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Metastable states in the planar two-dimensionaXY model and dissipation in superfluid flow
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We use the Metropolis algorithm to study the stability of superfluid flow in a model system, namely the
two-dimensional planaXyY model. Flow properties are examined by studying the behavior of the system in
metastable “twisted” states. We demonstrate the stability of superfluidity in this model and we discuss the
Meissner effect and velocity quantization. We also study the critical velocity and dissipation by vortex creation
and rotational flow and their dependence on the geometry of the system. An expression for the average
superfluid velocity as a function of timeg(t), is obtained and compared with experimental results.
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[. INTRODUCTION measure the superflow velocity at which dissipation sets in.
This is perhaps more appealing physically than the first ex-

Intergst n superflu@ty has never yvaned. Quite the Cor.]cberiment because it involves a flowing superfluid and be-
trary, since the experimental realization of trapped atomi

Bose-Einstein condensa’tés(BEC) activity in this field has tause one may make connections with persistent currents

) o . . ?bserved in superconducting systems. Such flow experiments
intensified dramatically and the recent apparent discovery HNave also been performednd find that the critical velocity
a supersolid phase in solid helidwill most likely increase

the level of interest. In addition, there is intense interest in> .O.f the order.c_m/s or less anibesdepend on the size of the
the low temperaturé properties 6]‘ bosons where many queo_rlflge! In adqun, it was found that the.r_ugher c_nucgl ve-
tions remain concerning the phase diagrams of model sy?gcmes are obtained with the smaller orifices which is per-

" . aps counterintuitive. These results are surprising when com-
tems and the phase transitions from the superfluid phase Ored with the Landau prediction. It is thus clear
various exotic phases. :

; : . o experimentally that these “critical” velocities are not equiva-
An important question concerning superfluids is that Of{ent
B o e e S e o v, Th widespresd appication of th Landau cirion as &
without friction.” Very early on, Landdgurealized that the test of stability, Eq(1), has been criticizét? because it ap-

superfluid can be treated as a dilute gas of noninteractinﬁj“eS o the case of an object moving in the fluid and not to

uasiparticle excitationgohonons and obtained the famous | ¢ ~ooc of the fluid itself flowing through orifices or in a
q P ) P Y > - .~ torus. Perhaps a reason for the ubiquity of the Landau crite-
and often cited Landau stability criterion for superflutds:

rion is that in many cases one can calculate, if only approxi-

v- = minf w(K)/K]. (1)  mately, the dispersion relatian(k). It is much more difficult

to calculate, even numerically, the critical velocity observed

The dispersion relationy(k), is the energy of a quasipatrticle in flow experiments.
excitation of momentunik in the fluid, andut is theLandau In this paper, we shall adopt the viewpoint of referénce
critical velocity above which dissipation sets in. Clearly, if and after a brief review, we shall present our simulation. As
the dispersion relatiom(k) is linear, at least for smakK, the  usual, we have in mind here the two-fluid model of superflu-
Landau critical velocity is finite. On the other hand=0 for  ids. In the superfluid phase, the total dengitis the sum of
guadratic dependence af(k) on k. When vt;to, dissipa- two densities:
tionless flow at finite velocity is possible and the superfluid
is said to be “stable.” P=pntps 2

To measure the critical velocity of a superfluid such as . . .
liquid “helium at a temperaturé<T, =2.18 K, one might, Wherepn (py is the normaksupey fluid density. The super-

for example, pull an object through the superfluid: The ve-luid component does not carry entropy and flows without
locity at which a drag force starts to act on this object can b&liSsipation. The total particle current is then

thought of as a critical velocity. Such experiments have been vt 3)
doné and find a critical velocity which depends on the su- J = PsVs™ PnVin,

perfluid density,o,, but not on the geometry of the system. wherev (v,) is the velocity of the superfluihorma) com-

Furthermore, this critical velocity was f.oun'd to be of the ponent. To obtain the expression fag we write the super-
order of a few tens of meters/second which is in good agre€qy ;iq wave function as

ment with the Landau prediction, E¢l), when applied to

hefium. Y(r) =€ yg(r), @)
Another way to measure the critical velocity is to set the

superfluid in motion in a tubgor through an orificeand  whereyy(r) is real. Then,
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wherep is the momentum operator. The superfluid velocity I )Y
is proportional to the average gradient of the phase of the
wave function: Clearly, if the phase does not change coher- 1Y%
ently throughout the volume of the system=0. ~

Following Ref. 9, we consider two situations which dem- w [ o
onstrate fundamental defining properties of the superfluid. i

(1) A torus containing liquid'He atT> T, is spun around /\ /'/
its axis at very low angular velocitf. Eventually the liquid - f\_‘/7‘/
will come to equilibrium with the moving walls. Reducifg
below T,, the liquid goes into its superfluid phase and the ,
superfluid component is observed to come to rest and, tc -~
conserve angular momentum, the torus and normal fluid gair . ) . ) . ) ) ) )
angular momentum. The experim&ndemonstrates the ana- 0 0.5 1
log of the Meissner effecin superconductors.

