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This work presents a simple formalism which proposes an estimate of the ground-state energy from a single
reference function. It is based on a perturbative expansion but leads to nonlinear coupled equations. It can be
viewed as well as a modified coupled cluster formulation. Applied to a series of spin lattices governed by
model Hamiltonians the method leads to simple analytic solutions. The so-calculated cohesive energies are
surprisingly accurate. Two examples illustrate its applicability to locate phase transition.
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I. INTRODUCTION

The quantum many-body problem has been perfectly
clarified a long time ago for the single-reference approaches.
Its logics is given by the linked cluster theorem,1–3 which
relies on a perturbative expansion and its diagrammatic rep-
resentation. A panoply of computational methods satisfying
the basic size-consistency requirements are available. One of
them is the Möller-Plesset order-by-order perturbative
expansion4 which suffers from its slow convergence(and in
some cases high-order divergences5). Other methods lead to
nonlinear equations coupling the coefficients of the vectors
which are singly or doubly excited with respect to the single
referenceF0. Among them one may quote the coupled elec-
tron pair approximation(CEPA) formalism6–8 which elimi-
nates unlinked diagrams from a singles and doubles configu-
ration interaction(SDCI) and introduces part of[in CEPA-2
(Refs. 7 and 8)] or all [in the self-consistent size-consistent
sSCd2 SDCI version(Ref. 9)] of the exclusion principle vio-
lating (EPV) diagrams. The coupled cluster method[CCM
(Refs. 10–12)] has a better standard since it is an elegant and
generalizable formalism. This method gives an exponential
structure to the wave operatorV which transforms a refer-
ence functionF0 in the exact solutionC0, C0=VF0, V
=expsSd. In practice,S is limited to a certain set of excita-
tions. The simplest version, called(CCSD), introduces single
and double excitations on the top ofF0 and takes into ac-
count the connected effect of the quadruples. It does not
correctly treat the effect of the triples, which has to be incor-
porated perturbatively in the CCSD(T) formalism.13,14

The present work returns to a low-order semiperturbative
development fromF0. It leads to a system of equations fix-
ing the coefficients of the singly and doubly excited vectors,
which

(i) Does not require to assume an exponential structure of
the wave operator,

(ii ) Introduces the effect of deviations from additivity of
excitation energies(deviations which is implicitly supposed
to be negligible in CCSD), and

(iii ) Introduces some high-order effects through EPV cor-
rections to the excitation energies.

The method is applied to a few infinite periodic spin lattices
governed by Heisenberg Hamiltonians which only consider
interactions between nearest neighbors. In these problems if
all bonds are identical, the solutions of our self-consistent
perturbative(SCP) method lead to simple polynomial equa-
tions. The results, compared to the exact solutions, are of
surprising quality. The method is then employed to identify
phase transitions in two different two-dimensional(2D)
problems.

II. FORMALISM

A. Generalities

Let us callF0 a suitable single reference supposed to be a
relevant approximation to the ground state of the system
governed by an HamiltonianH andFm vectors orthogonal to
F0. In the intermediate normalization

C0 = F0 + o
m

CmFm, s1d

the exact energy is given by the eigenequation relative toF0,
kF0uH−EuC0l=0

E = H00 + o
k

H0kCk, s2d

whereHij =kFiuHuF jl. The Hamiltonians are at most bielec-
tronic. One may callh1 and h2 the monoelectronic and
bielectronic parts of the HamiltonianH=h1+h2. One may
labelm,n. . . (holes) the monoelectronic function occupied in
F0 andr ,s. . . (particles) those which are not occupied inF0.

In the following we shall refer to an Epstein-Nesbet15–17

zero-order Hamiltonian which is the diagonal part of the
Hamiltonian in the basis of theN-electronic vectors
hF0, . .Fm. .j

H0 = o
m

uFmlkFmuHuFmlkFmu. s3d

The perturbation operatorV
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V = H − H0 s4d

is zero diagonal in this basis

V = o
i

o
j

8uFilkFiuHuF jlkF ju. s5d

The Hamiltonian being at most bielectronic, it appears from
Eq. (2) that the knowledge of the coefficient of the singly
and doubly excited vectors which interact withF0 is suffi-
cient to give the ground-state energy. We shall call first gen-
erationS1 the set of vectorsFi interacting withF0,

S1 = hFij, kFiuHuF0l Þ 0,

andTi
+ the operators creating the vectorsFi from F0,

Fi = Ti
+F0.

