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The total magnetic energies of zero-field magnetization states of ferromagnetic nanospheres with a non-
magnetic core are analytically calculated and compared with each other. The particleRadndthe thick-
ness of the spheroidal sh&l-R (0=R <R, R;: hole/core radiusare systematically varied for different hard
and soft magnetic materials. Based on the results, the corresponding phase diagrams of the lowest-energy
configurations are derived. The phase diagrams identify two phases for materials of uniaxial ani€otropy
single domain, curling vortex; N&e;,B, FePt: single domain, two domaiand materials of cubic anisotropy
(permalloy, Fe: single domain, curling vordedn the case of hard magnetic materials the critical diameter for
which the single-domain state becomes energetically unfavorable can become more than doubled for ultrathin
spheroidal shellés=R,/R.,>0.85 compared to the corresponding bulk sphere of the same patrticle size. As the
stray field in a single-domain spherical hollow nanoparticle is inhomogeneous, the nucleation process takes
place inhomogeneously starting at the magnetic poles of the inner surf&e at
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I. INTRODUCTION the magnetization tries to avoid magnetic surface charges.
Shuteet al” gives a mathematical analysis of one-sided flux
Single-domain nanoparticles which are stable with respeatonfigurations: Spherical hollow structures have the surpris-
to thermal demagnetization are an important prerequisite foihg property that depending on the magnetic structure the
ultrahigh-density magnetic recording and integrated magner-orentz field in the hole may vanish and the outside dipolar
toelectronic devices. Various physical and chemical methodge|d is dramatically reduced. By contrast, ferromagnetic
have been employed to produce magnetic nanoparticles, ipherical bulk particles have been a frequent object of inves-
cluding sputtering, metal evaporation, spark erosion, grindggation in the last decades. Due to the comparatively easy

ing, electrodeposition, solution phase metal salt reductiony,anqjing of the stray field for the bulk geometry, a number of
and neutral organometallic precursor decomposition. Re

. . . problems could be solved by analytical micromagnetic cal-
cently, the production of spherical hollow nanoparticles Wasp y y g

: . . culations. The most significant considerations referred to the
a_ch|eved byipplymg two_dlffer_e_n_t me_thqc(&)_ Spark ero- dependence of the total energy of the zero-field magnetiza-
sion method-* Spark erosion utilizing liquid nitrogen as the

) . ) b .
dielectric liquid results in spherical particles with a hollow tion states on the particle diamefet? nucleation processes

inner spherical region2) Colloid chemistry methoé:Ther- of smgle—domam parUck;z:fQomogeneous rotation, curlm_g
mal decomposition of dicobalt octacarbonyl £H60)g in mode, i bu7ckl|ng moa_)el " apProaCh to ferromagnetic
combination with a transmetalation reaction with water freesaturatufgﬂ_,ﬂand switching times in the case of homogeneous
AgCIO, results in bimetallic Ag/Co particles composed of a "otation:
nonmagnetic Ag core and a ferromagnetic Co shell. The aim
of this paper is to analyze the conditions under which hollow
spheres can be single domain. In particular, we wish to de- z4
termine how much larger a hollow sphere can be than a solid
sphere while maintaining single domain behavior. This in-
vestigation can help clarify the question of how much the
material’s weight and cost could be reduced when applying R
hollow particles technologically, especially in the case of ex- Ri
pensive materials.

A spherical hollow nanoparticle is illustrated in Fig. 1. Its
geometry is fixed by the particle raditg and the thickness
of the spheroidal shelR.—R, (0=R =R,, R: hole/core ra-
dius). Hollow ferromagnetic spheres have received only
minimal theoretical attention due to a lack of experimental
progress so far. Kronmillgrcalculated the magnetization X
distribution in the environment of nonmagnetic cavities in
infinitely extended ferromagnetic metals. He discovered that
in the case of a homogeneous magnetization distribution the FIG. 1. Geometry of a ferromagnetic nanosphere of Bizaith
Lorentz field inside the hollow space is partly shielded sincea nonmagnetic core of radil&(s=R/R,).
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structures tending towards flux closure may occur: the
curling-vortex state(for low anisotropy, the two-domain
state(for high anisotropy in a uniaxial crysdaland the four-
domain statéfor high anisotropy in a cubic crystd In the
following we derive general expressions for the total ener-
gies of the four different magnetization states bearing in
mind the variable nonmagnetic space of radissR <R, in

the interior of the nanospheres. Total energies in general are
composed of magnetocrystalline energy, exchange energy,
and stray fieldmagnetostaticenergy. The role of the surface
anisotropy? will be discussed qualitatively at the end of Sec.
I1l. The magnetoelastic energy plays no role in the following,
since the particles are not embedded in a matrix. In Fig. 2 the
four different magnetization configurations are schematically
shown.

