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We study the vortex state of a layered superconductor with vertical line nodes on its Fermi surface when a
magnetic field is applied in theab-plane direction. We rotate the magnetic field within the plane, and analyze
the change of low-energy excitation spectrum. Our analysis is based on the microscopic Bogoliubov-de Gennes
equation and a convenient approximate analytical method invented by Pesch and developed by Dahmet al.
Both methods give consistent results. Near the upper critical fieldHc2, we observe a larger zero-energy density
of states(ZEDOS) when the magnetic field is applied in the nodal direction, while much belowHc2, larger
ZEDOS is observed under a field in the anti-nodal direction. We give a natural interpretation to this crossover
behavior in terms of contributions of quasiparticles propagating parallel and perpendicular to the applied field
in the plane. We examine the recent field angle variation experiments of thermal conductivity and specific heat.
Comparisons with our results suggest that special care should be taken to derive the position of line nodes from
the experimental data. Combining the experimental data of the specific heat and our analyses, we conclude that
Sr2RuO4 has a vertical-line-node-like structure in the direction of thea axis and theb axis.
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I. INTRODUCTION

Unconventional superconductors are among the most im-
portant materials in the modern condensed matter physics
and may offer key insight into the effects of strong electron
correlations. A number of superconductors—high-Tc cu-
prates, heavy-fermion metals, ruthenates, and organic
compounds—exhibit unconventional behavior in the sense
that the superconducting gap vanishes somewhere on the
Fermi surface, resulting in power-law behaviors in various
thermodynamic quantities. However, detailed gap structures
are still controversial except for the cuprates. One of the
difficulties in clarifying the gap structures will be the lack of
experimental probes sensitive to quasiparticle momentum
distribution.

Recently vortex states have been attracting much interest,
because the positions of gap nodes can be determined
from some physical quantities under a magnetic field applied
parallel to the superconducting plane. For example,
thermal conductivity1–9 and specific heat10–12 depend on
the angle between the magnetic field and the superconduct-
ing gap nodes. Hence, by rotating the field within the
plane and tracing the change of these quantities, one can
obtain the information of the gap nodes. So far, a number of
layered unconventional superconductors have been studied,
including Sr2RuO4,

4,5,10 CeCoIn5,
6,11 k−sETd2CusNCSd2,

7

YNi2B2C,8,12 and PrOs4Sb12.
9

However, it is found that some of these experiments show
the behaviors incompatible with the results of theoretical
analyses. For example, microscopic calculations show an ex-
istence of a vertical line-node-like structure in Sr2RuO4,

13–16

while a horizontal line node is persisted from the thermal
conductivity experiments.4,5 Probably these discrepancies are
attributed to the lack of a firm theoretical basis in analyzing
the experimental data.

Most studies on the vortex states have been limited to
the case in which the magnetic field is applied perpendicular

to the plane.17–23 On the other hand, few microscopic
analyses have been done in the case of a parallel magnetic
field.24,25

In the analyses of the experimental data, a phenomeno-
logical Doppler-shift method has often been used to derive
the position of the gap nodes. According to this method,
larger density of states(DOS) is obtained when the field is
applied in the antinodal direction than in the nodal
direction.26,27 However, it has been pointed out that the
Doppler-shift method is quite unreliable in some cases.28

This method is based on the approximation that low-energy
excitations in a vortex state consist solely of Doppler-shifted
nodal quasiparticles. It can be justified only at low magnetic
fields. The effect of core states neglected in this formalism
becomes important at high magnetic fields and may alter the
field-orientational dependence of DOS. Therefore, it is
crucial to establish a microscopic theory in the case of a
parallel magnetic field, and to give a correct interpretation of
experiments.

