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SU(4) dynamical symmetry is shown to imply a no-double-occupancy constraint on the minimal symmetry
description of antiferromagnetism andd-wave superconductivity. This implies a maximum doping fraction of
1
4 for cuprates and provides a microscopic critique of the projected SO(5) model. We propose that SU(4)
superconductors are representative of a class of compounds that we termnon-Abelian superconductors. We
further suggest that non-Abelian superconductors may exist having SU(4) symmetry and therefore cupratelike
dynamics, but withoutd-wave hybridization.
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Suppression of double occupancy on sites in the copper
oxide planes is critical in explaining why cuprate systems are
antiferromagnetic Mott insulators at half filling become su-
perconductors through hole doping. The symmetric Zhang
SO(5) model1 predicts no charge gap at half filling. To re-
cover Mott insulator phases at half-filling in the Zhang
model it is normal to impose a no-double-occupancy rule by
Gutzwiller projection. This breaks SO(5) symmetry, but lat-
tice calculations and schematic arguments suggest that many
SO(5) features might survive in such a projected SO(5)
model.2–5

We have proposed a unified description of high tempera-
ture superconductivity and antiferromagnetism based on a
Us4d.SUs4d dynamical symmetry that has analytical solu-
tions in three symmetry limits.6,7 The SO(4) limit of the
SU(4) model corresponds to an antiferromagnetic phase, the
SU(2) limit to a d-wave superconducting phase, and the
SO(5) limit to a critical symmetry interpolating between the
antiferromagnetic and superconducting phases.

Although the methodology of the SU(4) model differs
substantially from that of the Zhang model, its SO(5) limit
represents the Zhang SO(5) algebra subject to constraints
implied by embedding SO(5) in the larger algebra SU(4). In
this article we address the physical understanding of why
SU(4) should play a crucial role in high temperature super-
conductivity, how no-double-occupancy and Mott insulator
properties lie at the basis of this understanding, and provide
a microscopic understanding of the projected SO(5) model.

The Us4d.SUs4d model has 16 symmetry generators:
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whereck,i
† creates an electron of momentumk and spin pro-

jection i , j =1 or 2;↑ or ↓ ,Q=sp ,p ,pd is an antiferromag-

netic ordering vector,V /2 is the electron-pair degeneracy,
andgskd is thed-wave form factor

gskd = scoskx − coskyd < sgnscoskx − coskyd. s2d

By forming new linear combinations, Eq.(1) may be re-
placed by operators having more direct physical meaning:
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whereQ+ is associated with charge density waves,SW is the

spin operator,QW is the staggered magnetization,D†sDd is the
creation(annihilation) operator of spin-singletd-wave pairs,
pW † spW d are associated with spin-triplet pairs, and 2M = n̂−V
is related to the number(charge) operatorn̂. The representa-
tion space of the SU(4) model is built by the coherentD and
p pairs:

unxnynznsl = spx
†dnxspy

†dnyspz
†dnzsD†dnsu0l. s4d

The operatorQ+ commutes with all generators and will be
ignored in this discussion. Thus the most general effective
Hamiltonian in the symmetry-dictated truncated space is a
linear combination of all scalar products constructed from
the remaining 15 SU(4) generators.6,7 The operator set(3) is
closed under Us4d.Us1d3SUs4d symmetry [hereafter
termed SU(4)] only if the approximation in Eq.(2) holds.
The physics implied in this approximation becomes more
transparent if we transform Eqs.(1) to coordinate space[us-
ing the exact form of Eq.(2)]:
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wherecr ,i
† scr ,id creates(annihilates) an electron of spini lo-

cated atr and cr̄ ,i
† scr̄ ,id creates(annihilates) an electron of

spin i at the four neighboring sites,r ±a andr ±b, with equal
probabilities(a andb are lattice constants inx andy direc-
tions, respectively),
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The factors−1dr in Eq. (5) is s−1dnx+ny and snx,nyd are the
coordinates of a lattice site on the copper oxide plane,r
=nxa+nyb, which is positive for even sitessnx+ny=evend
and negative for the odd sitessnx+ny=oddd. This factor
originates from the assumptioneiQ·r <s−1dr and implies
Mott insulator properties: the electrons are localized at lattice
sites with small overlap between orbitals of electrons on
neighboring lattice sites.