(a) =z

(c) zy

X

FIG. 2. Schematic representation of possible magnetization con- A. Single-domain state

figurations in ferromagnetic nanospheres with a hollow coag: . . .
homogeneous or single-domain state) curling-vortex state(c) The total energy of a hollow spherical particle in the ho-

two-domain state, an¢tl) four-domain state. mogeneous or single-domain state consists of stray field
(magnetostaticenergy only. The stray field of the particle
A comparison of the total energies of zero-field magneti-can be calculated by adding the stray fields resulting from

. o . ' ~ the surface charges of the inner and outer spherical surfaces
zation states have resulted in single-domain configurations

for small particles and internal flux closure arrangementsOf radii R andRe. The field due to theuniform) magnetic

; ; tharges on the inner surfageo-called Lorentz field H,
such as the curling-vortex state, two-domain stat@ly for  _ - ] o e
uniaxial anisotropy, and four-domain statéonly for cubic =35/ (30) (Js=poMs: spontaneous polarizatignand the in

anisotropy for larger particle$~1° In addition, for substan- '€ Lorentz field due to the outer surfadg=~Js/(3u)
tially larger particle sizes two cylindrically symmetric co- compensate each other. Accordingly, the total field inside the

axial domains or multidomain configurations can behOIE vanishes:

formed%-12In general, these earlier comparisons neglected

the energy of the vortices occurring in the curling-vortex HM°®=H, +H,=0. (1)
state and the four-domain st&t&urthermore, the stray field

energy of the two-domain state was assumed to be exactl_}[ ) . )

one half of the single-domain stat@hese results, achieved 1N€ stray field within the spheroidal shell at the poRit
for the critical size below which the single-domain state is(R=R=Re)) is

energetically favored, are only rough estimations. Analytical

calculations of the vortex energy were only undertaken for el Jq X (R)\®
cylindrical disks'®1* Here we perform complete energy H3 = - 3 3_<E) (3cog 6-1). (2
comparisons for all the configurations shown in Fig. 2. Mo 2Ho

This paper is organized as follows. In Sec. Il the formulas
for calculating the total energies of the single-, two-, andThe first term describes the inverse Lorentz field of the mag-
four-domain states and of the curling-vortex st@teluding  netic charges of the outer surface and the second term is the
the energy of the vortgxare derived in dependence of the dipole field resulting from the surface charges of the inner
particle radius and the thickness of the spheroidal shell. Isurface. The stray field energy of the single-domain state is
Sec. Il we compare the energies of the different magnetizathen obtained by integrating over the particle voluvhe
tion states with each other to find the lowest-energy configu-
ration and the critical particle sizes denoting changes in the
equilibrium state. The phase diagrams summerizing the pre- hom _ _ lf Hshelly qv = zWiJZRg(l - &%) (3)

. . . . . tot z z S ’
vailing magnetization states are set up for materials with 2 9 o
uniaxial and cubic anisotropy, respectively. In Sec. IV the
nucleation process of hollow nanospheres in the single;
domain state is discussed and compared with the correspon
ing bulk spheres of the same material and particle size.

heree=R;/R, is the ratio of the two characteristic radii of
ie hollow particle.

It should be noted that in a more refined consideration, the
shielding effect due to inclined magnetization must be in-
cluded. This inclination results from the inhomogeneous di-
polar fields at the surface of the hole; the magnetization dis-

For bulk ferromagnetic nanospheres, in addition to theribution becomes slightly inhomogeneous reducing the
single-domain state, three other types of simple-domairsurface charges &;. This effect is not taken into account in

Il. MAGNETIZATION STATES OF SPHERICAL HOLLOW
PARTICLES
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(a) z (b) r 1. Exchange energy of regions | and Il
—Y b
vorteX\I »T\< The exchange energy in region | is given by
" @@ AN OE 1
([ 2 —
i e ¢A—AJ(V¢) dv_AJ Ll
0]C R 2m \R-2 R
I ® Re Ri @ @ 1
- :Aff J =dp de dz=27A fm fd
T O] C -R 0 \5Riz_zzp -R
N\ ’** rR® X 0/ C R R
—— = 27A f In(R2 - 2)dz- J In(R? - 2)dz
0 0

FIG. 3. Schematic representation of the curling-vortex state in 5
detail: (a) The hollow nanosphere is subdivided into three regions - ZWA(RelnRe R +RIn R - R12> (5)
[I main body(-R;<z<R)), II: spherical caps, Ill: vortex regiot R.-R 4R1-2
: radius of the vortex regiorly: radius of the vortex copg (b)
Vortex region enlarged to illustrate the curling magnetizationWhere ¢=-arctarty/x) is the polar angle of the magnetiza-
distribution. tion vector andp= \x2+y The exchange energy of the two
spherical capﬁregmn ) is calculated as

the following because it leads to a reduction of the Lorentz
field by only a few percerft. Rﬁ—