These operators may be written as

Ti
+ = ar

+aaf1 − dskr uh1ualdg s6d

or

Tk
+ = ar

+as
+abaaf1 − dskrsuh2uabldg, s7d

whered is the Kroneker symbol. The coefficients of the first
generation vectors can be estimated from the eigenequations
relative to them. ForFi the equationkFiuH−EuC0l=0 can be
written using Eq.(2) as

sHii − H00 − o
k

H0kCkdCi + Hi0 + o
jPS1

HijCj + o
a¹S1

HiaCa = 0.

s8d

To determine the coefficientsCi of the first generation vec-
tors, it is sufficient to have an estimate of the coefficient of
vectorsFa of the second generation, i.e., those which inter-
act with the vectors ofS1. Among the vectorsFa belonging
to the second generation one may distinguish those which are
obtained fromFi by the actions of operatorsTk

+ possible on
F0 (type 1), and the others which are obtained fromFi by
operatorsRm

+ different from theTs8
+ (type 2).

If one calls T the sum of the operatorsTk
+ and of their

adjoints

T = o
k

sTk
+ + Tk

+'d s9d

the operatorsR

R= 1 −o
l

uFllkFlu − T, s10d

is the sum of all the operators changing one or two mono-
electronic functions which are different fromTk

+ operators.
Notice thatkRm

+F0uHuF0l=0. With the Hamiltonians consid-
ered hereafter the second generation vectorsFa are either of
type 1 or of type 2, i.e., are generated either as

Fa = Tl
+Tk

+F0 stype 1d

or as

Fa = Rm
+Tk

+F0 stype 2d

as pictured in Fig. 1.

B. Evaluation of the coefficients of second generation vectors

Regarding thevectors of type 1, the operatorsTk
+ are in

general possible onFi, but some of them are impossible
sTk

+Fi =0d. Let us call EPVsid (exclusion principle violating
correction) the quantity9

EPVsid = o
k

Tk
+

Fi=0

H0kCk. s11d

Noting that if Fa=Tk
+Fi, and if Tk

+ is a double excitation
Hia=H0k. Introducing Eq.(11), Eq. (8) can be written

fHii − H00 − EPVsidgCi + Hi0 + o
jPS1

HijCj

+ o
k

Tk
+

FiÞ0

H0ksCTk
+Fi

− CiCkd

+ o
m

Rm
+

Fi¹S1

kFiuHuRm
+FilCRm

+ Fi
= 0. s12d

A first-order evaluation of Ci is of course the
Epstein-Nesbet15–17 one

Ci = Hi0/sH00 − Hiid. s13d

Introducing EPV corrections in the energy denominator

Ci = Hi0/fH00 − Hii + EPVsidg, s14d

incorporates an infinite summation of diagrams.18,19 One
may use a second-order perturbation theory to evaluate the
coefficientsCTk

+Fi
andCRm

+ Fi
.

The vector of type 1Tk
+Fi =Ti

+Fk=Tk
+Ti

+F0 can also be
reached fromF0 by other sets of excitationsTm

+Tn
+F0 (cf.

Fig. 1). The second-order expansion of the wave function
tells us

CTk
+Fi

=
H0kCi + H0iCk

H00 − Hi+k,i+k
+

okm,nl
8 sH0mCn + H0nCmd

H00 − Hi+k,i+k
,

s15d

where Hi+k,i+k=kFTk
+Fi

uHuFTk
+Fi

l and okm,nl8 runs on the

couplesTm
+Tn

+F0=Tk
+Ti

+F0 but different from the coupleik.
FIG. 1. Illustration of the genealogic generation ofC0 from the

reference functionF0.

M. AL HAJJ AND J.-P. MALRIEU PHYSICAL REVIEW B70, 184441(2004)

184441-2



An infinite summation of diagrams would lead to the intro-
duction of an EPV correction in the energy denominator

EPVsi + kd = o
l

Tl
+Tk

+
Fi=0

H0lCl , s16d

and to replaceH00−Hi+k,i+k by H00−Hi+k,i+k+EPVsi +kd.

