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We study the vortex state of a layered superconductor with vertical line nodes on its Fermi surface when a
magnetic field is applied in thab-plane direction. We rotate the magnetic field within the plane, and analyze
the change of low-energy excitation spectrum. Our analysis is based on the microscopic Bogoliubov-de Gennes
equation and a convenient approximate analytical method invented by Pesch and developed kst Bhm
Both methods give consistent results. Near the upper critical figldwe observe a larger zero-energy density
of states(ZEDOS when the magnetic field is applied in the nodal direction, while much bélgyy larger
ZEDOS is observed under a field in the anti-nodal direction. We give a natural interpretation to this crossover
behavior in terms of contributions of quasiparticles propagating parallel and perpendicular to the applied field
in the plane. We examine the recent field angle variation experiments of thermal conductivity and specific heat.
Comparisons with our results suggest that special care should be taken to derive the position of line nodes from
the experimental data. Combining the experimental data of the specific heat and our analyses, we conclude that
SrLRuUQ, has a vertical-line-node-like structure in the direction of ghaxis and theb axis.
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I. INTRODUCTION to the plané’~2® On the other hand, few microscopic

Unconventional superconductors are among the most in2nalyses have been done in the case of a parallel magnetic
portant materials in the modern condensed matter physicféeld' '

and may offer key insight into the effects of strong electron I.n the analyses. of the experimental data, a phenomepo—
correlations. A number of superconductors—high-cu- logical [_)pppler—shlft method has often been use_d to derive
prates, heavy-fermion metals, ruthenates, and organi$'® position of the gap nodes. According to this method,
compounds—exhibit unconventional behavior in the senséarger density of state€DOS) is obtained when the field is
that the superconducting gap vanishes somewhere on ti@oplied in the antinodal direction than in the nodal
Fermi surface, resulting in power-law behaviors in variousdirection?®2” However, it has been pointed out that the
thermodynamic quantities. However, detailed gap structureBoppler-shift method is quite unreliable in some cades.
are still controversial except for the cuprates. One of theThis method is based on the approximation that low-energy
difficulties in clarifying the gap structures will be the lack of excitations in a vortex state consist solely of Doppler-shifted
experimental probes sensitive to quasiparticle momentumodal quasiparticles. It can be justified only at low magnetic
distribution. fields. The effect of core states neglected in this formalism
Recently vortex states have been attracting much intereshecomes important at high magnetic fields and may alter the
because the positions of gap nodes can be determindigld-orientational dependence of DOS. Therefore, it is
from some physical quantities under a magnetic field applied¢rucial to establish a microscopic theory in the case of a
parallel to the superconducting plane. For exampleparallel magnetic field, and to give a correct interpretation of
thermal conductivity® and specific hedt'? depend on experiments.
the angle between the magnetic field and the superconduct- In this paper, we present a detailed study of quasiparticle
ing gap nodes. Hence, by rotating the field within theDOS in a layered superconductor under a magnetic field ap-
plane and tracing the change of these quantities, one caslied parallel to theab plane. We will focus on SRuQy, in
obtain the information of the gap nodes. So far, a number ofvhich  positions of the line nodes are still
layered unconventional superconductors have been studiedontroversiaf.510.14-16.24.2 cylindrical Fermi surface with
including SpRuUQ,,*%1° CeColn,5'! «—(ET),CuNCS),,’  vertical line nodes of-wave symmetry is assumed. We con-
YNi,B,C 2 and PrOgSh,.° centrate on the two cases where a magnetic field is in the
However, it is found that some of these experiments showodal direction, and in the antinodal direction. Using the
the behaviors incompatible with the results of theoreticalobtained low-energy quasiparticle states, we interpret the ex-
analyses. For example, microscopic calculations show an eyerimental data. It turns out that specific heat measurement is
istence of a vertical line-node-like structure inBu0, ¢  superior to thermal conductivity as a probe to detect the po-
while a horizontal line node is persisted from the thermalsition of gap nodes, since DOS does not suffer from the large
conductivity experiment$® Probably these discrepancies are two-fold component with respect to the magnetic fié@ur
attributed to the lack of a firm theoretical basis in analyzinganalysis is based on the microscopic Bogoliubov-de Gennes
the experimental data. equation and an approximate analytical method invented by
Most studies on the vortex states have been limited tdPesch® and recently developed by Dahm, Graser, Iniotakis,
the case in which the magnetic field is applied perpendiculaand Schopohi®
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In the next section, the calculational formulation is de- oo

