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The total magnetic energies of zero-field magnetization states of ferromagnetic nanospheres with a non-
magnetic core are analytically calculated and compared with each other. The particle radiusRe and the thick-
ness of the spheroidal shellRe−Ri (0øRi øRe, Ri: hole/core radius) are systematically varied for different hard
and soft magnetic materials. Based on the results, the corresponding phase diagrams of the lowest-energy
configurations are derived. The phase diagrams identify two phases for materials of uniaxial anisotropy(Co:
single domain, curling vortex; Nd2Fe14B, FePt: single domain, two domain) and materials of cubic anisotropy
(permalloy, Fe: single domain, curling vortex). In the case of hard magnetic materials the critical diameter for
which the single-domain state becomes energetically unfavorable can become more than doubled for ultrathin
spheroidal shellss«=Ri /Re.0.85d compared to the corresponding bulk sphere of the same particle size. As the
stray field in a single-domain spherical hollow nanoparticle is inhomogeneous, the nucleation process takes
place inhomogeneously starting at the magnetic poles of the inner surface atRi.
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I. INTRODUCTION

Single-domain nanoparticles which are stable with respect
to thermal demagnetization are an important prerequisite for
ultrahigh-density magnetic recording and integrated magne-
toelectronic devices. Various physical and chemical methods
have been employed to produce magnetic nanoparticles, in-
cluding sputtering, metal evaporation, spark erosion, grind-
ing, electrodeposition, solution phase metal salt reduction,
and neutral organometallic precursor decomposition. Re-
cently, the production of spherical hollow nanoparticles was
achieved by applying two different methods.(1) Spark ero-
sion method:1–4 Spark erosion utilizing liquid nitrogen as the
dielectric liquid results in spherical particles with a hollow
inner spherical region.(2) Colloid chemistry method:5 Ther-
mal decomposition of dicobalt octacarbonyl Co2sCOd8 in
combination with a transmetalation reaction with water free
AgClO4 results in bimetallic Ag/Co particles composed of a
nonmagnetic Ag core and a ferromagnetic Co shell. The aim
of this paper is to analyze the conditions under which hollow
spheres can be single domain. In particular, we wish to de-
termine how much larger a hollow sphere can be than a solid
sphere while maintaining single domain behavior. This in-
vestigation can help clarify the question of how much the
material’s weight and cost could be reduced when applying
hollow particles technologically, especially in the case of ex-
pensive materials.

A spherical hollow nanoparticle is illustrated in Fig. 1. Its
geometry is fixed by the particle radiusRe and the thickness
of the spheroidal shellRe−Ri (0øRi øRe, Ri: hole/core ra-
dius). Hollow ferromagnetic spheres have received only
minimal theoretical attention due to a lack of experimental
progress so far. Kronmüller6 calculated the magnetization
distribution in the environment of nonmagnetic cavities in
infinitely extended ferromagnetic metals. He discovered that
in the case of a homogeneous magnetization distribution the
Lorentz field inside the hollow space is partly shielded since

the magnetization tries to avoid magnetic surface charges.
Shuteet al.7 gives a mathematical analysis of one-sided flux
configurations: Spherical hollow structures have the surpris-
ing property that depending on the magnetic structure the
Lorentz field in the hole may vanish and the outside dipolar
field is dramatically reduced. By contrast, ferromagnetic
spherical bulk particles have been a frequent object of inves-
tigation in the last decades. Due to the comparatively easy
handling of the stray field for the bulk geometry, a number of
problems could be solved by analytical micromagnetic cal-
culations. The most significant considerations referred to the
dependence of the total energy of the zero-field magnetiza-
tion states on the particle diameter,8–12 nucleation processes
of single-domain particles(homogeneous rotation, curling
mode, buckling mode),15,16 approach to ferromagnetic
saturation,17 and switching times in the case of homogeneous
rotation.18–21

FIG. 1. Geometry of a ferromagnetic nanosphere of sizeRe with
a nonmagnetic core of radiusRis«=Ri /Red.
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A comparison of the total energies of zero-field magneti-
zation states have resulted in single-domain configurations
for small particles and internal flux closure arrangements,
such as the curling-vortex state, two-domain state(only for
uniaxial anisotropy), and four-domain state(only for cubic
anisotropy) for larger particles.8–10 In addition, for substan-
tially larger particle sizes two cylindrically symmetric co-
axial domains or multidomain configurations can be
formed.10–12 In general, these earlier comparisons neglected
the energy of the vortices occurring in the curling-vortex
state and the four-domain state.9 Furthermore, the stray field
energy of the two-domain state was assumed to be exactly
one half of the single-domain state.9 These results, achieved
for the critical size below which the single-domain state is
energetically favored, are only rough estimations. Analytical
calculations of the vortex energy were only undertaken for
cylindrical disks.13,14 Here we perform complete energy
comparisons for all the configurations shown in Fig. 2.