2Re
dz=27A| 2R, In —
z (RenRv

2¢pp = 4aA

B. Curling-vortex state R

For calculating the total energy of the curling-vortex state +RIn —— R-R_ Ri In Rﬁ R )
the hollow spherical particle is subdivided into three regions Re+ R Rf
as illustrated in Fig. @). Here, we take into account the
formation of two vortices which avoids the singularity of the
exchange energy. Assuming that curling occurs in(the) )
plane, region | denotes curling around the hole The magnetocrystalline anlsotropy entzargy of regions I and
(-R <z<R), region Il describes curling in the two caps of !l of volume V"*!'=(4m/3)R3(1-&% - 27RR(1-¢) in the

the sphere without the vortex regiofi$l or index v). Ap-  case of uniaxial anisotropy and anisotropy axis in (thgy)
proximately, both vortex regions can be considered as cylinPlane is

drical disks of radiuskR, and heightR(1-¢). The vortex 2

regions have a core of radilisinside which the magnetiza- | " ] 1

tion has a nonzero component perpendicular to the plane of bkt 2¢¢ = ZTV f K, sir? ¢de = §K1V . (N

the disk; in the outer regions of the vorticgsetweenb and 0

R,) the magnetization vector lies completely in the plane.
The magnetization configuration is independent of zlue-
ordinate along the disk axjsee Fig. 8)]. The energy of the
curling-vortex state becomes minimal, when the orientation B + 20 = KV (8)
of the two vortices are oriented antiparallel to each ofkee

Fig. 3. However, the influence of the interaction between theand in the case of cubic anisotropy

two vortices is neglected; the approximation is justified in 2

the following because the long-range stray fields of the vor- 1 1

tices correspond to those of a quadrupole decreasingrds 1/ Gk + 2y = > -V 'H'f Ki(vivs + ¥+ ¥575)de = §K1V'+"
The total energy is the sum of exchange, magnetocrystalline m 0

anisotropy energy and the vortex energies given by 9)

(6)

2. Magnetocrystalline energy of regions | and Il

In the case of uniaxial anisotropy and anisotropy axis along
the z axis we obtain

tc(;Jtrnng ¢A+ ¢K+ 2¢ + 2¢:i+ 28+ 2% + 245 (4) with the direction cosines;=sin¢, y,=cose, y3=0.

Whereas in regions | and Il only exchange enettyand 3. Vortex energy—region Il

magnetocrystalline anisotropy energy occur, in the vortex For deriving the exchange, anisotropy and stray field en-
regions(indexv) the stray field energyg additionally must  ergies of the vortex regions we take the analytical calcula-
be included. For clarity we give the energy expressions sepaions of Usovet al!® performed on cylindrical disks in the
rately. vortex state as a basis. The magnetization distribution inside
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the core of the vortexp<b) is described by the direction .
cosines(polar coordinatep and ¢) 2¢ =Ky f {5+ (A + o)W
___ b __2eb 1 (65 b2
"= e sine, 72_p2+b2 Ccoso, :Klw{§_<ﬂ_4ln2)(i> : (15
ys=—/1- 4p%p? (10) The stray field energy of the vortex area can be written for
3 V" (p2+ D)% the caseRy(1-¢) =, as[Egs.(5) and(8b) in Ref. 13

The magnetization distribution outside the c@be<p=<R)) . 27735 5 1\2 b
is given by ¢e = M_ob 0.083-(In2 -3 m . (16

y1== Sing, y,=co0s ¢,y3=0. (11) The radius of the vortex coteis obtained according to Usov
With Vv:ZWRiRe(l_g) as the volume of the two vortices €t alt® by minimizing the total energy of the vortex region.

and using the Sl-unit system, the exchange energy of thElowever, in the minimizing procedure we take into account
vortex area is given byEg. (2) in Ref. 13 the anisotropy energy, giving for the radius of the vortex core

