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We present our theoretical and numerical results on thermodynamic properties and the microscopic mecha-
nism of two successive transitions in vanadium spinel oxidésO, (A=Zn, Mg, or Cd obtained by Monte
Carlo calculations of an effective spin-orbital-lattice model in the strong correlation limit. Geometrical frus-
tration in the pyrochlore lattice structure of V cations suppresses development of spin and orbital correlations,
however, we find that the model exhibits two transitions at low temperatures. First, a discontinuous transition
occurs with an orbital ordering assisted by the tetragonal Jahn-Teller distortion. The orbital order reduces the
frustration in spin-exchange interactions and induces antiferromagnetic correlations in one-dimensional chains
lying in the perpendicular planes to the tetragonal distortion. Second, at a lower temperature, a three-
dimensional antiferromagnetic order sets in continuously, which is stabilized by the third-neighbor interaction
among the one-dimensional antiferromagnetic chains. Thermal fluctuations are crucial to stabilize the collinear
magnetic state by the order-by-disorder mechanism. The results well reproduce the experimental data, such as
transition temperatures, temperature dependence of the magnetic susceptibility, changes of the entropy at the
transitions, and the magnetic ordering structure at low temperatures. Quantum fluctuation effect is also exam-
ined by the linear spin-wave theory at zero temperature. The staggered moment in the ground state is found to
be considerably reduced from saturated value and reasonably agrees with the experimental data.
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I. INTRODUCTION range ordering at any temperatdre® Due to the three di-
mensionality and the large unit c€ll6 sites in the cubic unit
Geometrical frustration in strongly correlated systems iscell), pyrochlore systems remain a big challenge to theoreti-
one of the long-standing problems in condensed-matter physians and are still far from comprehensive understanding.
ics. Frustration suppresses a formation of a simpleminded We can find many pyrochlore systems in real compounds.
long-range order and results in nearly degenerate groundJost typically, pyrochlore systems are realized in so-called
state manifolds of a large number of different states. ManyB spinel oxides, where onl-site cations are magnetic in
well-known examples are found in frustrated antiferromag-the general chemical formulaB,O,. Figure 1b) shows the
netic (AF) spin systems. There, all the antiparallel spin con-B spinel structure, which consists of a network of edge-
ditions between interacting pairs cannot be satisfied at theharingBOg octahedraB cation is shown by a ball in center
same time because closed loops contain an odd number of each octahedron, and octahedron corners are occupied by
sites. The degeneracy due to the frustration yields nontriviabxygen ions, while nonmagnetfgsite cations are not shown
phenomena, such as complicated ordering structures, spifer simplicity. With omitting oxygen ions on the corners of
liquid states, and glassy stafesBesides the spin degree of the octahedra, one obtains the pyrochlore latticB otions
freedom, charge-ordering phenomena are also much affectéa Fig. 1(a).

by the geometrical frustratichQuantum and thermal fluc- In this paper, we will investigate insulating vanadium spi-
tuations play important roles in these systems, which arael oxides,AV,0, with divalentA-site cations, such as Zn,
difficult to handle in a controllable manner. Mg, or Cd. In these compounds, eacf"\¢ation has two 8

Pyrochlore lattice is a typical example of the geometri-electrons in a high-spin state by the Hund’s-rule coupling,
cally frustrated structures, and it consists of a threeand they are Mott insulatofd.Thus, we may consider that
dimensional(3D) network of corner-sharing tetrahedra as pyrochlore spin systems witB=1 are realized. Curie-Weiss
shown in Fig. 1a). Spin systems on the pyrochlore lattice temperature is estimated from the magnetic susceptibility as
have been intensively studiéd-*In particular, for quantum |®c|~ 1000 K, and any long-range ordering does not occur
S=1/2 spin systems with only nearest-neighbor interactionsdown to significantly lower temperatures th,,| due to
it is predicted that a macroscopic number of singlet states lithe geometrical frustratioH. For instance, in Zn¥O,, a
inside the singlet-triplet gap.Several types of symmetry structural phase transition occurs &t;=50 K from the
breakings are predicted within the singlet subspace, e.ghigh-temperature cubic phase to the low-temperature tetrag-
dimer/tetramer ordering, but without magnetic long-rangeonal phase with a flattening of \Ooctahedra in thec
ordering®8 Antiferromagnetic(AF) classical spin systems direction’? Successively, an AF transition occurs &t,
on the pyrochlore lattice are also believed to show no long=40 K (Ref. 12. Neutron scattering experiments revealed
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FIG. 1. (Color) Cubic unit cell of the lattice structure of vana- FIG. 2. (Color) Spin-ordering structure proposed for Zs®, on
dium spinel oxidesAV,0,. (a) The pyrochlore lattice of vanadium the basis of the neutron scattering results. The ordering pattern con-
cations(red bally. (b) The 3D edge-sharing network of \(@cta-  sists of staggered AF chains in thb plane(red solid lineg, which
hedra. Oxygen ions are on the corners of octahedra. Tetrah&dral stack with a four-times period in the direction as up-up-down-
sites are omitted. down-... (blue dashed lings(b) Projection of(a) from thez direc-

) ) ) tion. Symbols+ and — denote the up and down spins, respectively.
that the AF-ordering structure beloW, is a collinear one

that consists of the staggered AF chains in #ieplanes already traced out at the starting point, and, therefore, their
stacking in thec direction with a four-times period as up-up- effective model has no chance to describe the AF ordering
down-down:.. as shown in Fig. 2314These two successive within their theory.
transitions are commonly seen in compounds M@y and A similar JT scenario was also examined for classical spin
CdV,0,.1>16 This indicates that the degenerate ground-statsystems? In this case, although the problem to have AF
manifolds in the pyrochlore systems are lifted at low tem-order does not exist, there is another difficulty to explain the
peratures in some manner. following generic difference from chromium family of
Afew years ago, Yamashita and Ueda proposed a scenari&Cr,0, (A=Zn, Mg, or Cd. These chromium oxides are also
to explain the mechanism of the transitions Av,0,.'” B spinels and magnetic Cr cations constitute a pyrochlore
Their approach is based on a valence-bond-solid picture fdattice. However, in contrast to the two transitions in vana-
S=1 spins and takes account of the coupling to Jahn-Telledium compounds, the chromium compounds exhibit only
(JT) lattice distortions. They claimed that the first transition one transition, i.e., the AF order appears simultaneously with
at T, is due to the JT effect, which lifts the degeneracy ofthe structural transitiok?-?° This clear difference is generic,
the spin-singlet local ground states at each tetrahedron unibeing independent of divalert cations, and ascribed to the
This scenario based on the spin-JT coupling is appealingdifference of magnetic cations®/ and CF*, which cannot
however, some difficulty still remains. The problem is that itbe explained by the classical spin approach based on the
is difficult to explain the magnetic transition at a lower tem- spin-JT effect unless there exists essential difference in the
peratureT.,. In this approach, a finite energy gap is assumednodel parameters between the two families.
between the spin-singlet ground-state subspace and the spin- Therefore, these spin-JT-type theories appear to be insuf-
triplet excitations, and a low-energy effective theory is de-ficient to explain the mechanism of two transitions in vana-
rived to describe a phase transition within the spin-singletium spinelsAV,0,. These insulating compounds are un-
subspace. High-energy excitations with total st 0 are  doped states of Li¥O, that exhibits a unique heavy fermion
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behavio??? The origin of the mass enhancement is still
controversial between the scenario based on the Kond
effect32> and the scenario of strong correlations with the
geometrical frustratiof®—3° Since the doping of Li shows
systematic changes of magnétiand transport properti€s, X,
as well as the phase diagraAv? understanding of undoped
materials may give a starting point to discuss the doped sta
in LiV ,0,. Therefore, it is also highly desired to clarify the
mechanism of orderings in the undoped compoutdsO,.