This paper is organized as follows. In Sec. II the formulas
for calculating the total energies of the single-, two-, and
four-domain states and of the curling-vortex state(including
the energy of the vortex) are derived in dependence of the
particle radius and the thickness of the spheroidal shell. In
Sec. III we compare the energies of the different magnetiza-
tion states with each other to find the lowest-energy configu-
ration and the critical particle sizes denoting changes in the
equilibrium state. The phase diagrams summerizing the pre-
vailing magnetization states are set up for materials with
uniaxial and cubic anisotropy, respectively. In Sec. IV the
nucleation process of hollow nanospheres in the single-
domain state is discussed and compared with the correspond-
ing bulk spheres of the same material and particle size.

II. MAGNETIZATION STATES OF SPHERICAL HOLLOW
PARTICLES

For bulk ferromagnetic nanospheres, in addition to the
single-domain state, three other types of simple-domain

structures tending towards flux closure may occur: the
curling-vortex state(for low anisotropy), the two-domain
state(for high anisotropy in a uniaxial crystal), and the four-
domain state(for high anisotropy in a cubic crystal).9 In the
following we derive general expressions for the total ener-
gies of the four different magnetization states bearing in
mind the variable nonmagnetic space of radius 0øRi øRe in
the interior of the nanospheres. Total energies in general are
composed of magnetocrystalline energy, exchange energy,
and stray field(magnetostatic) energy. The role of the surface
anisotropy22 will be discussed qualitatively at the end of Sec.
III. The magnetoelastic energy plays no role in the following,
since the particles are not embedded in a matrix. In Fig. 2 the
four different magnetization configurations are schematically
shown.

A. Single-domain state

The total energy of a hollow spherical particle in the ho-
mogeneous or single-domain state consists of stray field
(magnetostatic) energy only. The stray field of the particle
can be calculated by adding the stray fields resulting from
the surface charges of the inner and outer spherical surfaces
of radii Ri and Re. The field due to the(uniform) magnetic
charges on the inner surface(so-called Lorentz field), HL
=Js/ s3m0d (Js=m0Ms: spontaneous polarization), and the in-
verse Lorentz field due to the outer surfaceHi =−Js/ s3m0d
compensate each other. Accordingly, the total field inside the
hole vanishes:

Hz
hole= HL + Hi = 0. s1d

The stray field within the spheroidal shell at the pointR
sRi øRøRed) is

Hz
shell= −

Js

3m0
−

Js

3m0
SRi

R
D3

s3 cos2 u − 1d. s2d

The first term describes the inverse Lorentz field of the mag-
netic charges of the outer surface and the second term is the
dipole field resulting from the surface charges of the inner
surface. The stray field energy of the single-domain state is
then obtained by integrating over the particle volumeV

ftot
hom= −

1

2
E Hz

shellJzdV=
2

9
p

1

m0
Js

2Re
3s1 − «3d, s3d

where«=Ri /Re is the ratio of the two characteristic radii of
the hollow particle.

It should be noted that in a more refined consideration, the
shielding effect6 due to inclined magnetization must be in-
cluded. This inclination results from the inhomogeneous di-
polar fields at the surface of the hole; the magnetization dis-
tribution becomes slightly inhomogeneous reducing the
surface charges atRi. This effect is not taken into account in

FIG. 2. Schematic representation of possible magnetization con-
figurations in ferromagnetic nanospheres with a hollow core:(a)
homogeneous or single-domain state,(b) curling-vortex state,(c)
two-domain state, and(d) four-domain state.
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the following because it leads to a reduction of the Lorentz
field by only a few percent.6

B. Curling-vortex state

For calculating the total energy of the curling-vortex state
the hollow spherical particle is subdivided into three regions
as illustrated in Fig. 3(a). Here, we take into account the
formation of two vortices which avoids the singularity of the
exchange energy. Assuming that curling occurs in thesx,yd
plane, region I denotes curling around the hole
s−Ri ,z,Rid, region II describes curling in the two caps of
the sphere without the vortex regions(III or index v). Ap-
proximately, both vortex regions can be considered as cylin-
drical disks of radiusRv and heightRes1−«d. The vortex
regions have a core of radiusb inside which the magnetiza-
tion has a nonzero component perpendicular to the plane of
the disk; in the outer regions of the vortices(betweenb and
Rv) the magnetization vector lies completely in the plane.
The magnetization configuration is independent of thez co-
ordinate along the disk axis[see Fig. 3(b)]. The energy of the
curling-vortex state becomes minimal, when the orientation
of the two vortices are oriented antiparallel to each other(see
Fig. 3). However, the influence of the interaction between the
two vortices is neglected; the approximation is justified in
the following because the long-range stray fields of the vor-
tices correspond to those of a quadrupole decreasing as 1/r4.
The total energy is the sum of exchange, magnetocrystalline
anisotropy energy and the vortex energies given by

ftot
curling = fA

I + fK
I + 2fA

II + 2fK
II + 2fA

v + 2fK
v + 2fS

v. s4d

Whereas in regions I and II only exchange energyfA and
magnetocrystalline anisotropy energyfK occur, in the vortex
regions(index v) the stray field energyfS additionally must
be included. For clarity we give the energy expressions sepa-
rately.