. . . . 2 2 170
scribed. In Sec. 1ll, we will show our results and discussion L*=2mg= 1, (8)
on the experiments. Section IV is devoted to a conclusion. e
Il. FORMULATION and represents the spatial period.
Since SyRuO, has a strong anisotropy between thie
A. Model and some features plane and the axis, we have to take account of this aniso-

First, we introduce some general features of our modeltropy. For the anisotropic superconductors with coherence
We study a quasi-two-dimensional layered superconductdengthsé,, in the ab plane andé, along thec axis, the GL
which has a cylindrical Fermi surface with smalhxis dis- equation aH=H, reads as
persion. Thus we assume a dispersion relation,

2
_ Pay’ {%ﬁbﬁzﬂ“ﬁ(i—ir—l) ]w(mw(r):o. (9)

= 2myy ~ o cosk, (1) ary 9z Eanke

wherep,, is the momentum in thab plane and the-axis  Equation (9) is obtained from Eq.(5) by transforming
wave numbek, varies in the intervdl-, 7). In this system, r, —(&/&p)r, and z— (&/&.)z. Then, the anisotropic Abri-
the Fermi velocity can be written in the following form: kosov latticey(r) can be obtained from the same transfor-

Ve = vp(cosde, + sin dey, + esinke,), ) mation ofr , andz in Eq. (7), which gives

with vp=Pg/m,,, andv.=eve. Here, the azimuthal angleé o . ; 2
varies between 0 and The c-axis dispersion exists due to r)=243 exp i2mn— - 7r<—L - n) ) (10
a small inter-layer hopping. n=—c0 Le Lab

In this paper, we consider a spin-triplet superconductivity
with its d vector parallel to the axis, i.e., the order param- Here,L.=(&./é)L andL,,=(&,/ é)L. In the following calcu-

eter is lation, we puté.=e&,, hencel.=el,, Note thaty(r) is
i 0 AK) equal to zero at the positions =L,(m+3) andz=L(I+3)
A(K) :< ) (3)  with arbitrary integeran and |, representing the centers of
Akk) 0 vortices.
The momentum dependence k) is assumed to be Since ¢Ar) represents an Abrikosov square vortex lattice
L at H=H_,, we have to assume a vortex lattice structure for
A(K) = Ag(ky + ikp) (K2 = K). (4) 0<H<Hg. We assume the following periodicity of the vor-
tex lattice:

This is the simplest model of the chiral state with four-fold

symmetric vertical line nodes #| = |k, whose effect is the [
main subject in this paper. Note that exact positions of nodes ki(H) = v’27r§j —2 (j=c,ab), (11
are not important in the following discussion. The qualitative H

behavior of low-energy DOS is determined by the angle be- . ) o )
tween an applied field and line nodes. because the size of a vortex unit cell is inversely proportional

In order to study the vortex lattice state under a magneti¢® H. Note that we have assumed tiéts uniformly applied
field parallel to theab plane, we assume a spatial variation of ©0 the system because Ginzburg-Landau parametef
the order parameten/(r)A(k). Here (r) represents the SRRUO,is much larger than 1.

