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More realistic simulations of the magnetic field and electron optical phase shift associated to pancake
vortices in layered high-Tc superconducting specimen require a number of layers larger than 7, the practical
upper limit set by the discrete algebraic approach followed so far. This goal can be achieved by resorting to a
continuum approximation of the screening layers above and below the one containing the pancake vortex. It is
thus possible to increase the number of layers and to investigate more exotic vortex core structures than those
represented by the pancakes pinned at tilted columnar defects. In particular it will be shown how recently
observed dumbbell-like contrast features in the out-of-focus images of superconducting vortices forming a
large angle with the specimen surfaces can be interpreted as due to a kinked structure of the pancakes.
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I. INTRODUCTION

Transmission electron microscopy(TEM) techniques, like
Lorentz microscopy1 and electron holography,2 allow direct
observation of individual vortices inside superconducting
thin films. Like other methods, e.g., Bitter decoration,3 scan-
ning tunnel,4 and scanning electron5 microscopy, scanning
Hall probes,6 SQUID,7 magneto-optical techniques,8 scan-
ning tunnel spectroscopy,9 and magnetic force microscopy,10

vortices are imaged under a wide range of experimental con-
ditions. However, while the signal in most of the cited tech-
niques depends on the magnetic field on the surface and in
the half-space surrounding the specimen, the contrast of the
TEM images depends also on the core structure, especially
when experiments are carried out with the newly developed
1 MV field emission electron microscope,11 where speci-
mens thicker than 400 nm can be analyzed.

This has been clearly demonstrated in recent TEM obser-
vations of vortices interacting with columnar defects in high-
Tc superconductors,12 where peculiar contrast features have
been observed. In particular, the images of pinned vortices
displayed less contrast than the unpinned ones and this effect
has been attributed to the anisotropy of the superconducting
material by comparing the experimental results with the the-
oretical ones, calculated by using both an anisotropic and a
layered model.13,14 However, in this latter case, the number
of layers dictated by the algebraic approach followed was
limited to seven, a rather small number to be truly represen-
tative of the actual specimen where the layers are about 100
to 200. Nonetheless, the contour line maps of the projected
magnetic field showed a strong overall similarity with the
continuous anisotropic case and also the out-of-focus images

calculated for vortex cores pinned at tilted columnar defects
showed no significant differences.14

Further experiments carried out with applied magnetic
field tilted at a very large angle with respect to the specimen
surfaces15 showed new interesting features in the out-of-
focus images. By increasing the angle the vortex cores be-
come first elongated as if they were following the direction
of the field and then, at the largest angle, sometimes exhibit
a dumbbell-like appearance. These observations indicate that
something new is happening to the vortex structure. Unfor-
tunately these features cannot be interpreted on the basis of
the available models. In fact, in the continuous-anisotropic
model the vortex core is straight and aligned with the field,
and with the pancake model at such large angles the small
number of layers can be detected in the image, introducing
unwanted artifacts.

In order to develop a more flexible model, two options are
available: deforming the core in the continuous-anisotropic
model, or giving suitable coordinates for the location of each
pancake in the stack. While the first turns out to be very
cumbersome, the second is more practicable, provided the
number of layers is increased. For this purpose, we follow
the approach proposed by Clem16,17and further developed by
Coffey and Phipps,18 who replaced all the screening layers
above and below the layer containing the vortex with a su-
perconducting continuum that carries supercurrents parallel
to the layers. In this way the algebric troubles linked to the
increasing number of unknowns arising in the former ap-
proach are circumvented and an analytical expression for the
field and phase shift for the single pancake can be obtained.
Then, from the solution, more representative or exotic vortex
structures can be investigated by adding suitably placed pan-
cakes over a larger number of layers.
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After recalling the main conventions for the various ref-
erence systems necessary for describing the experimental
setup, we show how to find the solution for the vector po-
tential for the case of a pancake vortex embedded in the
superconductor slab by Fourier methods. As proposed by
Pearl,20 the boundary condition at the layer containing the
pancake vortex can be found by averaging the London equa-
tion across the layer. In this way, a relation between the core
London singularity and the normal derivatives of the poten-
tial above and below the layer is obtained.14 It can be ascer-
tained that our solution coincides with that found by Coffey
and Phipps,18 when the leading terms with respect to the
layer thickness are retained. This result can also be con-
firmed by a more conventional approach, where the solution
of the vector potential for a vortex lying in a thin slice em-
bedded in the superconductor is found and the limit for van-
ishing thickness of the slice taken afterwards.