In this paper, we present a detailed study of quasiparticle
DOS in a layered superconductor under a magnetic field ap-
plied parallel to theab plane. We will focus on Sr2RuO4, in
which positions of the line nodes are still
controversial.4,5,10,14–16,24,29A cylindrical Fermi surface with
vertical line nodes off-wave symmetry is assumed. We con-
centrate on the two cases where a magnetic field is in the
nodal direction, and in the antinodal direction. Using the
obtained low-energy quasiparticle states, we interpret the ex-
perimental data. It turns out that specific heat measurement is
superior to thermal conductivity as a probe to detect the po-
sition of gap nodes, since DOS does not suffer from the large
two-fold component with respect to the magnetic field.24 Our
analysis is based on the microscopic Bogoliubov-de Gennes
equation and an approximate analytical method invented by
Pesch30 and recently developed by Dahm, Graser, Iniotakis,
and Schopohl.28
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In the next section, the calculational formulation is de-
scribed. In Sec. III, we will show our results and discussion
on the experiments. Section IV is devoted to a conclusion.

II. FORMULATION

A. Model and some features

First, we introduce some general features of our model.
We study a quasi-two-dimensional layered superconductor
which has a cylindrical Fermi surface with smallc-axis dis-
persion. Thus we assume a dispersion relation,

ep =
pab

2

2mab
− vc coskz, s1d

wherepab is the momentum in theab plane and thec-axis
wave numberkz varies in the intervalf−p ,pg. In this system,
the Fermi velocity can be written in the following form:

vF = vFscosfea + sinfeb + e sinkzecd, s2d

with vF=PF /mab, andvc=evF. Here, the azimuthal anglef
varies between 0 and 2p. Thec-axis dispersion exists due to
a small inter-layer hopping.

In this paper, we consider a spin-triplet superconductivity
with its d vector parallel to thec axis, i.e., the order param-
eter is

D̂skd = S 0 Dskd
Dskd 0

D . s3d

The momentum dependence ofDskd is assumed to be

Dskd = D0sk̂a + ik̂bdsk̂a
2 − k̂b

2d. s4d

This is the simplest model of the chiral state with four-fold

symmetric vertical line nodes atuk̂au= uk̂bu whose effect is the
main subject in this paper. Note that exact positions of nodes
are not important in the following discussion. The qualitative
behavior of low-energy DOS is determined by the angle be-
tween an applied field and line nodes.

In order to study the vortex lattice state under a magnetic
field parallel to theab plane, we assume a spatial variation of
the order parameter,csr dDskd. Here csr d represents the
Abrikosov vortex square lattice obtained by solving linear-
ized Ginzburg-Landau(GL) equation atH=Hc2.

31 The iso-
tropic GL equation atH=Hc2 is given by

j2F ]2

]r'
2 + S ]

]z
− i

r'

j2 D2GcIsr d + cIsr d = 0, s5d

wherej is the coherence length andr' denotes the coordi-
nate for the axis in theab plane perpendicular to the mag-
netic field. Here, we adopt a Landau gauge,

Asr d = Hr'ec. s6d

From Eq.(5), one can obtain the isotropic Abrikosov vortex
square lattice,

cIsr d = 21/4 o
n=−`

`

expSi2pn
z

L
− pS r'

L
− nD2D . s7d

Here a new parameterL satisfies the following condition:

L2 = 2pj2 =
f0

Hc2
, s8d

and represents the spatial period.
Since Sr2RuO4 has a strong anisotropy between theab

plane and thec axis, we have to take account of this aniso-
tropy. For the anisotropic superconductors with coherence
lengthsjab in the ab plane andjc along thec axis, the GL
equation atH=Hc2 reads as

Fjab
2 ]2

]r'
2 + jc

2S ]

]z
− i

r'

jabjc
D2Gcsr d + csr d = 0. s9d

Equation (9) is obtained from Eq.(5) by transforming
r'→ sj /jabdr' and z→ sj /jcdz. Then, the anisotropic Abri-
kosov latticecsr d can be obtained from the same transfor-
mation of r' andz in Eq. (7), which gives

csr d = 21/4 o
n=−`

`

expSi2pn
z

Lc
− pS r'

Lab
− nD2D . s10d

Here,Lc=sjc/jdL andLab=sjab/jdL. In the following calcu-
lation, we putjc=ejab, henceLc=eLab. Note thatcsr d is
equal to zero at the positionsr'=Labsm+ 1

2
d and z=Lcsl + 1

2
d

with arbitrary integersm and l, representing the centers of
vortices.