1. Exchange energy of regions I and II

The exchange energy in region I is given by

fA
I = AE s¹wd2dV= AE 1

x2 + y2dV

= AE
−Ri

Ri

E
0

2p

E
ÎRi

2−z2

ÎRe
2−z2

1

r
dr dw dz= 2pAE

−Ri

Ri

ln
ÎRe

2 − z2

ÎRi
2 − z2

dz

= 2pA5E
0

Ri

lnsRe
2 − z2ddz−E

0

Ri

lnsRi
2 − z2ddz6

= 2pASRe ln
Re + Ri

Re − Ri
+ Ri ln

Re
2 − Ri

2

4Ri
2 D , s5d

wherew=−arctansy/xd is the polar angle of the magnetiza-
tion vector andr=Îx2+y2. The exchange energy of the two
spherical caps(region II) is calculated as

2fA
II = 4pAE

Ri

Re

ln
ÎRe

2 − z2

Rv
dz= 2pAS2Re ln

2Re

Rv

+ Re ln
Re − Ri

Re + Ri
− Ri ln

Re
2 − Ri

2

Rv
2 D . s6d

2. Magnetocrystalline energy of regions I and II

The magnetocrystalline anisotropy energy of regions I and
II of volume VI+II =s4p /3dRe

3s1−«3d−2pRv
2Res1−«d in the

case of uniaxial anisotropy and anisotropy axis in thesx,yd
plane is

fK
I + 2fK

II =
1

2p
VI+IIE

0

2p

K1 sin2 wdw =
1

2
K1V

I+II . s7d

In the case of uniaxial anisotropy and anisotropy axis along
the z axis we obtain

fK
I + 2fK

II = K1V
I+II s8d

and in the case of cubic anisotropy

fK
I + 2fK

II =
1

2p
V I+IIE

0

2p

K1sg1
2g2

2 + g1
2g3

2 + g2
2g3

2ddw =
1

8
K1V

I+II

s9d

with the direction cosinesg1=sinw, g2=cosw, g3=0.

3. Vortex energy—region III

For deriving the exchange, anisotropy and stray field en-
ergies of the vortex regions we take the analytical calcula-
tions of Usovet al.13 performed on cylindrical disks in the
vortex state as a basis. The magnetization distribution inside

FIG. 3. Schematic representation of the curling-vortex state in
detail: (a) The hollow nanosphere is subdivided into three regions
[I: main bodys−Ri øzøRid, II: spherical caps, III: vortex region(
Rv: radius of the vortex region,b: radius of the vortex core)]. (b)
Vortex region enlarged to illustrate the curling magnetization
distribution.

CRITICAL SIZES FOR FERROMAGNETIC SPHERICAL… PHYSICAL REVIEW B 70, 184432(2004)

184432-3



the core of the vortexsrøbd is described by the direction
cosines(polar coordinatesr andw)

g1 = −
2rb

r2 + b2 sinw, g2 =
2rb

r2 + b2 cosw,

g3 = −Î1 −
4b2r2

sr2 + b2d2 . s10d

The magnetization distribution outside the coresbørøRvd
is given by

g1 = − sinw, g2 = cos w,g3 = 0. s11d

With Vv=2pRv
2Res1−«d as the volume of the two vortices

and using the SI-unit system, the exchange energy of the
vortex area is given by[Eq. (2) in Ref. 13]

2fA
v =

1

2m0
Js

2ls
2Res1 − «dS2 − ln

b

Rv
D , s12d

wherels=s2m0Ad0.5/Js is the exchange length of the material.
The anisotropy energy of the vortex area in the case of
uniaxial anisotropy and anisotropy axis in thesx,yd plane
[Eq. (3b) in Ref. 13] is

2fK
v =

1

2
K1V

vH1 + s3 − 4 ln 2dS b

Rv
D2J s13d

and in the case of uniaxial anisotropy and anisotropy axis
along thez axis [Eq. (3a) in Ref. 13]

2fK
v = K1V

vH1 − s3 − 4 ln 2dS b

Rv
D2J . s14d

Additionally, we have calculated the anisotropy energy
for a cubic material:

2fK
v = K1E hg1

2g2
2 + g3

2sg1
2 + g2

2djdVv

= K1V
vH1

8
− S65

24
− 4 ln 2DS b

Rv
D2J . s15d

The stray field energy of the vortex area can be written for
the caseRes1−«dù ls as [Eqs.(5) and (8b) in Ref. 13]

fs
v =

2pJs
2

m0
b3H0.083 −Sln 2 −

1

2
D2 b

Res1 − «dJ . s16d

The radius of the vortex coreb is obtained according to Usov
et al.13 by minimizing the total energy of the vortex region.
However, in the minimizing procedure we take into account
the anisotropy energy, giving for the radius of the vortex core

b =Î3 −
q

2
+ ÎD −

1

3

p

Î3 − q/2 +ÎD
+

1

3

c2

c1
, s17d

where

p = −
1

3

c2
2

c1
2 , s18d

q = −
2

27

c2
3

c1
3 −

ls
2

c1
, s19d

D =
1

27

c2
3ls

2

c1
4 +

1

4

ls
4

c1
2 , s20d

c1 = 12p 3 0.083
1

Res1 − «d
, s21d

c2 =5
−

4pm0

Js
2 K1s3 − 4 ln 2d: uniaxial anisotropyfeasy axisi sx,yd planeg,

8pm0

Js
2 K1s3 − 4 ln 2d: uniaxial anisotropyseasy axisi z axisd,

8pm0

Js
2 K1S65

24
− 4 ln 2D : cubic anisotropy.

6 s22d

In general, the configuration with uniaxial anisotropy in
the sx,yd plane always leads to a lower total energy than for
the configuration with thez axis as the easy axis. The volume
of the curling regions is always larger than that of the vortex
regions. The radius of the vortex coreb is smaller than the
exchange lengthls in nanoparticles. For a fixed particle size
Re, the vortex core radius decreases when the spheroidal
shell is made thinner. In our calculation we define the radius
of the vortex regionRv to be twice the value of the radius of
the vortex coreb sRv=2bd. For very soft magnetic materials

sK1→0d, Eq. (17) simplifies to the solution of Usovet al.:13

b = 0.68lsSRes1 − «d
ls

D1/3

. s23d

For very hard magnetic materialssK1ù1 MJ/m3d the vortex
core b reaches values significantly larger than the particle
size Re due to the large magnetocrystalline anisotropy en-
ergy. As a consequence, the curling-vortex state cannot occur
in such materials.
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C. Two-domain state

A hollow spherical particle in the two-domain state can be
considered as a quasioctopole shell, which itself is composed
of two interacting quadrupoles of opposite sign(see Fig. 4):
The two surfaces each correspond to a quadrupole, however,
with different surface charges. Thus the total energy is given
by the sum of the stray field energyfs and the wall energy
fwall

two dom:

ftot
two dom= fs

outer quad+ fs
inner quad+ fs

interaction+ fwall
two dom,

s24d

wherefs
outer quadandfs

inner quaddenote the stray field energies
of the outer and inner quadrupole, respectively, andfs

interation

corresponds to the stray field energy resulting from the inter-
action between the two quadrupoles.

The stray field energy of the outer quadrupole is deter-
mined by surface chargess j = ±Ms cosu s j =1,2d [where the
(1) sign holds for 0øwøp and the(2) sign for pøw
ø2p] interacting with the potentials

Uisrd =
1

4p
E sisr8d

ur − r8u
df8 s25d

resulting from surface chargessi =1,2d:

fs
outer quad= f11 + f22 + f12 + f21

=
1

2
m0o

i=1

2

o
j=1

2 E Uisrds jsrddf

=
m0

8p
o
i,j
E E sisrds jsr8ddfdf8

ur − r8u
. s26d

From this, the four individual integrals are given by

f11 =
Js

2

8pm0
Re

4E
0

p

E
0

p

cosu sinududwE
0

p

E
0

p

cosu8 sinu8
1

ur − r8u
du8dw8, s27d

f22 =
Js

2

8pm0
Re

4E
p

2p

E
0

p

cosu sinududwE
p

2p

E
0

p

cosu8 sinu8
1

ur − r8u
du8dw8,

f12 = f21 = −
Js

2

8pm0
Re

4E
0

p

E
0

p

cosu sinududwE
p

2p

E
0

p

cosu8 sinu8
1

ur − r8u
du8dw8 s28d

with the surface elementdf=Re
2 sinududw. For the term

1/ur −r8u the following series expansion is used:23

1

ur − r8u
= o

n=0

`

o
m=0

n

«m
sn − md!
sn + md!

Pn
mscosudPn

mscosu8dcosfmsw

− w8dg5
r8n

rn+1 , r8 , r ,

rn

r8n+1 , r , r8,6 s29d

where the so-called Neumann factor«m is given by 1 form
=0 and by 2 form.0. Pn

m are the associated Legendre func-

tions containing the Legendre polynomials. In the case of the
outer quadrupoleur u= ur8u=Re.