Once the solution of the vector potential in the whole
space has been found, the electron optical phase shift is cal-
culated by integrating it along a straight trajectory suitably
chosen in order to take correctly into account the overall
geometry of the experimental setup, including a tilt of the
specimen with respect to the electron beam.13,14 The aver-
aged field in other directions, useful for displaying its main
features, is calculated according to the same recipe. Finally,
the Kirchhoff-Fresnel diffraction integral is used for the cal-
culations of the out-of-focus images assuming various con-
figurations for the pancake cores, showing that the dumbbell
contrast is in agreement with a kinked structure of the vortex.

II. GENERAL CONSIDERATIONS

Let us first recall the main conventions regarding the co-
ordinate systems and the basic formulas describing the inter-
action of the electron beam with the magnetic field associ-
ated to a pancake vortex centered insxP,yP,zPd. Two
coordinate systems have been introduced and described,14,21

namely, (i) the microscope coordinate system having thez
axis parallel to the electron beam and aligned in the same
direction, with sx,yd being the coordinates in the object
plane, perpendicular to the optical axisz, and(ii ) the speci-
men reference systemsxS,yS,zSd, having itszS axis, of unit
vector kS, coincident with the specimen normaln and ori-
ented in the opposite direction asz, thexS axis, of unit vector
iS, having initially the same direction asx, and theyS axis
determined by the requirement of left handedness, i.e., oppo-
site toy.

The specimen, assumed of constant thicknesst=2d, can
be inclined on an anglea with respect to the electron beam,
around the tilt axis coincident with they (andyS) axis. The
specimen can be also rotated on an azimuth angleb around
its normaln, coincident with the tiltedzS axis. A sketch of
the specimen reference system, with the pancake layer em-
bedded in the continuum superconducting slab is shown in
Fig. 1.

In order to describe the interaction between the electron
beam and the magnetic field associated to the vortex, the
standard high-energy or phase object approximation is used,
according to which the vortex is a pure phase object,22,23

with the magnetic phase shift given by

wsx,yd = −
2pe

h
E

,

A ·d, = −
p

f0
E

−`

+`

Azsx,y,zddz, s1d

where A is the vector potential,e and h are the absolute
value of the electron charge and the Planck constant, respec-
tively, f0=h/2e is the flux quantum, andx and y are kept
fixed since we consider an electron trajectory parallel and in
the same direction as thez axis.

This trajectory passes through the regions above, within
and below the specimen, thus crossing three separated space
domains. For the calculation of the phase shift by means of
Eq. (1), in order to avoid unwanted extra terms arising from
contour integrals on the domain boundary, it is essential to
choose a vector potential continuous in its components par-
allel to the boundaries.21

In the specimen system, the above trajectory is character-
ized by the parametric equation

, = sxS− w tana cosbdiS+ syS− w tana sinbdj S+ wkS,

s2d

wherew ranges betweens+` ,−`d due to the fact thatkS and
k point in opposite directions. The correspondence between
the coordinates of the intersection of the trajectory with the
object planesx,yd and with the specimen midplanesxS,ySd is
given by

xS= x
cosb

cosa
+ y sinb, yS= x

sinb

cosa
− y cosb. s3d

Therefore, the phase shift Eq.(1) can be calculated in the
specimen system according to the relation

wsxS,ySd =
e

"
E

+`

−`

AsxS− w tana cosb,

yS− w tana sinb,wd ·1tana cosb

tana sinb

− 1
2dw. s4d

and converted finally in the microscope reference system
through the indicated coordinate transformations.

FIG. 1. Scheme of the reference system and of the pancake layer
(of small thicknesst) positioned atzS=zP and surrounded by a
superconducting continuum.
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Once the object phasewsx,yd is calculated for a specimen
tilted at an anglea, and rotated by an azimuth angleb, it
may be displayed by means of amplified contour maps,
where the intensityIsx,yd is given by

Isx,yd = 1 + cosfnwsx,ydg s5d

with n the amplification factor. These phase maps mimic the
result of an ideal holographic reconstruction.

As regards the Fresnel phase contrast method, starting
from the object phase the out-of-focus images in the obser-
vation plane, located at a distanceZ from the object plane,
can be calculated by means of the Kirchhoff-Fresnel
integral,24

IsX,Y,Zd = U 1

leZ
E E eiwsx,ydesip/leZdfsx − Xd2+sy − Yd2g dx dyU2

,

s6d

whereX andY are the coordinates in the out-of-focus plane,
andle is the de Broglie wavelength of the incident electrons.