Sincecsr d represents an Abrikosov square vortex lattice
at H=Hc2, we have to assume a vortex lattice structure for
0,H,Hc2. We assume the following periodicity of the vor-
tex lattice:

ŁjsHd = Î2pj jÎHc2

H
s j = c,abd, s11d

because the size of a vortex unit cell is inversely proportional
to H. Note that we have assumed thatH is uniformly applied
to the system because Ginzburg-Landau parameterk of
Sr2RuO4 is much larger than 1.

B. Numerical solution of the Bogoliubov-de Gennes equation

Using the above dispersion relations and spatially inho-

mogeneous superconducting order parameter,D̂skdcsr d, we
solve the Bogoliubov-de Gennes(BdG) equation, which is
considered to be the most reliable approach:31

1 Ĥ0 D̂s− i ¹ dcS r + r 8

2
D

− D̂*si ¹ dc * S r + r 8

2
D − Ĥ0

* 2
3USusr d

vsr d
DU

r8→r
= ESusr d

vsr d
D , s12d

where
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Ĥ0 =1
1

2mab
SPab −

e

c
AD2

− m 0

0
1

2mab
SPab −

e

c
AD2

− m2
s13d

and

usr d = Su↑sr d
u↓sr d

D, vsr d = Sv↑sr d
v↓sr d

D . s14d

Here we assumede!1, and neglected the effect of the
c-axis dispersion. This prescription corresponds to neglecting
a coherence along thec-axis direction, or in the quasiclassi-
cal sense, to taking account of only the trajectories parallel to
the ab plane. We will discuss the details of this prescription
later in the next section. Equation(12) can be decoupled into
a 232 matrix equation forsu↑ ,v↓d and su↓ ,v↑d. Since both
the pairs satisfy the same equation, we can work on only one
of them, say,su↑ ,v↓d.

We numerically diagonalize Eq.(12) by discretizing the
coordinater , and obtain sets of eigenvaluesEK and eigen-
functions (uKsr d ,vKsr d). Using the obtained eigenfunctions,
we calculate the DOS:

nBdGsed = o
EK.0

E dr fuuKsr du2dse − EKd + uvKsr du2dse + EKdg.

s15d

Due to the translational symmetry along the magnetic
field, the momentum parallel to the vortices,pi, becomes a
good quantum number. On the other hand, since momentum
normal to the magnetic field,p', is not a conserved quantity,
p' has a finite widthdp' for each eigenstate. Nevertheless,
dp' /p' is much smaller than 1(of the order of 1/kFjab), not
too much belowTc. Thus we can use an approximation,
p'=ÎpF

2 −pi
2. In the quasiclassical meaning, we consider that

a quasiparticle represented by(uKsr d ,vKsr d) has a trajectory
with momentumsÎpF

2 −pi
2,pid. Therefore we define

u = arctanSÎpF
2 − pi

2

pi

D s0 ø u ø pd, s16d

for each eigenfunction, which represents an angle between
the magnetic field and quasiparticle trajectory. Using thisu,
we decompose the zero-energy DOS into contributions from
quasiparticles propagating in theu direction. In the following
we call this an angle-resolved zero-energy DOS.

C. Approximate analytical approach using a method by Pesch
and Dahm et al.

As a complementary method, we also study the problem
using an approximate analytical method invented by Pesch30

and developed by Dahmet al.28,32 In this paper, we call this
the PD method. We will compare the obtained results in both
methods. NearHc2, spatial variation of the order parameter is
small. Hence, in the Eilenberger equations, it is allowed to
replace the normal component of quasiclassical Green’s

functions,g, by its spatial average over a vortex unit cell.
With this averaged quasiclassical Green’s function, we can
calculate various observable quantities(e.g. DOS) in the av-
eraged form over a vortex unit cell. According to Dahmet
al.,28 this approximation gives the result quantitatively in
agreement with that obtained in the rigorous Eilenberger
equation, even much belowHc2.