(2) Starting with the same setup as above, the torus is
spun at high angular VeIOC'W'The temperature is then re- velocity in the presence of superfluidity for a 8464 system. When
duced belowr, and the_ to_rus brought to re_sft. !Eventu_ally thethe velocity satisfies Eq6), the free energy has a local minimum
normal component will itself reach equilibrium with the (o the values ofvs shown which explains the metastability of
walls and come to rest. It can then be verified that the angusersistent superfluid flow and the Meissner effectvAincreases,
lar momentum of the stationary torus is nonzero: The supefhe corresponding local minima get shallower and eventually disap-
fluid component is still flowing and may continue to do So pear rendering the flow unstable. The arrows illustrate possible tran-
for a very long time. This is the phenomenon of persistenskitions from local minima.
dissipationless flow similar to persistent currents in super-

conductors. Such experiments have been done by severgl, eyxperiments above. The Meissner effect takes place
groups, see for example Refs. 12 a|_'1d 13. when the initial velocity corresponds to less than half a quan-
.These two fundamer]tal properties may _b_e understoogjm and the superfluid, seeking the nearest velocity satisfy-
with the aid of the velocity quantization condition first pro- ing Eq. (6), comes to rest, i.e., excludes all flux. When the
posed by Onsagéf initial velocity is high, i.e., larger than half a quantum, the
superfluid will seek the nearest velocity satisfying E6)
sg Vs. dl = nk,

FIG. 1. Qualitative form of the free enerdggrbitrary unit3 vs

(6)  and settle into the corresponding metastable state.

It was suggestéd!’ that vortex formation is behind these
transitions and although this mechanism is generally ac-
epted, the details are still not well understood and no nu-
erical simulations have been done.

In the following sections we shall address these questions
merically for a model system. The paper is organized as
follows. In Sec. Il we briefly review the two dimensionay
model. In Sec. Il we present our results for the nonequilib-
rium simulations including velocity quantization, superfluid
V X v¢=0. (7) density, transitions and flux dissipation, scaling of lifetimes

) ) with the geometry of the system and comparisons with ex-
Equation(6) demands that persistent flow take place at gyeriments. Conclusions are in Sec. IV.

well defined valuenky. This is not an equilibrium situation

where kg=h/m is the flux quantumh is Planck’s constant
andm the particle mass. Clearly, the closed integration patﬁ:
must enclose a “hole” in the system, either a vortex or dn
physical hole, otherwise the path can be shrunk continuouslx
to a point and onlyn=0 survives. Another important prop- u
erty of superflow, which will come into play below, is that it
is irrotational:

since the superfluid can reduce its free energy by coming to Il. MODEL
rest. The persistence of the flow, at least fQrbelow a '
critical value, means that the fluid is inraetastablestate Addressing these questions with quantum Monte Carlo

which will eventually decay into the equilibrium stable state simulations of*He or of model systems such as the bosonic
at rest>'® As we shall see, the lifetime of this metastable Hubbard model, poses very difficult algorithmic problems.
state depends on the velocity itself andTorFigure 1 shows As discussed above, putting the superfluid in motion requires
qualitatively the form of the free energy as a function ofa gradient in the phase of the wave function. This introduces
velocity®*® This also makes clear that transitions betweema complex phase in the Boltzmann weight rendering the
local minima should be possible and lead to the loss of susimulation extremely difficult.