Abrikosov vortex square lattice obtained by solving linear-

ized Ginzburg-LandayGL) equation atH=H,.>* The iso- g Numerical solution of the Bogoliubov-de Gennes equation
tropic GL equation aH=H, is given by ) ) ) . ) )
) Using the above dispersion relations and spatially inho-
| & (d r, _ X
El—+|—-i5]| |t +w(r)=0, (5)  mogeneous superconducting order parameXét)y(r), we
n gz & solve the Bogoliubov-de GenngBdG) equation, which is

where ¢ is the coherence length amg denotes the coordi- Considered to be the most reliable approch:
nate for the axis in thab plane perpendicular to the mag-

ic fi - ~ r+r'
netic field. Here, we adopt a Landau gauge, g A= V)l!/( . )
A(r)=Hr e.. (6)
~ +r’ ~
From Eq.(5), one can obtain the isotropic Abrikosov vortex —A(iV)y* (r ' ) - Hy
square lattice, 2
- oz r 2 x(u(r)) = E(u(r)) 12
G =23 ex i2mn -~ w(f—n) ) ) v() /e o))’ (12
n=-o

Here a new parametér satisfies the following condition: where
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1 e \2 functions, g, by its spatial average over a vortex unit cell.
A m Pap— (‘:A M 0 With this averaged quasiclassical Green’s function, we can
Ho= ab calculate various observable quantitiesy. DOS in the av-
1 e \? g .
0 Po--Al —u eraged form over a vortex unit cell. According to Dalen
2mgp\ ° al.,?® this approximation gives the result quantitatively in

(13) agreement with that obtained in the rigorous Eilenberger
equation, even much belot,,.

and Here, we summarize the main results of this method. For
ur(r) v:(F) details, see Ref. 28. We assume that a spatial variation of the

u(r) = ( T ) o(r) :( 1 ) (14)  order parameter is described Byr), or the Abrikosov vor-
uy(r) v(r) tex lattice introduced in Sec. Il A. Then, the averaged density

Here we assumed<1, and neglected the effect of the Of Statesvpp(e) (in the unit of DOS for the normal state)
c-axis dispersion. This prescription corresponds to neglectin§@n be written in the following form:
a coherence along theaxis direction, or in the quasiclassi- 1
vpp(€) = <R > : 17
F

cal sense, to taking account of only the trajectories parallel to 7 - -
the ab plane. We will discuss the details of this prescription V1 +P(Vg,iwy — €+i0)

later in the n_ext sect!on. Equatigh2) can be decqupled into where(- - )¢ means an average over the Fermi surface, and in
a 2X 2 matrix equation fou,,v|) and(u;,v;). Since both our model,P(Ve,iw,) is written as

the pairs satisfy the same equation, we can work on only one

of them, say(u;,v)). o 4AK)P \’E‘*’nezw S
We numerically diagonalize Eq12) by discretizing the P(Ve,iwn) = VIE B Ve, | n L
coordinater, and obtain sets of eigenvaluég and eigen- FL -t
functions (uk(r),vk(r)). Using the obtained eigenfunctions, \Ewn
we calculate the DOS: X erfe| —= ’ (18)
V7Ve |
vaac(€) = D dr[|uk(r)[28(e - Ex) + [k (r)[28(e + E)]. wherevg | is the projection of the scaled Fermi velocity onto
E>0 the plane normal to the magnetic field,
(15 cosé esink,
. . Ve =Ur €t € /- (19
Due to the translational symmetry along the magnetic Lab Le

field, the momentum parallel to the vorticgs, becomes a
good quantum number. On the other hand, since momentu@e
normal to the magnetic fielgh, , is not a conserved quantity,
p, has a finite widthdp, for each eigenstate. Nevertheless
op, /p, is much smaller than (of the order of 1kgé&,,), not
too much belowT.. Thus we can use an approximation,
pL:\s’pﬁ—pf. In the quasiclassical meaning, we consider that 1

a quasiparticle represented by (r),vk(r)) has a trajectory vpp(0,60) =Re T+PW0)io = +10)
with momentum(ypZ—p?, p). Therefore we define " R @

Sincevpp(e€) in Eq. (17) is written as an average over the
rmi surface, we can decomposgy(e) into the contribu-
tions from the quasiparticles with:. Defining 6 as an angle
"betweenve and the magnetic field, we can obtain an angle-
resolved zero-energy DO%pp(0,6), as

(20)

s Before showing our results, let us compare the above two
_ VPE— B methods. When we solve BdG equation, we take account of
f=arctan ——— | (0<o=<m), (16) . L : )
the spatial variation aof. However the three-dimensional cal-

culation is very difficult practically, so that we have ne-

for each eigenfunction, which represents an angle betweeglected the coherence along theaxis. Whereas in the ap-
the magnetic field and quasiparticle trajectory. Using this  proximate analytical method introduced in this subsection,
we decompose the zero-energy DOS into contributions fromne coherence along theaxis is taken into account. How-
quasiparticles propagating in tiégirection. In the following  eyer the spatial variation af is neglected. In this sense, the
we call this an angle-resolved zero-energy DOS. two methods are complementary with each other.