Here, we summarize the main results of this method. For
details, see Ref. 28. We assume that a spatial variation of the
order parameter is described bycsr d, or the Abrikosov vor-
tex lattice introduced in Sec. II A. Then, the averaged density
of statesnPDsed (in the unit of DOS for the normal staten0)
can be written in the following form:

nPDsed =KRe
1

Î1 + PsvF,ivn → e + i0dLF

, s17d

wherek¯lF means an average over the Fermi surface, and in
our model,PsvF , ivnd is written as

PsvF,ivnd =
4uDskdu2

puvF'u2 F1 −
Î2vn

uvF'u
e2vn

2/puvF'u2

3 erfcS Î2vn

ÎpuvF'u
DG , s18d

wherevF' is the projection of the scaled Fermi velocity onto
the plane normal to the magnetic field,

vF' = vFScosu

Lab
eab +

e sinkz

Lc
ecD . s19d

SincenPDsed in Eq. (17) is written as an average over the
Fermi surface, we can decomposenPDsed into the contribu-
tions from the quasiparticles withvF. Definingu as an angle
betweenvF and the magnetic field, we can obtain an angle-
resolved zero-energy DOS,nPDs0,ud, as

nPDs0,ud = Re
1

Î1 + P„vFsud,ivn → + i0…
. s20d

Before showing our results, let us compare the above two
methods. When we solve BdG equation, we take account of
the spatial variation ofg. However the three-dimensional cal-
culation is very difficult practically, so that we have ne-
glected the coherence along thec axis. Whereas in the ap-
proximate analytical method introduced in this subsection,
the coherence along thec axis is taken into account. How-
ever the spatial variation ofg is neglected. In this sense, the
two methods are complementary with each other.

III. RESULTS

In this chapter, we will show the results obtained in the
two methods introduced in the previous chapter. We study
mainly two cases in which a magnetic field is applied in the
nodal direction and in the antinodal direction. DOS is con-
sidered to take its minimum and maximum in one and the
other of these two cases, respectively. This quantity can be
observed experimentally. We will also show the angle-
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resolved zero-energy DOS,ns0,ud, introduced in the previ-
ous section. Note thatu is an angle between the applied
magnetic field and the quasiparticle trajectory.

As regards the magnetic field dependences, we notice that
our results are approximately determined by a single param-
eter, namely the reduced order parameterhsHd defined by

hsHd =Î 2

p

D0sHdŁabsHd
vF

. s21d

Thus, without knowing the preciseH dependence ofD0, we
can study generalH dependences of our results.[hsHd cor-
responds tozsen/Dd−1 in Ref. 28.] Note thathsHd monotoni-
cally decreases as an increasing magnetic fieldH and be-
comes 0 whenH reachesHc2.

A. Zero-energy density of states (ZEDOS)

First, we will discuss the density of states right at zero
energy. In Fig. 1, we show our results of theh dependence of
ZEDOS, calculated with the BdG and the PD methods. ZE-
DOS under a field in the nodal direction is denoted asnns0d
and in the anti-nodal direction asnas0d. Both nns0d andnas0d
are normalized to the normal-state valuen0. We can see that
the two methods give qualitatively the same results. Figure 1
shows that in a high magnetic field or whenH is close toHc2
(low h), nns0d.nas0d, while in a low magnetic field(high
h), nas0d.nns0d.

In order to understand this crossover behavior, we study
the angle-resolved ZEDOS obtained with the BdG method

for several values ofh (Fig. 2). In a low field case[Fig.
2(a)], we can see that narrow regions on the Fermi surface
are mainly contributing to the total ZEDOS. In the case of
the H inode, a sharp peak appears atu=90° which corre-
sponds to the nodal direction perpendicular to the magnetic
field. In contrast, the nodal quasiparticles running parallel to
the field su=0° ,180°d give a much smaller contribution to
ZEDOS. In the case of theH iantinode, we can observe two
peaks of the same height atu=45° and 135°, which corre-
spond to the nodal directions.