The generic difference between vanadium and chromiun
spinels mentioned above suggests an importance,adr-
bital degrees of freedom. In the case of chromium spinels
each C#* cation has three electrons in threefdlg levels
and large Hund's-rule coupling leads to a high-spin state 874
and, therefore, there is no orbital degree of freedom. On the
contrary, in the case of vanadium spinels, since eaéh V  FIG. 3. (Color Hopping integrals for ther bonds;t]" andt3
cation has two electrons, the orbital degree of freedom igre for the nearest-neighbor sites and for the third-neighbor sites,
active. With taking account of this, orbital degeneracy, the respectively. The overlaps betweap, orbitals within thexy plane
authors have derived an effective spin-orbital-lattice coupledthe solid arrowgand those betweethy, orbitals within theyzplane
model in the strong correlation limit and investigated it by (the dashed arrowsre shown. Thel,, overlaps are similarly taken
mean-field-type argumen%%A reasonable scenario was ob- |nt9 account. The gray arrow shows an example of second-neighbor
tained, but discussions were limited to a qualitative level. InP3"
order to investigate temperature dependences of physical
properties semiquantitatively accurate enough to be com- H=Hgo+Hjr. (1
pared with experimental data, we need more elaborate anal
sis.

In the present study, we will investigate thermodynamic
properties of the effective spin-orbital-lattice model derived

; . The spin-orbital Hamiltoniatd g is derived from a mul-
by the authors in Ref. 33 by extensive Monte CailtC) o ; SO .
calculations. We will show that this model indeed exhibitst'orbltal Hubbard model with threefoly, orbital degeneracy

two successive transitions in a reasonable parameter rangé(ari?ne tpeﬁtrtt))t?gr?jnn;rc]) dt:IeisStri\?gg igotrrcgl?c?ron? lifft The
and clarify the microscopic mechanism of these transitions i 9l 9
detail. First, an orbital order appears with the tetragonal JT |,  _ t t
. . - . . = ri—ri)c,Cs,+H.C.
distortion which flattens V@ octahedra. This orbital order = 2 20 2 [tapr = 1) Sl ipr ]

)i:he first term describes exchange interactions in spin and
orbital degrees of freedom and the second term is for orbital-
lattice couplings of the Jahn-Teller type.

. . . . L ap 7
reduces magnetic frustration partially and enhances AF spin L :
correlations in one-dimensionélD) chains in theab planes. +32 2 2 UiparpClalis CigrCiarn (2
At a lower temperature, the third-neighbor exchange interac- ' apa'p

tion and thermal _ﬂ_uctuatlons a_llgn these 1D AR chains COWherei ,j andr, 7" are site and spin indices, respectively, and
herently and stabilize a 3D co_lImear AF .o_rder. With compar- B=1(d,),2(d,),3 (dy,) are orbital indices. The first
ing numeng:al results of physical quantities to experimenta erm of Hyy is the electron hopping, and the second term
data, we will show that our theory captures essential physics
at low temperatures in the vanadium spin&lg,0,.

This paper is organized as follows. In Sec. Il, we intro-(a) ‘ (b)
duce the effective spin-orbital-lattice coupled model and TZ ,
briefly summarize the mean-field arguments discussed i X
Ref. 33. Realistic parameter values and MC method are als
described. In Sec. Ill, we show numerical results in compari: -
son with experimental data. We then make several remark:
in particular, on comparisons with experimental results anc (Q>0) 1
other theoretical proposals in Sec. IV. Section V is devoted tc 1
summary. energy

(5 2x) (xy, zx)
3 2

4
(xy, ¥2)
(xy, y2) .

Yz, 2X yL

1. MODEL AND METHOD x
—_— X

A. Effective spin-orbital-lattice model

In the present study, we will investigate thermodynamic  FIG. 4. (Color) (a) Tetragonal distortion and the level splitting.
properties of the spin-orbital-lattice coupled model, which is(b) The orbital-ordering pattern for the moddl) predicted by the
proposed by the authors in Ref. 33. The Hamiltonian consistmean-field argument in Ref. 33. The ferro-tyfatiferro-typ@ or-
of two terms as bital bonds are shown by the blue soli@d dasheplines.
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describes Coulomb interactions, for which we use the stan- 7=J4/U, (15)

dard parametrization®, o ,
and each site is subject to the local constrai,,n;,=2.

Usgarpr = U O S + In(8ap Opar + Supdurp),  (3) Realistic values of these parameters are given in Sec. Il B.
An important feature ofHgg is the highly anisotropic
U=U’+2J,. (4)  form of the orbital intersite interaction. It is a three-state
clock-type interaction, corresponding to three different or-
We do not include here the relativistic spin-orbit coupling pital states, in which there is no quantum fluctuation because
and the trigonal distortion in the mode?). Effects of these  the density operatam, is a constant of motion. This aniso-
neglected elements will be discussed in Sec. IV B and IV Etropy comes from the orbital diagona| nature of thdond
Considering that the vanadium spinel oxides are insulahopping integrals, which do not mix different orbitals. More-
tors, it is reasonable to start from the strong correlation limitover, the orbital interaction depends on both the bond direc-
and treat the hopping term as perturbation. The unperturbegbn and the orbital states in two sites. On the other hand, the

states are atomic eigenstates with two electrons on each &pin exchange interaction is Heisenberg type and isotropic,
cation in a high-spin state. As for the perturbation part, onindependent of the bond direction.

the basis of the tight-binding fit for the band structinesee The orbital-lattice ternH; in Eq. (1) reads

Sec. 11 B), we take account of hopping integrals @fbonds

for nearest-neighbor pair§" and for third-neighbor pairs Hyr= v Qi(niy + nip— 2nig) + >, Q72 -1 2 QQ;,

2 as shown in Fig. 3. Note that the third-neighbor pair i i (5

corresponds to the next-nearest-neighbor pair along each (16)
chain. The hopping integral between second-neighbor pairs . .

