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We use the Metropolis algorithm to study the stability of superfluid flow in a model system, namely the
two-dimensional planarXY model. Flow properties are examined by studying the behavior of the system in
metastable “twisted” states. We demonstrate the stability of superfluidity in this model and we discuss the
Meissner effect and velocity quantization. We also study the critical velocity and dissipation by vortex creation
and rotational flow and their dependence on the geometry of the system. An expression for the average
superfluid velocity as a function of time,v̄sstd, is obtained and compared with experimental results.
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I. INTRODUCTION

Interest in superfluidity has never waned. Quite the con-
trary, since the experimental realization of trapped atomic
Bose-Einstein condensates1,2 (BEC) activity in this field has
intensified dramatically and the recent apparent discovery of
a supersolid phase in solid helium3 will most likely increase
the level of interest. In addition, there is intense interest in
the low temperature properties of bosons where many ques-
tions remain concerning the phase diagrams of model sys-
tems and the phase transitions from the superfluid phase to
various exotic phases.

An important question concerning superfluids is that of
dissipation and the critical velocity. Perhaps one of the first
things one thinks of at the mention of superfluidity is “flow
without friction.” Very early on, Landau4 realized that the
superfluid can be treated as a dilute gas of noninteracting
quasiparticle excitations(phonons) and obtained the famous
and often cited Landau stability criterion for superfluids:5

vc
L = minkfvskd/kg. s1d

The dispersion relation,vskd, is the energy of a quasiparticle
excitation of momentum"k in the fluid, andvc

L is theLandau
critical velocity above which dissipation sets in. Clearly, if
the dispersion relationvskd is linear, at least for smallk, the
Landau critical velocity is finite. On the other hand,vc

L=0 for
quadratic dependence ofvskd on k. When vc

LÞ0, dissipa-
tionless flow at finite velocity is possible and the superfluid
is said to be “stable.”

To measure the critical velocity of a superfluid such as
liquid 4helium at a temperatureT,Tl=2.18 K, one might,
for example, pull an object through the superfluid: The ve-
locity at which a drag force starts to act on this object can be
thought of as a critical velocity. Such experiments have been
done6 and find a critical velocity which depends on the su-
perfluid density,rs, but not on the geometry of the system.
Furthermore, this critical velocity was found to be of the
order of a few tens of meters/second which is in good agree-
ment with the Landau prediction, Eq.(1), when applied to
helium.

Another way to measure the critical velocity is to set the
superfluid in motion in a tube(or through an orifice) and

measure the superflow velocity at which dissipation sets in.
This is perhaps more appealing physically than the first ex-
periment because it involves a flowing superfluid and be-
cause one may make connections with persistent currents
observed in superconducting systems. Such flow experiments
have also been performed7 and find that the critical velocity
is of the order cm/s or less anddoesdepend on the size of the
orifice! In addition, it was found that the higher critical ve-
locities are obtained with the smaller orifices which is per-
haps counterintuitive. These results are surprising when com-
pared with the Landau prediction. It is thus clear
experimentally that these “critical” velocities are not equiva-
lent.

The widespread application of the Landau criterion as a
test of stability, Eq.(1), has been criticized8,9 because it ap-
plies to the case of an object moving in the fluid and not to
the case of the fluid itself flowing through orifices or in a
torus. Perhaps a reason for the ubiquity of the Landau crite-
rion is that in many cases one can calculate, if only approxi-
mately, the dispersion relationvskd. It is much more difficult
to calculate, even numerically, the critical velocity observed
in flow experiments.

In this paper, we shall adopt the viewpoint of reference9

and after a brief review, we shall present our simulation. As
usual, we have in mind here the two-fluid model of superflu-
ids. In the superfluid phase, the total densityr is the sum of
two densities:

r = rn + rs, s2d

wherern srsd is the normal(super) fluid density. The super-
fluid component does not carry entropy and flows without
dissipation. The total particle current is then

j = rsvs + rnvn, s3d

wherevs svnd is the velocity of the superfluid(normal) com-
ponent. To obtain the expression forvs, we write the super-
fluid wave function as

csr d = eiusr dc0sr d, s4d

wherec0sr d is real. Then,
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vs = kcu
p̂

m
ucl =

"

m
k¹ul, s5d

where p̂ is the momentum operator. The superfluid velocity
is proportional to the average gradient of the phase of the
wave function: Clearly, if the phase does not change coher-
ently throughout the volume of the system,vs=0.