Py

C. Approximate analytical approach using a method by Pesch
and Dahm et al. IIl. RESULTS

As a complementary method, we also study the problem In this chapter, we will show the results obtained in the
using an approximate analytical method invented by Péschtwo methods introduced in the previous chapter. We study
and developed by Daht al?832In this paper, we call this mainly two cases in which a magnetic field is applied in the
the PD method. We will compare the obtained results in bottnodal direction and in the antinodal direction. DOS is con-
methods. NeaH,, spatial variation of the order parameter is sidered to take its minimum and maximum in one and the
small. Hence, in the Eilenberger equations, it is allowed toother of these two cases, respectively. This quantity can be
replace the normal component of quasiclassical Green'sbserved experimentally. We will also show the angle-
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FIG. 1. The» dependence of the zero-energy density of states 4 [igh hel
calculated with(a) the BdG method angb) the PD method. The
solid line shows ZEDOS for thélInode, i.e.v,(0)/ vy, while the - 08 1
dashed line shows ZEDOS for thillantinode, i.e.v,(0)/ . % o6t/ ]
ZEDOS is normalized to the normal-state value. % / \
¥ 04} / ]
resolved zero-energy DO$(0,6), introduced in the previ- 02 ¢ Hiinode \
ous section. Note tha# is an angle between the applied 0 ) H//antinode —--
magnetic field and the quasiparticle trajectory. 0 45 90 135 180

As regards the magnetic field dependences, we notice that 0
our results are approximately determined by a single param-
eter, namely the reduced order paramejét) defined by

H) = \ﬁ Bo(H)ta(H)
T (=

Thus, without knowing the precidd¢ dependence ok, we
can study generdil dependences of our resulfs;(H) cor-
responds ta(e,/A)~! in Ref. 28] Note thatz(H) monotoni-
cally decreases as an increasing magnetic fi¢ldnd be-
comes 0 wherH reachedH .

FIG. 2. Angle-resolved ZEDO$(0,6) calculated by the BdG
method. They are normalized by a value withélitd is measured
(21) from the field direction(a) »=2.11,(b) »=1.05, and(c) »=0.21.
for several values ofy (Fig. 2). In a low field caseFig.
2(a)], we can see that narrow regions on the Fermi surface
are mainly contributing to the total ZEDOS. In the case of
the Hilnode, a sharp peak appearséat90° which corre-
sponds to the nodal direction perpendicular to the magnetic
field. In contrast, the nodal quasiparticles running parallel to
the field (4=0°,180° give a much smaller contribution to
ZEDOS. In the case of thd |lantinode, we can observe two
peaks of the same height at45° and 135°, which corre-

First, we will discuss the density of states right at zerospond to the nodal directions.
energy. In Fig. 1, we show our results of thelependence of  with an increasing magnetic fieltlecreasings) [Fig.
ZEDQOS, calculated with the BdG and the PD methods. ZEQ(b)], the nodal peaks become broader and there appears a
DOS under a field in the nodal direction is denoted/@®)  contribution which does not have a strofigependence. The
and in the anti-nodal direction ag(0). Both v,(0) andv,(0)  latter can be considered as the contribution from the core
are normalized to the normal-state valye We can see that states. This is because the decrease of the order parameter
the two methods give qualitatively the same results. Figure Zmplitude makes it easier for low-energy quasiparticles to
shows that in a high magnetic field or whienis close toH,,  propagate independent of the direction ldf As for the
(low 7), v4(0) > 1,(0), while in a low magnetic fieldhigh  quasi-particles running parallel to the figice. =0°,1809,

7), v4(0) > v,(0). we can see a big difference between the two cases. In the

In order to understand this crossover behavior, we studgase of theH Inode, the contribution from the field direction
the angle-resolved ZEDOS obtained with the BAG methodecomes larger with increasing field strength, while in the

A. Zero-energy density of states (ZEDOS)
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case of theH|lantinode, the contribution from this direction
remains small.

