff radius

in the final result for energy. We are not aware of any other
method capable of simulating fermionic systems of compa- FIG. 3. (Color onling Determinant ratioR’ as functions of
rable size. for randomly selected MC configurations for the 100 system.
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BSS scheme by formulating it in thecontinuum. It is easy matrices. The conjecture is that the ratio Aét)/detA(U’)

to directly compare this scheme with ours because the starfer local updates of gluon matricés— U’ can be calculated
ing point is exactly the same—the expansion of the statisticahy accounting only for the immediate neighborhood of the
operator in powers o). Romboutset al. used the auxiliary updated lattice bond.

Ising variables to decompose four-point vertices into the e doubt that the truncated-determinant schemes will
sums of arrived at the number of operations for performinge|p to speed up simulations with the sign problem. If the
one update scaling ds®. At this point we notice that while  ayerage configuration sign is small, the answer is determined
we work with the same vertex configuration structure, in OUrhy small differences between the sign-positive and sign-
scheme there is no extra summation over the auxiliary varinegative contributions, i.e., each contribution has to be cal-
ables, and the calculation of the acceptance ratio is systemyjated to much higher accuracy than would be sufficient in
size independent. the positive definite case. As a result, higher and higher pre-

Recently, a substantial improvement in lattice QCD simu-gisjon is required foR, and the advantages of our approach
lations has been achieved by including quark-loop effectsickly vanish.

(see, e.g., Ref.)8After the quarks are integrated out, their
effects are described by the macroscopic positive definite We acknowledge support by the NSF Grant No. ITR-
determinant def (U), whereU is the configuration of gluon 0426881.
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