With an increasing magnetic field(decreasingh) [Fig.
2(b)], the nodal peaks become broader and there appears a
contribution which does not have a strongu dependence. The
latter can be considered as the contribution from the core
states. This is because the decrease of the order parameter
amplitude makes it easier for low-energy quasiparticles to
propagate independent of the direction ofH. As for the
quasi-particles running parallel to the field(i.e. u=0° ,180°),
we can see a big difference between the two cases. In the
case of theH inode, the contribution from the field direction
becomes larger with increasing field strength, while in the

FIG. 1. Theh dependence of the zero-energy density of states
calculated with(a) the BdG method and(b) the PD method. The
solid line shows ZEDOS for theH inode, i.e.nns0d /n0, while the
dashed line shows ZEDOS for theH iantinode, i.e.nas0d /n0.
ZEDOS is normalized to the normal-state value.

FIG. 2. Angle-resolved ZEDOSns0,ud calculated by the BdG
method. They are normalized by a value withoutH. u is measured
from the field direction.(a) h=2.11,(b) h=1.05, and(c) h=0.21.
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case of theH iantinode, the contribution from this direction
remains small.

When the field strength is increased(h is decreased) fur-
ther [Fig. 2(c)], nodal peaks become too broad to be identi-
fied. In most of the Fermi surface, the angle-resolved
ZEDOS recover the normal-state value. Nevertheless, an ap-
preciable difference still exists for the quasiparticles running
parallel to the field.

We can understand the nature of this difference by using
the idea of quasi-classical trajectories of quasiparticles.33–35

There are two ways in which quasiparticles contribute to
ZEDOS. One is the Doppler shift by the supercurrent:17 If a
quasiparticle runs in the nodal direction and not parallel to
the field, it can contribute to ZEDOS because of the Doppler
shift. This contribution appears as the peaks in Fig. 2. The
other is the formation of Andreev bound states: Roughly
speaking, if the order parameter changes its sign on a trajec-
tory of a quasiparticle, Andreev bound states are formed.
This gives a finite contribution to ZEDOS.

Now let us consider the quasiparticles running approxi-
mately parallel to the field. The density of states is zero right
along the magnetic field, whether the field is in the nodal or
antinodal direction. However, differences arise when the
quasiparticles propagate along a direction slightly off the
field. In the case of theH iantinode, little density of states
appear since the Doppler shift is weak and the phase of the
order parameter changes very slowly. Hence, quasiparticles
are hampered by finite and nearly uniform order parameter
and cannot contribute to ZEDOS, no matter how small(high)
the order parameter amplitude(magnetic field) is. In con-
trast, in the case of theH inode, order parameter is so small
that the slight Doppler shift or sign change of the order pa-
rameter can lead to small but finite ZEDOS. This is why the
angle-resolved ZEDOS atu=0° is suppressed in the case of
theH iantinode in a high magnetic field region. Note that the
quasiparticles running right through a vortex core feel no
superconducting gap. However, contributions from such qua-
siparticles are considerably small.

The idea we have noted here has some similarities with
that given in Ref. 24. In Ref. 24, it was pointed out that
thermal conductivity takes a maximum value when heat cur-
rent is perpendicular to the magnetic field, since the largest
contribution to ZEDOS comes from quasiparticles running
perpendicular to the field.

Next, let us compare the above results with those obtained
in the PD method. In Fig. 3, we show the angle-resolved
ZEDOS, Eq.(20), after integrating overkz. In most parts of
the Fermi surface, we observe much the same behavior as the
BdG results. However, as for the quasiparticles running in
the field directionsu=0° ,180°d, the PD method gives a
larger angle-resolved ZEDOS than that in BdG method. We
attribute this difference to the prescription we made in solv-
ing the BdG equations, that is, a neglect of thec-axis disper-
sion term. This prescription corresponds to considering only
the quasiparticles running parallel to theab plane, i.e., lim-
iting the c-axis component of the Fermi velocitykz to 0.
Hence, our prescription in the BdG method enhances the
contribution of the quasiparticles withkz=0. In order to con-
firm this, we plot the angle-resolved ZEDOS obtained from
Eq. (20) with kz=0 in Fig. 4. Comparing it with Fig. 2(a), a

quantitative agreement can be seen inu,0° and 180°. Since
the quasiparticles withkz=0 andu=0° are perfectly parallel
to H, they give a little contribution to ZEDOS.