As an example, we consider in the following the indi-
vidual term f11, which may be representative for all four
integrals. With the integral boundaries of Eq.(27) the follow-
ing integrals are finite. Form=0 only P1scosud gives a finite
value given by

f11
m=0 =

p

18m0
Js

2Re
3. s30d

The same amount results fromf22
m=0. However,f12 andf21

add just the negative values, thus compensating thefii con-
tributions. Accordingly, the total contribution due tom=0 is
zero.

FIG. 4. Detailed schematic representation of the two-domain
state of a ferromagnetic hollow nanoparticle as a shell octopole
composed of two interacting quadrupoles of opposite sign.
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Contributions form.0 are finite only form=2k+1 (un-
even m) and for n=2l (even n) because the term cosmsw
−w8d=cosmw cosmw8+sinmw sinmw8 gives finite integrals
only for the sinmw and sinmw8 terms, and these remain
finite only for oddm. The integrals overw andw8 give

E
0

p

E
0

p

cosmsw − w8ddwdw8 =
4

m2 ,

E
0

p

E
p

2p

cosmsw − w8ddwdw8 = −
4

m2 , s31d

where alwaysm=2k+1.
The finite terms off11 after thew andw8 integration are

f11
m.0 =

Js
2

pm0
Re

3E
0

p

E
0

p

cosu sinu cosu8 sinu8o
n=2l

`

o
m=2k+1

2l−1
1

m2

sn − md!
sn + md!

P2l
2k+1scosudP2l

2k+1scosu8ddudu8. s32d

Taking into accountP2
1, P4

1, P4
3, P6

1, P6
3, andP6

5 results in

f11
m.0 =

7741

294912
p

1

m0
Js

2Re
3. s33d

In order to obtain the total stray field energy, the integral
f11

m.0 has to be multiplied by a factor 4 becausef22, f12, and
f21 add the same value. This gives finally for the stray field
of the outer quadrupole

fs
outer quad=

7741

73728
p

1

m0
Js

2Re
3 =

1

6m0
Js

2Vouter sphereS1 −
8643

16384
D

=
2

9
p

1

m0
Js

2Re
3s1 − 0.5275d. s34d

In other words, this result means that the bulk quadrupole
reduces the stray field energy by approximately 47% as com-
pared to the bulk dipole and shows that the estimate of
Kittel9 of a 50% reduction can be indeed used as a rough
approximation.

The stray field energy of the inner quadrupole can be
calculated in the same way resulting in

fs
inner quad=

7741

73728
p

1

m0
Js

2Ri
3. s35d

The stray field termfs
interation is determined by the eight in-

teraction termsf13, f31, f14, f41, f23, f32, f24, andf42. All
terms are negative and correspond each to −f11

m.0, i.e., Eq.
(32). However, the factorsr8n/ rn+1 in Eq. (29) are now given
by 2Ri /Re in the case ofP2, by 2Ri

3/Re
3 in the case ofP4 and

by 2Ri
5/Re

5 in the case ofP6 resulting in

fs
interaction= −

1

16
p

1

m0
Js

2Ri
3S3« +

5

18
«3 +

21

256
«5D . s36d

The wall energy of the hollow spherical particle in the two-
domain state is given by

fwall
two dom= pg180°Re

2s1 − «2d s37d

with the wall energy24

g180°= 2pÎÎ2 − 1ÎAK1 +
pJs

2

16m0
Res1 − «d. s38d

For hard magnetic materials the second term in Eq.(38) can
be neglected resulting ing180°>4ÎAK1. Inserting Eqs.
(34)–(37) into Eq. (24) yields for the total energy

ftot
two dom=

1

16
p

1

m0
Js

2Re
3H7741

4608
s1 + «3d − «3S3« +

5

18
«3

+
21

256
«5DJ + pg180°Re

2s1 − «2d. s39d

The two-domain state only develops when the(uniaxial)
anisotropy is large enough and/or the particle size is appre-
ciably larger than the thicknessd of the 180° domain wall in
the material9,24

d =Î4A

K1
sÎ2 − 1dS1 −

1

64sÎ2 − 1d

Js
2Re

2s1 − «d
m0A

D . s40d

In this case the anisotropy and exchange energies are equal
in the domain wall. Otherwise, if the alteration in the spin
direction is forced to take place in a distance less than the
wall thickness, the exchange energy will be dominant. In the
latter case the curling-vortex configuration is energetically
preferred.