From the coordinate representation(5) we see that spin-
singlet and spin-triplet pairs are formed by holes on adjacent
sites. Figure 1 illustrates the spatial structure of a hole pair: if
one hole is atr , the other hole occupies the four adjacent
sites(r ±a and r ±b) with equal probability. The summation
over r in the pair creation(annihilation) operators indicates
that such pairs are highly coherent. It also can be seen that

n̂ = n̂sed + n̂sod, Q+ = n̂sed − n̂sod, s7d
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with n̂sed sn̂sodd and Sij
sed sSij

sodd the total electron number and
spin operators at even(odd) sites, respectively:
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ThusQ+ andQW represent the differences in total charge and
spin between even and odd sites, respectively.

However, Eqs.(5) do not close under commutation unless

hcr̄8,i,cr̄ ,j
† j = dr8rdi j , hcr̄8,i,cr̄ ,jj = 0 s11d

[that is,cr̄ ,i
† scr̄ ,id is a basis for particles occupying sites ad-

jacent tor ]. This separates lattice sites into categoriesA and
B: if r =even areA sites[with operatorscr ,i

† scr ,id], r =odd are
theB sites[operatorscr̄ ,i

† scr̄ ,id], or vice versa. Then Eqs.(11)
permits Eqs.(5) to be written as
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with Q̃ij ;Qij +sV /2ddi j , where the ± sign is +s−d if A is
chosen to be even(odd) sites.(WhetherA sites are taken to
be even or odd is a labeling choice and does not influence the
physics.) Then by explicit commutation the operators(12)
close an SU(4) algebra. But by Eq.(6),

hcr̄8,i,cr̄ ,j
† j = dr8rdi j + di j

1

4o
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with

gstd = H+ 1 for t = ± 2a, ± 2b,

− 1 for t = + a ± b,− a ± b,
J s14d

and Eq.(11) is generallynot satisfied unless the second term
on the right side of Eq.(13) vanishes. This term vanishes if a
constraint is imposed that whenever there is a hole paircr i

† cr̄ j
†

at r (see Fig. 1), no pair is permitted atr 8=r + t, leaving
nothing to be annihilated bycr̄8i. This is exactly a no-double-
occupancy constraint because without it there is a finite am-
plitude for double site occupancy. For instance, if one pair is
at r 8=r +2a and a second pair atr , the probability is 1

16 for
two holes to be located atr +a (see Fig. 1). We conclude that
closure of the SU(4) algebra is a direct consequence of no

FIG. 1. (Color online) A schematic hole pair. Fuzzy balls are
sites where electron holes form a pair: one hole atr , the other with
equal probabilitys1/4d at the four neighboring sites(r̄ =r ±a and
r ±b). Balls connected by green lines(those on the outer boundary
of the figure) are sites where the presence of a hole would imply
double occupancy.
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double occupancy in the copper oxide conducting plane.
Additional insight follows from observing that the valid-

ity of Eqs. (11) actually follows from the more general re-
quirement that no pairs overlap(a consistency condition en-
suring that the pair space and the pairing correlations be well
defined), is sufficient to satisfy Eqs.(11). The no-pair-
overlap constraint implies naturally that if a pair is centered
at r , no pair may be located atr 8=r + t with t given in Eq.
(14), and thus Eq.(11) holds.

For anN-dimensional basis the minimum closed algebra
is SOs2Nd if all bilinear particle-hole and pair operators are
taken as generators. The simplest basis for cuprates may be
regarded as four-dimensional since electrons can exist only
in four basic states, onA sites orB sites, with spin up or
down. Thus, absent further constraints, the minimum Lie al-
gebra for the set of generators that can describe high-Tc su-
perconductivity and antiferromagnetism simultaneously in a
cuprate system is SO(8) and not SU(4). The 28 generators of
SO(8) are the 16 operators in Eq.(12) plus the 12 operators
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[± depends on the even-odd choice forA sites; see Eqs.
(12)].