1 b 3/ g = 1 p lc,
2¢% = ——JIZR(1 - (2—| —) 12 b=y/--+\D-S—=+_—", 17
A ZMOJSSRE( e) "R ) (12 V7ot 3V g2:00 3¢ 17

wherel = (2uA)%5 Jg is the exchange length of the material. where
The anisotropy energy of the vortex area in the case of

uniaxial anisotropy and anisotropy axis in tfey) plane p= _}C_E (18)
[Eq. (3b) in Ref. 13 is 3¢t
2 ”—1KV”{1+(3 4In2)(b>2} (13 23 |2
-5 - = o
KT o™t R, =—2—7C—§—C—S, (19
and in the case of uniaxial anisotropy and anisotropy axis ro
along thez axis[Eq. (38 in Ref. 13 1632 114
b 2 D= 2—%5 + __5, (20)
2 = KW 1—(3—4In2)<a) . (14 7cg 4o
Additionally, we have calculated the anisotropy energy C =127 X 0.083; (21)
for a cubic material: . Re(l-¢)’

p

4
- Z;uOKl(S —41n2: uniaxial anisotropyeasy axig (x,y) pland,
S
8mug ) o . . .
Cy =19 7 Ki(3-41In2: uniaxial anisotropyeasy axi¢ z axis), (22
S
87T’U“OK (6—5 -41In 2) : cubic anisotro
3z N 2a ' by

In general, the configuration with uniaxial anisotropy in (K;— 0), Eq.(17) simplifies to the solution of Usoet al.*®
the (x,y) plane always leads to a lower total energy than for
Re(1-¢) ) 13

the configuration with the axis as the easy axis. The volume
ls

b= 0.685< (23)

of the curling regions is always larger than that of the vortex
regions. The radius of the vortex cobeis smaller than the
exchange length, in nanoparticles. For a fixed particle size For very hard magnetic material&; =1 MJ/n¥) the vortex

R., the vortex core radius decreases when the spheroidabre b reaches values significantly larger than the particle
shell is made thinner. In our calculation we define the radiusize R, due to the large magnetocrystalline anisotropy en-
of the vortex regiorR, to be twice the value of the radius of ergy. As a consequence, the curling-vortex state cannot occur
the vortex coreb (R,=2b). For very soft magnetic materials in such materials.
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two dom_ jouter quad inner qua interaction two dom
tot d’ * ¢ d’ + wall '

(24)

where $2Ute" dUadgnd gnner auadgenote the stray field energies
of the outer and inner quadrupole, respectively, a{ftf""
corresponds to the stray field energy resulting from the inter-
action between the two quadrupoles.

The stray field energy of the outer quadrupole is deter-
mined by surface charges=+Mgcosé (j=1,2) [where the
(+) sign holds for G=s¢<= and the(—) sign for 7<¢
< 27] interacting with the potentials

FIG. 4. Detailed schematic representation of the two-domain ,
state of a ferromagnetic hollow nanoparticle as a shell octopole Ui(r) = ai(r )df’ (25)
composed of two interacting quadrupoles of opposite sign. r=r'|

resulting from surface chargés=1, 2):

C. Two-domain state outer quad_ iy + ¢22+ D1+ oy
A hollow spherical particle in the two-domain state can be _
considered as a quasioctopole shell, which itself is composed - EV“O% % Ui(r)o;(r)df
of two interacting quadrupoles of opposite sigee Fig. 4 mE
The two surfaces each correspond to a quadrupole, however, _ Mo D I(r)cr (r )dfdf’
with different surface charges. Thus the total energy is given T 8r - (26)
by the sum of the stray field energh, and the wall energy 2
o dom From this, the four individual integrals are given by
|
I _ _ 1
1= — R‘;f cos@ sin 6dade cos®' sin ¢ ——-d@'de’, 27
8mug r=r’|
00 0
27 27 T
1
Bor= R‘e}f f cosdsin 0d0d(pf f cosd’ sin @ ——-d@'dg’,
87T,LLO |r =T |
T 0 o 0
T T 27
3 . !
b12= oy = — 5 RS cosé sin 6ddde cosé' sin ﬁ’mde’dqa’ (29)
0 0 o 0

with the surface elememiszgsin odede. For the term tions containing the Legendre polynomials. In the case of the
1/|r-r’'| the following series expansion is us€d: outer quadrupolér|=|r'|=Rg
As an example, we consider in the following the indi-

m m vidual term ¢44, which may be representative for all four
|r—r | nEOmE_ P (cos6)Pp(cose’)cogm(e integrals. With the integral boundaries of Eg7) the follow-
ing integrals are finite. Fan=0 only P,(cos#) gives a finite
r'n oot value given by
n+1? !
N2L R (29) e T (30
rrl‘l+l’ r< I'/,

The same amount results frog), 9. However, ¢, and ¢,
add just the negative values, thus compensatingfheon-
where the so-called Neumann factgy is given by 1 form  tributions. Accordingly, the total contribution due mo=0 is
=0 and by 2 fom>0. P are the associated Legendre func- zero.
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2w

Contributions form>0 are finite only form=2k+1 (un-
4
f cosm(e — ¢')dede’ =~ e (31)

w
evenm) and forn=2| (evenn) because the term co¥ ¢
—¢’)=cosme cosme’ +sinme sinme’ gives finite integrals

only for the sinmep and sinme’ terms, and these remain 0
finite only for oddm. The integrals overp and ¢’ give

cosm(¢ — ¢')dede’ = iz where alwayan=2k+1.
m The finite terms ofp,, after thep and ¢’ integration are

