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This work presents a simple formalism which proposes an estimate of the ground-state energy from a single
reference function. It is based on a perturbative expansion but leads to nonlinear coupled equations. It can be
viewed as well as a modified coupled cluster formulation. Applied to a series of spin lattices governed by
model Hamiltonians the method leads to simple analytic solutions. The so-calculated cohesive energies are
surprisingly accurate. Two examples illustrate its applicability to locate phase transition.
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I. INTRODUCTION The method is applied to a few infinite periodic spin lattices
governed by Heisenberg Hamiltonians which only consider
The quantum many-body problem has been perfectlyyeractions between nearest neighbors. In these problems if
clarified a long time ago for the single-reference approachesy| honds are identical, the solutions of our self-consistent
Its logics is given by the linked cluster theorém,which perturbative(SCP method lead to simple polynomial equa-
relies on a perturbative expansion and its diagrammatic rejons. The results, compared to the exact solutions, are of

resentation. A panoply of computational methods satisfyingyrprising quality. The method is then employed to identify
the basic size-consistency requirements are available. One Bﬁase transitions in two different two-dimension@D)

them is the Moller-Plesset order-by-order perturbativepromem&

expansioft which suffers from its slow convergen¢and in

some cases high-order divergerige©ther methods lead to

nonlinear equations coupling the coefficients of the vectors Il. FORMALISM
which are singly or doubly excited with respect to the single A. Generalities

referenced,. Among them one may quote the coupled elec- . )
tron pair approximatiofCEPA) formalisnf~8 which elimi- Let us calld, a suitable single reference supposed to be a

nates unlinked diagrams from a singles and doubles configd€/€vant approximation to the ground state of the system

ration interaction(SDCI) and introduces part din CEPA-2 ~ governed by an HamiltoniaA and®, vectors orthogonal to

(Refs. 7 and § or all [in the self-consistent size-consistent Po- In the intermediate normalization

(SO? SDCI version(Ref. 9] of the exclusion principle vio-

lating (EPV) diagrams. The coupled cluster methgdCM ‘I'0=q>0+E Crn®Prm, (1)

(Refs. 10-1% has a better standard since it is an elegant and m

generalizable formalism. This method gives an exponentiglye exact energy is given by the eigenequation relativego

structure to the wave operatér which transforms a refer- (Do|H-E[¥)=0

ence function®, in the exact solution¥,, ¥y=Qd, Q

=expS). In practice,Sis limited to a certain set of excita-

tions. The simplest version, callé@CSD), introduces single

and double excitations on the top @ and takes into ac-

count the connected effect of the quadruples. It does nQNhereHij=<d>i|H|<Dj>. The Hamiltonians are at most bielec-

correctly treat the effect of the triples, which has to be incorronic. One may callh, and h, the monoelectronic and

porated perturbatively in the CC$D) formalism!4 _ bielectronic parts of the HamiltoniaH=h,+h,. One may
The present work returns to a low-order semiperturbativgapelm,n... (holeg the monoelectronic function occupied in

development fromb,,. It leads to a system of equations fix- ¢ andr,s... (particleg those which are not occupied iy,

ing the coefficients of the singly and doubly excited vectors, | the following we shall refer to an Epstein-Nestet’

E:Hoo*'E HoCis 2
k

which . . zero-order Hamiltonian which is the diagonal part of the
(i) Does not require to assume an exponential structure ofjamiltonian in the basis of theN-electronic vectors
the wave operator, (D, .. Dy, .}
(i) Introduces the effect of deviations from additivity of
excitation energiegdeviations which is implicitly supposed Ho = O MNP IHIP. WD 3
to be negligible in CCSR and 0 %' (P[P (D @

(iii) Introduces some high-order effects through EPV cor-
rections to the excitation energies. The perturbation operatdr
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V:H—Ho (4) Rzl—z |(I)|><(I)||_T, (10)
|

is zero diagonal in this basis
is the sum of all the operators changing one or two mono-

V=, E’|cpi><(pi||-||cpj><(pj|_ (5) electronic functions which are different froff), operators.
i Notice that(R'.®¢|H|®y)=0. With the Hamiltonians consid-

o . . L ered hereafter the second generation vecigysire either of
The Hamiltonian being at most bielectronic, it appears fromtyloe 1 or of type 2, i.e., are generated either as
Eg. (2) that the knowledge of the coefficient of the singly B

and doubly excited vectors which interact wilky, is suffi- O, =T/ TD, (type )
cient to give the ground-state energy. We shall call first gen-
erationS; the set of vector; interacting withd,, oras

D, =R T o (type 2
as pictured in Fig. 1.