CTk
+Fi

=
H0kCi + H0iCk + okm,nl

8 sH0mCn + H0nCmd

H00 − Hi+k,i+k + EPVsi + kd
.

s17d

Now taking benefit of[Eq. (14)] i.e., replacingH0i (andH0k)
by productsCifH00−Hii +EPVsidg in Eq. (17) one obtains an
expression closer to the CC expansion

CTk
+Fi

= CiCkSH00 − Hii + EPVsid + H00 − Hkk + EPVskd
H00 − Hi+k,i+k + EPVsi + kd D + o

km,nl

8CmCnSH00 − Hmm+ EPVsmd + H00 − Hnn + EPVsnd
H00 − Hi+k,i+k + EPVsi + kd D .

s18d

The CC theory writes

CTk
+Fi

= CiCk + o
km,nl

8CmCn, s19d

which ignores the possible deviation of the energy denominators from additivity, i.e., assumesH00−Hi+k,i+k=H00−Hii +H00
−Hkk. Using the compact notationDi =−H00+Hii , Di+k=−H00+Hi+k,i+k, one obtains

CTk
+Fi

− CiCk = CiCkS− Di + EPVsid − Dk + EPVskd
− Di+k + EPVsi + kd

− 1D + o
km,nl

Tm
+ Tn

+
F0=Tk

+Ti
+

F0

8 CmCnS− Dm + EPVsmd − Dn + EPVsnd
− Di+k + EPVsi + kd D . s20d

Notice that if there is only one route to createFa=Fi+k from
F0 the last sum disappears. If the excitation energies(even-
tually including EPV’s) are additive, the full term vanishes in
agreement with the cancellation of disconnected diagrams.
This will be the case in the applications to spin lattices with
nearest-neighbor interactions when excitationsTi

+ andTk
+ will

concern remote bonds.
Regarding thevectors of type2, the operatorsRm

+ sÞT+d
which lead fromFi to Rm

+Fi have to be treated perturbatively
as follows. Analogous to Eq.(17) one obtains

CRm
+ Fi

=
Hi,Rm

+ iCi

− DRm
+ i + EPVsRm

+ id
+ o

kn,ll

Rn
+

Fl=Rm
+

Fi

8
Hl,Rn

+lCl

− DRm
+ i + EPVsRm

+ id
.

s21d

C. Final equations and comments

If Rm
+ is a bielectronic operator,Hi,Rm

+ i =Hm and the
eigenequation relative toFi will be

fDi − EPVsidgCi + Hi0 + o
jPS1

HijCj

+ o
k

Tk
+

FiÞ0

H0kCkCiSDi − EPVsid + Dk − EPVskd
Di+k − EPVsi + kd

− 1D
+ o

km,nl

Tm
+ Tn

+
F0=Tk

+Ti
+

F0

8 H0kCmCn

3SDm − EPVsmd + Dn − EPVsnd
Di+k − EPVsi + kd D

+ o
m

Rm
+

F0=0

Hm
2 Ci

− DRm
+ i + EPVsRm

+ id

+ o
kn,ll

Rn
+Tl

+
F0=Rm

+ Ti
+

F0

8
HmHnCl

− DRm
+ i + EPVsRm

+ id
= 0. s22d

This will be our basic equation. It is somewhat related to the
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usual coupled cluster equations. The similarity and differ-
ences appear clearly if ones considers the case of a self-
consistent fieldF0. Then the vectors of the first generation
are all the Doubles, hence the method should be compared to
a coupled clustered Doubles(CCD) expansion. The differ-
ences are the following:

(i) The effect of the quadruples in CCD does not take
care of possible deviations from the additivity of the denomi-
nators and the sum overk reduces to

o
k

Tk
+

FiÞ0

CkCi + o
km,nl

Tm
+ Tn

+
F0=Tk

+Ti
+

F0

8 CmCn. s23d

We take into account the deviation from additivity of energy
denominators.

(ii ) We take care of the coupling with the Singles and
Triples through the last summation. Hence our method would
be similar to a CCD(S,T).

(iii ) Our (semi) perturbative treatment of the Singles and
Triples includes EPV corrections in the energy denominators.
These corrections also appear in the effect of deviations from
additivity of multiple excitation energies. Most of these ef-
fects were considered in previous works,20,21which were ex-
pressed in an intermediate Hamiltonian formalism, requiring
an iterative dressing of small matrices. The set of coupled
nonlinear equations[Eq. (22)] is much clearer.