D. Four-domain state

A hollow spherical particle in the four-domain state as
shown in Fig. 2(d) corresponds to a sixteen-pole shell com-
posed of two interacting octopoles of opposite sign with the
same vortex regions in the spherical caps, as we have already
treated for the curling-vortex state. In this case the total en-
ergy is given by

GOLL, BERKOWITZ, AND BERTRAM PHYSICAL REVIEW B70, 184432(2004)

184432-6



ftot
four dom= fs

four dom+ fwall
four dom+ 2fA

v + 2fK
v + 2fs

v.

s41d

The calculation of the stray field energy of a sixteen pole
fs

four dom, is much more complex than of an octopole. There-
fore we only estimate this energy in the following. In Fig. 5
the reduction of the stray field energy dependence on the
parameter« due to the transformation of the single-domain
state into the two-domain state is determined. The stray field
reduction is maximal for the bulk particle, and decreases
continuously with increasing volume of the nonmagnetic
core from 47%s«=0d to 87% s«=1d. We assume, that the
same reduction occurs once more when the two-domain state
(octopole state) is transformed into the four-domain state
(sixteen-pole state). Therefore, we can write approximately
for the stray field energy

fs
four dom=

sftot
two dom− fwall

two domd2

ftot
hom , s42d

where the stray field energies of the single-domain stateftot
hom

and of the two-domain statesftot
two dom−fwall

two domd are given in
Eq. (3) and eqs.(24), (37), and(39), respectively.

The wall energy of the hollow spherical particle in the
four-domain statefwall

four dom is, when the vortex regions are
excluded,

fwall
four dom= h2pRe

2s1 − «2d − 8RvRes1 − «djg90° s43d

with the wall energyg90°=0.32g180°24 and g180° defined in
Eq. (37). The energy of the vortex regions and the extention
of the vortex core are the same as calculated for the curling-
vortex state [see Eqs.(10)–(23)]. Similarly to the two-
domain state, the calculation of the four-domain state is only
applicable if the cubic anisotropy is large enough and/or the
particle sizeRe is larger than the wall thickness.

III. CRITICAL PARTICLE SIZES

After deriving the total energies of the different magneti-
zation states we now compare the energies with each other

for different material parameters to find the lowest-energy
configuration. We focuse on the particle sizeRe and the rela-
tive core diameter«=Ri /Re (Fig. 1), as well as on the critical
particle sizesRe

crit at which one magnetization state trans-
forms into another one as the total energies of two configu-
rations become equal.

A. Determination of the critical particle sizes

A simple explicit expression for the critical sizeRe
crit can

be found for hard magnetic materials by comparing the total
energy of the single-domain state[Eq. (3)] with the total
energy of the two-domain state[Eq. (39)]:

Re
crit =

32m0g180°

Js
2

1 − «2

2881

768
−

24125

2304
«3 + 6«4 +

5

9
«6 +

21

128
«8

,

s44d

where g180°=4ÎAK1. For the limiting case«=0 (bulk par-
ticle) Eq. (44) reaches the values

Re
crits« = 0d =

32m0g180°

Js
2

768

2881
. s45d

This result corresponds approximately to the estimation
9m0g /Js

2 published by Kittel.9 For the limiting case«=1 (in-
finitely thin spheroidal shell), Eq. (44) results in

Re
crits« = 1d =

32m0g180°

Js
2

1536

2125
. s46d

Comparing the two limiting cases

Re
crits« = 1d

Re
crits« = 0d

=
5762

2125
> 2.71 s47d

leads to the conclusion that the critical radius for the phase
transition from the single-domain to the two-domain state is
significantly shifted to higher values.

For all the other phase transitions in principle possible in
ferromagnetic hollow nanoparticles between two different
magnetization patterns, no explicit solutions forRe

crit exist.
However, the solutions for the various critical particle sizes
can be determined graphically.

B. The exemplary case«=0.5

In Fig. 6 the total energies of the different magnetization
states are plotted versus the particle sizeRe for ferromagnetic
hollow particles with«=0.5 made of FePt, Co, Fe, and per-
malloy, respectively. The material parameters used are sum-
marized in Table I. In principle, in all cases the single-
domain state is the energetically most favorable
configuration for very small particle sizes and the total ener-
gies of the different magnetization patterns increase with in-
creasingRe. All phase transitions take place spontaneously as
first order phase transitions.

For (uniaxial) FePt [Fig. 6(a)] only the single-domain
state and the two-domain state have been taken into consid-
eration, since the two-domain state is the only flux-closure

FIG. 5. Ratiosftot
two dom−fwall

two domd /ftot
hom of the stray field energy

of the two-domain state[Eqs.(24), (37), and(39)] to the stray field
energy of the single-domain state[Eq. (3)] as a function of«
=Ri /Re.
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type arrangement with the major part of the magnetization
oriented parallel to the uniaxial anisotropy axis, thereby re-
ducing the magnetocrystalline anisotropy energy signifi-
cantly. The curling-vortex state is not realized because of the
large contribution of the magnetocrystalline anisotropy en-
ergy. With increasing particle sizeRe the total energy of the
single-domain state increases more rapidly than the total en-
ergy of the two-domain state. According to Eq.(44), at the
critical particle sizeRe

crit=170 nm, the total energies of the
two magnetization configurations become equal and a phase
transition between the single-domain state and the two-
domain state takes place.