Following Ref. 9, we consider two situations which dem-
onstrate fundamental defining properties of the superfluid.

(1) A torus containing liquid4He atT.Tl is spun around
its axis at very low angular velocity.10 Eventually the liquid
will come to equilibrium with the moving walls. ReducingT
below Tl, the liquid goes into its superfluid phase and the
superfluid component is observed to come to rest and, to
conserve angular momentum, the torus and normal fluid gain
angular momentum. The experiment11 demonstrates the ana-
log of theMeissner effectin superconductors.

(2) Starting with the same setup as above, the torus is
spun at high angular velocity.10 The temperature is then re-
duced belowTl and the torus brought to rest. Eventually the
normal component will itself reach equilibrium with the
walls and come to rest. It can then be verified that the angu-
lar momentum of the stationary torus is nonzero: The super-
fluid component is still flowing and may continue to do so
for a very long time. This is the phenomenon of persistent
dissipationless flow similar to persistent currents in super-
conductors. Such experiments have been done by several
groups, see for example Refs. 12 and 13.

These two fundamental properties may be understood
with the aid of the velocity quantization condition first pro-
posed by Onsager14

R vs . dl = nk0, s6d

wherek0=h/m is the flux quantum,h is Planck’s constant
andm the particle mass. Clearly, the closed integration path
must enclose a “hole” in the system, either a vortex or a
physical hole, otherwise the path can be shrunk continuously
to a point and onlyn=0 survives. Another important prop-
erty of superflow, which will come into play below, is that it
is irrotational:

¹ 3 vs = 0. s7d

Equation(6) demands that persistent flow take place at a
well defined valuenk0. This is not an equilibrium situation
since the superfluid can reduce its free energy by coming to
rest. The persistence of the flow, at least forvs below a
critical value, means that the fluid is in ametastablestate
which will eventually decay into the equilibrium stable state
at rest.9,15 As we shall see, the lifetime of this metastable
state depends on the velocity itself and onT. Figure 1 shows
qualitatively the form of the free energy as a function of
velocity.9,15 This also makes clear that transitions between
local minima should be possible and lead to the loss of su-
perfluid momentum, in other words the beginning of dissipa-
tion due to excessive velocity. Such phase slips were indeed
observed experimentally.16 We now make precise what was
meant by “low” and “high” velocities in the discussion of the

two experiments above. The Meissner effect takes place
when the initial velocity corresponds to less than half a quan-
tum and the superfluid, seeking the nearest velocity satisfy-
ing Eq. (6), comes to rest, i.e., excludes all flux. When the
initial velocity is high, i.e., larger than half a quantum, the
superfluid will seek the nearest velocity satisfying Eq.(6)
and settle into the corresponding metastable state.

It was suggested14,17 that vortex formation is behind these
transitions and although this mechanism is generally ac-
cepted, the details are still not well understood and no nu-
merical simulations have been done.

In the following sections we shall address these questions
numerically for a model system. The paper is organized as
follows. In Sec. II we briefly review the two dimensionalXY
model. In Sec. III we present our results for the nonequilib-
rium simulations including velocity quantization, superfluid
density, transitions and flux dissipation, scaling of lifetimes
with the geometry of the system and comparisons with ex-
periments. Conclusions are in Sec. IV.

II. MODEL

Addressing these questions with quantum Monte Carlo
simulations of4He or of model systems such as the bosonic
Hubbard model, poses very difficult algorithmic problems.
As discussed above, putting the superfluid in motion requires
a gradient in the phase of the wave function. This introduces
a complex phase in the Boltzmann weight rendering the
simulation extremely difficult.

Instead, we shall use classical Monte Carlo to simulate the
two dimensional planarXY model which has been studied
extensively in connection with two-dimensional superfluid-
ity. This model exhibits the well known Kosterlitz–Thouless