III. APPLICATIONS TO PERIODIC 1D AND 2D SPIN
LATTICES

As will be shown in this section the method is of an
extreme simplicity when applied

(i) To periodic lattices of spins(and electrons22,23),
(ii ) Ruled by model Hamiltonians which only introduce

short range interactions(usually between nearest-neighbor
atoms),

(iii ) Provided that one starts from a strongly localized
wave function, product of atomic or bond orbitals.
The usual implementation of the coupled cluster method are
governed by a hierarchy of excitations. They introduce for
instance all single and double excitations. Here we adopt a
different strategy, since we follow the genealogy of the gen-
eration ofC0 from F0 under the successive applications of
H. Due to the localized character ofF0 and the short range
nature of the operator inH, the first-generation vectors will
involve short range excitations only, and in periodic systems
one has a limited number of types of first-generation excita-
tions. Under these conditions the number of coefficients to
determine is extremely reduced, and their values are obtained
by solving a set of coupled polynomial equations, which may
be done on a pocket calculator. We shall take a few examples
illustrating the method and its performances, comparing the
so-calculated values to the exact(or highly accurate) ones.
Section III A will illustrate the derivation of the SCP equa-
tions for simple lattices, and will compare the resulting co-
hesive energies to benchmarks values. Section II B will em-
ploy the SCP method to study two phase transition
phenomena taking place in 2D lattices.

A. Cohesive energy of simple spin lattices

The ruling Hamiltonian will introduce only nearest-
neighbor interactions

H = o
ki,jl

2JsSiSj − 1/4d, s24d

between adjacent atoms. This Hamiltonian puts to zero the
energy of the upper multiplet

1. 1D chain from Néel

If all bonds are equal, takingF0 as the Néel function(spin
alternation between adjacent atoms), the zero order energy
per atom isEcoh

s0d =−J. There is only one type of vectors inS1,
the one obtained from a spin exchangeTi

+ on

a bond i, of coefficient C, coupled byJ with F0sHi0=Jd
hence

Ecoh= − Js1 − Cd,

Hii − H00 = Di = 2J,

EPVsid = 3CJ. s25d

A simple second-order estimate of the energy would lead to
C=−1/2, Ecoh

s2d =−1.5J, much larger than the exact

value Ecoh
exact=−2J ln 2=−1.386J. Including the EVP’s in the

denominator would give

s2J − 3CJdC + J = 0,

3C2 − 2C − 1 = 0,

C = − 1/3,

Ecoh8s2d = − 1.333J, s26d

which is already a better estimate. There is no coupling be-
tween the vectorsFi and F j PS1. The second generation
vectors are obtained by two spin exchanges on bondsi andk.
If the bonds i and k are far the doubly excited vectors
Tk

+Ti
+F0 have a coefficientCi+k=CiCk since

(i) There is no other couple of first-generation excitation
Tm

+Tn
+F0=Tk

+Ti
+F0,

(ii ) The excitation energies are additive.
The only exceptions concern the double exchangesTh

+Ti
+ and

Ti
+Tk

+, on second-neighbor bonds. For themDi+k=2J, EVPsi
+kd=5CJ. Their coefficient can be evaluated according to
[Eq. (18)] as
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Ci+k = 2C2S2J − 3CJ

2J − 5CJ
D , s27d

and the final equation is

s2 − 3CdC + 1 + 2C2S4 − 6C − 2 + 5C

2 − 5C
D = 0,

− 3C2 + 2C + 1 + 2C2S 2 − C

2 − 5C
D = 0. s28d

Its solution isC=−0.3751 henceEcoh=−1.3751J, which de-
viates by 0.8% from the exact value −1.3862J=2J ln 2.

2. 2D square lattice from Néel

Here,Ecoh
s0d =−2J, Ecoh=−2Js1+Cd, whereC is the coeffi-

cient relative to a spin exchange on a bond. HereDi =Hii
−H00=6J, EPVsid=7CJ. The coefficients of the doubly spin
exchanged vectors areCkCi, except for the following:

(i) Spin exchanges on the same plaquette. There are two
such double excitations for a bondi.

(ii ) Spin exchanges on other second-neighbor bonds[the
number of which is 14 for a given bonds5di].
The final equation is

s6 − 7CdC + 1 + 2C2S16 − 16C

8 − 12C
D + 14C2S 2 − C

10 − 13C
D = 0,

s29d

the solution of which isC=−0.16327,Ecoh=−2.3265J to be
compared with the best Monte Carlo estimate −2.3386J. The
error is 0.51%. Our estimate may be compared with classical
CC evaluations24,25 which give

−2.2970J with two-body operators,
−2.3274J with four-body operators,
−2.3340J with six-body operators,
−2.3364J with eighth-body operators.
The use of many-body operators makes the algorithm

much more complex. Our results is a modified two-body
method, which provides the same accuracy as handling four-
body operators. The same accuracy is obtained for aniso-
tropic Hamiltonian.