S, ={®i}, (Pj|H|Dg) # 0,

andT; the operators creating the vectabs from @,
B. Evaluation of the coefficients of second generation vectors
®; = T{ Do Regarding thevectors of type 1the operatord, are in
general possible o;, but some of them are impossible
(Ty®;=0). Let us call EPVi) (exclusion principle violating

T =ala,[1-6(r|h,a))] (6) correction the quantity
or EPV()= X HoCu. (11
k

These operators may be written as

T = a/agapa[ 1 - d((rs|hzlab))], ) T =0

wheres is the Kroneker symbol. The coefficients of the first Noting that if ®,=T®;, and if T, is a double excitation
generation vectors can be estimated from the eigenequatiofif«=Hoi Introducing Eq(11), Eq. (8) can be written

lative to them. Fob; th tioRd;|H-E[¥y=0 b .
relative to them. Fob; the equatioq®d;| |¥)=0 can be [Hy - Hoo— EPVNIC, + Hio+ S H, C,

written using Eq(2) as jes
(Hii = Hoo= 2 HoCCi + Hig+ > H;C; + > Hi.C,=0. + 2 HOk(CTEtbi -GGy
k jes; aes k
(8) Te®;#0
To determine the coefficients; of the first generation vec- > <(Di|H|qu)i>CRr+n‘I’i =0. (12)

tors, it is sufficient to have an estimate of the coefficient of m

vectors®,, of the second generation, i.e., those which inter- R ¢Sy

act with the vectors osl. Among thel vc_actor@a beIonging A first-order evaluation of C, is of course the
to the second generation one may distinguish those which aggpstein-Nesbét-17 one

obtained from®; by the actions of operatofE; possible on

®, (type 1, and the others which are obtained fraby by Ci =Hig/(Hgo— Hii)- (13
+ A 1+
operatorsRy, different from theTg™ (type 2. | _Introducing EPV corrections in the energy denominator
If one callsT the sum of the operator§, and of their _
adjoints Ci = Hio/[Hoo— Hji + EPM()], (14
S (T incorporates an infinite summation of diagrath$? One
T= - T+ Ti) © may use a second-order perturbation theory to evaluate the
coefﬁcientsCT;q,i and CR;1 @,
the operatorfR The vector of type 1T, ®;=T, &, =T, TP, can also be
reached from®, by other sets of excitations, T, @, (cf.
(type 1) (type 2) Fig. 1). The second-order expansion of the wave function
. , tells us
Second generation - Dy T+ D,
i k + + ’
}2/ mm/ \R,. C HoCi + HgiCye . E(mﬂ) (HonCn + HonCrn)
i i $ & b, & @ g = ,
First generation { T 4 " l T Hoo = Hiskisk Hoo = Hiskisk
TZ T (15)
Reference By
FIG. 1. lllustration of the genealogic generatiomi§ from the ~ Where Hi+k,i+k:<¢)T§¢i|H|q’T;<Di> and 2., runs on the
reference functiorib,. couplesT, T, ®,=T, T, ®, but different from the couplék.
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An infinite summation of diagrams would lead to the intro- HoC+HCo+ S (HuC.+H.C
duction of an EPV correction in the energy denominator Crog. = Ok T T0i -k 2<m,n>( omCn *+ HonCr)
ki HOO_ Hi+k,i+k+ EPV(| + k)
EPV(i+k = >  HuC, (16) 17)
|
T D=0 Now taking benefit o[Eq.(14)_] i.g., replacingH,; (and_HOK)
by productsC[Hgo—H;i +EPVi)] in Eqg. (17) one obtains an

and to replacégo—Hiuyisk BY Hoo~Hisk ik EPMi+K). expression closer to the CC expansion