When the field strength is increaseglis decreasedfur-
ther [Fig. 2(c)], nodal peaks become too broad to be identi-
fied. In most of the Fermi surface, the angle-resolved
ZEDOS recover the normal-state value. Nevertheless, an ap-
preciable difference still exists for the quasiparticles running
parallel to the field.

We can understand the nature of this difference by using
the idea of quasi-classical trajectories of quasipartities.
There are two ways in which quasiparticles contribute to
ZEDOS. One is the Doppler shift by the supercurrért.a
quasiparticle runs in the nodal direction and not parallel to
the field, it can contribute to ZEDOS because of the Doppler
shift. This contribution appears as the peaks in Fig. 2. The
other is the formation of Andreev bound states: Roughly
speaking, if the order parameter changes its sign on a trajec-
tory of a quasiparticle, Andreev bound states are formed.
This gives a finite contribution to ZEDOS.

—_—

a)

PHYSICAL REVIEW B 70, 184515(2004)
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Now let us consider the quasiparticles running approxi- 02} i

. . . . node
mately parallel to the field. The density of states is zero right . H//antinode ——
along the magnetic field, whether the field is in the nodal or 00 45 90 135 180
antinodal direction. However, differences arise when the Py
quasiparticles propagate along a direction slightly off the
field. In the case of théd lantinode, little density of states ©  ighe
appear since the Doppler shift is weak and the phase of the 1 — =
order parameter changes very slowly. Hence, quasiparticles 08 F
are hampered by finite and nearly uniform order parameter 3
and cannot contribute to ZEDOS, no matter how srtagh) L 08
the order parameter amplitudenagnetic fielgl is. In con- € o4l
trast, in the case of thd|inode, order parameter is so small
that the slight Doppler shift or sign change of the order pa- 02 H//node
rameter can lead to small but finite ZEDOS. This is why the 0 Hi/antinode ———

0 45 90 135 180

angle-resolved ZEDOS &=0° is suppressed in the case of

theH llantinode in a high magnetic field region. Note that the 0

quasiparticles running right through a vortex core feel no FIG. 3. Angle-resolved ZEDOS(0,6), calculated in the PD

s_uper_conducting gap. However, contributions from such QU8ethod. 9 is measured from the field directioa) 7=2.11, (b)
siparticles are considerably small. 7=1.05, andc) 7=0.21.

The idea we have noted here has some similarities with
that given in Ref. 24. In Ref. 24, it was pointed out that quantitative agreement can be seemin0° and 180°. Since
thermal conductivity takes a maximum value when heat curthe quasiparticles with,=0 and#=0° are perfectly parallel
rent is perpendicular to the magnetic field, since the largeso H, they give a little contribution to ZEDOS.
contribution to ZEDOS comes from quasiparticles running The above difference in angle-resolved ZEDOS9a0°
perpendicular to the field. and 180° in the two methods leads to the difference in the
Next, let us compare the above results with those obtainegbtal ZEDOS shown in Fig. 1 for the high magnetic field case

in the PD method. In Fig. 3, we show the angle-resolved »~0.1). Since this difference comes mainly from the con-
ZEDOQOS, EQ.(20), after integrating ovek,. In most parts of

the Fermi surface, we observe much the same behavior as the 12} " H//node

BdG results. However, as for the quasiparticles running in 1 | “”a"ﬁ"“?q__ ]
the field direction(#=0°,180°, the PD method gives a 08 | /\ /

larger angle-resolved ZEDOS than that in BAG method. We Fa /’ \ \
attribute this difference to the prescription we made in solv- g 06/ /’ \

ing the BAG equations, that is, a neglect of thaxis disper- 04} /

sion term. This prescription corresponds to considering only 02 |

the quasiparticles running parallel to thb plane, i.e., lim-

iting the c-axis component of the Fermi velocity, to 0. °0 e 0 135 180
Hence, our prescription in the BdAG method enhances the angle