perfluid momentum, in other words the beginning of dissipa- Instead, we shall use classical Monte Carlo to simulate the
tion due to excessive velocity. Such phase slips were indeevo dimensional planaKY model which has been studied
observed experimentally.We now make precise what was extensively in connection with two-dimensional superfluid-
meant by “low” and “high” velocities in the discussion of the ity. This model exhibits the well known Kosterlitz—Thouless
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(KT) transition atTyy. For T> Ty, there is a condensation * EZ/ =7
of dissociated vortices, the phase is disordered and the cous £2} {32
relation function decays exponentially. FOK Tyt it has a RN
spin-wave phase characterized by tight binding of vortex—"" EZ/{32
antivortex pairs and power law correlation function. There isss EZ7 3=
no symmetry breaking in this phase and, therefore, no mag, R
netization. In the language of superfluids, the absence o FZ:i3==2
magnetization is equivalent to the absence of BEC. In addi® FZ/{3=%
tion, the low energy excitations, the spin waves, have a qua,, F=/{3=
dratic dispersion relationo(k) ~ k2. On the face of it, this AN
might be taken to imply an unstable superfluid according to' AN
the Landau criterion. However, it must be recalled the thesewn EZ7 {322
spin waves are thermodynamic in nature, not dynamic: This ; EZiNSTE
model has no intrinsic dynamics, unlike the three component ™ £} 3=z
XY model which has been shown to posses dynamic spir = 5
wave excitations with linear dispersidf.

One may justify using this model to study the dissipation  FIG. 2. Configuration withys=n«o, n=5 on a 50< 50 lattice.
properties of two-dimensional superfluids by recalling thatlThlsIlconflgurgtlonthsatflsfles the veflocutSy ilfrangziﬂondf:ong'“o”fand
experiments orfHe filmst® show that the transition to the '0cally minimizes the free energy for=5 atT=0. The direction o
superfluid phase is indeed in the KT universality class and® amows gives the value af.
that these films have finite critical velocity?° In addition,
most explanations of dissipation in superfluid fféw¢*are  Ed. (6) and Fig. 1 which together emphasize tipatis the
based on vortex formation which is certainly a defining prop—CurvaturefOI] thf parabola passir;g thfouggf the first fe\;v local
erty of the two-dimensionaXY model. It is, therefore, rea- minima of the free energy as a function wf However, for
sonable to use this model to address the questions of supdrrevity, we shall refer to this as the curvature of the free
fluid stability and dissipation. The quadratic dispersion of theenergy.
low-lying excitations and the absence of BEC make these Recalling thatF=-InZ/p, it is easy to apply Eqs(10)
questions even more interesting. and(11) to the XY model and obtain

Consider, therefore, a two-dimensional square lattice with
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N=L, XL, sites. The partition function of th¥Y model is I ={ > sin6 - 6) ), (12
then given by s\ (i jyx
+m N
Z= Hdei ex ,82 coq 6, - 0j)), (8) &Z—E:B S sin(6 - 8) 2 ( S sin( - 0]_)>2
-7 i=1 (ij) dvg G,j)x (Q,J)x
where(ij) denotes nearest nglghbor sites ﬂwdl/_kTwnh k S cos6,- 6) ), (13)
the Boltzmann constant. Since the superfluid component Q.x

does not carry any entropy, the increase in free energy when o )
the superfluid is in motion is due only to its kinetic energy. Where the notatiokii, j):x means the sum is performed over

Then, with p the superfluid particle density and taking ~ nearest neighbors only in thedirection(since we tooks to

purely in thex direction, one may write for smali; be in that direction Equation(12) allows the determination
N X of ps in anonequilibrium flow situationwhile Eq.(13) gives
F(vs) = Fo+ 3L, Lypsmug, (9 psalso at equilibrium where,=0. Note, from Eqgs(10) and

(12), that the superfluid velocitywg is proportional to
E(i,j):x Sin(ﬁi—ﬁj). For low velocities we haVQ)SO(EQ‘D:X(ﬁi

- 6;,) which satisfies the velocity quantization condition, Eq.
(6), and is illustrated in Fig. 2 fon=5.

from which immediately follow the expressions for the su-
perfluid momentum density:

iaF(vs)

m = , 10
PsUs L, s (10)
and the superfluid particle density Ill. NONEQUILIBRIUM SIMULATIONS
A. Metastability and superfluid densit
1 1#F(@y I Y P oo
pPs= LLm 02 (11 In this section we study some of the nonequilibrium prop-
Xy s erties of the two-dimensionaY model. In particular, we are

It is clear from Eq.(6) that the lowest velocity must cor- interested in the transitions among the local minima of Fig.
respond tan=1 and consequently, far, to be small enough 1, in other words the onset of dissipation in the superflow
to justify Eq.(9), the system must be large. Equatidd) is  and its relation to the critical velocity and thermodynamic
often expressed in words by saying that the superfluid denstability of the superfluid. The transitions between the local
sity is the curvature of the free energy as a function of theminima are driven by thermal fluctuations as the system at-
superfluid velocity. That this is not quite true is clear from tempts to minimize its free energy. Different simulation al-
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FIG. 3. The flux quantump as a function of time in Monte FIG. 4. The flux quanturm vs MCS for 100< 100 system at

