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Mott insulators, no double occupancy, and non-Abelian superconductivity
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SU(4) dynamical symmetry is shown to imply a no-double-occupancy constraint on the minimal symmetry
description of antiferromagnetism adewave superconductivity. This implies a maximum doping fraction of
i for cuprates and provides a microscopic critique of the projectetb)S@odel. We propose that $4)
superconductors are representative of a class of compounds that wedserAbelian superconductarsVe
further suggest that non-Abelian superconductors may exist haviid) SUmmetry and therefore cupratelike
dynamics, but withoutl-wave hybridization.
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Suppression of double occupancy on sites in the coppetetic ordering vector{)/2 is the electron-pair degeneracy,
oxide planes is critical in explaining why cuprate systems ara@andg(k) is the d-wave form factor
antiferromagnetic Mott insulators at half filling become su-
perconductors through hole doping. The symmetric Zhang
SQ(5) model predicts no charge gap at half filling. To re- By forming new linear combinations, Eql) may be re-

cover Mott insulator phases at half-filling in the Zhang placed by operators having more direct physical meaning:
model it is normal to impose a no-double-occupancy rule by

Gutzwiller projection. This breaks $8) symmetry, but lat- Q:=Qu1+ Q2= (ChiCut + Gl Gk
tice calculations and schematic arguments suggest that many K
SQ5) features might survive in such a projected (SO
model?®

We have proposed a unified description of high tempera-
ture superconductivity and antiferromagnetism based on a
U(4) D SU(4) dynamical symmetry that has analytical solu- 3 (Q12+ Q. inz— Q. Qll—Q22>

g(k) = (cosk, — cosk,) = sgr(cosk, — cosk,). (2
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tions in three symmetry limitd/ The SQ4) limit of the 5 5 2
SU(4) model corresponds to an antiferromagnetic phase, the
SU(2) limit to a d-wave superconducting phase, and the ) (

SQ5) limit to a critical symmetry interpolating between the
antiferromagnetic and superconducting phases.

Although the methodology of the $4) model differs e ant M 1
substantially from that of the Zhang model, its GPlimit m=(m)!, D'=pp D=pn M=3Su+$)), (3
irri[l)or”ees(? r;)tys ;rr;]et)ezdr:j?:g Sﬂg) ia;ll%ﬁgr;rzlé?zltzgteﬁacg;t.rmnts whereQ, is a§sociated with charge density wave&ds the
this article we address the physical understanding of whyPin operator@ is the staggered magnetizatidd'(D) is the
SU(4) should play a crucial role in high temperature super-creation(annihilatior) operator of spin-singled-wave pairs,
conductivity, how no-double-occupancy and Mott insulator7 () are associated with spin-triplet pairs, arld 2f—()
properties lie at the basis of this understanding, and providis related to the numbécharge operatom. The representa-
a microscopic understanding of the projected®@nodel.  tion space of the S{4) model is built by the cohere and

The W(4) D SU(4) model has 16 symmetry generators: 7 pairs:

i i1~ G Gis* O i iz q;1>
2 2 2 '

Inenyn,ng = ()™ ()™ () "(DT)™[0). (4)

The operatorQ, commutes with all generators and will be

ignored in this discussion. Thus the most general effective

qi’g => g(k)cLQ,iCtk,j’ O :(qg)T, Hamiltonian in the symmetry-dictated truncated space is a

k linear combination of all scalar products constructed from

the remaining 15 S{4) generator§:” The operator sei3) is
closed under (¥)DU(1)xXSU4) symmetry [hereafter

i 1) termed SW4)] only if the approximation in Eq(2) holds.
The physics implied in this approximation becomes more

WherecL creates an electron of momentumand spin pro-  transparent if we transform Eqgdl) to coordinate spacfis-

jectioni,j=1 or 2=1 or | ,Q=(m,, m) is an antiferromag- ing the exact form of Eq(2)]:

plo= 2 gMckicly,  pro= 2 g% (Kcoy Cy,
k k

1
=

_N A _N
Q= > Crrq,iChjr  Sj = > CkiCki ™5
k K
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SFSF”S-‘”, Qij=3je)— ,-0), (8)

with A© (7A©) and Sfje) (éjo)) the total electron number and
spin operators at evedd) sites, respectively:

A®= > C:r,icr,ia AQ= > C;r,icr,i, 9
i,r=even i,r=odd

Sje): > e S(jo): > o (10)
r=even r=odd

ThusQ, andé represent the differences in total charge and
spin between even and odd sites, respectively.
However, Eqs(5) do not close under commutation unless