In contrast to hard magnetic materials in half-hard and
soft magnetic materials the gain in magnetostatic energy ex-
ceeds the expansion of the magnetocrystalline energy, thus,
leading to a vortex state atRcrit. For (uniaxial) Co [Fig. 6(b)],
only the single-domain state and the curling-vortex state can
occur as low-energy configurations, whereas the two-domain
state(and of course the four-domain state) remains a high-

energy configuration for all particle sizesRe. At Re
crit

=24.9 nm the single-domain state transforms into the
curling-vortex state whereby the vortex coreb according to
Eq. (17) is found to be 4.0 nm. At the critical diameter the
total energy of the curling-vortex state is mainly determined
by the exchange and anisotropy energies of the curling re-
gions I and II, which are together a factor of 10 larger than
the energy of the vortex regions.

For (cubic) Fe and Permalloy[Figs. 6(c) and 6(d)] a simi-
lar behavior is obtained. Starting from small particle sizes
and increasingRe, the single-domain state transforms into the
curling-vortex state atRe

crit=11.62 nm in the case of Fe and
at Re

crit=20.0 nm in the case of permalloy. At the transition
point the radius of the vortex coreb amounts to 2.7 nm for
Fe and is found to be 4.7 nm for permalloy. In both cases the
total energy of the curling-vortex state is, atRe

crit, principally
determined by the exchange energy of the curling regions I
and II, which is about a factor 10 larger than the energy of
the vortex regions and about a factor 100(Fe) or 1000(Py)
larger than the anisotropy energy of the curling regions. The
phase transition between the single-domain state and the
four-domain state, appearing atRe

crit=5.45 nm (Fe) and at
Re

crit=8.16 nm (Py), cannot exist in reality, as these values
are significantly smaller than the wall thicknesses given by
Eq. (40) [dsFed=26.8 nm, dsPyd=163.8 nm]. The two-
domain state does not occur as a low-energy configuration.

C. Phase diagrams

We generalize the results of Sec. III B above to a wide
range of relative core diameterss«=Ri /Red and plot phase
diagrams that demark critical regions. In Fig. 7 the phase
diagram of the lowest-energy magnetization configuration is
shown for nanoparticles made of FePt and Nd2Fe14B. Below
the phase boundary the single-domain state has the lowest
total energy, above the phase boundary the two-domain state
is energetically preferred. The critical particle sizeRe

crit re-
mains nearly constant for the ratio of inner radius to outer
radius«ø0.6, i.e., the hollow sphere behaves the same as a
bulk sphere but deviates by a factor of 1.055 according to

FIG. 6. Comparison of the total energies of the different mag-
netization states as a function of the particle sizeRe for ferromag-
netic hollow particles with«=0.5: (a) FePt (uniaxial anisotropy),
(b) Co (uniaxial anisotropy), (c) Fe (cubic anisotropy), and(d) per-
malloy (cubic anisotropy). The dashed curves correspond to those
configurations which are not realized.

TABLE I. Intrinisic material parameters used for FePt, Co, Fe,
and permalloy(K1: anisotropy constant,A: exchange constant,Js:
spontaneous polarization).

FePt Co Fe Permalloy

K1 fJ/m3g 6.63106 4.03105 4.63104 5.03102

A [pJ/m] 10 30 20 10

Js [T] 1.43 1.8 2.15 1.0

anisotropy uniaxial uniaxial cubic cubic

FIG. 7. Phase diagram of the lowest-energy magnetization con-
figuration in FePt and Nd2Fe14B hollow nanoparticles as a function
of the parameter«=Ri /Re. The inset is a magnefication ofRe

crit for
the Nd2Fe14B curve from«=0 to «=0.6.
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Eq. (45) from Kittel’s estimation.9 Further increase of the«
parameter leads to a large shift of the phase boundary to
larger critical particle sizes according to Eq.(44) and results
in a limiting value which is larger by a factor of 2.71 than the
bulk value[see Eq.(47)]. This increase is due to the reduc-
tion of the magnetostatic energy when the thickness of the
hollow spherical shell decreases. With decreasing thickness
of the hollow spherical shell the magnetic charge distribu-
tions finally form an ideal octopole with a lower magneto-
static energy than the quadrupole configuration. The slight
minimum of Re

crit occurring for«=0.33 is a consequence of
the complex dependence ofRe

crit on « according to Eq.(44),
but can be neglected in a first approximation. The phase
diagram of Co nanoparticles is illustrated in Fig. 8. Here, the
phase boundary separates single-domain state from the
curling-vortex state(as the lowest-energy configuration) and
not from the two-domain state. The phase boundary is shifted
from Re

crit=28 nm for«=0 to Re
crit=22.2 nm for«=0.9. For

small « parameters a slight increase ofRe
crit is obtained up to

28.5 nm for«=0.05. A similar behavior is observed for Fe
and permalloy, as seen in Fig. 9. However, the decrease of
the critical particle size from the bulk particle to the«=0.9