O\,:]
O%:}

o o0 21-1
X 1 (n—m)!
s _SRgf f cosgsin g cosy’ sin¢’ > 2, —2—( ) P35 (cos6)P5 (cos 6’ )dado’ . (32)
THo 00 =2l a2kt M (N+m)!
[
Taking into accoun®s, Py, Py, Py, Pg, andPg results in B0 QoM = 7y J8RE(1 — g2 (37
m-o_ (741 with the wall energy

= wiJzRg (33
7204912

In order to obtain the total stray field energy, the integral
o % has to be multiplied by a factor 4 becausg, ¢;,, and
¢, add the same value. This gives finally for the stray fieldFor hard magnetic materials the second term in(86) can
of the outer quadrupole be neglected resulting iny!®°=4\/AK,. Inserting Egs.
(34)—37) into Eg. (24) yields for the total energy

. — P
P18 = 22 - 1/AK, + 17; SR(l-g). (39
Mo

7741 1 1 8643
outer quad: _JZ 3 _ JZV él _ A)
° 73728" g e B ° U PR T 1638 wo dom_ l—leswiagRg —Z;é;(l +e3) - s3<38 + 1—5883
Mo
2 1
= —7m—JR3(1 - 0.5275. 34 21 .
9 o ng( 5 ( ) + 2_5685>} + 77_,}/180 Rg(l —82). (39)

In other words, this result means that the bulk quadrupole The two-domain state only develops when theiaxia)

reduces the stray field energy by approximately 47% as Co”iinisotropy is large enough and/or the particle size is appre-

pared to the bulk dipole and shows that the estimate Ofjapy jarger than the thicknesof the 180° domain wall in
Kittel® of a 50% reduction can be indeed used as a rouglfnne n{ate?ieﬂvz“

approximation.

The stray field energy of the inner quadrupole can be 4A — 1 J?Sle(l_s)
calculated in the same way resulting in 6=/-(N2-D|1- . (40)
y J K 6402-1  poA
iS“”ef quac_ ﬂwing‘?‘_ (35) In this case the anisotropy and exchange energies are equal
73728 o in the domain wall. Otherwise, if the alteration in the spin

i interation - ) ) ] direction is forced to take place in a distance less than the
The stray field termpg is determined by the eight in- yq)| thickness, the exchange energy will be dominant. In the

teraction termspyg, a1, b1a Pav P23 32 boe ANA¢az Al atter case the curling-vortex configuration is energetically
terms are negative and correspond each ¢g;-, i.e., Eq. preferred.
(32). However, the factors'™/r™! in Eq.(29) are now given
by 2R /R, in the case oP,, by 2R*/R% in the case oP, and .
by 2R°/R in the case oPg resulting in D. Four-domain state
A hollow spherical particle in the four-domain state as
i i 1 1 S 21 shown in Fig. 2d) corr nds to a sixteen-pole shell com-
interaction_ _ _— ___— 12p: 3, == 5 g 2 ) corresponas p
s - 16WMOJSR3(38 * 153“3 * 256" ) (36) posed of two interacting octopoles of opposite sign with the
same vortex regions in the spherical caps, as we have already
The wall energy of the hollow spherical particle in the two- treated for the curling-vortex state. In this case the total en-

domain state is given by ergy is given by
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1 — T T T T for different material parameters to find the lowest-energy
configuration. We focuse on the particle sRgand the rela-
So0.8 tive core diametes =R /R, (Fig. 1), as well as on the critical
3 particle sizesRS™ at which one magnetization state trans-
3 0.6 forms into another one as the total energies of two configu-
g | rations become equal.
o )
©0.4 | .
‘% i A. Determination of the critical particle sizes
202 | . A simple explicit expression for the critical si®&™ can
| § be found for hard magnetic materials by comparing the total
0 A T T S SR energy of the single-domain staf&q. (3)] with the total
0 0.2 0.4 0.6 0.8 1 energy of the two-domain staf&q. (39)]:
€ it 32upy'e” 1-g°
FIG. 5. Ratio{ % 9om gwo dom; shomof the siray field energy e - 7 2881 24125 21
of the two-domain statfEgs.(24), (37), and(39)] to the stray field s — - 3+ 6et+ =b+ —¢8
energy of the single-domain staf&q. (3)] as a function ofe 768 2304 9 128
=Ri/Re. (44)
where y*°=4\AK;,. For the limiting cases=0 (bulk par-
for" M= U DM+ GO DM Db + 2 + 2480 ticle) E)(;. (44) reaches the values ’ (bulkep
4y v 32u0y™ 768
TPe galculation of the stray field energy of a sixteen pole Re(e=0)= Jg 2881’ (45)
our aom