{cri,Ch} = 88y, {CmCrj}=0 (12)

[that is,c% (cr;) is a basis for particles occupying sites ad-
FIG. 1. (Color onling A schematic hole pair. Fuzzy balls are jacent tor]. This separates lattice sites into categoAesnd
sites where electron holes form a pair: one hole,dhe other with  B: if r=even areA sites[with operators::r’i (¢ )], r=odd are

equal probability(1/4) at the four neighboring site@ =r +a and theB sites[operatorscrl

< (¢r;)], or vice versa. Then Eqéll)
r+b). Balls connected by green linéthose on the outer boundary permits Eqs(5) to be written as
of the figurg are sites where the presence of a hole would imply
double occupancy. o= > (clich - c;rlc%),
reA
,=>chch, = crC,
P12 ; G P 2 rn qi1;: + > (C:,icrl,j"'c;r,jcrl,i),
reA

g =2 - Deeh, d=2 (- Dierie,
r r

_ T T
S =2 (clicj-cric),
reA

Q=2 (-1'clic;, S=2¢c;- %95”', (5 éij =+ (C:r,iCr,j + C?,jcri,i),
r r reA
Wherechvi (c,;) creategannihilate$ an electron of spin lo- ot v
cated atr and c%i (cr;) creates(annihilate$ an electron of Pi2= (P2, G = ()", (12)
spini at the four neighboring sitesa andr £b, with equal  \yjth éijEQij_i_(Q/Z)élj’ where the + sign is =) if A is
probablhtles(g andb are lattice constants ik andy direc-  -hosen to be evefodd) sites.(WhetherA sites are taken to
tions, respectively be even or odd is a labeling choice and does not influence the

1 physics) Then by explicit commutation the operataik2)
= E(CLa,i +clai—clpi—cln). (6)  close an S\) algebra. But by Eq(6),
1
The factor(-1)" in Eq. (5) is (~1)™™ and (n,,n,) are the {Cr . Ch} = 80,8 + 5”4_12 9O e (13
t

coordinates of a lattice site on the copper oxide plane,

=n,a+nyb, which is positive for even siteé,+n,=even .

and negative for the odd sitei$,+n,=odd. This factor
© {+1 fort= +2a, +2b,
g(t) =

-1 fort=+azxb,—azth,

originates from the assumptiogQ"~(-1)" and implies
Mott insulator properties: the electrons are localized at lattice

sites with small overlap between orbitals of electrons on . -
neighboring lattice sites. and Eq.(11) is generallynot satisfied unless the second term

From the coordinate representaticd) we see that spin- on the right side of Eq(13) vanishes. This term vanishes if a

singlet and spin-triplet pairs are formed by holes on adjacerfO"Straint is imposed that whenever there is a hOquiff”}j
sites. Figure 1 illustrates the spatial structure of a hole pair: ifit I (S€€ Fig. ], no pair is permitted at’=r+t, leaving
one hole is ar, the other hole occupies the four adjacentn0thing to be annihilated by-;. This is exactly a no-double-
sites(r +a andr +b) with equal probability. The summation Occupancy constraint because W|thou§ it there is a finite am-
overr in the pair creatior(annihilatior) operators indicates plitude for double site occupancy. For instance, if one pair is

,_ . e a1
that such pairs are highly coherent. It also can be seen tha@t!’=r+2a and a second pair at the probability is7¢ for
two holes to be located at+a (see Fig. 1. We conclude that

A=A®+A° Q,=A®-A0, (7)  closure of the S(#) algebra is a direct consequence of no

(14)
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double occupancy in the copper oxide conducting plane

Additional insight follows from observing that the valid-
ity of Egs. (11) actually follows from the more general re-
quirement that no pairs overlgp consistency condition en-
suring that the pair space and the pairing correlations be well
defined, is sufficient to satisfy Eqgs(11l). The no-pair-
overlap constraint implies naturally that if a pair is centered
atr, no pair may be located at =r +t with t given in Eq.

(14), and thus Eq(11) holds.

For anN-dimensional basis the minimum closed algebra
is SA2N) if all bilinear particle-hole and pair operators are
taken as generators. The simplest basis for cuprates may be
regarded as four-dimensional since electrons can exist only
in four basic states, oA sites orB sites, with spin up or
down. Thus, absent further constraints, the minimum Lie al-
gebra for the set of generators that can describe highu-
perconductivity and antiferromagnetism simultaneously in a
cuprate system is §8) and not SW4). The 28 generators of
SQ8) are the 16 operators in E¢L2) plus the 12 operators

FIG. 2. (Color onling Schematic spatial distribution for maxi-
mal hole pair occupation. Fuzzy balls are lattice sites where the
electron holes form pairs. Balls connected by green l{désgonal
I T AT t AT idi i indi i
pi,= E (CrTCri _ Cﬂcﬁ), or antidiagonal linesindicate sites where the presence of a hole

reA would lead to double occupancy.