III. PANCAKE VORTEX IN A THIN SLAB

In this section we basically follow the approach intro-
duced by Clem16,17and Coffey and Phipps,18 with the differ-
ence that the emphasis is put on the vector potential, which is
the basic quantity for the calculation of the electron optical
phase shift, and not on the magnetic field. Let us consider a
London vortex with its core and its magnetic flux aligned
along kS lying in a thin slice, of negligible thicknesst lo-
cated atz=zP (see Fig. 1). Within the slice the vector poten-
tial satisfies the modified London equation

A − l2¹2A = −
f0

2p

r S3 kS

rS
2 ; FL, s7d

where l=lab is the penetration depth in theab plane, r S
represents a two-dimensional position vector perpendicular
to the directionkS of the core andFL is defined as the
London vector.

By averaging the modified London equation over the
layer thickness the following “jump” condition results:18,19

AsxS,yS,zPd − LHF ]A

]zS
G

zP
+

− F ]A

]zS
G

zP
−J = FL, s8d

whereL=l2/t is the Pearl film penetration depth. Equation
(8) relates the normal derivatives of the vector potential at
the uppersz=zP

+d and lowersz=zP
−d surfaces with its average

value and the London vector.
In the rest of the superconducting slab, the vector poten-

tial satisfies the homogeneous London equation,

A − l2¹2A = 0, s9d

whereas in the vacuum regions above and below the speci-
men the Laplace equation,

¹2A = 0. s10d

This problem can be analyzed and solved by two-
dimensional Fourier methods, as suggested by the presence

of flat boundaries parallel to thesxS,ySd plane(see Refs. 14,
18, and 21). In this way, since both the London(for the
superconductor) and the Laplace(for the external space)
equations are of the second order, the dependence on the
third z coordinate contains simple exponential functions.

Following the arguments developed and explained in
Refs. 14 and 21 we can express the general solutions for the
vector potential in the specimen regions, each satisfying the
appropriate differential equation, by

Ã jskx,ky,zd = saj
+ekjz + aj

−e−kjzdF̃L, s11d

whereF̃L is the Fourier transform of the London vector for
kS=s0,0,1d,

F̃L =
if0

kx
2 + ky

2fky,− kx,0g s12d

which keeps the information on the purely angular depen-
dence of the vector potential(which, if expressed in cylin-
drical coordinates, would possess only theu component) as
well as the correct dimensionality, in such a way that theaj
are dimensionless coefficients. Moreover, we havekj =k

;Îkx
2+ky

2 for the vacuum regions andkj =q;Îl−2+kx
2+ky

2

for the superconducting regions. Incidentally, we note that
the fingerprint of vacuum region is an infinite penetration
depth(q→k for l→`).

Once this general description is given, all is left is the
determination of the unknown coefficients corresponding to
each region. The structure of the vector potential in this for-

malism, where the common factorF̃L is removed, is
sketched in Table I.

The problem is then reduced to the algebraic determina-
tion of the coefficientsaj of these exponentials. This can be
achieved solving the system obtained by imposing the fol-
lowing boundary conditions:(i) continuity of the vector po-
tential and of its normal derivative at the specimen surfaces
z= ±d, (ii ) continuity of the vector potential and “jump” con-
dition, i.e., the Fourier-space equivalent of Eq.(8), at the
pancake layerz=zP. As a result of the procedure outlined, we
obtain the following expression for the vector potential in the
various regions,

a4
− =

t

D
ekdhq coshfqsd + zPdg + k sinhfqsd + zPdgj, s13d

TABLE I. Simplified structure of the solutions for vector poten-
tial (middle column) in the different regions of the specimen. Each
region is labeled on the left-hand side(SC stands for supercon-
ductor) and corresponds to the intervals of thez axis indicated on
the right-hand side. The pancake vortex is located in the layer at
z=zP, between regionsA2 andA3.