B. Identification of phase transitions

This section illustrates the ability of the(SCPE) method
to locate the critical values of physical interactions at which
phase transition occurs. Two examples will be considered,
both concerning 2D lattices. In all cases a relevant reference
function F0 is selected for each phase, from physical argu-
ments. The SCP equations are established, leading to an
evaluation of the cohesive energy for the corresponding
phase. The step-by-step derivation of these equations in not
given, and the equations are reported in the Appendix. The
intersection of the cohesive energy curves as functions of the
structural parameter enables us to give a reasonable estimate
of the critical value of the parameters.

1. Anisotropic Heisenberg Hamiltonian for the 2D square lattice

The anisotropic Hamiltonian may be written as

H = o
ki,jl

JslSz
i Sz

j + Sx
i Sx

j + Sy
i Sy

j d. s30d

For a 2D square lattice and forl,−1 the ground state is
ferromagnetic, all sites bearing parallel spins. Forl=−1 the
ferromagnetic state is degenerate with the pureXY solution,
in which the bonded atoms bear alternativelysa+bd and
sa−bd spins. This distribution defines a reference function
F0 which will be relevant for the −1ølø1 domain. For
lù1 the wave function can be generated from the Néel
function F08 in which adjacent atoms bear different spins.
When l tends to infinity the system becomes IsingsC0

→F08d. The phase transition between theXY supported and
the Néel supported phase takes place for the isotropic lattice
sl=1d. Besides analytic series expansions26–29 accurate cal-
culations on this problem have been performed according to
various techniques, among which one may quote

(i) Quantum Monte Carlo calculations,30–38

(ii ) Real space renormalization group with effective
interactions,39

(iii ) Coupled cluster expansions,24,25

(iv) Dressed cluster method(DCM).39

The two first techniques do not introduce any reference func-
tion F0. The two last ones imply a choice of such reference
functions either as a zero-order function for the coupled clus-
ter method, or as a bath in which a finite cluster is embedded
in the DCM. Our approach belongs to the same family. The
equations derived fromF0=F0

XY or from F08=F0
Néel are

given in Appendix A. One may see that they coincide for
l=1, which appears as the critical value of the parameter.
Figure 2 and Table I give the evolution of the cohesive en-
ergy E0 andE08 calculated from both references and a com-
parison with the most accurate results. One sees

(i) That the derivatives of the energies inl=1 are not
identical

S ]E

]l
D

l→1

−

= S ]E0

]l
D

l=1
Þ S ]E08

]l
D

l=1
= S ]E

]l
D

1←l

+

, s31d

which confirms the first-order character of the phase transi-
tion,

(ii ) The agreement of the here-calculated cohesive ener-
gies with the best(QMC) calculations in good, the error
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being lower than 1% in the −1,l,` domain.

2. 1/5-depleted square lattice

The 1/5-depleted square lattice has received interest in
the context of the study of a real material, namely, the
CaV2O4 lattice. Precise studies of that material indicated that
second-neighbor interactions have to be considered. Never-
theless the physics of the simple lattice, built of plaquettes
and octogons, or of plaquettes connected by bonds(cf. Fig.
3), appeared interesting by itself. There are two types of spin
interactions, namely, in the plaquettesJpd and in the bonds

between the plaquettessJdd. Early studies did not give evi-
dence of phase transitions, but perturbative expansions40 and
quantum Monte Carlo calculations41 indicate the existence of
three phases, namely, a gapped plaquette phase for
Jp/Jd.1.05−1.10, a gapped dimer phase forJp/Jd,0.65
and a gapless Néel-type phase in the intermediate regime.
We have reexamined this problem with the SCP equations
starting from three different referencesF0, namely,

(i) A product of bond singlets on the interplaquette bonds
which is expected to be relevant in theJp/Jd,1 regime,

(ii ) The Néel function, which should be valid in theJp
,Jd region,

(iii ) A product of bond Singlets on intraplaquette bonds,
relevant in theJp.Jd regime.
The corresponding equations are given in Appendix B. The
results appear in Fig. 4. One should remark that our SCP
equations never diverge, even when applied in paradoxical
regimes, for instance when one enters in theJp!Jd regime
from interplaquette bonds. The expansion from Néel tends to

FIG. 2. 2D square anisotropic spin lattice, evolution of the co-
hesive energy as a function of the anisotropy parameterl. (s)
QMC (Ref. 38), SCP results:(…) from XY F0, (-) from NéelF08.
The thick symbols identify the relevant domains fromF0 andF08,
respectively.