(the gray arrow in Fig. Bis expected to be small because of Where v is the electron-phonon coupling constant aQd

the geometry of the pyrochlore latti@and, moreover, the denotes the amplitude of local lattice distortion at site
exchange interaction derived from it is frustrated. Here, we take account of only the tetragonal mode inzhe

The second-order perturbation i and £ gives the direction. Note that this simplification breaks the cubic sym-
Hamiltonian in the form ‘ 7 metry of the system. We choose the sign@fsuch that it is
positive for a flattening of V@octahedra which leads to the
Hso=Hag+ ngg, (5) level splitting in Fig. 4a). The second term in Eq16) de-
notes the local elastic energy of distortions. Finally, the third
term denotes the interaction of JT distortions between
nearest-neighbor sites, which mimics the cooperative aspect
of the JT distortion. It is reasonable to assume a positive
- . value of A because a tetragonal distortion of a y@ctahe-
ngg: —Js 2 [hg]—)AF+ hf)”_),: , () dron modifies its neighboring octahedra in a similar distor-
@ tion due to the edge-sharing 3D network of octahedra in Fig.
i 1(b). For simplicity, here we neglect the quantum nature of
hotar = (A+BS; - S)HNiaiplL ~ Njaiy)] phonons. Although JT distortions modifiisy through
+[1 = iy Nt} (8) changes of hopping integrals, we neglect these corrections in
the present study.
M= C(1=S - SN N ) We normalized the variabl; to absorb the elastic con-
0-F~ i/ iadi) jadif) stant in the second term in E(L.6), hence, the dimension of
whereS, is the S=1 spin operator and,,=S.c', ¢, is the Qi 1S (erlt/'-\,zrgyl’z. As a result, the dimensions gfand\ are
density operator for sité and orbital «. The summations (€nergy™ < and(energy, respectively.
with ¢i,j) and (i,j)) are taken over the nearest-neighbor For the following Qiscussions, We_briefly summarize the
sites and third-neighbor sites, respectively. Her@j) is the ~ results of the mean-field-type analysis on the madglob-
orbital which has a finite hopping integral between the dites tained in Ref. 33. The anal)_/3|s predlct§ that f'rSt’ the d‘?ge”'
andj, for instancea(ij) =3 (dy,) for i andj sites in the same eracy due to the geometrical frustration will be partially

xy plane. The other parameters in Eq8)~9) are deter- lifted in the orbital channel. There, the anisotropy of the
mined by coupling constants in E() as"”’ orbital interaction inHZ} plays a crucial role; the interaction

is a three-state clock type and depends on the orbital states as

S0=" J(Z) [hgj—)AF + hgj—)F , (6)
ij

J=(t"U, (100  well as the bond direction. The remaining degeneracy of or-
bital states is lifted by the tetragonal JT couplingHgr. A
Jy= (t:;rd)zlu’ (11) flattening of VQ, octahedra splits the threefold orbital levels

as shown in Fig. &) and selects the orbital-ordering struc-
ture as shown in Fig.®). There, one of the two electrons

A=(1-n)I(1-3y), (12 occupies the,, orbital at every site, and the other occupies
eitherd,, or d,, orbital in an alternative manner along the
B=7/(1-3n), (13 direction. When we consider only the nearest-neighbor inter-
actionsHZ}, this orbital occupation induces AF-spin interac-
C=(1+n)/(1+29), (14)  tions on the bonds within thab planes[the blue solid lines
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in Fig. 4b)] and ferromagnetic spin interactions on the parameters in the present study. In the present MC calcula-
bonds among theb planes[the red dashed lines in Fig. tions to confirm the above mean-field scenario, we are inter-
4(b)]. The coupling constant for the former AF interaction is ested in the parameter region where the orbital order in Fig.
JC and for the latter ferromagnetic interaction iB- Be-  4(b) is stabilized by the tetragonal JT distortion with a flat-
causer is a small parameter of the order of 0.1 as estimatedening of VO, octahedra. The stability conditions for this
in Sec. Il B, the former AF interaction is much larger than orbital and lattice order will be obtained in Appendix A by a
the latter ferromagnetic one. Moreover, the ferromagnetic inmean-field-type argument. In the following MC calculations,
teractions are frustrated for the AF spin configuration withinwe will show MC results for typical values af and\ which

the ab planes because of the geometry of the pyrochloresatisfy the conditions ag?/J=0.04 and\/J=0.15.

lattice. Hence, under the orbital ordering shown in Figp)4

the AF spin correlations develop within the 1D chains in the

ab planes, and the 1D AF chains are independent with each C. Monte Carlo method

other; relative angles among the AF moments are not yet |n the present study, we will use MC calculations to in-
determined at this stage. The relative angles are partiallyestigate thermodynamic properties of the effective spin-
fixed by including the third-neighbor interactioh&5 The  grpital-lattice mode{1). Quantum MC simulations for frus-
third-neighbor interactions align the AF moments in tWOrated systems are known to be difficult because of the
next-neighboringab planes and lead to a 3D collinear AF pegative sign problem. In the present MC study, we neglect
order with the wave vectay=(0,0,2w/c). (See Fig. 10.In  gyantum fluctuations and approximate the model in the clas-
the ordered state, however, there are two independent A§jcal level. This approximation retains effects of thermal
sublattices; one consists §f10] chains and the other con- flyctuations that may play dominant roles in finite-
sists of{ 110] chains. The relative angle between the AF mo-temperature transitions. The quantum nature originates only
ments on the two sublattices is still free in this mean-fieldfrom spinS=1 operators in the modeél) because the orbital
argument. From the spin-wave calculation of the zero-pointnteraction is classical and is a diagonal one of three-state
energy, we discussed that quantum fluctuations fix the relaslock type, and because JT distortions are also treated as
tive angle and stabilize a collinear AF order in Fig. 2 that isclassical variables. Thus, we approximate the spin operators
consistent with the neutron scattering result. by classical vectors with the modullS|=1 [the length of

The mean-field argument gives a reasonable scenario fdéhe vector is normalized to give the same largesbmpo-
two transitions inAV,0,, but the argument is limited to a nentS=1 (classical papj. Effects of quantum fluctuations
qualitative level. In order to confirm the scenario and underwill be discussed by using the spin-wave approximation in
stand the experimental results more quantitatively, we needec. IV C. Thereby, the modg¢l) consists of the classical
more sophisticated analysis, especially for the thermodyHeisenberg part for spins, the three-state clock part for orbit-
namic properties of the system. In the present study, we wilals, and the classical phonon part. We use a standard me-
perform the Monte Carlo simulation for this purpose. tropolis MC algorithm.

In the actual MC calculations, the MC sampling is per-
formed to measure spin vectdss three-state clock spins for
the orbital statesdefined in Sec. Il A 2, and amplitudes of

Here, we estimate realistic values of parameters in thehe JT distortionQ at all the lattice sites. We typically per-
model(1), which are given by the parameters in the startingiorm 1P MC samplings for measurements afteP $€eps for
t,y Hubbard model(2). As for the hopping parameters thermalization. The measurements are performed in every
tap(ri=rj) in Hyy, a tight-binding fit to the results of the N, -times MC update, and we typically také, =2. Results
first-principle band calculation suggests the dominant hopare divided into five bins to estimate statistical errors by
ping integrals are those ofr bonds and givest)" variance of average values in the bins. Here, one MC update
~-0.32 eV andt®~-0.045 eV for nearest-neighbor and consists of several-times sweegigpically twice) for spin
third-neighbor pair of sites, respectivéf?® For Coulomb  directions, orbital states, and JT distortions. The one sweep is
interactions, there are estimates based on the cluster analysig,times trials by choosing a site randomly, whéNg, is
for optical experiments for vanadium perovskité®¥O;,  the number of lattice sites. In the sampling on spin direc-
which also have a V@octahedral unit® The estimates are tions, we apply the so-called pivot rotation when a trial is
U~6 eV andJy~0.68 eV, thus,»=J,/U in Eq. (15) is a  rejected, which is a precession without energy cost. The
small parameter of the order of 0.1. We will s£0.08 in  pivot rotation of a spin is achieved by a random rotation with
the following numerical calculations. The estimatestlf  keeping the relative angle to the mean-field vector deter-
24 andU give J~200 K andJ;~4 K, i.e.,J3/J~0.02. In  mined by its nearest-neighbor and third-neighbor spin and
the Monte Carlo calculations, we study mainly the case obrbital states. This accelerates the MC sampling in the con-
J3/J=0.02, but we vary the value dk/J from 0 to 0.05 to figurational space.
examine the systematic change hy Hereafter, we will set As shown in Sec. lll, the orbital transition accompanied
J=1 as an energy unit and the lattice constant of cubic uniby the JT distortion is first order. To avoid a hysteresis and
cell as a length unita=b=c=1), and use the convention of determine the transition temperature precisely, we start MC
the Boltzmann constamg=1. calculations at each temperature from a mixed initial condi-