The above difference in angle-resolved ZEDOS atu=0°
and 180° in the two methods leads to the difference in the
total ZEDOS shown in Fig. 1 for the high magnetic field case
sh,0.1d. Since this difference comes mainly from the con-

FIG. 3. Angle-resolved ZEDOS,ns0,ud, calculated in the PD
method.u is measured from the field direction.(a) h=2.11, (b)
h=1.05, and(c) h=0.21.

FIG. 4. Angle-resolved ZEDOS calculated with the PD method
with kz=0 for h=2.11.
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tribution at u,0°, the BdG analysis overestimates the dif-
ference in ZEDOS.

Here we briefly summarize the main results in this sub-
section. In a low magnetic field region, ZEDOS is dominated
by nodal quasiparticles which have a finite momentum nor-
mal to the field. In this region, we havenas0d.nns0d, since
in the case of theH inode, two out of the four nodes are
parallel to the field, thus unable to contribute to ZEDOS,
while in the case of theH iantinode, all the four nodes con-
tribute to ZEDOS. In a high magnetic field region, on the
other hand, the difference betweennas0d and nns0d comes
from the behavior of quasiparticles running in the field di-
rectionsu,0°d. In the case of theH iantinode, those quasi-
particles are hampered by finite and uniform order parameter
and cannot contribute to ZEDOS, while in the case of the
H inode, they can. Therefore, we havenns0d.nas0d in this
field region.

B. Density of states at finite energy

Next, we will show our results for DOS at finite energy.
This is particularly important when we discuss the
experimental data, which depend on the density of states at
0&e&kBT. In Figs. 5 and 6, we show DOS obtained with
the BdG and the PD methods, respectively.

Let us first discuss the high magnetic field region[Figs.
5(b) and 6(b)], we observe a sharp rise in DOS atueu,D0
reminiscent of a coherence peak in the case of the
H iantinode, while it is absent in the case of theH inode.
This character of DOS reflects the behavior of the quasipar-
ticles running parallel to the field. Since they feel a finite

order parameter in the case of theH iantinode, they tend to
form a coherence peak. This coherence-peak-like structure
appears more clearly in the BdG result due to our prescrip-
tion as discussed in the previous subsection.

In this high magnetic field region, we observe
nnsed.nased for 0& ueu&D0 independent of the calculational
methods. Therefore, if the thermal conductivity or the spe-
cific heat is measured in this field region with a rotating
magnetic field, maximum will be observed when the field is
applied in the nodal direction.

Results in a low magnetic field region are shown in Figs.
5(a) and 6(a). In this field region, as we have discussed in the
previous subsection,nas0d.nns0d at zero energy. However,
as shown in Fig. 5(a) and 6(a), nased and nnsed cross at
ueu,0.2D0. For ueu.0.2D0 we have an opposite inequality
nnsed.nased. This means that when we take experimental
data at a temperatureT*0.2D0 with a rotating magnetic field
within the plane, we will observe very small angle variation,
because the effects of lower-energy DOS and higher-energy
DOS cancel each other.

C. Interpretations of the experimental data

In this subsection, we discuss how to interpret the experi-
mental data of the thermal conductivity and the specific heat,
in connection with our analyses.

The thermal conductivity4,5 and the specific heat10 of
Sr2RuO4 have been measured under a rotating in-plane field
by several groups. In the experiments of magnetothermal
conductivity,4,5 they found no angle variation except in the
vicinity of Hc2. They attributed the angle variation nearHc2
to the anisotropy ofHc2 itself, and denied the existence of

FIG. 5. Finite-energy DOS(normalized to the normal-state
value) calculated with the BdG method.(a) h=2.11 and (b)
h=0.21.

FIG. 6. Finite-energy DOS(normalized to the normal-state
value) calculated in the PD method.(a) h=2.11 and(b) h=0.21.
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vertical line nodes in Sr2RuO4. On the other hand, in the
experiment of specific heat,10 a fourfold oscillation is found
at a lower field, in addition to the angle variation nearHc2.
The specific heat shows a maximum atH i f110g in low
fields, while its maximum is observed atH i f100g nearHc2.
These two measurements seem to provide incompatible re-
sults. However, our theoretical analysis gives an answer to
this contradiction in the following way.