contribution of the quasiparticles wity3=0. In order to con-
firm this, we plot the angle-resolved ZEDOS obtained from FIG. 4. Angle-resolved ZEDOS calculated with the PD method
Eq. (20) with k,=0 in Fig. 4. Comparing it with Fig. @), a  with k,=0 for »=2.11.
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FIG. 5. Finite-energy DOSnormalized to the normal-state FIG. 6. Finite-energy DOSnormalized to the normal-state
valug calculated with the BdG methoda) z=2.11 and (b) value) calculated in the PD metho@a) »=2.11 and(b) »=0.21.
7=0.21.

order parameter in the case of tHdlantinode, they tend to
tribution at 6~ 0°, the BdG analysis overestimates the dif- form a coherence peak. This coherence-peak-like structure
ference in ZEDOS. appears more clearly in the BdG result due to our prescrip-
Here we briefly summarize the main results in this sub-ion as discussed in the previous subsection.
section. In a low magnetic field region, ZEDOS is dominated In this high magnetic field region, we observe
by nodal quasiparticles which have a finite momentum nor+,(€) > v4(€) for 0=<|el < Ay independent of the calculational
mal to the field. In this region, we havg(0) > r,(0), since  methods. Therefore, if the thermal conductivity or the spe-
in the case of thédlinode, two out of the four nodes are cific heat is measured in this field region with a rotating
parallel to the field, thus unable to contribute to ZEDOS,magnetic field, maximum will be observed when the field is
while in the case of thél lantinode, all the four nodes con- applied in the nodal direction.
tribute to ZEDOS. In a high magnetic field region, on the Results in a low magnetic field region are shown in Figs.
other hand, the difference betweeg(0) and »,(0) comes 5(a) and §a). In this field region, as we have discussed in the
from the behavior of quasiparticles running in the field di-previous subsection;,(0)>1,(0) at zero energy. However,
rection(6~0°). In the case of thél llantinode, those quasi- as shown in Fig. & and &a), v,(e) and v,(e) cross at
particles are hampered by finite and uniform order parametde| ~0.2A,. For |e/>0.2A, we have an opposite inequality
and cannot contribute to ZEDOS, while in the case of thev,(€) > v,(e). This means that when we take experimental
Hlnode, they can. Therefore, we hawg0)>r,(0) in this  data at a temperatufie= 0.2A, with a rotating magnetic field
field region. within the plane, we will observe very small angle variation,
because the effects of lower-energy DOS and higher-energy
B. Density of states at finite energy DOS cancel each other.
Next, we will show our results for DOS at finite energy.
This is particularly important when we discuss the
experimental data, which depend on the density of states at In this subsection, we discuss how to interpret the experi-
0=<e=skgT. In Figs. 5 and 6, we show DOS obtained with mental data of the thermal conductivity and the specific heat,
the BdG and the PD methods, respectively. in connection with our analyses.
Let us first discuss the high magnetic field regiéigs. The thermal conductivify® and the specific he&t of
5(b) and Gb)], we observe a sharp rise in DOS |at~ A, SrLRUO, have been measured under a rotating in-plane field
reminiscent of a coherence peak in the case of thdéy several groups. In the experiments of magnetothermal
Hllantinode, while it is absent in the case of tHé¢node. conductivity?® they found no angle variation except in the
This character of DOS reflects the behavior of the quasiparvicinity of H,. They attributed the angle variation nedg,
ticles running parallel to the field. Since they feel a finiteto the anisotropy oH,, itself, and denied the existence of

C. Interpretations of the experimental data

184515-6
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vertical line nodes in SRuQ,. On the other hand, in the IV. CONCLUSIONS
experiment of specific he&?,a fourfold oscillation is found
at a lower field, in addition to the angle variation né4y. We studied the density of states in the vortex state of a

The specific heat shows a maximum HtI[110] in low  |ayered superconductor with vertical line nodes on the cylin-
fields, while its maximum is observed Bitl[100] nearHe,.  grical Fermi surface under a field parallel to tigplane. We