It is hard to estimate the electron-phonon interaction pation for orbital and lattice states in which a half of the system
rametersy and A, and, therefore, we treat them as variabletakes a low-temperature ordered configuration and the rest

B. Parameters
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takes a high-temperature disordered configuration. This tech- ' ' ' ' ' 5
nigue is known to be free from trapping at a metastable state a0 b (a) o
for large enough system siz&sAt very low temperatures,
we use a perfectly ordered initial state to accelerate the con- B M
vergence. The system sizes in the present work are wp to

=12, wherelL is the linear dimension of the system measured E
in the cubic units, i.e., the total number of sitdg, is given 5
by LX 16.

POONOUIA

IIl. RESULTS

T dAp+Xo00

In this section, we present MC results for the madglin 0.0 0.1 02
comparison with experimental data. In Secs. Ill A-lll C, we T
show the results for the typical case &f J=0.02. System-
atic changes withl;/J and a generic phase diagram will be
discussed in Sec. Il D.

<
[

A. Two transitions

AP +X000
P=Y- RN P
1

gy

In the following, we present MC results fdg/J=0.02 to
show that the moddll) exhibits two phase transitions with
temperature. In Sec. Il A1, we present the MC results for
the internal energy and the specific heat, which show two
different anomalies. We also discuss the changes of the en-
tropy related to the two transitions. In Secs. A2 and
[l A 3, we discuss the nature of the two transitions by cal-
culating the order parameters. In Sec. Ill A4, we examine
the magnetic ordering structure in the low temperature phase,
and point out the importance of thermal fluctuations. Sec. F|G. 5. (a) The internal energy per sitq. (17)] and (b) the
[l A'5 contains MC results for the uniform magnetic suscep-specific heat per sitiEq. (18)] at J3/J=0.02. Error bars are smaller
tibility for comparison with experimental data. than symbol sizes ). Typical error bars are shown {ib).

0.3

1. Internal energy and specific heat It is noted that the specific heat approacﬁe(a‘n units of

Figure 5 shows temperature dependences of the internp) @ T—0 as shown in Fig. (). A finite value of C at

energy and the specific heat per site. The internal energy pgr:o is characteristic to classical models, and one degree of

site is calculated by the thermal average of the Hamiltonjaffé€dom remaining at the ground state contribtéetp C.
(1) as Hence, the data in Fig.(B) suggests that there remain three

degrees of freedom &i=0 in the present model. From the
E = (H)/Nsige- (17)  discussions of the ordered phase at low temperatures in the
]‘ollowing sections, they can be ascribed to two transverse

The specific heat is calculated by fluctuations of the mternamodes of the AF spin order and one JT mode.

energy as From the jump of the internal energy in Fig(ah we
(H?) = (H)? estimate the entropy jumpS associated with the first-order
C="5N o (18)  transition from the disordered phase abdygto the ordered
site

phase belowly. The two phases have the same free energy

As shown in Fig. %a), the internal energf jumps atT ~ F=E-TS at T, which gives us the entropy differendes as
=0.19]. It indicates that a first-order transition occurs at this
temperature. The jump is also found in the specific heat at AS= lim E(Mo+6)-E(Mo-6)
the same temperature in Figth®. The specific heat shows T 50 To
another anomaly at a lower temperatdre-0.115). There,
we find a systematic enhancement of the peak as the systehiis corresponds te-30—40% of In 3 per site.
size increases, which is a sign of second-order phase transi- The amount of the entropy that is related to the fluctuation
tion. Thus, MC data in Fig. 5 indicate that the system showsround the second-order transitionTq} is estimated from
two different transitions; the first-order transition @  the area of the anomalous peakTgtin the plot of C/T as a
=0.19] and the second-order transition B;=0.115). In  function of T. Although it is difficult to estimate because of
the following sections, the two transitions are to be assignethe large system-size dependenceCoés well as the large
to the orbital ordering with tetragonal lattice distortion anderror bars in Fig. &), a rough estimate is obtained by an
the AF spin ordering, respectively. interpolation with polynomial functions for the normal con-

0.4. (19)
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tribution and a numerical integration of the anomalous part. 10
The estimate is roughly 0.05-0.1, which corresponds to
~5-10% of In 3 per site.

In experiments, the amounts of entropy related to the two
transitions are also estimated from the specific heat. In
ZnV,0,, the entropy change in the higher-temperature tran-
sition at T;; is ~3—4 J/mol K, i.e.,~20% of In3 per V
cation?® The entropy related to the lower-temperature tran-
sition at T., is small and not estimated quantitatively, but
roughly less than 1 J/molK, i.e.s5% of In3 per V
cation®*® In MgV,0, the former is estimated as
~3J/molK, ie., ~16% of In3, and the latter is
~0.4 J/mol K, i.e.,~2% of In3 per V catior® Our esti-
mates from the MC results in Fig. 5 show semiquantitative
agreement with these experimental values, and particularly
explain that the entropy related to the lower-temperature
transition is considerably smaller than that for the higher- 0.5 (b) a 1y 03¢ (C) AR
temperature transition. The small entropy related to the tran- | blattice 1 A L sublattice 2 * 2-
sition atTy is likely due to the magnetic frustration and a 1D sublattice x I Sublattice x 73
AF correlation well developed above, which will be dis-  0-0' — st 11— 0.0 \—mivmombmmpioottd L

. X .1 2 3 0.0 0.1 0.2 0.3
cussed in Sec. Il B. 0.0 0 T 0 0.3 T

1.0 — e —————— 1.0 — oo —————

4
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2. High-temperature transition: Orbital ordering

To characterize two transitions in Fig. 5, we calculate cor- St SRt
responding order parameters. First, we consider the transitio®> | (d) a 05 (e) a A1
at the higher temperaturg,=0.19]. Figure §a) shows the . . n

g P B gure Ga) - sublattice 3 : 7 - sublattice 4 : ’FZ 1

sublattice orbital moment, which is defined in the form
0.0 —sbwmmmebmmpntomon 11— 1 0.0 L —ssdssslosssssaiosiittt | | |
4 0.0 0.1 0.2 03 0.0 0.1 0.2 0.3
Mo=—( 2 1, (20) T T

Nsite i e sublattice . . .

FIG. 6. (a) The sublattice orbital moment in E¢20) at J3/J
where the summation is taken over the sites within one of the 0.02. The inset shows the three-state clock vector for the orbital
four sublattices in Fig. @). Here,l; is the three-state clock state.(b)—(d) Electron density in each orbital for four sublattices
vector at the sitd, which describes three different orbital 1-4 shown in Fig. &) for L=12[Eq. (21)]. Error bars are smaller
states as shown in the inset of Figag |;=(1,0) for (xy,yz),  than the symbol sizes.