Hoo = Hii + EPM() + Hoo — Hige + EPM(K) ' Hoo~ Hmm+ EPM(M) + Hoo — Hyn + EPM(N)
Crta, = CiC . T EPV + 2'CaCa .
00~ Hiki+k (i+Kk) (mn) Hoo = Hiskisk + EPV(i +K)
(18)
The CC theory writes
Cria,= GGt 2 CrCy, (19
(m;n)

which ignores the possible deviation of the energy denominators from additivity, i.e., asblygies;.y+x=Hoo—Hii+Hoo
—Hy Using the compact notatiofy; =—Hgo+ Hjj, Ajx=—Hgo+Hik i+ ONE obtains

> GGy

(m,n)

ot ot
T Tn®o=T T Po

= A+ EPV(i) = A + EPV(K) ) .\

(— A+ EPV(M) = A, + EPV(n)
- A+ EPVi +k)

- A+ EPV(i + k) ) - (20

CT;cpi -GCy= Cick(

Notice that if there is only one route to creabg=®;,, from [A - EPV()]C, + Hi+ > H;C;
@, the last sum disappears. If the excitation energizen- ' I e
tually including EPV’g are additive, the full term vanishes in

agreement with the cancellation of disconnected diagrams. + > HOkaCi<
This will be the case in the applications to spin lattices with K
nearest-neighbor interactions when excitatishand T, will

A~ EPV(i) + A - EPV(K) )
Ajy— EPMI +K)

Tr®;#0
concern remote bonds. “
Regarding thevectors of type2the operatorsR’ (#T*) + > HuCnCh
which lead from®; to R} ®@; have to be treated perturbatively (m,n)
as follows. Analogous to Eq17) one obtains T T b=TET D
" ( A= EPV(M) + A, - EPV(n))
Cota, = Hi'R:.ﬂiCi + ’ Hl'R;|C| Ai+k_ EPV(l + k)
R ™ — Ags; + EPV(RY) an  ~Ar+EPV(RY) ' H2C.
m + E mvi
Ri®|=R ®; —Agr + EPV(R]
m R le)
(22) RT®=0
, HH.C
| | + E m' 'n'~I — = (22)
C. Final equations and comments oh - ARH + EPV(RY)
If Ry is a bielectronic operatorH;g+i=Hy and the RATI 0=RnTi Po
eigenequation relative t®; will be This will be our basic equation. It is somewhat related to the
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usual coupled cluster equations. The similarity and differ- A. Cohesive energy of simple spin lattices
ences appear clearly if ones considers the case of a self- The ruling Hamiltonian will introduce only nearest-
consistent fieldb,. Then the vectors of the first generation .. : :
neighbor interactions

are all the Doubles, hence the method should be compared to
a coupled clustered Doublg€CD) expansion. The differ- H= 23 —1/4 24
ences are the following: (IED S ) 24

(i) The effect of the quadruples in CCD does not take _ _ o
care of possible deviations from the additivity of the denomi-between adjacent atoms. This Hamiltonian puts to zero the

nators and the sum ovérreduces to energy of the upper multiplet
> CCi+ > C.Ch. (23 1. 1D chain from Néel
k X . p . .
. . (m_n>+ . If all bonds are equal, takind, as the Néel functiospin
Te®i70 TmTn®o=TicTi Po alternation between adjacent atomthe zero order energy
We take into account the deviation from additivity of energy per atom isE(C%)h= -J. There is only one type of vectors 8,
denominators. the one obtained from a spin excharfjeon
(i) We take care of the coupling with the Singles and 7 ! 1 ! 1 !

Triples through the last summation. Hence our method would Do
be similar to a CCE5,T).

(iii) Our (semj perturbative treatment of the Singles anda bondi, of coefficientC, coupled byJ with ®y(H;q=J)
Triples includes EPV corrections in the energy denominatorsaence

These corrections also appear in the effect of deviations from

i

additivity of multiple excitation energies. Most of these ef- Econ=—J(1-0C),
fects were considered in previous woRglwhich were ex-
pressed in an intermediate Hamiltonian formalism, requiring Hi - Hoo=A; = 2J

an iterative dressing of small matrices. The set of coupled
nonlinear equationfEq. (22)] is much clearer.