A , Is much more complex than of an octopole. There- . o
fore we only estimate this energy in the following. In Fig. 5 This result corresponds approximately to the estimation
the reduction of the stray field energy dependence on th8uo¥/J: published by Kittef For the limiting case:=1 (in-
parameter: due to the transformation of the single-domain finitely thin spheroidal shejj Eqg. (44) results in
state into the two-domain state is determined. The stray field 3210718 1536

I )

reduction is maximal for the bulk particle, and decreases RSM(e = 1) 5 ) (46)
continuously with increasing volume of the nonmagnetic Js 2125

core from 47%(e=0) to 87% (¢=1). We assume, that the Comparing the two limiting cases

same reduction occurs once more when the two-domain state .

(octopole stateis transformed into the four-domain state Re"(e=1) 5762

(sixteen-pole staje Therefore, we can write approximately Ri(s=0) 2125 2.71 (47)

for the stray field energy
leads to the conclusion that the critical radius for the phase
42 transition from the single-domain to the two-domain state is
significantly shifted to higher values.

two dom_ ,two dom\2

four dom_ ( tot ¢wal| n)

S - hom ,
tot

i . ) . For all the other phase transitions in principle possible in
where the stray field energies (())fdgn]e Sltug|deo-d0ma'”. 31’53@ ferromagnetic hollow nanoparticles between two different
and of the two-domain statep’ “"™= ¢y “") are givenin - magnetization patterns, no explicit solutions R§™ exist.

g p ) p

Eq. (3) and eqgs(24), (37), and(39), respectively. However, the solutions for the various critical particle sizes
The wall energy of the hollow spherical particle in the can pe determined graphically.

four-domain statep/®% °™ is, when the vortex regions are
excluded, B. The exemplary cases=0.5
four dom_ 2 2 0° : _ : N

buail = {2mR(1 &%) — 8R,R(1 )}y’ (43 In Fig. 6 the total energies of the different magnetization
with the wall energyy®®°=0.32y18924 and y18° defined in  States are plotted versus the particle $zéor ferromagnetic
Eq. (37). The energy of the vortex regions and the extention0llow particles withe=0.5 made of FePt, Co, Fe, and per-
of the vortex core are the same as calculated for the curlingh@lloy, respectively. The material parameters used are sum-
vortex state[see Egs.(10)~(23)]. Similarly to the two- manz_ed in Table_ [. In principle, in all cases the single-
domain state, the calculation of the four-domain state is oniylomain state is the energetically most favorable
applicable if the cubic anisotropy is large enough and/or th&onfiguration for very small particle sizes and the total ener-

particle sizeR, is larger than the wall thickness. gies of the different magnetization patterns increase with in-
creasingR.. All phase transitions take place spontaneously as
lll. CRITICAL PARTICLE SIZES first order phase transitions.

For (uniaxial) FePt[Fig. 6@&)] only the single-domain
After deriving the total energies of the different magneti- state and the two-domain state have been taken into consid-
zation states we now compare the energies with each otheration, since the two-domain state is the only flux-closure
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FIG. 7. Phase diagram of the lowest-energy magnetization con-
figuration in FePt and NgFe;,B hollow nanoparticles as a function
of the parametes=R;/R.. The inset is a magnefication 8™ for
the Nd,Fe;,B curve frome=0 to e=0.6.

E[107'8 ]
E[1078 J]

energy configuration for all particle sizeR,. At RS™
=249 nm the single-domain state transforms into the
FIG. 6. Comparison of the total energies of the different mag-curling-vortex state whereby the vortex cdseaccording to
netization states as a function of the particle $kgefor ferromag-  Eq. (17) is found to be 4.0 nm. At the critical diameter the
netic hollow particles withe=0.5: (a) FePt(uniaxial anisotropy,  total energy of the curling-vortex state is mainly determined
(b) Co (uniaxial anisotropy, (c) Fe (cubic anisotropy, and(d) per- by the exchange and anisotropy energies of the curling re-
malloy (cubic anisotropy. The dashed curves correspond to thosegions | and Il, which are together a factor of 10 larger than
configurations which are not realized. the energy of the vortex regions.
For (cubic) Fe and PermalloyfFigs. §c) and &d)] a simi-