Equations(15) contain two kinds of new(spin-singlet)
pairs created byp̄12

† and q̄12
† , which may be termedS andS*

pairs, respectively. In both the two electrons(holes) occupy
the same site, with equal probability to appear anywhere in
the lattice coherently. TheS* pairs differ fromSpairs in their

phases. The operatorsS̄ij are the hopping operators with and

without spin flip, andQ̄ij is the staggering of the hopping.
These operators changeD andp pairs intoS andS*, or vice
versa.

The SO(8) algebra reduces to SU(4) if the S andS* pairs
may be neglected, which occurs if we assume on-site Cou-
lomb repulsion pushing theS and S* pairs to sufficiently
high energy. Thus, restriction to no double occupancy effec-
tively allows the operators in Eqs.(15) to be ignored and
reduces SO(8) to the subalgebra SU(4).

Therefore, the minimal Lie algebra that can describe an-
tiferromagnetism andd-wave superconductivity in a cuprate
system is in general SO(8), but under the constraint of no
double occupancy the symmetry effectively reduces to
SU(4). The assumption of an SU(4) symmetry in a cuprate
system automatically implies the imposition of a no-double-
occupancy constraint on the general SO(8) symmetry in the
copper-oxygen planes.

It is likely that the hopping operatorS̄ij in Eq. (15) is the
source of the most important SU(4) symmetry breaking
terms. It breaks SU(4) but is a generator of SO(8), so this
perturbation may be taken into account by an extension from
SU(4) to SO(8). However, we may expect the no-double-
occupancy rule and thus the SU(4) symmetry to be a good
initial approximation.

The implicit SU(4) occupancy constraint dictates an upper
limit for the doping fraction in SU(4)-conserving states. Fig-
ure 2 illustrates the spatial distribution when the number of
hole pairs is maximal. By counting, the maximum number of
holes isV=Ve/4, whereVe is the total number of lattice
sites. Thus the largest doping fraction preserving SU(4) sym-
metry isPf =V /Ve= 1

4. The empirical maximum doping frac-
tion (0.23–0.27) for cuprate superconductivity may then be
interpreted as a direct consequence of SU(4) symmetry.

The preceding discussion implies the following:(1) The
physical origin of cuprate SU(4) symmetry is proximity of
antiferromagnetism andd-wave pairing, coupled with sup-
pression of double occupancy by on-site Coulomb repulsion.
(2) Two important facts in cuprates, that normal states are
Mott insulators and that superconductivity exists only in a
narrow doping rangesP,0.27d, are direct consequences of
an SU(4) dynamical symmetry.

Superconductivity in cuprates is a specific example of
what we shall termnon-Abelian superconductivity, which
differs from conventional superconductivity in the richness
of pair structure for condensed states and in the appearance
of competing sources of long-range order. The key issues for
SU(4) non-Abelian superconductivity are that coherent pairs
are formed by holes on adjacent sites so that both singlet and
triplet states contribute, and that alternative long-range order
(antiferromagnetism) enters on an equal footing with super-
conductivity.

In contrast to BCS superconductivity, which is described
by a single dynamical symmetry chain having only Abelian
subgroupsfSUs2d.Us1dg, the minimal symmetry consistent

FIG. 2. (Color online) Schematic spatial distribution for maxi-
mal hole pair occupation. Fuzzy balls are lattice sites where the
electron holes form pairs. Balls connected by green lines(diagonal
or antidiagonal lines) indicate sites where the presence of a hole
would lead to double occupancy.
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with cuprate data is SU(4), which has a much richer structure
(three dynamical symmetries having non-Abelian subgroups
and differing fundamentally in their properties). We propose
that the differences in observational characteristics for these
two types of superconductivity originate in this difference in
dynamical symmetry structure and in non-Abelian supercon-
ductivity resulting from electron-electron interactions instead
of electron-phonon interactions.