EPW(i) = 3CJ. (25
A simple second-order estimate of the energy would lead to
Ill. APPLICATIONS TO PERIODIC 1D AND 2D SPIN C=-1/2, Eg))h:—l_a], much larger than the exact
LATTICES

1 L, | I 1 L5,

As will be shown in this section the method is of an g N i 3 k ¢
extreme simplicity when applied ) .

(i) To periodic lattices of spingand electrori®23, value Egi°=-2]1In 2=-1.38@. Including the EVP’s in the

(i) Ruled by model Hamiltonians which only introduce denominator would give
short range interaction@usually between nearest-neighbor (2J-3CHC+I=0,

atomg,
(iii) Provided that one starts from a strongly localized
wave function, product of atomic or bond orbitals. 3C?-2C-1=0,
The usual implementation of the coupled cluster method are
governed by a hierarchy of excitations. They introduce for C=-1/3,

instance all single and double excitations. Here we adopt a
different strategy, since we follow the genealogy of the gen-
eration of Wy from &, under the successive applications of

H. Due to the localized character df and the short range \ich is already a better estimate. There is no coupling be-
nature of the operator iR, the first-generation vectors will tween the vectorsb, and @ e S,. The second generation
i j .

involve short range excitations only, and in periodic systemgactors are obtained by two spin exchanges on boadsik.
one has a limited number of types of first-generation excitajs ine pondsi and k are far the doubly excited vectors
tions. Under these conditions the number of coefficients t0|-+-|-_+q)o have a coefficien€,,, = C,C, since

I | I

determine is extremely reduced, and their values are obtained (i) There is no other couple of first-generation excitation
by solving a set of coupled polynomial equations, which mayr+r+g -1+
be done on a pocket calculator. We shall take a few examples™ 2\ o K1 =0

. ; . ) (i) The excitation energies are additive.
illustrating the method and its performances, comparing thg,o only exceptions concern the double excharigds and
so-calculated values to the exdor highly accuratgones.

; o LS T'T,, on second-neighbor bonds. For them,=2J, EVP(i
Section Il A will illustrate the derivation of the SCP equa- +Ik)k:50J Their coe?ficient can be evaluatéd accordFi)(ng to
tions for simple lattices, and will compare the resulting co- ‘

hesive energies to benchmarks values. Section Il B will em—[Eq' (18] as

ploy the SCP method to study two phase transition 1,1 il 1 1, 1
phenomena taking place in 2D lattices. ! i k !

E.2) =-1.333, (26)
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co= 2C2<2J‘_3CJ) 27)
T\ 23-5C3)"
and the final equation is
(2_3c)C+1+2c2<w>—0
2-5C o
2-C
—3C2+2C+1+2C2< )zo. (28)
2-5C

Its solution isC=-0.3751 hencé&.,,=—1.3751, which de-
viates by 0.8% from the exact value —1.3862J In 2.

2. 2D square lattice from Néel
Here,E% =-2J, E.,,=-2J(1+C), whereC is the coeffi-

h
cient relat(isle to a spin exchange on a bond. HareH;
—Hgo=6J, EPMUi)=7CJ. The coefficients of the doubly spin
exchanged vectors a@.C;, except for the following:
(i) Spin exchanges on the same plaquette. There are

such double excitations for a bomnd

(i) Spin exchanges on other second-neighbor bgtits
number of which is 14 for a given bond5)i].
The final equation is
2-C )
_— - =0'
10-1C
(29)

the solution of which iSC=-0.16327 E_.,,=-2.3269 to be
compared with the best Monte Carlo estimate —2.3386e

16 - 16C
(6-7C)C+1+ zcz(—) + 14(:2(
8-1X

error is 0.51%. Our estimate may be compared with classic

CC evaluation® 2> which give
—-2.297@ with two-body operators,
—2.3274 with four-body operators,
—2.334Q with six-body operators,
-2.3364 with eighth-body operators.

tw
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B. Identification of phase transitions

This section illustrates the ability of th&&CPB method
to locate the critical values of physical interactions at which
phase transition occurs. Two examples will be considered,
both concerning 2D lattices. In all cases a relevant reference
function @, is selected for each phase, from physical argu-
ments. The SCP equations are established, leading to an
evaluation of the cohesive energy for the corresponding
phase. The step-by-step derivation of these equations in not
given, and the equations are reported in the Appendix. The
intersection of the cohesive energy curves as functions of the
structural parameter enables us to give a reasonable estimate
of the critical value of the parameters.