FIG. 1. Qualitative form of the free energy(arbitrary units) vs
velocity in the presence of superfluidity for a 64364 system. When
the velocity satisfies Eq.(6), the free energy has a local minimum
(for the values ofvs shown) which explains the metastability of
persistent superfluid flow and the Meissner effect. Asvs increases,
the corresponding local minima get shallower and eventually disap-
pear rendering the flow unstable. The arrows illustrate possible tran-
sitions from local minima.
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(KT) transition atTKT. For T.TKT, there is a condensation
of dissociated vortices, the phase is disordered and the cor-
relation function decays exponentially. ForT,TKT it has a
spin-wave phase characterized by tight binding of vortex–
antivortex pairs and power law correlation function. There is
no symmetry breaking in this phase and, therefore, no mag-
netization. In the language of superfluids, the absence of
magnetization is equivalent to the absence of BEC. In addi-
tion, the low energy excitations, the spin waves, have a qua-
dratic dispersion relation:vskd,k2. On the face of it, this
might be taken to imply an unstable superfluid according to
the Landau criterion. However, it must be recalled the these
spin waves are thermodynamic in nature, not dynamic: This
model has no intrinsic dynamics, unlike the three component
XY model which has been shown to posses dynamic spin
wave excitations with linear dispersion.18

One may justify using this model to study the dissipation
properties of two-dimensional superfluids by recalling that
experiments on4He films19 show that the transition to the
superfluid phase is indeed in the KT universality class and
that these films have finite critical velocity.13,20 In addition,
most explanations of dissipation in superfluid flow21–24 are
based on vortex formation which is certainly a defining prop-
erty of the two-dimensionalXY model. It is, therefore, rea-
sonable to use this model to address the questions of super-
fluid stability and dissipation. The quadratic dispersion of the
low-lying excitations and the absence of BEC make these
questions even more interesting.

Consider, therefore, a two-dimensional square lattice with
N=Lx3Ly sites. The partition function of theXY model is
then given by

Z =E
−p

+p

p
i=1

N

dui expSbo
ki j l

cossui − u jdD , s8d

whereki j l denotes nearest neighbor sites andb=1/kT with k
the Boltzmann constant. Since the superfluid component
does not carry any entropy, the increase in free energy when
the superfluid is in motion is due only to its kinetic energy.
Then, with rs the superfluid particle density and takingvs
purely in thex direction, one may write for smallvs:

Fsvsd < F0 + 1
2LxLyrsmvs

2, s9d

from which immediately follow the expressions for the su-
perfluid momentum density:

mrsvs =
1

LxLy

]Fsvsd
]vs

, s10d

and the superfluid particle density

rs =
1

LxLy

1

m

]2Fsvsd
]vs

2 . s11d

It is clear from Eq.(6) that the lowest velocity must cor-
respond ton=1 and consequently, forvs to be small enough
to justify Eq. (9), the system must be large. Equation(11) is
often expressed in words by saying that the superfluid den-
sity is the curvature of the free energy as a function of the
superfluid velocity. That this is not quite true is clear from

Eq. (6) and Fig. 1 which together emphasize thatrs is the
curvature of the parabola passing through the first few local
minima of the free energy as a function ofvs. However, for
brevity, we shall refer to this as the curvature of the free
energy.

Recalling thatF=−ln Z/b, it is easy to apply Eqs.(10)
and (11) to theXY model and obtain

]F

]vs
= K o

ki,jl:x
sinsui − u jdL , s12d

]2F

]vs
2 = bHK o

ki,jl:x
sinsui − u jdL2

− KS o
ki,jl:x

sinsui − u jdD2LJ
+ K o

ki,jl:x
cossui − u jdL , s13d

where the notationki , jl :x means the sum is performed over
nearest neighbors only in thex direction(since we tookvs to
be in that direction). Equation(12) allows the determination
of rs in a nonequilibrium flow situation, while Eq.(13) gives
rs also at equilibrium wherevs=0. Note, from Eqs.(10) and
(12), that the superfluid velocityvs is proportional to
oki,jl:x sinsui −u jd. For low velocities we havevs~oki,jl:xsui

−u jd which satisfies the velocity quantization condition, Eq.
(6), and is illustrated in Fig. 2 forn=5.

III. NONEQUILIBRIUM SIMULATIONS

A. Metastability and superfluid density

In this section we study some of the nonequilibrium prop-
erties of the two-dimensionalXY model. In particular, we are
interested in the transitions among the local minima of Fig.
1, in other words the onset of dissipation in the superflow
and its relation to the critical velocity and thermodynamic
stability of the superfluid. The transitions between the local
minima are driven by thermal fluctuations as the system at-
tempts to minimize its free energy. Different simulation al-

FIG. 2. Configuration withvs=nk0, n=5 on a 50350 lattice.
This configuration satisfies the velocity quantization condition and
locally minimizes the free energy forn=5 atT=0. The direction of
the arrows gives the value ofui.
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gorithms will lead to different lifetimes of the metastable
states. However, the scaling of these lifetimes with the ge-
ometry of the system and the velocity of the superfluid will
be the same. We chose to use the single spin flip local Me-
tropolis algorithm. We shall see below that agreement with
experiments is very good.