A4: Upper vacuum a4
−e−kz z.d

A3: Upper SC a3
+eqz+a3

−e−qz zP,z,d

A2: Lower SC a2
+eqz+a2

−e−qz −d,z,zP

A1: Lower vacuum a1
+ekz z,−d
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a3
± = t

q 7 k

2qD
e7qdhq coshfqsd + zPdg + k sinhfqsd + zPdgj,

s14d

a2
± = t

q ± k

2qD
e±qdhq coshfqsd − zPdg + k sinhfqsd − zPdgj,

s15d

a1
+ =

t

D
ekdhq coshfqsd − zPdg + k sinhfqsd − zPdgj, s16d

where the common factorD is

D = s1 + 2k2l2dsinhsqtd + 2kql2 coshsqtd + Bt s17d

with

B =
1

2ql2fs1 + 2l2k2dcoshsqtd + 2kql2 sinhsqtd

+ coshs2qzpdg. s18d

Even though obtained with different methods and nota-
tions, it can be ascertained that the results for the vector
potential in Eqs.(13)–(16) coincide with those reported by
Coffey and Phipps18 at the first order int, i.e., provided the
term containing the slice thicknessBt in Eq. (17) is ne-
glected. This is justified since the pancake layer can be as
thin as a few angstroms. However, in our simulations we
have to limit the number of layers to a finite valuenL of the
order of 10 or 20. Also in this case, where for a given speci-
men thicknesst we define the pancake layer thickness ast
= t /nL, we can overlook the additional term.

In order to gain more confidence, we have verified these
results employing a different procedure, i.e., solving the
problem for a slice of finite thickness. In this approach we
have a sytem of eight unknowns, with the boundary condi-
tions of continuity of the vector potential and its normal
derivative at the various interfaces. Taking the limit of the
resulting solution for vanishing thickness of the slice con-
taining the pancake vortex, we recover the former results
with Bt neglected. This confirms the soundness and the un-
derlying physical foundation of the procedure employed.

Having the solution for a single pancake vortex located at
s0,0,zPd, we can describe another vortex, located at
sxP,yP,zPd, by multiplying its Fourier transform by the factor
e−isxPkx+yPkyd. By superposition, we can finally find the vector
potential and the phase shift for an arbitrary arrangement of
pancakes.

IV. COMPARISON BETWEEN THE MODELS

It is worthwhile to compare the results obtained by this
semicontinuous approach with those of the previous one.14

First we present the phase maps corresponding to an ideal
experiment where the beam direction is parallel to one of the
coordinate system axis and the infinite thickness of the speci-
men is overlooked. Such maps are interpretable as projected
magnetic induction maps and give a vivid representation of

the trend of the magnetic flux lines piercing the specimen. In
the case of a phase map calculated along theyS axis the
following expression will be employed:

fsxS,zSd =
i

f0
E

0

`

Ãyskx,0,zSdsinsxSkxddkx. s19d

Figure 2 shows the comparison between the calculations
carried out for three pancake layers(whose core is marked
by a thick dot) in the case of a finite layered structure com-
posed of five layers(a) and within the new semicontinuous
model (b). The overall similarity between the two cases is
clearly displayed, with small differences detectable in the
curvature of the projected field lines between the layers, due
to the higher magnetic screening power of the superconduct-
ing regions. Such differences, however, are hardly detectable
in the out-of-focus images due to the feature-broadening ef-
fect typical of the Fresnel technique.25

The differences between the two models are even less
appreciable in the case of a pancake vortices stack pinned at
large angles to some columnar defects. A 75° tilted stack of
pancake vortices, aligned to a row of pinning centers pierc-
ing the specimen at the same angle, is reported in Fig. 3.

Whereas the relative distance between the dots is not in-
fluential on the phase maps, it is possible to appreciate the
artifacts introduced by the small number of layers when the
phase shift is calculated for a specimen tilted ata=30°. Fig-
ure 4(a) reports the holographic contour map 323 amplified
and the out-of-focus image calculated for seven layers, a
stack tilt angle of 85° and three values of the defocus param-
eter. It can be seen that both in the contour line map and in
the out-of-focus images, especially at the lowest defocus
valueZ=300 mm(c), the single pancakes can be clearly dis-
tinguished.

FIG. 2. Contour line plots representing the phase shift calculated
with the pancake(a) and semicontinuous(b) models in theyS di-
rection. The contour lines represent phase shifts of 200 mrad. Simu-
lation parameters, plot region 231 mm, specimen thicknesst
=400 nm andl=200 nm. The dots mark the positions of the pan-
cake vortices.

FIG. 3. Contour line plots representing the phase shift alongyS

calculated with the pancake(a) and semicontinuous(b) models
(nL=5 layers). The contour lines represent phase shifts of 200 mrad.
Simulation parameters, tilt angle of the stack of pancakesu=75°,
plot region 231 mm, specimen thicknesst=400 nm and l
=200 nm. The dots mark the positions of the pancake vortices.
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If we increase the number of pancakes to 15, something
possible only if the semicontinuous model is adopted, this
artifact becomes undetetectable and the calculated image is
undistinguishable from the one calculated by the continuous
anisotropic model,14 as shown in Fig. 5. This example clearly
shows the usefulness of the new approach in order to avoid
this kind of artifacts.