Carlo SweepgMCS) for 100X 100 system aff =0.25< Tyr. We T=0.5. It is clear that the final value of depends on the initial

see than flows to the nearest integer value clearly exhibiting the Valué: It is not necessary for the system always to tunnel tmthe
Meissner effect and velocity quantization. =0 state, nor does it have to tunnel framto n—1. The initial

values for the flux ar@=6, 8, 10, and 12.

gorithms will lead to different lifetimes of the metastable
states. However, the scaling of these lifetimes with the gesmaller the value of the final flux. The reason for this will be
ometry of the system and the velocity of the superfluid will discussed below where we will study these transitions in
be the same. We chose to use the single spin flip local Memore detail. Such transitions between local minima, also
tropolis algorithm. We shall see below that agreement witlreferred to as phase slips, have been observed
experiments is very good. experimentally-®

Nonequilibrium simulations are performed by placing the  We now compare the superfluid density using equilibrium
system in initial configurations corresponding to flow at aand nonequilibrium measurements. The equilibrium mea-
chosen initial superfluid velocity. Equatig¢f) shows that the surements were done, as usual, by using(E8).and random
superfluid flows if there is a phase gradient, while E). initial configurations withn=0. The nonequilibrium mea-
places a condition on the allowed values wf Figure 2  surements were performed by putting the system im=af
shows an initial configuration corresponding to a flowinginitial configuration and using Eq§10) and(12) to measure
superfluid with fluxnky=5k,. It is also clear that this con- the superfluid density. FGr<0.7 then=1 metastable state is
figuration corresponds to irrotational flow. so long lived that even after ten million sweeps the transition

We first show that superfluid flow in the two dimensional does not occu(for 128x 128 system For such long lived
XY model is(metgstable by demonstrating the existence of states the measurements are simply performed as if the sys-
the Meissner effect and velocity quantization. As discussedem is in an equilibrium configuration. However, &g is
in Sec. |, if the initialn is less the 1/2, a “stable” superfluid approached, the lifetime of the metastable state becomes
will satisfy velocity quantization by coming to rest thus ex- very short and more care must be taken. In this temperature
hibiting the Meissner effect. On the other handnif1/2, range we measure the superfluid density as follows. The sys-
the system will evolve to the nearest integer valuenof tem is putin then=1 initial configuration and its evolution is
changing its velocity in the process. Figure 3 shows simulafollowed until it makes the transition to the=0 configura-
tion results for four initial values of the flux quantum, tion, performing measurements every few sweeps. This is
=0.4, 0.6, 1.4, and 1.6 for a 100100 system atT  done many times for the same temperat#@-300 timey
=0.25<Tkr. The behavior of single configurations is shown of course the transition time can be very different from one
for n=0.4 and 0.6 while fon=1.4 andn=1.6 we show av- simulation to another at the sanie(this will be discussed
erages over 1000 configuratiofthe dashed lingsThe fig-  below). The superfluid momentum denstypw,, from all
ure shows clearly that the Meissner effect and velocity quanthe runs for the same temperature is then histogrammed to
tization are both present in the two dimensioXdl model  decide if it is even meaningful to calculate an average of this
below Tyt. This means that the free energy does indeed havguantity. The results for two temperatures are shown in Fig.
the form depicted in Fig. 1 otherwise there would be no5. The relative heights of the peaks are not important since
reason for the flux quantum to get stuck at integer values athe height of the peak giws=0 depends on how long the
shown in Fig. 3. simulation is allowed to run after the transition has taken

That integer flux configurations are metastable, ratheplace. What is important is the height of the peak at nonzero
than stable, is shown in Fig. 4 where transitions are seen. It imomentum compared to its width and also compared to the
also clear from this figure that transitions do not alwaysheight of the histogram in the transition region between the
change the flux by the same amount. The change in the fluxyo peaks. It is clear that for the upper panel of Fig. 5, it is
and consequently dissipation and the final metastable aneaningless to calculate the superfluid momentum in the
stable configuration, depend on the starting value: The largenetastable state, while for the lower panel this quantity is
the initial flux, the larger the change and, consequently, thevell defined.
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FIG. 5. Histogram of the superfluid momentum for a system of

size 128<128. Upper panelT=0.9 and 45 simulations. Lower
panel:T=0.825 and 30 simulations.