Nonequilibrium simulations are performed by placing the
system in initial configurations corresponding to flow at a
chosen initial superfluid velocity. Equation(5) shows that the
superfluid flows if there is a phase gradient, while Eq.(6)
places a condition on the allowed values ofvs. Figure 2
shows an initial configuration corresponding to a flowing
superfluid with fluxnk0=5k0. It is also clear that this con-
figuration corresponds to irrotational flow.

We first show that superfluid flow in the two dimensional
XY model is(meta)stable by demonstrating the existence of
the Meissner effect and velocity quantization. As discussed
in Sec. I, if the initialn is less the 1/2, a “stable” superfluid
will satisfy velocity quantization by coming to rest thus ex-
hibiting the Meissner effect. On the other hand, ifn.1/2,
the system will evolve to the nearest integer value ofn
changing its velocity in the process. Figure 3 shows simula-
tion results for four initial values of the flux quantum,n
=0.4, 0.6, 1.4, and 1.6 for a 1003100 system atT
=0.25,TKT. The behavior of single configurations is shown
for n=0.4 and 0.6 while forn=1.4 andn=1.6 we show av-
erages over 1000 configurations(the dashed lines). The fig-
ure shows clearly that the Meissner effect and velocity quan-
tization are both present in the two dimensionalXY model
belowTKT. This means that the free energy does indeed have
the form depicted in Fig. 1 otherwise there would be no
reason for the flux quantum to get stuck at integer values as
shown in Fig. 3.

That integer flux configurations are metastable, rather
than stable, is shown in Fig. 4 where transitions are seen. It is
also clear from this figure that transitions do not always
change the flux by the same amount. The change in the flux,
and consequently dissipation and the final metastable or
stable configuration, depend on the starting value: The larger
the initial flux, the larger the change and, consequently, the

smaller the value of the final flux. The reason for this will be
discussed below where we will study these transitions in
more detail. Such transitions between local minima, also
referred to as phase slips, have been observed
experimentally.16

We now compare the superfluid density using equilibrium
and nonequilibrium measurements. The equilibrium mea-
surements were done, as usual, by using Eq.(13) and random
initial configurations withn=0. The nonequilibrium mea-
surements were performed by putting the system in ann=1
initial configuration and using Eqs.(10) and(12) to measure
the superfluid density. ForT,0.7 then=1 metastable state is
so long lived that even after ten million sweeps the transition
does not occur(for 1283128 system). For such long lived
states the measurements are simply performed as if the sys-
tem is in an equilibrium configuration. However, asTKT is
approached, the lifetime of the metastable state becomes
very short and more care must be taken. In this temperature
range we measure the superfluid density as follows. The sys-
tem is put in then=1 initial configuration and its evolution is
followed until it makes the transition to then=0 configura-
tion, performing measurements every few sweeps. This is
done many times for the same temperature(40–300 times);
of course the transition time can be very different from one
simulation to another at the sameT (this will be discussed
below). The superfluid momentum density,26 rsvs, from all
the runs for the same temperature is then histogrammed to
decide if it is even meaningful to calculate an average of this
quantity. The results for two temperatures are shown in Fig.
5. The relative heights of the peaks are not important since
the height of the peak atrsvs=0 depends on how long the
simulation is allowed to run after the transition has taken
place. What is important is the height of the peak at nonzero
momentum compared to its width and also compared to the
height of the histogram in the transition region between the
two peaks. It is clear that for the upper panel of Fig. 5, it is
meaningless to calculate the superfluid momentum in the
metastable state, while for the lower panel this quantity is
well defined.

FIG. 3. The flux quantum,n as a function of time in Monte
Carlo Sweeps(MCS) for 1003100 system atT=0.25,TKT. We
see thatn flows to the nearest integer value clearly exhibiting the
Meissner effect and velocity quantization.