TABLE I. Cohesive energy of the anisotropic 2D lattice.

l SCPsXYd SCP(Néel) QMC (Ref. 38)

0 −0.54672 −0.54882

0.1 −0.55564 −0.55681

0.25 −0.57024 −0.57142

0.33333 −0.57892 −0.57926

0.5 −0.59777 −0.59832

0.6 −0.60965 −0.60958

0.75 −0.62885 −0.63017

0.875 −0.64557 −0.64848

0.9375 −0.64196 −0.65846

0.96875 −0.65264 −0.66396

1 −0.66327 −0.66327 −0.66944

1.02040 −0.67061 −0.67612

1.11111 −0.70330 −0.70722

1.2 −0.73727 −0.73920

1.25 −0.75696 −0.75862

1.5 −0.86046 −0.86100

1.75 −0.96989 −0.96965

2 −1.08314 −1.08220

FIG. 3. The 1/5-depleted 2D square lattice.

FIG. 4. 1/5-depleted 2D square lattice. Evolution of the cohe-
sive energy as a function of theJp/ sJp+Jdd ratio according to the
SCP method.(--) from interplaquette bond SingletsF0, (…) from
Néel F08, and (—) from plaquette SingletsF09. The thick symbols
identify the relevant domains from the various reference functions.
The arrows indicate the phase transition critical values.
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an erroneous(−2J instead of −1.5J) value forJd=0 (isolated
plaquettes). Using the perturbative evaluation of the coeffi-
cient of the doubly permuted vectors[Eq. (17) instead of Eq.
(18)], one reaches the correct asymptotic value forJd=0.
One must concentrate on the estimates of the cohesive en-
ergy in the relevant domains. As seen from Fig. 4 one notices
the existence of three phases:

(i) A dimer phase forJp/Jd,0.6563,
(ii ) A Néel-order phase for 0.65,Jp/Jd,1.0105,
(iii ) A plaquette phase forJp/Jd.1.0105.

Using Eq.(17) instead of Eq.(18), the critical ratios remain
almost identical. The method confirms the existence of these
three phases and the calculated critical values of theJp/Jd
ratios are in good agreement with previously mentioned
estimates.

IV. DISCUSSION AND CONCLUSION

The here presented method is based on perturbative ex-
pansion of the wave function but it is not strictly perturba-
tive. It is perturbative in the sense that it follows a genea-
logic generation of the wave function and that it uses(or
refers to) pertubative estimates of the coefficients of the sec-
ond generation vectors.

But it is not perturbative in the sense that the coefficients
of the first generation vectors are obtained by solving a set of
coupled polynomial equations. It may compared to the
coupled cluster method[and in particular to a CCD(S,T) ver-
sion] from which it differs by the consideration of possible
deviations from additivity of multiple-excitation energies
and by the introduction of EPV corrections in energy de-
nominators.

Although perfectly applicable toab initio calculations, the

method has been essentially designed for the study of peri-
odic lattices and model Hamiltonians. In such cases, starting
from strongly localized zero-order pictures, the method is
analytical, it leads to simple polynomial expressions, intro-
ducing a very limited number of variables(one per type of
bond in most cases), which can be solved on a pocket calcu-
lator. The accuracy of such a simple method is surprising, as
illustrated above. It provides an elegant exploratory tool for
the study of spin periodic lattices. The present work has
shown that the method may be employed to identify phase
transitions. The method is of course applicable to Hubbard
Hamiltonians, whose exact solutions are not known(except
for the 1D regular chain) and to 2D or 3D lattices. Since the
method only explores the physics around a given bond(up to
six bonds in each direction) it may lead to some stimulating
qualitative discussions to assess what is local, regional, and
properly collective in the cohesive energy of delocalized
systems.22,23 Further work will study the spin-Peierls distor-
tions. The present method essentially furnishes an estimate
of the ground-state energy. It may also provide short range
correlation functions. The localized character ofF0 and the
fact that the excitation processes playing a role in the low-
order processes only concern a few bonds prevent to give
estimates of the correlation beyond this limit. The related
coupled cluster formalism has led to specific methods for the
evaluation of spectra, namely, the equation of motion
coupled cluster algorithm.42 Future works will analyze
the possibility of such an extension in the frame of our de-
velopment.
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APPENDIX A