With the help of such analysis we calculatgin the non-

equilibrium situation and compare with the equilibrium val-

ues in Fig. 6. The agreement is excellent which demonstrat
numerically the correctness of this approach. For0.875,
we can no longer extragis this way: the initial superfluid
velocity, vg=2w/L, (in units of #/m and for L,=128) is
greater than the critical velocity at these temperatures and t

superfluid kinetic energy is quickly dissipated. In order to ge

closer toTyr, the initial vg must be smaller which is impos-
sible for this system size since already1l. To achieve

lower vg, a larger system would be needed; this is anothe
demonstration of the important interplay between systen?

size andvs.

Note, that the excellent agreement between the equi
rium and nonequilibrium measurements @f (which we
have also verified with simulations at higher velocitidses
not support Eq(11) of Ref. 23 which claims a strong depen-
dence ofpg on vs.

An interesting aspect of the nonequilibrium measurement

of pg is the possibility of getting direct evidence for the uni-
versal jump conditiort®

1
® T T T T T
OéO@ol T T
- 86 .
®o
0.8 ®5 &% -
- o .
x
0.6 %} —
< F o] 1
[e]
0.4 —
(o]
B O L=128, equilib n
x L=128, non-equilib
0.2 O L=256, non-equilib © ]
- o .
0 [ I NN NN TR NN SR NN SR 2N
0 0.2 0.4 0.6 0.8 1
T

FIG. 6. The superfluid density, (in units of m/#2), from equi-
librium and nonequilibrium measurements WsThe error bars are
smaller than the symbols.
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ps(Tkr) = zTKT- (14)

a
In Ref. 27 a method based on higher order derivatives of the
free energy was presented as a way for direct detection of
this jump. In the present method, it is clear that when the
system is close enough T the superfluid momentum will
simply vanish discontinuously. Already far=128, this hap-
pens forT just above 0.87%the last nonequilibrium point
shown in Fig. §, whereasT1~0.9.

B. Vortices and dissipation

We now turn to the dissipation mechanism, i.e., the exci-
tations which take the system from one local minimum to
another. Onsag¥rand Feynmal argued that the creation of
large vortices in the flowing superfluid was responsible for
these dissipative transitions. Although the general features of
this idea are widely accepted, disagreement remains on the
details. Here we shall study and confirm numerically that, in

eth two-dimensionalXY model, transitions between the

metastable persistent flow states proceeds via the formation
of large vortex—antivortex pairs oriented orthogonally to the
direction of flow. We will describe how it happens and study
ocity.

Our numerical simulations demonstrate that, Tox Tk,
thermal fluctuations take place in such a way that the large
pcale band structures, Fig. 2, are maintained due to the spin
tiffness. As individual spins undergo thermal fluctuations,
the bands of approximately parallel spins fluctuate as large

jbs dependence on the width of the system and the flux ve-

Iib§cale elastic objects maintaining their large scale form and

spanning the syste(in they direction by choicg Deforma-
tions of these elastic objects cost energy proportional to the
curvature of the deformation and to the spin stiffness, p£.,
Eventually, two bands whose spins differ byr 2Zare de-
gormed enough to touch. When this happens, thedifer-
ence between these bands loses its meaning where they
touch, but away from the contact region the difference still
exists. This topological ambiguity is in fact the vortex—
antivortex excitation which can trigger the transition. This
situation is shown in Fig. 7 which is a snapshot of the system
depicted in Fig. 2 aT=1/3 after 1100 Monte Carlo sweeps.
The square in Fig. 7 shows where two bands of spin differing
by 27 have touched. A vortex is visible just below the square
and an antivortex just above it; also visible is a flux line
going down from the vortex and connecting it to the antivor-
tex (we have periodic boundary conditionsn two dimen-
sions, forT<Tkt, the energy of such excitations is of the
order of Inr, wherer=L, is the separation of the vortex—
antivortex pair.

When such contact is made, it may be very difficult to
break and dissipation of a flux quantum can then proceed by
zipping together the two bands into a single one thus elimi-
nating a quantum of flux. The reason for this is that for
T<Tkr the vortices are confined. It is favorable for a vortex
to find an antivortex and annihilate. In the situation of Fig. 7,
the logarithmic confining potential will pull them together
with the vortex moving down and the antivortex moving up
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ity is higher. If the velocity is very high, so many vortices are
created that the transition is essentially immediate.