First we discuss why the thermal conductivity does not
show the fourfold oscillation in the low field region. As we
show in the previous subsection, a reversal ofnnsed andnased
occurs in the low field region ate,0.2D0. In order to ob-
serve the anisotropy of ZEDOS, a contribution from the
higher energy part of DOS must be removed. However, the
thermal conductivity has been measured at rather high tem-
peraturesT=0.2−0.3Tc, where the effect of the high energy
part of DOS mixes inevitably as we note in the previous
subsection. Hence, it is no wonder that the anisotropy of
ZEDOS cannot be observed. On the other hand, the measure-
ment of specific heat was conducted at lower temperatures
T,0.1Tc. Therefore the specific heat is sensitive to ZEDOS.
Furthermore, note that the specific heat is more sensitive to
the low energy part of DOS than the thermal conductivity.
These will be the reason why only the specific heat shows
the fourfold oscillation.

Combining the above considerations, we determine the
position of line nodes. In the measurement of the specific
heat, the maximum was found atH i f110g, while we have
nas0d.nns0d in a low magnetic field region. Therefore, we
conclude that the line nodes exist in the directionf±100g and
f0±10g.

In Secs. III A and III B, we have shown thatnnsed.nased
for 0& ueu&D0 in a high magnetic field region. Therefore, in
this field region, there is a possibility that we can observe a
fourfold oscillation both in the thermal conductivity and the
specific heat, aside from the effect of the anisotropy inHc2.

In summary, we can explain the data of specific heat and
thermal conductivity simultaneously by assuming the verti-
cal lines nodes along thef±100g axis. A line-node-like struc-
ture in this direction is expected in theg band from the
relation between the Fermi surface and crystal symmetry,14

and has been confirmed in the microscopic analysis.15

Strictly speaking, these are not line nodes, because the exci-
tation gap is small but finite. However, tiny gaps behave like
line nodes at finite temperatures.

IV. CONCLUSIONS

We studied the density of states in the vortex state of a
layered superconductor with vertical line nodes on the cylin-
drical Fermi surface under a field parallel to theab plane. We
investigated the angle variation of DOS with the changing
field strength. The Bogoliubov-de Gennes equation and an
approximate analytical method by Pesch and Dahmet al.
were solved. We found that a field in the nodal direction
gives larger zero-energy density of states in a higher mag-
netic field region, whereas a field in the anti-nodal direction
results in larger zero-energy density of states in a lower mag-
netic field region. This crossover phenomenon is naturally
understood in terms of the angle-resolved ZEDOS. In a
higher field region, under a field applied in the anti-nodal
direction, quasiparticles running parallel to the field is ham-
pered by a spatially uniform order parameter, and thus gives
a smaller contribution to ZEDOS compared with the case of
theHi node. In a lower field region, nodal quasiparticles not
parallel to the field contribute significantly to ZEDOS.
Therefore, when the field is applied in the anti-nodal direc-
tion, four such nodes are available, which leads to the larger
ZEDOS compared with the case of theHi node, where only
two such nodes are available.

We investigated the angle variation of the density of states
at finite energy. We found that in a low magnetic field region,
DOS ate*0.2D0 shows a maximum when the field is par-
allel to the node, while ZEDOS shows a minimum for this
field direction. On the basis of this fine structure of DOS, we
discussed why the thermal conductivity does not show four-
fold oscillation in the low field region. Finally, combining
the experimental data of the specific heat and our analyses,
we conclude that Sr2RuO4 has vertical line-node-like struc-
ture in the direction of thea axis and theb axis.

We note that both in BdG and PD analyses, we have as-
sumed Abrikosov vortex functionCsr d as a spatial variation
of order parameter. Some of our results may be quantita-
tively altered by mixing of higher Landau levels. However,
we believe that our conclusions do not change qualitatively.36
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