Ii:(—%,f) for (yz,zX), andli:(—%,—f’) for (zx,xy) orbital
occupations, respectively. It is found that the valuesvigf  This orbital-ordering structure is shown in Fig. 7. This pat-
for four different sublattices have the same value within thetern is consistent with the mean-field prediction in Figh)4
error bars so that we omit the sublattice index in &§). As Accompanying the transition d, a tetragonal JT distor-
shown in Fig. 6a), Mg shows a clear jump at the same tion occurs discontinuously. In Fig. 8, we plot the average of
temperature as for the internal energy and the specific heahe JT distortions, which is calculated by
This suggests that a four-sublattice orbital ordering occurs at
To. At low temperaturesyl 5 approaches its maximum value Q= 2 (Q)Ngie- (22)

1

1, which indicates the four-sublattice orbital order becomes
almost perfect there.

Figures @b)—6(e) show the orbital distribution for four
sublattices 1-4 shown in Fig.(8), respectively, which is
defined as

The positive value 06 below T corresponds to a ferro-type
tetragonal JT distortion with a flattening of \\@ctahedra as
mentioned in Sec. Il A. Therefore, the level splitting shown

— 4 in Fig. 4(a) is realized. The value d approaches 2 at low
=x— 2 (M (21 temperatures, which is the mean-field value obtained in Ap-

Nsiteiesublattice i . -

pendix A. We note tha® is small but finite even foll > T,.
where a=1 (dy,), 2 (d,), and 3(dy,). The results indicate Thjs is becausel;; breaks the cubic symmetry of the system
that at T the orbital distributions suddenly change from gs mentioned before.
equally distribu_tedTa~§ in the para phase abowg, to al- Therefore, the discontinuous phase transitio is as-
most polarizech,~ 0 or 1 forT<Tq. In the orbital ordered cribed to the orbital ordering with the pattern of Fig. 7 ac-
phase belowl, dy, («=1) andd,, («=3) orbitals are occu- companied by the tetragonal JT distortion with the flattening
pied in the sublattices 1 and 4, amigy (e=2) andd,, (a«  of VOg octahedra. From Figs. 6 and 8, we estimate
=3) orbitals are occupied in the sublattices 2 an@®af. 4).  T5=(0.19+0.01J for J3/J=0.02.
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FIG. 8. The average of the JT distortion defined in Ep) at
J3/J=0.02. Error bars are smaller than the symbol sizes.

Yz Xy chain measured in the cubic units. We set the normaliza-
tion in Eq. (24) such thatMgs becomes 1 for the fully satu-
rated AF order in Fig. 2. Note that the structure factor
cannot be defined only by a real phase factor because of the
] complicated AF-ordering pattern which is expected to have
d the four-period structure in thgzandzxdirections as shown

in Fig. 2. See also the discussions in Sec. Il A 4. The struc-
ture factor is also expressed in a simpler form as

2
= 2aS (25)
site i
7 where the form factog; is given by
X gi = cog2m(x + ;)] +i cod2m(x —y))]. (26)

FIG. 7. (Color) Orbital-ordering structure obtained by MC cal- Note thatg; is specified only by the andy coordinates of
culations. Dark blue and light yellow octahedra (& contain V. the sitei because the coordinate is uniquely determined
cations wherdd,,,d,,) and(d,y,d,,) orbitals are occupied, respec- within the cubic unit cell due to the special structure of the
tively. They stack alternatively in the direction. Some ofl,, and  pyrochlore lattice[See the projection in Fig.(B).]

dy, orbitals are shown by white and black lobes, respectivélyis As shown in Fig. @a), the staggered magnetizatidvig
the projection of(@) from the z direction. d,, orbitals are singly ~ develops continuously belowy=0.115) and approaches
occupied at all the sites and not shown in the figures. the fully saturated valu#ls=1 asT— 0. Figure 9b) shows

the staggered magnetic susceptibility obtained by
3. Low-temperature transition: Antiferromagnetic spin ordering

Next, we consider the other transitionTaf=0.115]. Fig- Xs= N%'te(<|f|2> - (BH). (27)
ure 9a) shows the temperature dependence of the staggered
magnetization defined in the form Here, we calculate the susceptibility by usififj) instead of
Mg = ([f[DY2, (23) |(F)| in Eq. (27) for convenience of numerical calculations
because both quantities agree with each other in the thermo-
where the structure factor is given by dynamic limit. The susceptibilitys shows a diverging be-
5 Nen havior atTy, and the peak value increases with the system
f= > exp(2il? )[2’3(_ 1)4yi]_ (24) size. In Fig. 9c), we show the Binder parameter for the
site i =1 S staggered magnetization, which is definetfas
This definition looks complicated but nothing but the order ((|f[»?)
parameter of the spin-ordering pattern shown in Fig. 2. Here, gs=1- P2 (28)

the first summation is taken over different chains lying in the

xy planes(Ng, is the total number of thety chains in the It is known that the Binder parameter becomes larger
system, i.e.Ng,=4L? whereL is the linear dimension of the (smallep for larger system sizes in the orderetisorderegl
system measured in the cubic uiitand the second summa- phase, and, hence, the crossing point of the Binder parameter
tion X' is taken over the sites in thgth xy chain.y; is they  for different system sizes gives a good estimate of the tran-
coordinate of the sitg andlizCh is thez coordinate of thé,th  sition temperature. The MC data in Figcpshows the cross-
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10 I 1 1 I 1
0.8 | (a)
L
o 4
0.6 I~ o g T
<
MS x 7
04 |- + 8
a 10
v 12
02 |
0.0 . ' Y
0.0 0.1 T 0.2 0.3
: : : : : FIG. 10. (Color) Two sublattices; one consists of tfj&10]
chains(blue dashed lingsand the other consists of th&10] chains
600 (b) — (red solid line$. In each sublattice, chains are connected by the
Y third-neighbor exchangd; in the yz and zx directions. Black
B L] (white) arrows show spins in the sublattice mom&hi(M ).
4
400 | 85 A o _
XS o 6 4. Collinearity of magnetic ordering
B 7 ) . .
f 8 The mean-field argument in Ref. 33 and in Sec. Il A pre-
200 A 10 dicts that the staggered magnetizations develop indepen-
B v 12 - .
dently on two sublattices and the relative angle between two
AF moments is free. The two sublattices are shown in Fig.
10; one consists of thg110] chains and the other consists of
00_0 the[110] chains. The staggered magnetizatdg defined in
Eq.(23) is the order parameter of the 3D AF spin ordering in
Fig. 2, but cannot measure the collinearity between two stag-
A gered magnetizations. For examplég takes the value of 1
0.66 ¢ independent of the relative angle between staggered mo-
ments in two sublatticed; and M,, shown in Fig. 10,
when both sublattice moments saturate. The spin configura-
0.62 tion in Fig. 10 is a noncollinear one, while that in Fig. 2 is a
g collinear one, and both givelg=1.
S Here, we measure the collinearity between the staggered
058 moments in the two sublattices by
(M -Mp)? >
Cipo={ ——5—"5 ) =(cosb,,). (29
12 <(M1)2<M2>2 '
0.54

Here we may considef;, the angle betweekl; andM,. In
T the present calculations, the two sublattice moments are ob-
tained by the real and imaginary parts of the structure factor

FIG. 9. (a) The staggered moment defined in E2P). Error bars fin Eq. (24) as
are smaller than the symbol sizéb) The staggered magnetic sus- M, =Ref), M, =Im(f), (30
ceptibility in Eq.(27). (c) The Binder parameter defined in £@8). ] ) ) ]
The lines are guides for the eyes. All the results are calculated d€spectively. If the AF order is collinear, i.eM;IIM, the
J3/3=0.02. value of C;, become 1. Figure 11 shows the MC results.