The primal role of SU(4) symmetry in non-Abelian
cuprate superconductivity suggests that any pairing structure
leading to the SU(4) algebra entails dynamics similar to that
of cuprates. Therefore,d-wave symmetry of the pairs need
not be critical to non-Abelian superconductivity in general
and SU(4) superconductivity in particular. Pairs with any in-
ternal symmetry(extendeds-wave, p-wave, mixed symme-
try, etc.) could exhibit SU(4) superconductivity if the no-
double-occupancy constraint is valid and correlations can
form adjacent-site pairs. Generally,cr̄ ,i

† may be defined as

cr̄ ,i
† = o

t
fstdcr+t,i

† , o
t

ufstdu2 = 1, s16d

wheret is a few finite lattice displacements ofr and fstd is
the form factor. Different forms offstd reflect different inter-
nal symmetries of the pairs, but they all satisfy the condition
(11) under no double occupancy and thus preserve the SU(4)
algebra and the general Hamiltonians implied by its dynami-
cal symmetry chains. The structure(6) of thed-wave pairs is
only a special case of(16) with t = ±a, ±b and fs±ad= 1

2 and
fs±bd=−1

2.
In summary, we have shown that SU(4) is the minimal

symmetry accommodating superconductivity, antiferromag-
netism, and a no-double-occupancy constraint in cuprate sys-
tems, and that SU(4) symmetry implies a maximum doping
fraction of 1

4 in the cuprates, by symmetry alone. Because the
Zhang SO(5) algebra is a subalgebra of SU(4), these results
indicate thatclosure of theSO(5) algebra also implies no
double occupancy if that algebra is embedded inSU(4). Why
then does the Zhang SO(5) model require Gutzwiller projec-
tion? The work presented here suggests that the projection
requirement is not a consequence of the SO(5) symmetry
itself but rather arises from approximations and assumptions
in the Zhang effective Lagrangian formulation, where five of

the SU(4) generatorssD†,D ,QW d are treated as order param-

eters forming a superspin vector. Thus one cannot apply al-
gebraic constraints to them through the commutators. This is
most easily seen if not only the SO(5) generators but also the
elements of the Zhang superspin vector are treated as opera-
tors rather than order parameters, thereby enlarging the alge-
bra to SU(4). Within the SU(4) framework, there is no need
for projection since the symmetry itself enforces a no-
double-occupancy condition. As demonstrated in Refs. 6 and
7, within the parent SU(4) group antiferromagnetism and su-
perconductivity are described bydifferentdynamical symme-
tries [SO(4) and SU(2), respectively], and SO(5) is a critical
dynamical symmetry that interpolates between SO(4) and
SU(2). In the SU(4) model it is the SO(4) symmetry, not the
SO(5) symmetry, that naturally describes undoped states, and
the spectrum forunbrokenSO(4) dynamical symmetry is in-
trinsically antiferromagnetic with gapped charge excitations.
In a forthcoming paper,8 we shall show that this SU(4) struc-
ture leads to pseudogaps, and to a quantum critical doping
point that requires explicit breaking of SO(5) symmetry.

Our results imply some important consequences of attrib-
uting cuprate superconductor behavior to an SU(4) algebra
that follow directly from symmetry, independent of details:
(1) Normal states are antiferromagnetic Mott insulators.(2)
Hole doping of normal compounds leads first to SO(5) fluc-
tuations in both antiferromagnetic and superconducting order
(implying phases that may exhibit spin glass or stripe char-
acter), and then to SU(4) non-Abelian superconductivity.(3)
SU(4) superconductivity is strongly suppressed for doping
fractions exceeding14. (4) Symmetry breaking resulting from
violation of the no-double-occupancy constraint may be de-
scribed by a parent SO(8) algebra where terms that break
SU(4) may still respect SO(8) symmetry.(5) SU(4) symme-
try, not d-wave pairing per se, is the ultimate cause of
cuprate behavior, implying that systems could exist having
non-d pairing but cupratelike dynamics. The first three con-
sequences are postdictions in strong accord with existing
data. The fourth is a prediction that may be tested through
detailed applications of the SU(4) model to data. The final
prediction may be tested by searching experimentally for
compounds having pairing structures other thandx2−y2 that
satisfy the SU(4) algebra.

We thank Aditya Joshi for discussions and for careful
checking of the SU(4) commutation relations.
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