shell particle is not as distinctive as in the case of Co. The
bulk values ofRe

crit obtained for Fe and permalloy for the
transformation of the single-domain state to the curling-
vortex state are 12.16 and 20.88 nm, respectively. TheRe

crit

values for«=0.9 are 10.67 and 18.4 nm, respectively.
The phase diagrams have been determined by omitting

surface anisotropy energies. In the case of the transition from
the single-domain state to the two-domain state this approxi-
mation is correct as far as the depth of the surface area with
finite surface anisotropy is smaller than the exchange length.
In this case the surface anisotropy energy is the same for the
single-domain and the two-domain state and therefore van-
ishes in the evaluation ofRe

crit. Effects of the surface aniso-
tropy are expected for large« parameterss«.0.95d and if
the depth of the surface region becomes larger than the ex-
change length. In the case of the transition from the single-
domain state to the curling-vortex state the surface aniso-
tropy contributes to the total magnetocrystalline anisotropy
energy by an amount which is proportional to the surfaces. In
the evaluation of the critical radius this would lead to an
increase ofRe

crit. This effect increases with increasing«. For
a quantitative analysis future calculations will be performed.

IV. NUCLEATION PROCESS FOR SINGLE-DOMAIN
PARTICLES

For single-domain bulk nanoparticles the inner stray field
Hi =−Js/ s3m0d is homogeneous. The stray field becomes in-
homogeneously distributed when the single-domain particles
are hollow. According to Eq.(2), the demagnetization field in
the spheroidal shell is largest foru=0 (and 180°) and atR
=Ri given byHz

shell=−Ms. Consequently, nucleation will start
from these two poles initializing an inhomogeneous demag-
netization process. For very smallRi (bulk limit), however,
nucleation takes place by conventional homogeneous rota-
tion.

V. CONCLUSIONS

We have derived phase diagrams of domain configura-
tions for ferromagnetic hollow nanospheres as a function of
the material parametersJs, K1, A, and the ratio« of the
internal and external radius of the hollow particles. With in-
creasing particle size the phase diagrams separate a high-
remanent single-domain phase of high magnetostatic energy
from low-remanent domain states of low magnetostatic en-
ergy.

In hard magnetic materials(e.g., Nd2Fe14B, FePt) the
phase transition takes place from the single-domain state to
the low-remanent two-domain state. The critical particle size
at which the phase transition occurs increases by a factor of
2.71 in ultrathin spheroidal shells as compared to the bulk
value obtained for«,0.6.

In half-hard or soft magnetic materials(e.g., Co, Fe, per-
malloy) the phase transition takes place from the single-
domain state to a low-remanent vortex state. This difference
between the hard and soft magnetic materials results from
the magnetocrystalline anisotropy energy which together
with the magnetostatic energy is minimized in hard magnetic

FIG. 8. Phase diagram of the lowest-energy magnetization con-
figuration in Co hollow nanoparticles as a function of the parameter
«=Ri /Re.

FIG. 9. Phase diagram of the lowest-energy magnetization con-
figuration in Fe and permalloy hollow nanoparticles as a function of
the parameter«=Ri /Re.
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materials by the formation of the two-domain state. In soft
magnetic materials the vortex state reduces the magnetostatic
energy drastically and the magnetocrystalline energy remains
always small.

In the case of FePt the single-domain state is stable up to
a critical particle size ofRe

critsFePtd<170 nm for bulk par-
ticles s«,0.6d and increases up toRe

critsFePtd<461 nm for
extremely thin hollow spherical shells. For Co and permalloy
with increasing« the critical radius decreases slightly from
Re

critsCod=28 nm andRe
critspermalloyd<20.88 nm for bulk

particles to Re
critsCod<22.2 nm and Re

critspermalloyd
<18.4 nm for thin hollow spherical shells of«=0.9. Since
the critical particle sizes for the single-domain state in all the
cases are not substantially reduced, the use of hollow spheri-
cal particles instead of bulk particles in future applications
can significantly reduce the material’s weight and cost(in the
case of expensive materials such as FePt).

In contrast to bulk spheres no homogeneous nucleation
process exists in hollow spheres for the magnetization rever-
sal of the single-domain state. Instead of this, the nucleation
takes place inhomogeneously and starts at the internal poles
of the single-domain particle where the demagnetizing field
has its largest value ofs−dMs.

Further noteworthy results obtained in the present calcu-
lations are the following ones: In bulk spheres, the reduction
of the magnetostatic energy due to the transition from the
single-domain to the two-domain state is found to be given
by a factor of 7739/16384<0.472. This precise result con-
firms Kittel’s previous assumption that the energy reduction
corresponds to a factor of 0.500. The curling-vortex configu-
ration has been investigated quantitatively including the vor-
tices existing at the poles of the hollow particle. The energy
of the two vortices was found to contribute only to 10% of
the total energy which is mainly determined by exchange and
magnetocrystalline anisotropy energies.
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