1. Anisotropic Heisenberg Hamiltonian for the 2D square lattice

The anisotropic Hamiltonian may be written as
H =<Z_>J(>\Sz%+$§x+s\/§v)-
)

|90r a 2D square lattice and far<-1 the ground state is
ferromagnetic, all sites bearing parallel spins. ker—1 the
ferromagnetic state is degenerate with the pXivesolution,
in which the bonded atoms bear alternativély+ ) and
(a—pB) spins. This distribution defines a reference function
@, which will be relevant for the —&X=<1 domain. For
A=1 the wave function can be generated from the Néel
function @ in which adjacent atoms bear different spins.
When A tends to infinity the system becomes Isid,
—®(). The phase transition between tK& supported and
the Néel supported phase takes place for the isotropic lattice
(A=1). Besides analytic series expansi#n&’ accurate cal-
culations on this problem have been performed according to
various techniques, among which one may quote

(i) Quantum Monte Carlo calculatiod;38

(i) Real space renormalization group with effective
interactions®®

(i) Coupled cluster expansiof$2®

(iv) Dressed cluster methag@®CM).3°
The two first techniques do not introduce any reference func-
tion ®,. The two last ones imply a choice of such reference
functions either as a zero-order function for the coupled clus-
ter method, or as a bath in which a finite cluster is embedded
in the DCM. Our approach belongs to the same family. The
equations derived fromby=®%" or from & =D} are
given in Appendix A. One may see that they coincide for
N=1, which appears as the critical value of the parameter.
Figure 2 and Table | give the evolution of the cohesive en-
£ray Eo and E; calculated from both references and a com-
parison with the most accurate results. One sees

(i) That the derivatives of the energies =1 are not
identical

TN & R N9
N y_r NN e N Jyer VoM 1y

(30)

(31

The use of many-body operators makes the algorithm
much more complex. Our results is a modified two-bodywhich confirms the first-order character of the phase transi-
method, which provides the same accuracy as handling foution,
body operators. The same accuracy is obtained for aniso- (ii) The agreement of the here-calculated cohesive ener-
tropic Hamiltonian. gies with the bes{QMC) calculations in good, the error
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FIG. 3. The 1/5-depleted 2D square lattice.

FIG. 2. 2D square anisotropic spin lattice, evolution of the co-
hesive energy as a function of the anisotropy parameteiO) between the plaquettddy). Early studies did not give evi-
QMC (Ref. 38, SCP results(...) from XY ®q, (-) from Néeld;.  dence of phase transitions, but perturbative expanams
The thick symbols identify the relevant domains frapg and®,,  quantum Monte Carlo calculatioHdndicate the existence of

respectively. three phases, namely, a gapped plaquette phase for
Jp/J¢4>1.05-1.10, a gapped dimer phase fiy/J;<0.65
being lower than 1% in the <& \ < domain. and a gapless Néel-type phase in the intermediate regime.