Gz (chch + clcl) It is likely that the h_opping operatd; in Eq. (15) is the
127 =& St T source of the most important $4) symmetry breaking
re terms. It breaks S{4) but is a generator of S@), so this
perturbation may be taken into account by an extension from

S= 2 (¢ e — ook, SU4) to SQ8). However, we may expect the no-double-
reA occupancy rule and thus the 8l symmetry to be a good
o initial approximation.
Q=+ > (C:,icfj + cr'jcrli), The implicit SU4) occupancy constraint dictates an upper
reA ’ limit for the doping fraction in S#4)-conserving states. Fig-
ure 2 illustrates the spatial distribution when the number of
P2=()", G=@l)T (15  hole pairs is maximal. By counting, the maximum number of

holes isQ2=Q./4, where(), is the total number of lattice
sites. Thus the largest doping fraction preserving4gdym-
(12I)E]' i 1 tain two kinds of in-singl metry ist:Q/Qe:%. The empirical maximum doping frac-

=qua lons( 5_)rcon a_'? WO KInds o newspin-singley tion (0.23-0.27 for cuprate superconductivity may then be
pairs created by,, andqy,, which may be terme@andS* 105 reted as a direct consequence of §lsymmetry.

pairs, respectively. In both the two electraii®les occupy The preceding discussion implies the followird) The

the same site, with equal prqbab?lity to appear ar_1ywh§rei hvsical origin of ; mmetrv is proximity of
the lattice coherently. Th&* pairs differ fromSpairs in their En%;?e?ﬁ)n?agnet?srsugn?itsv%) sgiring?tc)gui)lgdo WithtySL(J)p-
phases. The operato8 are the hopping operators with and pression of double occupancy by on-site Coulomb repulsion.
without spin flip, andQ;; is the staggering of the hopping. (2) Two important facts in cuprates, that normal states are
These operators chan@eand 7 pairs intoSandS*, or vice ~ Mott insulators and that superconductivity exists only in a
versa. narrow doping rangéP <0.27), are direct consequences of
The SQ@8) algebra reduces to $Y) if the SandS* pairs  an SU4) dynamical symmetry.
may be neglected, which occurs if we assume on-site Cou- Superconductivity in cuprates is a specific example of
lomb repulsion pushing th& and S* pairs to sufficiently  what we shall termnon-Abelian superconductivitywhich
high energy. Thus, restriction to no double occupancy effecdiffers from conventional superconductivity in the richness
tively allows the operators in Eq$15) to be ignored and of pair structure for condensed states and in the appearance
reduces S(B) to the subalgebra SY). of competing sources of long-range order. The key issues for
Therefore, the minimal Lie algebra that can describe anSU(4) non-Abelian superconductivity are that coherent pairs
tiferromagnetism and-wave superconductivity in a cuprate are formed by holes on adjacent sites so that both singlet and
system is in general §8), but under the constraint of no triplet states contribute, and that alternative long-range order
double occupancy the symmetry effectively reduces tqantiferromagnetismenters on an equal footing with super-
SU(4). The assumption of an ¥ symmetry in a cuprate conductivity.
system automatically implies the imposition of a no-double- In contrast to BCS superconductivity, which is described
occupancy constraint on the general(8symmetry in the by a single dynamical symmetry chain having only Abelian
copper-oxygen planes. subgroupg SU(2) D U(1)], the minimal symmetry consistent