Below Ty=0.115], C,, is rapidly enhanced, becomes larger
and approaches 1 as the system size increases. This indicates
ing at the same temperature of the divergencgin Fig.  that the magnetic state is collinear beldy. Thus, the AF
9(b), which indicates the phase transition by the order paorder belowT, is identified by the collinear AF spin order
rameterMg at Ty. whose pattern is given by Fig. 2.

All these results in Fig. 9 indicate that the phase transi- The result indicates that thermal fluctuations in the clas-
tion at Ty is caused by the continuous growth of the stag-sical version of the modél) lift the degeneracy of the rela-
gered magnetic order. From FiggbPand 9c), we estimate tive angle between two sublattice magnetizations and stabi-
Ty=(0.115+0.00%J for J3/J=0.02. The magnetic ordering lize the collinear spin structure. This is a kind of the so-
pattern will be discussed next. called order-by-disorder phenomertrin Sec. Il A and Ref.

0.08 0.10 0.12 0.14 0.16
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1.0 . . . . aboveT,, and remains substantial even beldy. We will
L Ii comment on this behavior in Sec. IV D.
[¢]
08 L o2
L i g B. One-dimensional spin correlation in the intermediate phase
0.6 |- = 18 As shown in Fig. 88), Mg in finite-size systems are en-
2 hanced belowly even aboveTy. In this section, we show
that there the short-range AF correlation is much enhanced
04 - : along 1D chains in they planes compared to thez and zx
L ST T b yy v rerryvr ey v v v v vy ChainS.
02 The mean-field arguments in Sec. Il A and in Ref. 33
0.0 0.1 0.2 0.3 suggest that the orbital order enhances 1D AF correlations
T within the xy chains in the intermediate pha3g<T<T,.

FIG. 11. The collinearity defined in EqR9) at J3/J=0.02. The
lines are guides for the eyes.

1 NCh

different directions. The staggered moment along Xye
. . (xy) — 1 ’ H
mal and quantum fluctuations favor a collinear state of the  Mg” =\ | — 2 |- 2'S expamix)

To examine the spatially anisotropic spin correlation, we cal-

culate the staggered magnetic moments along the chains in
, , chains may be defined b

33, we discussed that the collinear order may appear also by y y

quantum fluctuations. Thus, we can conclude that both ther- 2] 12

two sublattice magnetizations. It is known that in many frus- Nen i1 | 4475

trated systems, thermal and quantum fluctuations favor a col- (32

linear state. This is also the case for the madgl

where the summations are taken in the same manner as in
Eqg. (24) and the phase factor describes th¢-1-|-- - - struc-

5. Uniform magnetic susceptibility ture in thexy chains as shown in Fig. 2. Similarly, the “stag-
We show in Fig. 12 the temperature dependence of thgered” moment along thez chains is calculated by
uniform magnetic susceptibility calculated by 5 Nen| 4 o2
N M= | T 2 |5 2'S exp2miz) ,
_ Nsite /n 12\ _ 2 Ne 2 | 4L%
X= T ((th) <Mt0t> ), (31) chigh=1 !

(33
where My, is the total magnetic moment per sit®), . L L
=|2;S|/Nsie The result corresponds to the zero-field-cool WNere the first summation is taken over all yeechains in
(ZFC) result in experiments rather than the field-coBC) the system and the second summation is taken over the sites
result because the susceptibility is measured by starting tht |th|ndt_he|tc_hth yz_fhhaln W.';h a phflhse factor. ?f pterlotd fourin
MC simulation from an initial state with zero magnetic field "€ 2 |r_ecF|(_)n \/2w Hcon5| grmt% Q'T'é'l' ¢ fhruc ure as
at each temperature as described in Sec. Il C. The MC resul'®V" In Fig. 2. HereNg, is the number of they or yz

show a sudden drop &f,~0.19 and a little continuous © ains, i.e.Ngy,=4L2 whereL is the linear dimension of the
change atTy=0.115 These features qualitatively agree system measured in the unit cell. The normalization factors

with the experimental resulfg. in Egs.(32) and(33) are given such that bolM(Sxy) andM(SyZ)

In experiments, a large difference between ZFC and F@€come 1 in the fully saturated AF state witd ;|=|M

results has been found. The difference develops from weff 1 iN EQ: (30). ,
Figure 13 shows the MC results. The moment in #xe

chainsM(SZX) has the same value M(SVZ> within the statistical

T T T T T
L error bars. Belowl5=0.19], the moment in they chains
031 o 4 ] Mg‘y) is much more enhanced compared to that inythand
L 3 8 x% - zZX chainstsyz) and M(Sz"). This indicates that in the interme-
x 7 diate phasely<T<Tg, the AF spin correlations develop
o2 * 38 P00, i ithi i
A 10 '} mainly within thexy chains.
X | v 12 i The system-size dependence of these moments within the
chains provides further information. Figure 14 plots the
0.1 M . system-size extrapolations of the MC data in Fig. 13. In the
ordered phase beloWy=0.115), the MC data are extrapo-
i ] lated to finite values, which indicates a long-range order. The
0.0 - L L L - extrapolated values d#1%Y and MY? to L— agree with
0.0 0.1 T 0.2 0.3 each other within the error bars as expected in this 3D or-

dered phase. On the other hand, in the disordered phase
FIG. 12. The uniform magnetic susceptibility in Eg1) at ~ aboveTy=0.19), the MC data for bOthgy) and M(Syz) well
J3/J=0.02. Error bars are smaller than the symbol sizes. scale to 14L and are extrapolated to ze@nly the data at

184427-10



ORBITAL AND MAGNETIC TRANSITIONS IN... PHYSICAL REVIEW B 70, 184427(2004)

1.0
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0.0 1 1 1 1 L 0.0 i v 0.22
0.0 0.1 0.2 0.3 0.8
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FIG. 13. The staggered magnetic moment algag the xy
chains[Eq. (32)] and (b) the yz chains[Eq. (33)] at J3/J=0.02. FIG. 14. System-size extr.apolations of the staggered magnetic
Error bars are smaller than the symbol sizes. moment along(a) the xy chains and(b) the yz chains atJ;/J

=0.02. Error bars are smaller than the symbol sizes. The gray lines

T=0.22) are shown in the figures as a typical example butare the fits to a linear function of ﬁ[. See the text for details.

other data afl > T, show a similar behavior.This scaling
implies the exponential decay of the spin-spin correlation

along the chain as explained below. Compared to the rather o) 1 ) 12
isotropic behavior folf < Ty andT> T, we find a contrast- Ms™ ~ (4T)22 (Si - Sy cos 4m(x; +V))

ing behavior betweeMY and MY? in the intermediate Y

phaseTy <T<Ty, almost all the data oIK/Igz) well scale to 1 12

1/yL even for the smallest system size in the present calcu- - EJ [(So-Soldr |, (39

lations with L=2, while the data oM(SXV) show a clear de-
viation from the scaling in the smalll-region.
In order to analyze this contrasting behavior in the inter-
mediate phase, we introduce the correlation lergg#long by introducing the continuum limit to evaluate the summa-
the chain and assume a simple scaling form of the spin-spifion. Note that\2L is the length of the chains in the?