type arrangement with the major part of the magnetizatiodaf behavior is obtained. Starting from small particle sizes
oriented parallel to the uniaxial anisotropy axis, thereby re&nd increasing, the single-domain state transforms into the
ducing the magnetocrystalline anisotropy energy signifi-curling-vortex state aRS"=11.62 nm in the case of Fe and
cantly. The curling-vortex state is not realized because of thét RS"'=20.0 nm in the case of permalloy. At the transition
large contribution of the magnetocrystalline anisotropy enoint the radius of the vortex coteamounts to 2.7 nm for
ergy. With increasing particle siZR, the total energy of the Fe and is found to be 4.7 nm for permalloy. In both cases the
single-domain state increases more rapidly than the total erotal energy of the curling-vortex state is,Rff", principally
ergy of the two-domain state. According to E44), at the determined by the exchange energy of the curling regions |
critical particle sizeRS™=170 nm, the total energies of the and II, which is about a factor 10 larger than the energy of
two magnetization configurations become equal and a phadBe vortex regions and about a factor 1@@) or 1000(Py)
transition between the single-domain state and the twolarger than the anisotropy energy of the curling regions. The
domain state takes place. phase transition between the single-domain state and the
In contrast to hard magnetic materials in half-hard andfour-domain state, appearing Bf"=5.45 nm(Fe) and at
soft magnetic materials the gain in magnetostatic energy ex®e" =8.16 nm(Py), cannot exist in reality, as these values
ceeds the expansion of the magnetocrystalline energy, thugre significantly smaller than the wall thicknesses given by
leading to a vortex state &,;,. For (uniaxia) Co[Fig. §b)], Eq. (40) [d(F&)=26.8 nm, d(Py)=163.8 nn). The two-
only the single-domain state and the curling-vortex state cadomain state does not occur as a low-energy configuration.
occur as low-energy configurations, whereas the two-domain
state(and of course the four-domain statemains a high- C. Phase diagrams

We generalize the results of Sec. Ill B above to a wide
range of relative core diametefs=R/R,) and plot phase
diagrams that demark critical regions. In Fig. 7 the phase
diagram of the lowest-energy magnetization configuration is
shown for nanoparticles made of FePt and,iNgl,B. Below
the phase boundary the single-domain state has the lowest
Ki[J/mP]  6.6x10° 4.0x10° 4.6x10° 5.0x10° total energy, above the phase boundary the two-domain state
A [pdim 10 30 20 10 is energetically preferred. The critical particle sigg" re-

Js [T] 1.43 1.8 2.15 1.0 mains nearly constant for the ratio of inner radius to outer
radiuse <0.6, i.e., the hollow sphere behaves the same as a
bulk sphere but deviates by a factor of 1.055 according to

TABLE |I. Intrinisic material parameters used for FePt, Co, Fe,
and permalloy(K;: anisotropy constant\: exchange constandg
spontaneous polarizatipn

FePt Co Fe Permalloy

anisotropy uniaxial uniaxial cubic cubic
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shell particle is not as distinctive as in the case of Co. The
bulk values ofRS™ obtained for Fe and permalloy for the
transformation of the single-domain state to the curling-
vortex state are 12.16 and 20.88 nm, respectively. Rie
values fore=0.9 are 10.67 and 18.4 nm, respectively.

The phase diagrams have been determined by omitting
surface anisotropy energies. In the case of the transition from
the single-domain state to the two-domain state this approxi-
mation is correct as far as the depth of the surface area with
finite surface anisotropy is smaller than the exchange length.
I 1 In this case the surface anisotropy energy is the same for the
0 11—« —1_ single-domain and the two-domain state and therefore van-
° e Oif g8 0:E 1 ishes in the evaluation d&". Effects of the surface aniso-

€ tropy are expected for large parameterge >0.95 and if
the depth of the surface region becomes larger than the ex-

FIG. 8. Phase diagram of the lowest-energy magnetization Conéhange length. In the case of the transition from the single-

fl%uléit';cin in Co hollow nanoparticles as a function of the parameterdomain state to the curling-vortex state the surface aniso-
&=NFe tropy contributes to the total magnetocrystalline anisotropy

. L . energy by an amount which is proportional to the surfaces. In
Eq. (45) from Kittel's estimatiorf? Further increase of the the evaluation of the critical radius this would lead to an

parameter leads to a large shift of the phase boundary tf?]crease oRg”t. This effect increases with increasiagFor

larger critical particle sizes according to Ed4) and results oo : : :
in a limiting value which is larger by a factor of 2.71 than the a quantitative analysis future calculations will be performed.