V. EXPERIMENTAL RESULTS

Let us briefly recall some of the experimental results re-
ported in the paper by Tonomuraet al.,15 whose main pur-
pose was to investigate the formation mechanism of uncon-
ventional arrangements of vortices in high-Tc
superconducting thin films with an inclined applied magnetic
field with respect to the layer plane. The observations were
carried out by means of the Lorentz-Fresnel(out-of-focus)
method in the newly developed 1 MV electron microscope,11

equipped with a special magnetic stage able to provide ap-
plied fields up to 10 mT with an arbitrary direction.

Film samples, 300–400 nm thick, of single-crystalline
YBCO sTc=92 Kd were prepared by thinning a region
30 mm3100 mm, of a YBCO single crystal with a focused
ion beam machine(Hitachi FB-2000). These samples, whose
surfaces were parallel to theab plane, were tilted around the
y axis of 30° whereas the electron beam was incident along

the optical axisz. A magnetic field of 0–10 mT was applied
obliquely to the surface of the samples at incidence anglesuH
of 70° –90°, and vortices in arrangements reflecting the an-
isotropic layered structure of the materials were observed as
Lorentz micrographs. The experimental results, taken at a
defocus of 300 mm and at a temperature of 30 K are shown
in Fig. 6, reproduced at large magnification so that contrast
features of each single vortices are better visible. The angle
between the magnetic field and the surface normal was var-
ied betweenuH=75° anduH=85°.

We note that each vortex has a circular shape foruH
ø75°, as shown in Fig. 6(a), and gradually elongates in the
direction of the field when the angle is above 80°, as shown
in Fig. 6(b), where the field was applied atuH=82°. At
slightly higher angles, the shape changes dramatically, be-
coming dumbbell-like[Fig. 6(c), uH=83°] and even some-
what splitted in some cases, as emphasized by white arrows
in Fig. 6(d), whereuH=84°. For the largest angle,uH=85°,
the vortices appear very elongated, with low contrast. At
least one of them, indicated by an arrow in(e), show a clear
contrast splitting.

It will be shown in the following that this behavior cannot
be reproduced by simulations computed assuming a straight
vortex core(or aligned stack in the layered models). In fact,
for straight configurations such as those previously reported,
the vortex should appear more elongated than observed, and

FIG. 4. (a) Phase contour line plot over a region of 532 mm,
where each contour line represents a phase variation ofp /16; (b)
holographic contour maps 323 amplified; (c)–(e) out-of-focus im-
ages. The image size in(b)–(e) is 6 mm. Simulation parameters,
stack tilt angleu=85°, specimen tilta=30°, specimen rotationb
=0°, number of layersnL=7, specimen thicknesst=400 nm, l
=200 nm. Each contour line superimposed to the out-of-focus im-
ages represents a contrast variation of 3%.

FIG. 5. Comparison between the semicontinuous(left column)
and the continuous-anisotropic(right column) models.(a) and (b)
Phase contour line plot over a region of 531.5 mm; (c) and (d)
holographic contour maps 323 amplified; (e) and (f) out-of-focus
images(defocus valueZ=300 mm). Simulation parameters, pan-
cake stack/vortex core tilt angleu=85°, specimen tilt and rotation
a=30°, b=0°, number of layersnL=15, specimen thickness
400 nm, anisotropy factorg=200, l=200 nm. Each contour line
superimposed to the out-of-focus images represents a contrast varia-
tion of 3%.
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no dumbbell-like or splitted contrast features are ever
present. This discrepancy prompted us to consider more
complicated distributions of pancake vortices on the layers,
something possible only within the framework of the semi-
continuous model.

VI. INTERPRETATION OF THE EXPERIMENTAL
RESULTS

The theoretical framework for interpreting our results has
not been thoroughly investigated in literature, where only the
cases of very thin filmst!ld and of a thick slabst@ld have
been considered.26,27These results show that in thin films the
vortex lines are nearly straight and perpendicular to the sur-
face, whereas in thick slabs each vortex is directed near the
surface along the normal to the surface itself and inside is
aligned with the applied field.