staggered spin-spin correlation becomes an almost constagk optain

value within the length scalé and decays exponentially for
further distance thag;

Si-Spl~cfor rj<é B 12

~cexfg- (- &lel forry > ¢ (34) ML %fcdr e (36)

wherec is a constant and; =|r;—r|| is the distance between v

sitesi andj along the chain measured in the cubic units. The

staggered moments in Eq82) and(33) can be rewritten by

using the spin-spin correlation. For instance, B) is re- _
written in the form for the case o> 2L, and

o
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é V2L 1/2 , o
1 r 2h
MY ~ | — fcdr+cej exp(— —)dr l,=—= | ouulw)do, (38)
S \,ZL é,. M ,n.ez 2
0 & 0
1 VoL 12 21/4\;’0_5 wheree is the electron chargé,=h/2 is the Planck’s con-
= L 2c¢ - cegexp - 3 T stant,o,,,, is the diagonal element of the optical conductivity

tensor, andu=x,y, or z. Here, we consider only the optical
(37) transfer within the 8 t,4 electron bands and neglect that to
the other bands, such as thé &, bands and the oxygep
bands. In experiments, the integral of £88) is calculated
iy to an appropriate energy cutoff to extract the spectral
weight from the relevant,, levels. The spectral weight in
Eq. (39) is generally given by the kinetic energy in thg

for the case of¢é<2L. The staggered moment in the

chains in Eq(33) is also estimated in a similar manner.
With considering the above arguments based on the sc

ing form (34), we can roughly estimat&from the crossover

of the scaling from 1{L [Eqg.(37)] to the constantEq. (36)] 47,43 )
(+ corrections in the system-size dependence in Fig. 14_Hubbard mode(2). In the strong correlation limit, it is

That is, the linear dimension of the system size where thgalculated by the spin and orbital exchange energy in the

: 2 . ,
crossover occurs gves a fough estmale dfor nstance, at o1 e calcuiations. Detalls of e calcuaions are ex
T=0.13], ngw deviates from the scaling of 1L atL <8, '

(y2 : . plained in Appendix B.
on the contraryMs™ obeys the scaling down to~3. This In the calculation of the spectral weight for the present
suggests that™ ~6 (~16 siteg and £¥Y?~2 (~6 sites.

. N .. model, there are three points to be noted. One is that the
[Note that the longest distance along the chain in the per'Od'Sriginal Hubbard mode(2) contains not only the nearest-
L3 system(Ng=16L3) is L/y2] The correlation length in

=1\ \site” ; i neighbor but also the third-neighbor hoppings. These two
thexy direction is about three times longer than in t'|and 1y 565 of hopping contribute differently to the spectral weight.
zx directions. We note that the crossover length systematithe second point is that the directions of the electron hop-

cally shifts to a longer value as decreasing temperaturéyings are different from the crystal axes. Electrons hop along
which suggests divergence 6fasT—Ty. [ is expected 10 hexy vz andzx chains, which are canted by 45° from two
diverge in all the directions with the same critical exponentrystal axes and perpendicular to the remaining one. From
although the d|)vergence af¥? is not clear in Fig. 10)  his, for instancel, is given by the kinetic energy both in the
compared t* ] _ _ , _zxandyz chains but not in they chains. The third point is
Therefore, we find a 1D anisotropy of the spin correlation.ihe crystal symmetry. Because the system shows the tetrag-

The magnitude of the moment is much enhanced and thgny| |attice distortion belowl, there holds a general rela-
correlation length is much longer in thg chains than in the  ion in the form

yz and zx chains. As predicted in the mean-field arguments,

the staggered spin correlation develops dominantly irxihe =1y # 1, (39
chains due to the cooperation of the orbital ordering and th
geometrical frustration.

Recently, the neutron scattering experiment has been p
formed in both above and beloW,.** A clear difference of
the q dependence of the inelastic neutron intensity has bee
found between the data above and belfwand ascribed to
the 1D spin anisotropy due to the orbital ordering. The pro- -1

for T<To. We note that there remains weak anisotropy of

eEq. (39) even in the high-temperature phase abdwebe-
Cause of the broken cubic symmetry k. With taking

gccount of these points, we can derive the following expres-
ions:

— 3
posed pattern of the orbital order is the same as our result in = 2N > [{(Hsp) 9 + K(Hso) 2], (40
Sec. 1A 2. st ooy
=t S (HI) + AHEL 4D
C. Anisotropy in optical response Y 2Ngie Foerlll SoL SO/
It has been recognized that the interplay between orbital
and spin degrees of freedom often causes an anisotropic elec- -1 n ar
tronic state, which is observed in optical measurements. For .= 2Nqie {:%ZXR(HSO)(> +K(Hso)pl, (42)

instance, in perovskite vanadium oxides, a strong 1D nature
in the 3D lattice structure has been observed in the opticavhere we see=%=1, and(Hgp), and (H33 ¢ represent the
measuremerff, and theoretically ascribed to the anisotropic matrix elements of Eqg6) and(7) in the ¢ chains, respec-
orbital exchange in the spin ordered st&herefore, we tively ({=yz, zx orxy). The derivation of Eqg40)—«42) will
expect that the 1D anisotropy found in the previous sectiorbe given in Appendix B.
also shows up in the optical response. In Fig. 15, we show the MC results for the spectral
We consider the anisotropy of the optical response byweight. The spectral weight becomes highly anisotropic in
calculating the spectral weight in the present spinel case. Thiae tetragonal phase beloW with satisfying the relation
spectral weight is the total weight of the optical conductivity (39); the spectral weight in the direction I, is suddenly
defined by suppressed afo, while those in thexy planel, andl, are
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FIG. 15. The spectral weights for the y, and z directions 03} L 41 F L .
calculated by Eqs(40)—(42) at J3/J=0.02. Error bars are smaller fo 4 x 7 1 [ o4 x'7 7
i i 02f ] L 4
than the symbol sizes. The solidashegl line showsTy (Tp). yal o g o+ Bl B [ o g + I8 '
slightly enhanced there. Moreover, in the orbital-ordered w (e) i (f) ]
phase belowTy, I, andl, increase monotonically with de- 00 w4 T I
creasing temperature, wherelgsshows a complicated tem- 0.0 0.1 T 0.2 0.3 0.0 0.1 T 0.2 0.3

perature dependence although the dependence itself is smal;

I, slightly decreases abowvig;, and it turns to increase below

FIG. 17. Temperature dependences of the uniform magnetic sus-

Tn. The increase beloWy comes from the energy gain in the ceptibility at(a) J3/3=0.0,(b) 0.01,(c) 0.02,(d) 0.03,(e) 0.04, and
yzandzxdirections by the development of the AF spin order. (f) 0.05, respectively. The dashed lingse downward arrowsin-
The anisotropic electronic state indicated by our MC re-dicate T, (Ty). Error bars are smaller than the symbol sizes.

sults can be observed in the optical measurements with ap-

plying the electric field in each direction. It needs a cleanggy a single crystal large enough thus far, and the experi-
surface in the single crystal. Unfortunately, it is difficult to mental confirmation of our results remains for further study.