FIG. 4. The flux quantumn vs MCS for 1003100 system at
T=0.5. It is clear that the final value ofn depends on the initial
value: It is not necessary for the system always to tunnel to then
=0 state, nor does it have to tunnel fromn to n−1. The initial
values for the flux aren=6, 8, 10, and 12.
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With the help of such analysis we calculaters in the non-
equilibrium situation and compare with the equilibrium val-
ues in Fig. 6. The agreement is excellent which demonstrates
numerically the correctness of this approach. ForT.0.875,
we can no longer extractrs this way: the initial superfluid
velocity, vs=2p /Lx (in units of " /m and for Lx=128) is
greater than the critical velocity at these temperatures and the
superfluid kinetic energy is quickly dissipated. In order to get
closer toTKT, the initial vs must be smaller which is impos-
sible for this system size since alreadyn=1. To achieve
lower vs, a larger system would be needed; this is another
demonstration of the important interplay between system
size andvs.

Note, that the excellent agreement between the equilib-
rium and nonequilibrium measurements ofrs (which we
have also verified with simulations at higher velocities) does
not support Eq.(11) of Ref. 23 which claims a strong depen-
dence ofrs on vs.

An interesting aspect of the nonequilibrium measurements
of rs is the possibility of getting direct evidence for the uni-
versal jump condition:25

rssTKTd =
2

p
TKT. s14d

In Ref. 27 a method based on higher order derivatives of the
free energy was presented as a way for direct detection of
this jump. In the present method, it is clear that when the
system is close enough toTKT the superfluid momentum will
simply vanish discontinuously. Already forL=128, this hap-
pens forT just above 0.875(the last nonequilibrium point
shown in Fig. 6), whereasTKT <0.9.

B. Vortices and dissipation

We now turn to the dissipation mechanism, i.e., the exci-
tations which take the system from one local minimum to
another. Onsager14 and Feynman17 argued that the creation of
large vortices in the flowing superfluid was responsible for
these dissipative transitions. Although the general features of
this idea are widely accepted, disagreement remains on the
details. Here we shall study and confirm numerically that, in
the two-dimensionalXY model, transitions between the
metastable persistent flow states proceeds via the formation
of large vortex–antivortex pairs oriented orthogonally to the
direction of flow. We will describe how it happens and study
its dependence on the width of the system and the flux ve-
locity.

Our numerical simulations demonstrate that, forT,TKT,
thermal fluctuations take place in such a way that the large
scale band structures, Fig. 2, are maintained due to the spin
stiffness. As individual spins undergo thermal fluctuations,
the bands of approximately parallel spins fluctuate as large
scale elastic objects maintaining their large scale form and
spanning the system(in they direction by choice). Deforma-
tions of these elastic objects cost energy proportional to the
curvature of the deformation and to the spin stiffness, i.e.,rs.
Eventually, two bands whose spins differ by 2p are de-
formed enough to touch. When this happens, the 2p differ-
ence between these bands loses its meaning where they
touch, but away from the contact region the difference still
exists. This topological ambiguity is in fact the vortex–
antivortex excitation which can trigger the transition. This
situation is shown in Fig. 7 which is a snapshot of the system
depicted in Fig. 2 atT=1/3 after 1100 Monte Carlo sweeps.
The square in Fig. 7 shows where two bands of spin differing
by 2p have touched. A vortex is visible just below the square
and an antivortex just above it; also visible is a flux line
going down from the vortex and connecting it to the antivor-
tex (we have periodic boundary conditions). In two dimen-
sions, forT,TKT, the energy of such excitations is of the
order of lnr, wherer <Ly is the separation of the vortex–
antivortex pair.

When such contact is made, it may be very difficult to
break and dissipation of a flux quantum can then proceed by
zipping together the two bands into a single one thus elimi-
nating a quantum of flux. The reason for this is that for
T,TKT the vortices are confined. It is favorable for a vortex
to find an antivortex and annihilate. In the situation of Fig. 7,
the logarithmic confining potential will pull them together
with the vortex moving down and the antivortex moving up

FIG. 5. Histogram of the superfluid momentum for a system of
size 1283128. Upper panel:T=0.9 and 45 simulations. Lower
panel:T=0.825 and 30 simulations.