It is interesting to note that whereas the superflow is in
general irrotational, this is no longer the case while the sys-
tem is undergoing a transition. This is clearly seen in Fig. 7
where one observes sheer in the flow: Kftow velocity in
the zones where the two bands have not yet touched is larger
than that where contact has been established thus producing
sheer at the interface.

Before discussing the scaling of the lifetime of the meta-
stable states, we first show that the escape time from a local
minimum is well defined and may be measured accurately.
Figure 8 shows a typical evolution of the superfluid momen-

tum as a function of time in Monte Carlo ste@4CS). The

The square shows the region where two bands of spins differing bgolid line is a fit of the formpgws=af{l-tanfb(t—7es)]}

27 have merged. A vortexantivortey can be seen belowaboveg

the square.

y direction, the vortex and antivortex will each be attracted
to its image thus moving outward and crashing against th
wall. The outcome, in both cases, is that the two bands ar

zipped together and a quantum of flux disappears, i.e., dissll[mction of the width of the systen,, the average timein

MCS) to make a transition from the to then-1 state for
E:O.ZS and 0.5. We see that, foy=32, 7 decreases as a
gower law as the system gets wider. This decreasevitith
increasingL, may be understood qualitatively with the help

pates.

Note that this mechanism, while involving vortices, is not
quite the same as that discussed in Ref. 22. In Ref. 22, th
vortex is assumed to nucleate at a singular point where th
wave function vanishesis| — 0, which implies a vanishing

which allows us to measure the lifetime,s, of the initial

metastable state. The dashed line is a fit of the same form to
the evolution of another configuration which we do not show.
to meet and annihilate zipping the the two bands in theifye shall return to this figure in the next subsection.

wake. In the case of nonperiodic boundary conditions in the A mentioned in Sec. I, the critical velocity of superfluid

helium passing through orificefecreasess the opening size
fs increased Here we show that similar behavior is exhibited
Sy the two dimensionaKY model. In Fig. 9 we show as a

density at that point. In the mechanism discussed here, onf§f the mechanism shown in Fig. 7. Increasibgmakes it

the phase, modeled by the angl@sfluctuates: The transi-

easier, at constant spin stiffness, to bend the spin bands by

tions here are caused by phase, not density, fluctuations. the needed amount to make them touch sincetireatureis
The role of the velocity is now straightforward to describe Smaller the larger the,. However, a straightforward appli-

qualitatively. The higher the velocity, the more closely cation of thermal activation arguments fails to give thg pb—

packed the bands become and thus the higher the likelihooterved behavior. The energy of a vortex—antivortex pair in a

that more than one contact region be established. Cons#l€ superfluid flow field is given By

quently, several vortex—antivortex pairs may be created with

the result that the transition can dissipate more than one flux

quantum. This explains what is observed in Fig. 4 where it is 10°
seen that more flux quanta are dissipated if the initial veloc-

0 1x10°

for a 128x128 system aff=0.83. The line is a fit of the form

2x10° 3x10° ax10°

time (MCS)

1000

FIG. 9. The average lifetime(MCS) vsL, for 8<L, <300 and
L,=128. The transitions are from=7 to n=6 (up triangle$, n=6
to n=5 (down triangley n=5 to n=4 (squares For these cases
FIG. 8. The superfluid momentum vs time in Monte Carlo stepsT=0.5. Circles: transition froom=12 ton=11 atT=0.25. The av-

erages are calculated over between 50 antl ré@lizations. The

pvs=a{l—tanfib(t- 7osd]}. The dashed line is a fit to the transition dashed line is a fit giving=5.7x 106/L§'9, the solid lines are to
of another configuration which is not shown for clarity.

guide the eye.
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* i H 10 t (MCS)

n (flux quantum)

FIG. 10. The average lifetime of metastable states vs the flux FIG. 11. Superfluid velocity vs time averaged over several real-

quantum,n, for 128x 128 (squaresand 128< 130 (triangleg sys-  izations for a 128128 system. Lowest curv&=0.92, 100 real-
tems aff=0.25. The solid line is-=5.4x 105 exp(—2n), the dashed izations, middle curveT=0.875, 30 realizations and upper curve:

line is 7=1.9% 106 exp-2.2761). T=0.85, 30 realizations.