[ depends on the even-odd choice farsites; see Egs.
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with cuprate data is Si4), which has a much richer structure eters forming a superspin vector. Thus one cannot apply al-
(three dynamical symmetries having non-Abelian subgroupgebraic constraints to them through the commutators. This is
and differing fundamentally in their propertje§Ve propose most easily seen if not only the $8&) generators but also the
that the differences in observational characteristics for thesglements of the Zhang superspin vector are treated as opera-
two types of superconductivity originate in this difference intors rather than order parameters, thereby enlarging the alge-
dynamical symmetry structure and in non-Abelian superconpra to SU4). Within the SU4) framework, there is no need
ductivity resulting from electron-electron interactions insteadfor projection since the symmetry itself enforces a no-
of electron-phonon interactions. double-occupancy condition. As demonstrated in Refs. 6 and
The primal role of S@4) symmetry in non-Abelian 7, within the parent SW) group antiferromagnetism and su-
cuprate superconductivity suggests that any pairing structurgerconductivity are described bijfferentdynamical symme-
leading to the S#) algebra entails dynamics similar to that tries [SQ(4) and SUW2), respectively, and S@5) is a critical
of cuprates. Thereforel-wave symmetry of the pairs need dynamical symmetry that interpolates between(g§Qand
not be critical to non-Abelian superconductivity in generalSy(2). In the SU4) model it is the S@4) symmetry, not the
and SU4) superconductivity in particular. Pairs with any in- SQ(5) symmetry, that naturally describes undoped states, and
ternal symmetry(extendeds-wave, p-wave, mixed symme- the spectrum founbrokenSQ(4) dynamical symmetry is in-
try, etc) could exhibit SW4) superconductivity if the no- trinsically antiferromagnetic with gapped charge excitations.
double-occupancy constraint is valid and correlations camn a forthcoming papetwe shall show that this S¥) struc-
form adjacent-site pairs. Generalt;},,i may be defined as  ture leads to pseudogaps, and to a quantum critical doping
‘ . 5 point that requires explicit breaking of $& symmetry.
chi= 2 f(hchy, 2 fm)P=1, (16) Our results imply some important consequences of attrib-
t t uting cuprate superconductor behavior to an(glalgebra
wheret is a few finite lattice displacements ofand f(t) is  that follow directly from symmetry, independent of details:
the form factor. Different forms of(t) reflect different inter- (1) Normal states are antiferromagnetic Mott insulatogs.
nal symmetries of the pairs, but they all satisfy the condition0lé doping of normal compounds leads first to(Sfluc-
(11) under no double occupancy and thus preserve th@)Su tuations in both antiferromagnetic and superconducting order
algebra and the general Hamiltonians implied by its dynami{imPlying phases that may exhibit spin glass or stripe char-
cal symmetry chains. The structu@® of the d-wave pairs is ~ &cte), and then to SU) non-Abelian superconductivity3)
only a special case @) with t=+a, +b andf(ia):% and SU(4) superconductmty is strongly suppressed for doping
fb)=-3. e b e e e
In summary, we have shown that @ is the minimal scribed by a parent S8) algebra where terms that break

symmetry accommodating superconductivity, antiferromag- . i
netism, and a no-double-occupancy constraint in cuprate sy U(4) may still respect S®@) Sym”?e”y-<5) S.U(4) symme
ry, not d-wave pairing per se, is the ultimate cause of

tems, and that Sid) symmetry implies a maximum doping cuprate behavior, implying that systems could exist having

. 1.
fzrﬁ;trl]onsofz Ir;|t h:bigpirsa;e;?,ésﬁgge;y alo?ﬁéief:;jfsth%ond pairing but cupratelike dynamics. The first three con-
g S@) alg 9 8, sequences are postdictions in strong accord with existing

indicate thatclosure of theSQ(5) algebra also implies no d . o
; . ata. The fourth is a prediction that may be tested through
double occupancy if that algebra is embeddeG(4). Why detailed applications of the %) model to data. The final

then does the Zhang %§) model require Gutzwiller projec- 0prediction may be tested by searching experimentally for

tion? The work presented here suggests that the projecti . -
requirement is not a consequence of the(83Gymmetry fg:ir;?;n:r?gssgz)v gge%arl;rmg structures other tiign, that
3 .

itself but rather arises from approximations and assumption
in the Zhang effective Lagrangian formulation, where five of  \we thank Aditya Joshi for discussions and for careful
the SU4) generator§D',D, Q) are treated as order param- checking of the S{) commutation relations.

1S.-C. Zhang, Scienc@75, 1089(1997. Phys. Rev. Lett.88, 057003(2002.

2S.-C. Zhang, J.-P. Hu, E. Arrigoni, W. Hanke, and A. Auerbach, M. W. Guidry, L.-A. Wu, Y. Sun, and C.-L. Wu, Phys. Rev. &3,
Phys. Rev. B60, 13070(1999. 134516(2001).

3M. G. Zacher, W. Hanke, E. Arrigoni, and S.-C. Zhang, Phys. 7| -A. Wu, M. W. Guidry, Y. Sun, and C.-L. Wu, Phys. Rev. &,
Rev. Lett. 85, 824 (2000. 014515(2003.

4E. Arrigoni and W. Hanke, Phys. Rev. B2, 11770(2000. 8Y. Sun, M. W. Guidry, and C.-L. Wigunpublishegl

5A. Dorneich, W. Hanke, E. Arrigoni, M. Troyer, and S. C. Zhang,

184501-4