FIG. 6. The superfluid density,rs (in units ofm/"2), from equi-
librium and nonequilibrium measurements vsT. The error bars are
smaller than the symbols.
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to meet and annihilate zipping the the two bands in their
wake. In the case of nonperiodic boundary conditions in the
y direction, the vortex and antivortex will each be attracted
to its image thus moving outward and crashing against the
wall. The outcome, in both cases, is that the two bands are
zipped together and a quantum of flux disappears, i.e., dissi-
pates.

Note that this mechanism, while involving vortices, is not
quite the same as that discussed in Ref. 22. In Ref. 22, the
vortex is assumed to nucleate at a singular point where the
wave function vanishes,uc u →0, which implies a vanishing
density at that point. In the mechanism discussed here, only
the phase, modeled by the anglesu, fluctuates: The transi-
tions here are caused by phase, not density, fluctuations.

The role of the velocity is now straightforward to describe
qualitatively. The higher the velocity, the more closely
packed the bands become and thus the higher the likelihood
that more than one contact region be established. Conse-
quently, several vortex–antivortex pairs may be created with
the result that the transition can dissipate more than one flux
quantum. This explains what is observed in Fig. 4 where it is
seen that more flux quanta are dissipated if the initial veloc-

ity is higher. If the velocity is very high, so many vortices are
created that the transition is essentially immediate.

It is interesting to note that whereas the superflow is in
general irrotational, this is no longer the case while the sys-
tem is undergoing a transition. This is clearly seen in Fig. 7
where one observes sheer in the flow: Thex̂ flow velocity in
the zones where the two bands have not yet touched is larger
than that where contact has been established thus producing
sheer at the interface.

Before discussing the scaling of the lifetime of the meta-
stable states, we first show that the escape time from a local
minimum is well defined and may be measured accurately.
Figure 8 shows a typical evolution of the superfluid momen-
tum as a function of time in Monte Carlo steps(MCS). The
solid line is a fit of the formrsvs=ah1−tanhfbst−tescdgj
which allows us to measure the lifetime,tesc, of the initial
metastable state. The dashed line is a fit of the same form to
the evolution of another configuration which we do not show.
We shall return to this figure in the next subsection.

As mentioned in Sec. I, the critical velocity of superfluid
helium passing through orificesdecreasesas the opening size
is increased. Here we show that similar behavior is exhibited
by the two dimensionalXY model. In Fig. 9 we show as a
function of the width of the system,Ly, the average time(in
MCS) to make a transition from then to the n−1 state for
T=0.25 and 0.5. We see that, forLyù32, t decreases as a
power law as the system gets wider. This decrease int with
increasingLy may be understood qualitatively with the help
of the mechanism shown in Fig. 7. IncreasingLy makes it
easier, at constant spin stiffness, to bend the spin bands by
the needed amount to make them touch since thecurvatureis
smaller the larger theLy. However, a straightforward appli-
cation of thermal activation arguments fails to give the ob-
served behavior. The energy of a vortex–antivortex pair in a
the superfluid flow field is given by23

FIG. 8. The superfluid momentum vs time in Monte Carlo steps
for a 1283128 system atT=0.83. The line is a fit of the form
rsvs=ah1−tanhfbst−tescdgj. The dashed line is a fit to the transition
of another configuration which is not shown for clarity.

FIG. 9. The average lifetimet (MCS) vs Ly for 8øLyø300 and
Lx=128. The transitions are fromn=7 to n=6 (up triangles), n=6
to n=5 (down triangles), n=5 to n=4 (squares). For these cases
T=0.5. Circles: transition fromn=12 to n=11 atT=0.25. The av-
erages are calculated over between 50 and 103 realizations. The
dashed line is a fit givingt=5.73106/Ly

0.9, the solid lines are to
guide the eye.

FIG. 7. The configuration in Fig. 2 after 1100 MCS atT=1/3.
The square shows the region where two bands of spins differing by
2p have merged. A vortex(antivortex) can be seen below(above)
the square.
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E = 2prs ln Ly − s2pd2rsn
Ly

Lx
, s15d

where the distance between the vortex and antivortex is
taken to beLy as is seen in Fig. 7 and the superfluid velocity
is 2np /Lx. This gives a transition rate13

r = n0Lye
−bE, s16d

wheren0 is the attempt rate. The average lifetime is then

t , Ly
2prsb−1e−brsns2pd2Ly/Lx. s17d

This result which predicts an exponential decay oft with Ly
does not agree with the observed numerical results.28 For
very narrow systems,Ly=8, 10, and 16 in Fig. 9, it is seen
that t does not decrease with increasingLy. This is because
the system is becoming one dimensional in which case the
spins are not stiff and thereforet→0.