We have reexamined this problem with the SCP equations
starting from three different referencés, namely,
(i) A product of bond singlets on the interplaquette bonds
The 1/5-depleted square lattice has received interest ifyhich is expected to be relevant in tig/ J4<1 regime,
the context of the study of a real material, namely, the (ii) The Néel function, which should be valid in thig
CaV,0, lattice. Precise studies of that material indicated that- J, region,
second-neighbor interactions have to be considered. Never- (jii) A product of bond Singlets on intraplaquette bonds,
theless the physics of the simple lattice, built of plaquetteselevant in thel, > Jy regime.
and octogons, or of plaguettes connected by baotisFig.  The corresponding equations are given in Appendix B. The
3), appeared interesting by itself. There are two types of spifiesults appear in Fig. 4. One should remark that our SCP
interactions, namely, in the plaquett&, and in the bonds equations never diverge, even when applied in paradoxical
regimes, for instance when one enters in Jje Jy4 regime

2. 1/5-depleted square lattice

TABLE |. Cohesive energy of the anisotropic 2D lattice. from interplaquette bonds. The expansion from Néel tends to

Y SCRXY) SCRNéel) OMC (Ref. 3§ 06 : ,

0 -0.54672 -0.54882 sk i

0.1 -0.55564 -0.55681 L eI e 1
0.25 ~0.57024 ~0.57142 A== e R .
0.33333 -0.57892 -0.57926 r T N
05 -0.59777 -0.59832 12 ' ' ' 7
0.6 —-0.60965 —-0.60958 i | i
0.75 -0.62885 -0.63017 M .
0.875 —-0.64557 —-0.64848 Lol _
0.9375 —-0.64196 —-0.65846 L “
0.96875 -0.65264 -0.66396 ask | | | 1 .

1 -0.66327 ~0.66327 -0.66944 P e e
1.02040 ~0.67061 ~0.67612 T Y TR
1.11111 ©.70330 -0.70722 Jo+Ja

1.2 -o.73r21 ~0.73920 FIG. 4. 1/5-depleted 2D square lattice. Evolution of the cohe-
1.25 =0.75696 —0.75862 sive energy as a function of thi/(J,+Jy) ratio according to the
15 -0.86046 -0.86100 SCP method(--) from interplaquette bond Singlets,, (...) from
1.75 —-0.96989 -0.96965 Néel @/, and(—) from plaquette Singlet®g. The thick symbols

2 -1.08314 -1.08220 identify the relevant domains from the various reference functions.

The arrows indicate the phase transition critical values.
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an erroneousg-2J instead of —1.5) value forJy=0 (isolated = method has been essentially designed for the study of peri-
plaquettes Using the perturbative evaluation of the coeffi- odic lattices and model Hamiltonians. In such cases, starting
cient of the doubly permuted vectdigqg. (17) instead of Eq.  from strongly localized zero-order pictures, the method is
(18)], one reaches the correct asymptotic value Jgr0.  analytical, it leads to simple polynomial expressions, intro-
One must concentrate on the estimates of the cohesive educing a very limited number of variablg¢ene per type of
ergy in the relevant domains. As seen from Fig. 4 one noticebond in most casg@swhich can be solved on a pocket calcu-

the existence of three phases: lator. The accuracy of such a simple method is surprising, as
(i) A dimer phase fod,/J;<0.6563, illustrated above. It provides an elegant exploratory tool for
(i) A Néel-order phase for 0.65J,/J3<1.0105, the study of spin periodic lattices. The present work has
(iii) A plaquette phase fod,/J;>1.0105. shown that the method may be employed to identify phase

Using Eq.(17) instead of Eq(18), the critical ratios remain transitions. The method is of course applicable to Hubbard
almost identical. The method confirms the existence of thesklamiltonians, whose exact solutions are not kngexcept
three phases and the calculated critical values ofJjid;  for the 1D regular chainand to 2D or 3D lattices. Since the
ratios are in good agreement with previously mentionednethod only explores the physics around a given hoipdo
estimates. six bonds in each directigrit may lead to some stimulating
qualitative discussions to assess what is local, regional, and
properly collective in the cohesive energy of delocalized
IV. DISCUSSION AND CONCLUSION systemg223 Further work will study the spin-Peierls distor-

The here presented method is based on perturbative efons. The present method essentially furnishes an estimate
pansion of the wave function but it is not strictly perturba- of the ground-state energy. It may also provide short range
tive. It is perturbative in the sense that it follows a genea<orrelation functions. The localized characterdef and the
logic generation of the wave function and that it uges  fact that the excitation processes playing a role in the low-
refers tg pertubative estimates of the coefficients of the secorder processes only concern a few bonds prevent to give
ond generation vectors. estimates of the correlation beyond this limit. The related