bulk value[see Eq(47)]. This increase is due to the reduc-
tion of the magnetostatic energy when the thickness of the V. NUCLEATION PROCESS FOR SINGLE-DOMAIN
hollow spherical shell decreases. With decreasing thickness PARTICLES

of the hollow spherical shell the magnetic charge distribu-
tions finally form an ideal octopole with a lower magneto-
static energy than the quadrupole configuration. The sligh
minimum of RS™ occurring fore=0.33 is a consequence of

the complex dependence Bf™" on & according to Eq(44),

but can be neglected in a first approximation. The phas:Ri given byHihe”:—Ms. Conseguently, nucleation will start

diagram of Co nanoparticles is illustrated in Fig. 8. Here, th rom these two poles initializing an inhomogeneous demad-
phase boundary separates single-domain state from the P 9 g 9

curling-vortex statg€as the lowest-energy configuratijoand netllzat|_on prokcess.l For \t/)ery sm) (bulkl Ir']m't)’ however,

not from the two-domain state. The phase boundary is shifte{]uc eation takes place by conventional homogeneous rota-
from RE™=28 nm fore=0 to RC"=22.2 nm fore=0.9. For o™
small e parameters a slight increaseR@"It is obtained up to
28.5 nm fore=0.05. A similar behavior is observed for Fe V. CONCLUSIONS
and permalloy, as seen in Fig. 9. However, the decrease of
the critical particle size from the bulk particle to the0.9

For single-domain bulk nanoparticles the inner stray field
i==Js/ (Bug) is homogeneous. The stray field becomes in-
omogeneously distributed when the single-domain particles
are hollow. According to Eq2), the demagnetization field in
he spheroidal shell is largest fé==0 (and 180j and atR

We have derived phase diagrams of domain configura-
tions for ferromagnetic hollow nanospheres as a function of
the material parameterd, K;, A, and the ratioe of the

% E N internal and external radius of the hollow particles. With in-
20 . _ creasing particle size the phase diagrams separate a high-
- 1 remanent single-domain phase of high magnetostatic energy
E o F from low-remanent domain states of low magnetostatic en-
c15 ] ergy.
d [ . .
P Fo ] In hard magnetic materialée.g., NgFe ,B, FePj the
"’3:010 - . phase transition takes place from the single-domain state to
[ ] the low-remanent two-domain state. The critical particle size
5 F 3 at which the phase transition occurs increases by a factor of
2.71 in ultrathin spheroidal shells as compared to the bulk
) AT B IS B B value obtained foe <0.6.
0 0.2 0.4 0.6 0.8 1 In half-hard or soft magnetic materials.g., Co, Fe, per-

malloy) the phase transition takes place from the single-
domain state to a low-remanent vortex state. This difference

FIG. 9. Phase diagram of the lowest-energy magnetization coneetween the hard and soft magnetic materials results from
figuration in Fe and permalloy hollow nanoparticles as a function ofthe magnetocrystalline anisotropy energy which together
the parametes=R//Re. with the magnetostatic energy is minimized in hard magnetic

€
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materials by the formation of the two-domain state. In soft Further noteworthy results obtained in the present calcu-
magnetic materials the vortex state reduces the magnetostatigtions are the following ones: In bulk spheres, the reduction
energy drastically and the magnetocrystalline energy remaingf the magnetostatic energy due to the transition from the
always small. _ _ _ single-domain to the two-domain state is found to be given
In the case of FePt the s;mgle-domam state is stable up tgy 5 factor of 7739/16384 0.472. This precise result con-

a critical particle size oR;" (Fethl_tYO nm for bulk par-  fyms Kittel's previous assumption that the energy reduction
ticles (¢<0.6) and increases up tB:"(FePy~461 nm for corresponds to a factor of 0.500. The curling-vortex configu-
extremely thin hollow spherical shells. For Co and permalloyyation has been investigated quantitatively including the vor-
W'Ei? increasinge the crcl;[iltcal radius decreases slightly from yicoq existing at the poles of the hollow particle. The energy
RZ"(Co)=28 nm andR;"(permalloy~=20.88 nm for bulk ¢ the o vortices was found to contribute only to 10% of

H it — it
particles  to R"(Co=22.2nm and R"(permalloy e total energy which is mainly determined by exchange and
~18.4 nm for thin hollow spherical shells @=0.9. Since magnetocrystalline anisotropy energies.

the critical particle sizes for the single-domain state in all the
cases are not substantially reduced, the use of hollow spheri-
cal particles instead of bulk particles in future applications
can significantly reduce the material’s weight and ¢osthe
case of expensive materials such as fePt ] . ]
In contrast to bulk spheres no homogeneous nucleation The authors gratefully acknowledge fruitful discussions
process exists in hollow spheres for the magnetization reveiith H. Kronmdller and H. Radousky. This work was sup-
sal of the single-domain state. Instead of this, the nucleatioforted by the Postdoc-Programme of the German Academic
takes place inhomogeneously and starts at the internal poléschange ServicéDAAD). A.E. Berkowitz was partially
of the single-domain particle where the demagnetizing fieldsupported by a grant from the Lawrence Livermore National
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