Figure 10 shows the dependence oft on vs=2pnk0. The
metastable states(i.e., persistent superflow) are shorter lived
for larger velocities,vs, which is in agreement with experi-
ments. The exponential decay with increasing velocity ap-
pears in Eq.(17) but with an exponent which is too large. For
the larger values ofn, the decay is no longer exponential
because local minima become too shallow and also because
the simultaneous dissipation of flux quanta becomes more
important.

C. Comparison with experiments

Decay of persistent currents has been studied both in bulk
and films. The results of Refs. 29–31 were found to be con-
sistent with time dependence of the superfluid velocity in the
form

vs = A − B ln t, s18d

whereA and B are empirical constants. In other words, the
observed dissipation was very slow. However, Ref. 13 ob-
served both slow and fast dissipation, the former well de-
scribed by Eq.(18) while the latter much better described by

vs =
A1

s1 + B1tdr , s19d

whereA1, B1, and r are empirical constants. Equation(18)
fails to describe the fast decays.

In this section we shall compare the dissipation in theXY
model with these experimental results. Figure 8 shows, for
one configuration, the superfluid momentum as a function of
time clearly displaying the dissipation of kinetic energy. The
behavior in this figure follows neither Eq.(18) nor (19) and
does not resemble Figs. 6 or 7 of Ref. 13(see Figs. 13 and 14
in this paper). However, Fig. 8 shows the behavior of only
one configuration dissipating exactly one flux quantum
whereas in the experiments one presumably observes an av-
erage of such processes. In other words, the experimental
situation represents many different regions of quantized flux
making transitions at different times. What is observed then
is the average dissipation as a function of time. To test this
idea, we performed simulations of the type shown in Fig. 8
but averaging over many configurations. Three such averages
are shown by the points in Fig. 11. This figure strongly re-
sembles Fig. 6 of Ref. 13 and the data are reasonably well
described by Eq.(19) (not shown in the figure, the curves
shown will be discussed below). We therefore see that, at
least for fast dissipation, theXY model is in very good quali-
tative agreement with experiments adding support to the
phase zipping dissipation mechanism discussed above. Slow
dissipation is harder to study numerically because for long
escape time it takes many more realizations to get good sta-
tistics. However, the simulations we performed for this case
are also consistent with the experiments.

To model the numerically observed time dependence ofvs
displayed in Fig. 11, one must examine the distribution of
escape times,tesc, at a givenT andvs. One such distribution
is shown in Fig. 12. The solid curve is a fit of the form

Pstescd = Atesc
a e−gtesc, s20d

whereA, a, andg are fitting parameters. For the case of Fig.
12, a=3.7 andg=3.1310−4. The average superfluid veloc-
ity, v̄s, is then given by

FIG. 10. The average lifetime of metastable states vs the flux
quantum,n, for 1283128 (squares) and 1283130 (triangles) sys-
tems atT=0.25. The solid line ist=5.431015 exps−2nd, the dashed
line is t=1.931016 exps−2.276nd.

FIG. 11. Superfluid velocity vs time averaged over several real-
izations for a 1283128 system. Lowest curve:T=0.92, 100 real-
izations, middle curve:T=0.875, 30 realizations and upper curve:
T=0.85, 30 realizations.

METASTABLE STATES IN THE PLANAR TWO-… PHYSICAL REVIEW B 70, 184517(2004)

184517-7



v̄sstd =E
0

`

dtescvsstdPstescd s21d

wherePstescd is normalized and wherevsstd may be taken of
the form discussed in Fig. 8. However, to simplify the dis-
cussion and allow exact integration of Eq.(21), we may take
vsstd=vss0dQstesc− td where Q is the Heaviside function.
Equation(21) then reduces to

v̄sstd = AE
t

`

dtesctesc
a e−gtesc= A8Gs1 + a,gtd, s22d

whereGs1+a ,gtd is the incomplete gamma function,A8, a,
andg are fitting parameters. The solid curves in Fig. 11 are
fits to the numerical data using Eq.(22) with sa=0.08,g
=2.77310−5d for the lowest curvesa=0.04,g=10−5d for the
middle curve andsa=0.02,g=3.5310−6d for the top curve.
We see that agreement with the numerical results is excel-
lent. As a further test of these ideas, in Fig. 13 we show a fit
to the experimental data in Fig. 6 of Ref. 13 using Eq.(22).
The curve agrees remarkably well with the experimental
data, in fact much better than Eq.(19), see Fig. 6 in Ref. 13.