But it is not perturbative in the sense that the coefficientFoupled cluster formalism has led to specific methods for the
of the first generation vectors are obtained by solving a set ofvaluation of spectra, namely, the equation of motion
coupled polynomial equations. It may compared to thecoupled cluster algorithif?. Future works will analyze
Coup|ed cluster meth@nd in particu'ar to a CCC$7T) ver- the pOSSIbIlIty of such an extension in the frame of our de-
sion] from which it differs by the consideration of possible Velopment.
deviations from additivity of multiple-excitation energies
and by the introduction of EPV corrections in energy de-
nominators. The authors thank D. Poilblanc and S. Capponi for helpful

Although perfectly applicable tab initio calculations, the  discussions.
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APPENDIX A

SCP equations for the anisotropic 2D square lattieg. (30)]
(1) Equation from Neéel

©- 13010 +3+22| o Iy ooyl 1II0C o )
8\J-12]C 10MJ - 131C T
A
Ewh:3<c— 5). (A2)
(2) Equation fromXY
7J J 12J-7J(1+N)C
(6B ncfor Ja e 2o 20E)
2 2 8J-6J(1+\)C
12J-7J(1+)N)C JA1-N)2C JA(1-)N)2C
+14) ( ) -1|Cc?- ( ) - ( ) =0, (A3)
137 J J
1Q]—7(1 +\)C 2 J_E(l +)\)CJ 8\‘\]—5(1 +)\)CJ
J
Econ= E[(l +\)C-1]. (A4)
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APPENDIX B

SCP equations for the 1/5-depleted 2D square lattice JyitH{1+6) and J4=(1-9)
(1) Equation from interplaquette bond singlets

[2 2 2
4(1—5)—§(1+5)—l23(1+5)c}c+§(1+5)— 11+9C 4 (B1)

9V3
4(1-6)- %(1 +8)C

1l 3 5 \3
Econ=z|—-o+-+—(1+ . B2
coh 2|: 2 2 2( 5)C:| ( )
(2) Equations from Néel function. The coefficieBt (resp.C’) is relative to the spin exchange in the plaquétesp.
between the plaquettes

[4-31+8)C-21-5)C'IC+(1+5+(1+0)

[ 8-6(1+8)C—-4(1-6C' ]
X -1
41-6)-MH1-8)C -4(1+6C

8- 6(1+8)C—4(1-5)C'
41+6)+2(1-8) -41+8)C-3(1-0)C
[ 4+41+6)-T7(1+6)C-3(1-6C'

41+6)+2(1-8)-41+6)C-3(1-C'

><C24(1—5)[ - 1]02+2(1+5)

—1}CC’ =0, (B3)

4+41+8)-7(1+C-3(1-HC
[4(1+8) - 4(1+8C-(1-5C'IC +(1-5) +4(1 + 5)[4(1 :;i 2:1)_ 5 . 4:11 5)0(_ 3(1)_ T

, 8(1+8-81+8C-21-9C" | ,_
><CC4(1+5)LS(1+5)—6(1+5)C—2(1—5)C’ 1}(: =0, (B4
1| 3 s 1 ,
Ecoh—é{—5—§+(1+5)C+5(1—5)C ] (B5)

(3) Equations from intraplaquette bond Singlégisand C’' concern, respectively, intra- and inter-plaquette diexcitations

- 3
2V3(1 - 5){”?(1 - 5)C+\3(1+ 5)0']

2(1+8) - 2V3(1-5)C' + (1 +8)CJC+V3(1+0) + =0, (B6)
[ ] —4(1+6)+2\3[(1-)C + (1 +)C]
J”E
1 a3 - = 3(1-6)2C’ +2\3(1 + 5){\?(1 —5)C+\3(1+ 5)(:’}
[—(1+5)—L(1—5)C' —2V31+oC|C+(1-6)+ _
6 2 | 2 =41 +6)+2V3[(1 - 5C' +(1+)C]
=0, (B7)
[ 3 3
Eeon==| - 2= 6+ —[(1+8C+(1-8C']|. (B9)
2l 2 4
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