SCP equations for the anisotropic 2D square lattice[Eq. (30)]
(1) Equation from Néel

s6lJ − 7JCdC + J + 2JF2S12lJ − 14JC

8lJ − 12JC
D − 1GC2 + 14JF12lJ − 14JC

10lJ − 13JC
− 1GC2 = 0, sA1d

Ecoh= JSC −
l

2
D . sA2d

(2) Equation fromXY

F6J −
7J

2
s1 + ldCGC +

J

2
s1 + ld + 2JF2S12J − 7Js1 + ldC

8J − 6Js1 + ldC D − 1GC2

+ 14J3 12J − 7Js1 + ldC

10J −
13J

2
s1 + ldC

− 14C2 −
J2s1 − ld2C

2FJ −
J

2
s1 + ldCG −

J2s1 − ld2C

8FJ −
J

2
s1 + ldCG = 0, sA3d

Ecoh=
J

2
fs1 + ldC − 1g. sA4d
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APPENDIX B

SCP equations for the 1/5-depleted 2D square lattice withJp=s1+dd andJd=s1−dd
(1) Equation from interplaquette bond singlets

F4s1 − dd −
5

6
s1 + dd −

7Î3

2
s1 + ddCGC +

Î3

2
s1 + dd −

15s1 + dd2C

4s1 − dd −
9Î3

2
s1 + ddC

= 0, sB1d

Ecoh=
1

2
F−

3

2
+

d

2
+

Î3

2
s1 + ddCG . sB2d

(2) Equations from Néel function. The coefficientC (resp.C8) is relative to the spin exchange in the plaquette(resp.
between the plaquettes)

f4 − 3s1 + ddC − 2s1 − ddC8gC + s1 + dd + s1 + dd

3F2
8 − 6s1 + ddC − 4s1 − ddC8

4s1 − dd − 4s1 − ddC8 − 4s1 + ddC
− 1G

3C24s1 − ddF 8 − 6s1 + ddC − 4s1 − ddC8

4s1 + dd + 2s1 − dd − 4s1 + ddC − 3s1 − ddC8
− 1GC2 + 2s1 + dd

3F 4 + 4s1 + dd − 7s1 + ddC − 3s1 − ddC8

4s1 + dd + 2s1 − dd − 4s1 + ddC − 3s1 − ddC8
− 1GCC8 = 0, sB3d

f4s1 + dd − 4s1 + ddC − s1 − ddC8gC8 + s1 − dd + 4s1 + ddF 4 + 4s1 + dd − 7s1 + ddC − 3s1 − ddC8

4s1 + dd + 2s1 − dd − 4s1 + ddC − 3s1 − ddC8
− 1G

3CC84s1 + ddF8s1 + dd − 8s1 + ddC − 2s1 − ddC8

6s1 + dd − 6s1 + ddC − 2s1 − ddC8
− 1GC82 = 0, sB4d

Ecoh=
1

2
F−

3

2
−

d

2
+ s1 + ddC +

1

2
s1 − ddC8G . sB5d

s3d Equations from intraplaquette bond Singlets.C andC8 concern, respectively, intra- and inter-plaquette diexcitations

f2s1 + dd − 2Î3s1 − ddC8 + s1 + ddCgC + Î3s1 + dd +

2Î3s1 − ddFÎ3

2
s1 − ddC + Î3s1 + ddC8G

− 4s1 + dd + 2Î3fs1 − ddC8 + s1 + ddCg
= 0, sB6d

F19

6
s1 + dd −

3Î3

2
s1 − ddC8 − 2Î3s1 + ddCGC8 +

Î3

2
s1 − dd +

3s1 − dd2C8 + 2Î3s1 + ddFÎ3

2
s1 − ddC + Î3s1 + ddC8G

− 4s1 + dd + 2Î3fs1 − ddC8 + s1 + ddCg

= 0, sB7d

Ecoh=
1

2
F−

3

2
− d +

Î3

4
fs1 + ddC + s1 − ddC8gG . sB8d
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