2 Ly b= —1 (19)
E=2mpsIn Ly, - (27)“pgn L (15 ST (1+BY)”
where the distance between the vortex and antivortex i¥/NereAs, By, andr are empirical constants. Equationd)
taken to beL, as is seen in Fig. 7 and the superfluid velocity fails to describe the fast decays.

is 2nm/L,. This gives a transition rate In this section we shall compare the dissipation inXhe
model with these experimental results. Figure 8 shows, for
r= vOLye"BE, (16) one configuration, the superfluid momentum as a function of

time clearly displaying the dissipation of kinetic energy. The
behavior in this figure follows neither E¢L8) nor (19) and
does not resemble Figs. 6 or 7 of Ref.(58e Figs. 13 and 14
in this papey. However, Fig. 8 shows the behavior of only

This result which predicts an exponential decayrafith L, ~ 9N€ configuration dissipating exactly one flux quantum
does not agree with the observed numerical re&@i&or whereas in the experiments one presumably observes an av-
very narrow systemd,,=8, 10, and 16 in Fig. 9, it is seen €rage of such processes. In other words, the experimental
that ~ does not decrease with increasing This is because situation represents many d|ﬁe(ent regions 'of quantized flux
the system is becoming one dimensional in which case th_gwakmg transitions at d!fferent tlmes._What is observed the_n
spins are not stiff and therefore— 0. is the average dissipation as a function of time. To test this
Figure 10 shows the dependenceradn vs=2mnx,. The idea, we p_erformed S|mulat|ons of f[he type shown in Fig. 8
metastable statege., persistent superflovare shorter lived —Putaveraging over many configurations. Three such averages
for larger velocitiesp, which is in agreement with experi- &€ Shown by the points in Fig. 11. This figure strongly re-
ments. The exponential decay with increasing velocity apSembles Fig. 6 of Ref. 13 and the data are reasonably well
pears in Eq(17) but with an exponent which is too large. For described by Eq(19) (not shown in the figure, the curves
the larger values of, the decay is no longer exponential Shown will be discussed belowWe therefore see that, at
because local minima become too shallow and also becau@?St for fast dissipation, theY model is in very good quali-

the simultaneous dissipation of flux quanta becomes morkative agreement with experiments adding support to the
important. phase zipping dissipation mechanism discussed above. Slow

dissipation is harder to study numerically because for long
escape time it takes many more realizations to get good sta-
tistics. However, the simulations we performed for this case
Decay of persistent currents has been studied both in bul@re also consistent with the experiments.
and films. The results of Refs. 29-31 were found to be con- To model the numerically observed time dependenag, of
sistent with time dependence of the superfluid velocity in thedisplayed in Fig. 11, one must examine the distribution of
form escape timesz,g, at a givenT andvg. One such distribution
is shown in Fig. 12. The solid curve is a fit of the form

where, is the attempt rate. The average lifetime is then

7 27 LB 2m Lyl (17)

C. Comparison with experiments

ve=A-BInt, (18)
P(7es) = Ao, £ V7esc, (20)
whereA and B are empirical constants. In other words, the esd = Aest®

observed dissipation was very slow. However, Ref. 13 obwhereA, «, andy are fitting parameters. For the case of Fig.
served both slow and fast dissipation, the former well de-12, «=3.7 andy=3.1X 104, The average superfluid veloc-
scribed by Eq(18) while the latter much better described by ity, v, is then given by

184517-7
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I |

|
N‘
2x10*
FIG. 12. The distribution of escape times frata6 to n=5 for
a 128x 128 system at=0.5. The solid curve is a fit of the form Eq.
(20).
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10 | ‘
|

I ‘ fl : s,

4 4 4 5 10 10 10 10 10
4x10 6x10 8x10 1x10 ()
Escape time (MCS)

FIG. 14. Superfluid velocity vs time for films with different
thickness atT=1.45 K. The symbols are experimental data from
Fig. 7 of Ref. 13. The solid curves are fits using E2R). For 6.4
layers(«=0.3,y=0.5 and for nine layer$a=-0.73,y=0.00])

(1) = The escape time distribution, E@O0), used in this analy-
vy L Uress(OP(7es9 @D sis is reasonable for fast to medium dissipation as can be
seen in Fig. 12. However, it is not clear that the same distri-
whereP(7.¢9 is normalized and wherg(t) may be taken of bution gives a reasonable description for extremely long
the form discussed in Fig. 8. However, to simplify the dis-lived persistent flows of the type well modeled by E#8).
cussion and allow exact integration of £81), we may take In other words, the question is whether for very slow decays
v(1)=v4(0)O(7esc—t) Where ® is the Heaviside function. Eg.(22) behaves like the experimental results, i.e., roughly
Equation(21) then reduces to linearly in Int. To verify this, we show in Fig. 14 fits of Eq.
(22) to two data sets from Fig. 7 of Ref. 13. We see that even
_ “ . - , for the slowest dissipation reported, Eg2) gives very good
vs(t) =Af Aesges€ o= AT(1+a, ), (22) agreement with experiments. For the slow decay, though, it
! was necessary to take<<0 to get a good fit. This might
cause concern in view of E¢R0) which would then diverge

wherel'(1+a,yt) is the incomplete gamma functioA/, «, ; 20 H A ded onlv for th
and vy are fitting parameters. The solid curves in Fig. 11 ard Q" Tesc- 0. However, negative is needed only for the very

fits to the numerical data using E@2) with («=0.08y slow decays where,.is never zero. In fact the distribution