These two measurements seem to provide incompatible r;estigated the angle variation of DOS with the changing
sults. However, our theoretical analysis gives an answer tﬂeld strength. The Bogoliubov-de Gennes equation and an

this contradiction in the following way. . .
First we discuss why the thermal conductivity does notapproxmate analytical method by Pesch and Daftnal.

show the fourfold oscillation in the low field region. As we Were solved. We found that a field in the nodal direction
show in the previous subsection, a reversak ) andv,(e) ~ 9IVeS larger zero-energy density of states in a higher mag-
occurs in the low field region at~0.2A,. In order to ob-  Netic field region, whereas a field in the anti-nodal direction
serve the anisotropy of ZEDOS, a contribution from theresults in larger zero-energy density of states in a lower mag-
higher energy part of DOS must be removed. However, theetic field region. This crossover phenomenon is naturally
thermal conductivity has been measured at rather high teminderstood in terms of the angle-resolved ZEDOS. In a
peraturesT=0.2-0.3;, where the effect of the high energy higher field region, under a field applied in the anti-nodal
part of DOS mixes inevitably as we note in the previousdirection, quasiparticles running parallel to the field is ham-
subsection. Hence, it is no wonder that the anisotropy Of)ered by a spatially uniform order parameter, and thus gives
rzni?toti‘ Csaggﬁfcbﬁg;s\?vglseioagjgggtgfﬁ:@g?’tg;ﬁ rgf;lsjlr”g'smaller contribution to ZEDOS compared with the case of
T<O0.1T.. ?herefore the specific heat is sensitive to EEDOSe.t%e H| node. In a _Iower f|e|d_ region, no_o_lal quasiparticles not
Furthermore, note that the specific heat is more sensitive IBaraIIeI fo the field .cont_rlbute -S|gr1|f|cantly .to ZEDQS'
the low energy part of DOS than the thermal conductivity.Therefore' when the field is a_tpplled |n.the anti-nodal direc-
These will be the reason why only the specific heat show&0N; four such nodes are available, which leads to the larger
the fourfold oscillation. ZEDOS compared with the case of thidl node, where only

Combining the above considerations, we determine thévo such nodes are available.
position of line nodes. In the measurement of the specific We investigated the angle variation of the density of states
heat, the maximum was found BEtlI[110], while we have at finite energy. We found that in a low magnetic field region,
1,(0)>1,(0) in a low magnetic field region. Therefore, we DOS ate=0.2A, shows a maximum when the field is par-
conclude that the line nodes exist in the direcfiat00] and  allel to the node, while ZEDOS shows a minimum for this
[0+10]. field direction. On the basis of this fine structure of DOS, we

In Secs. Il A and Ill B, we have shown that(e) > v,(¢)  discussed why the thermal conductivity does not show four-
for 0<|el <A, in a high magnetic field region. Therefore, in fold oscillation in the low field region. Finally, combining
this field region, there is a possibility that we can observe dhe experimental data of the specific heat and our analyses,
fourfold oscillation both in the thermal conductivity and the we conclude that SRuO, has vertical line-node-like struc-
specific heat, aside from the effect of the anisotrop¥jp. ture in the direction of tha axis and theb axis.

In summary, we can explain the data of specific heat and We note that both in BdG and PD analyses, we have as-
thermal conductivity simultaneously by assuming the verti-sumed Abrikosov vortex functioW(r) as a spatial variation
cal lines nodes along tHe100] axis. A line-node-like struc-  of order parameter. Some of our results may be quantita-
ture in this direction is expected in the band from the tively altered by mixing of higher Landau levels. However,
relation between the Fermi surface and crystal symniétry, we believe that our conclusions do not change qualitatifely.
and has been confirmed in the microscopic anafysis.
Strictly speaking, these are not line nodes, because the exci- We are grateful to K. Deguchi for teaching us his experi-
tation gap is small but finite. However, tiny gaps behave likemental results. We also thank N. Yoshida for helpful discus-
line nodes at finite temperatures. sions.
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