The experimental results of Sec. V correspond to the in-
termediate caset=2l, so that for their simulation we fol-
lowed two complementary approaches. First we consider an
aligned stack of pancake vortices tilted at various angles,
thus having a shorter projected length. Figure 7 reports simu-
lations computed with the anisotropic model, owing to the
similarity of results with the semicontinuous one demon-
strated in Fig. 5. The first line reports the phase contour plot,
with the core evidenced by a bold line, followed by the ho-
lographic contour maps(second line) and the out-of-focus
images atZ=300 mm, third line. All these data have been
calculated for the high anisotropic caseg=200 (the param-
eterg is defined as the ratio between the penetration depths
along thec-axis and theab plane, i.e.,g=lc/lab),14 while
the last line reports the out-of-focus images atZ=300 mm
for g=5, a value which better correspond to the investigated
material(YBCO). It can be ascertained that the out-of-focus

FIG. 6. Lorentz micrographs of vortices in YBCO film sample at tilted magnetic fields(T=30 K, uHappu=0.3 mT, angles indicated in the
figure). When the tilt angle becomes larger than 80°, the vortex images start elongating(b) and (c). For the applied field angle of 84° we
observe dumbbell features, and apparent splitting of the vortex contrast, as indicated by white arrows in(d). For the largest angle, 85°,
vortices appear very elongated, with remaining indication of stack splitting.

FIG. 7. Simulation series for
increasing core tilt angles from
left to right, u=45°, 60°, 70°, 80°.
From top to bottom, phase contour
line plot over a region of 2.5
31 mm, where each contour line
represents a phase variation of
p /16; holographic cosine map,
323 amplified; out-of-focus im-
age for g=200; out-of-focus im-
age for g=5. Simulation param-
eters, specimen tilt and rotation
a=30°,b=0°, core tilt angleu in-
dicated in each figure, specimen
thickness 400 nm,l=200 nm, de-
focus distanceZ=300 mm. Each
contour line superimposed to the
out-of-focus images represents a
contrast variation of 3%.
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images for differentg differ only by a variation of the con-
trast (higher for lowerg) but have the same appearance, in
particular the same projected fluxon length and do not dis-
play any dumbbell-like feature.

We have then considered the thick slab case result. The
complicated core structures analyzed in Refs. 17 and 18,
have been modeled by considering a core aligned with the
field in the interior of the specimen, at an angle of 85°, and
kinked near the surfaces and aligned perpendicularly to
them. As remarked before, this fluxon core structure can be
analyzed only within the realm of the semicontinuous model.
The results are shown in Fig. 8, where the kinked structure
has been chosen in such a way that the fluxon has the same
projected fluxon length as in Fig. 7.

The comparison between Figs. 7 and 8 shows that the
out-of-focus image of the kinked structure presents a
dumbbell-like feature, where the stack of pancake appears to
be divided into two. The separation is not visible in(a),
while the two half-stacks are progressively more separated in
(b)–(d). These simulations show a better agreement with Fig.
6 than those reported in Fig. 7.

Finally, we may wonder about the seemingly rather abrupt
transition from an elongated to a dumbbell contrast occuring
at about 82°. Considering that the inner part of the vortex is
almost negligible, and that the net result is the transition
from a straight to a kinked vortex structure, we note the
similarity of this behaviour with the instability of a tilted
vortex line investigated by Benkraouda and Clem.28 They
found that for a stack of electromagnetically coupled two-
dimensional pancake vortices the line tension become nega-

tive at an angle of,52°, so that a kinked structure is ener-
getically favored. The difference between the angle values
may be attributed to a stronger Josephson coupling between
the layers and, perhaps, to the effect of the surfaces and finite
specimen thickness, two factors not taken into account in the
theoretical analysis.

VII. CONCLUSIONS

In this work we have improved the layered model for
superconducting vortices in high-Tc materials. The number
of layers where to locate pancake vortices has been increased
considerably. With the new semicontinuous models, the
simulation artifacts due to the small number of layers have
been removed. Moreover, the analysis of more exotic struc-
tures can be implemented in order to improve image inter-
pretation of experimental results. In particular it has been
shown that the shorter projected length of the fluxon visible
in the experiments can be attributed to a kinked structure of
the core, whose characteristic feature is a dumbbell-like con-
trast in the out-of-focus image for large applied field angles.
As our experiments are in a thickness range not yet theoreti-
cally investigated we hope to stimulate work in this direc-
tion. The unique opportunity offered by transmission elec-
tron microscopy to observe directly vortices in
superconductors will hopefully result in a better understand-
ing of the core structure as related to applied field and ma-
terial properties.
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