=2 77% 10°9) for the lowest curvéa=0.04 y=10"5) for the of escape times for slow dissipation will most likely have a
- e lower cutoff below which no dissipation is observed. Note
middle curve and@=0.02,y=3.5x 10°%) for the top curve.

Wi that t with th ical Its | rom Eq. (20) that y ! is a measure of the lifetime of the
¢ see that agreement with Ih€ numerical resulls 1S exceiy, oiastaple states. The values obtained from the fits in Fig. 14
lent. As a further test of these ideas, in Fig. 13 we show a fi

. O . “1=~2 s for the f =1 for the sl
to the experimental data in Fig. 6 of Ref. 13 using E2). rnzy s for the fast decay angt 0°s for the slow
The curve agrees remarkably well with the experimentaP T

. . ) his di i ts the view that th i tall
data, in fact much better than Ed.9), see Fig. 6 in Ref. 13. 1S CISCUSSION SUPPOTLS Ie VIeW fhat the experimentarly

observed dissipation curves are averages over many events
like the one shown in Fig. 8 with an escape time distribution
similar to Fig. 12.

40 T | T | T I T | T

30 IV. CONCLUSIONS

We have presented a first study of the two-dimensional
planar XY model in topologically nontrivial metastable
states. Theséwistedstates represent a two-dimensional su-
perfluid under nonequilibriumpersistent flowconditions
which satisfy the superfluid velocity quantization condition,
Eq. (6). Transitions among these states change the topologi-

ok 1 . - . S cal quantum number, the quantized flux, and represent the
lo lo 10 £ (s50) lo lo 10 dissipation of flux quanta in a flowing superfluid which is
related to its critical velocity. The properties of these transi-

FIG. 13. Superfluid velocity vs time. The circles are the experi-tions were studied in particular their dependence on the ge-
mental data for superfluid films in Fig. 6 of Ref. 13. The solid curve ometry of the system and the superfluid velocity. We showed
is a fit using Eq(22). The fitting parameters af@e=0,y=0.043. that, in agreement with experimental results, the metastable

20

vs(t) (cm/sec)

10
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states have shorter lifetimes and, therefore, lower critical ve- It is interesting that the two dimensional plan@ model,
locities when the width of the system increases. Also inwith no condensate and no linear dispersion for the low-lying
agreement with experiments, we showed that dissipation iexcitations still exhibits(metgstable superfluid flow and
more rapid the higher the initial superfluid velocity. The dis- agrees well with experimental results.

sipation mechanism was identified and studied: When two Finally we mention that the free energy landscape may be
bands of spin differing by # deform and touch due to ther- studied directly using, for example, the Wang-Lantaal-

mal fluctuations, a bound vortex—antivortex pair of lengfh  gorithm. Integer windings in the two dimensiorn&a¥ model

is created. The confining force pulls the vortex and antivorwere addressed in Ref. 33. Very recenrflyifferent topo-

tex towards each other thus zipping together the two touchlogical sectors and the helicity modulus were studied for the
ing bands of spin into a single band. four dimensional compadi(1) lattice gauge theory.

Using this mechanism and a functional form for the es-
cape time distribution motivated by the numerical results, we
calculated the average superfluid velocity(t), and showed
it to be in excellent agreement both with our numerical simu- The author acknowledges very helpful discussions with E.
lations(Fig. 11), and with the experimental results of Ref. 13 L. Pollock, B. Militzer, R. T. Scalettar, M. Troyer, Ph. de
(Figs. 13 and 1¥4 This provides support for the view that the Forcrand, and T. Ramstad. He also thanks the Norwegian
dissipation observed experimentally is an average over sewniversity of Science and Technology, the Complex Group
eral regions with, possibly, different velocities where dissi-and Norsk Hydro for their hospitality and generosity during a
pation of flux quanta takes place independently and at differsabbatical stay. This work was supported by the NSF-CNRS
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