The escape time distribution, Eq.(20), used in this analy-
sis is reasonable for fast to medium dissipation as can be
seen in Fig. 12. However, it is not clear that the same distri-
bution gives a reasonable description for extremely long
lived persistent flows of the type well modeled by Eq.(18).
In other words, the question is whether for very slow decays
Eq. (22) behaves like the experimental results, i.e., roughly
linearly in ln t. To verify this, we show in Fig. 14 fits of Eq.
(22) to two data sets from Fig. 7 of Ref. 13. We see that even
for the slowest dissipation reported, Eq.(22) gives very good
agreement with experiments. For the slow decay, though, it
was necessary to takea,0 to get a good fit. This might
cause concern in view of Eq.(20) which would then diverge
for tesc=0. However, negativea is needed only for the very
slow decays wheretesc is never zero. In fact the distribution
of escape times for slow dissipation will most likely have a
lower cutoff below which no dissipation is observed. Note
from Eq. (20) that g−1 is a measure of the lifetime of the
metastable states. The values obtained from the fits in Fig. 14
areg−1<2 s for the fast decay andg−1<103 s for the slow
one.

This discussion supports the view that the experimentally
observed dissipation curves are averages over many events
like the one shown in Fig. 8 with an escape time distribution
similar to Fig. 12.

IV. CONCLUSIONS

We have presented a first study of the two-dimensional
planar XY model in topologically nontrivial metastable
states. Thesetwistedstates represent a two-dimensional su-
perfluid under nonequilibriumpersistent flowconditions
which satisfy the superfluid velocity quantization condition,
Eq. (6). Transitions among these states change the topologi-
cal quantum number, the quantized flux, and represent the
dissipation of flux quanta in a flowing superfluid which is
related to its critical velocity. The properties of these transi-
tions were studied in particular their dependence on the ge-
ometry of the system and the superfluid velocity. We showed
that, in agreement with experimental results, the metastable

FIG. 14. Superfluid velocity vs time for films with different
thickness atT=1.45 K. The symbols are experimental data from
Fig. 7 of Ref. 13. The solid curves are fits using Eq.(22). For 6.4
layerssa=0.3,g=0.5d and for nine layerssa=−0.73,g=0.001d

FIG. 12. The distribution of escape times fromn=6 to n=5 for
a 1283128 system atT=0.5. The solid curve is a fit of the form Eq.
(20).

FIG. 13. Superfluid velocity vs time. The circles are the experi-
mental data for superfluid films in Fig. 6 of Ref. 13. The solid curve
is a fit using Eq.(22). The fitting parameters aresa=0,g=0.043d.
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states have shorter lifetimes and, therefore, lower critical ve-
locities when the width of the system increases. Also in
agreement with experiments, we showed that dissipation is
more rapid the higher the initial superfluid velocity. The dis-
sipation mechanism was identified and studied: When two
bands of spin differing by 2p deform and touch due to ther-
mal fluctuations, a bound vortex–antivortex pair of lengthLy
is created. The confining force pulls the vortex and antivor-
tex towards each other thus zipping together the two touch-
ing bands of spin into a single band.

Using this mechanism and a functional form for the es-
cape time distribution motivated by the numerical results, we
calculated the average superfluid velocity,v̄sstd, and showed
it to be in excellent agreement both with our numerical simu-
lations(Fig. 11), and with the experimental results of Ref. 13
(Figs. 13 and 14). This provides support for the view that the
dissipation observed experimentally is an average over sev-
eral regions with, possibly, different velocities where dissi-
pation of flux quanta takes place independently and at differ-
ent times.

It is interesting that the two dimensional planarXY model,
with no condensate and no linear dispersion for the low-lying
excitations still exhibits(meta)stable superfluid flow and
agrees well with experimental results.

Finally we mention that the free energy landscape may be
studied directly using, for example, the Wang-Landau32 al-
gorithm. Integer windings in the two dimensionalXY model
were addressed in Ref. 33. Very recently,34 different topo-
logical sectors and the helicity modulus were studied for the
four dimensional compactUs1d lattice gauge theory.
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