28 L T T 7 L R IL D. Systematic changes fods/J and phase diagram
2.2: (a) ° e73 (b) ° 6 Here, we discuss systematic changes with respect to the
C + 8 ; N g value of J;/J. Figures 16-18 show the specific heat in Eq.
i 210 17T 210 (18), the uniform magnetic susceptibility in E1), and the
L8y ’ 12%&:"* mﬂ- i l % ’ ;2 ] orbital and magnetic moments in EG&0) and(23), respec-
i ¥¥§*'*§‘a Tl pemest ERSEE tively, for several values od;/J. The orbital and JT transi-
L4 — e tion temperature$, are indicated by the dashed lines in the
B T figures, which are monitored by discontinuous changes, of
- " g g £ l X, and Mg as well asE and Q (not shown herg The AF
“T 06 v g transition temperature$y are indicated by the downward
C r i arrows in the figures, which are determined by the singular
18- peak ofC and a continuous developmentMf as well as the
i diverging peak ofys and the crossing point @s (not shown
1.4 here.
26— T — T In the case 08;=0, the system shows only the orbital and
- (e) : . I‘_‘ 11 . Ii : lattice transition, and there is no AF ordering down to the
22¢ o5 4 o5 lowest temperature. Upon switching df) the magnetic tran-
C t 3 M ‘; 1t l M ‘; - sition appears at a finite temperat(ig below whi(;h the 3D
181 +8 4 + 8 AF order exists. As shown in Figs. 16—18, increases
L Mw i M whereasl slightly decreases ak/J increases. The increase
1.4 A il T of Ty is easily understood because the AF spin ordering is
0.0 0.3 0.0 i 0.2 0.3

FIG. 16. Temperature dependences of the specific he@d) at
J3/3=0.0,(b) 0.01,(c) 0.02,(d) 0.03,(e) 0.04, andf) 0.05, respec-
tively. The dashed lineg¢the downward arrowsindicate T (Ty).

0.1 4 02
T

Typical error bars are shown.

stabilized by the third-neighbor exchange interactignThe

reason for the decrease B is not so clear, but it might be

due to the strong interplay between spin and orbital degrees
of freedom as well as the frustration betwekandJ; within
the same chains. Fdg/J=0.04, Ty coincides withTo, and

there is only one discontinuous transition where both orbital
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1.0 FHRIR IR - B e ordered phase with the tetragonal JT distortion with a flat-
08 | Mo 4t Mo i tening of VQ; octahedra as shown in Fig(a}. The 1D an-
o6l © 6 1L X . Ié aig o isotropy of spin correlation found in Sec. Ill B appears in
I Xl x 71912 this region. The hatched area for< Ty is the AF-ordered
04r 1% 1 F X + 8 T phase concomitant with the orbital and lattice orders.

02k 12y (a) 4 | %Ms (b) _ From estimates of parameters in Sec. Il B, we obtained
- *m”fﬁ**’j%mmeammi : S92 J~200 K andJ;~0.02J~4 K. From Fig. 19, these esti-

6 mates giveT5~ 40 K andTy ~ 20 K. The experimental val-
’ ues areT,;=50 K and T,,=40 K in ZnV,0, (Ref. 12,.
0.8 g - Thus, two transitions af.; and T, in experiments are con-
0.6 % sistently understood by the orbital and lattice ordering tran-
sition at To and the AF-ordering transition &y, respec-
tively. The semiquantitative agreement of the transition
temperatures between our MC results and the experimental
values is satisfactory with considering the assumptions on
the derivation of the modgll) and on parameter estimates in
Sec. Il B. In particular, we note thatandX\ in the JT part in
Eq.(16), are parameters in our theory for which there has not
been any experimental estimate to our knowledge as men-
tioned in Sec. Il B. The agreement in spite of these assump-
tions strongly suggests that our mod#) captures essential
physics in vanadium spinel oxidés/,0,.

04

%90 0.1 02 0300 0T p 02 0.3

IV. DISCUSSIONS
FIG. 18. Temperature dependences of the orbital sublattice mo-
ment and the staggered magnetic mometigad;/J=0.0,(b) 0.01,
() 0.02,(d) 0.03,(e) 0.04, and(f) 0.05, respectively. The dashed  The orbital and lattice orderings @t are considered to
lines (the downward arrowsindicate To (Ty). Error bars are phe caused by the cooperation between the intersite orbital

A. Role of tetragonal JT distortion

smaller than the symbol sizes. interaction in Eq(5) and the JT coupling in Eq16). In this
section, we examine the role of the JT distortion in more
and AF spin moments become finite discontinuously. detail.
Figure 19 summarizes the phase diagram inJ3@& pa- We focus on the instability in the orbital sector and ne-

rameter space determined by the analysis of the results iglect spins momentarily. That is, we here consider the effec-

Figs. 16—18 as well as other quantities, Sucka®, xs, and  tive orbital model, which is derived from the mod@), by
gs- The shaded area fofy<T<Tgy shows the orbital- assuming the spin paramagnetic state in the mean-field level
as discussed in Ref. 33. We repl&geS; by (S;-S)=0 in Eq.
h T T T T (5), and obtain the effective orbital Hamiltonian in the form

02 i\ ~o i TO - HO:JOE nia(ij)nja(ij), (43)
> (B);
o - ~ . whereJo=J(2A-C). For simplicity, we neglect small contri-
T butions from thel; terms in this section. Sincéy>0, the

0.1 F Hamiltonian is an AF three-state clock model, which is the
same as Eq5) in Ref. 33 up to irrelevant constants.

The mean-field argument for the moddB) predicts that
a degeneracy remains partially in the tetrahedron init.
il , , . . There are totally 3=81 different orbital states in the four-
“0.00 0.01 002 003 0.04 0.05 sites unit, and 30 states among them are in the lowest energy
J state, which have four antiferro-type and two ferro-type or-

3 bital bonds. The 30 degenerate states are categorized into

FIG. 19. Phase diagram for the spin-orbital-lattice coupled™O different types shown in Fig.(@) and 2b) in Ref. 33.
model (1) determined by classical Monte Carlo calculations. Thel The former corresponds to Fig(h}, and the latter corre-
shaded arealy<T<T, shows the orbital- and lattice-ordered SPONds to Figs. 22) and 22b) in the present papgrin the
phase. The hatched area beldy is the AF-ordered phase con- first type, two ferro-type bonds do not touch with each other,
comitant with the orbital and lattice orders. The orbital and latticewhile they touch at one site in the second type. Thus, we
transition afT (the dashed lingis a first-order transition, while the expect that in the absence of the JT coupling, the orbital
AF transition atTy (the solid ling is a second-order one. The lines degeneracy remains partially and prevents the emergence of
are guides for the eyes. a particular ordered state.
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LO ' ' T T multiplying the local degeneracy. In the present case, the

‘ total number of states is'8e, and 30 of 81 states constitute

(a) . the degenerate ground state in each tetrahedron as mentioned

above. With noting that there amdy; /2 tetrahedra in the
D=0.0. 0.4 system and assuming that the tetrahedra are independent

0.6 0,04 4 4 o
C/J L=2 o with each other, the zero-temperature entropy within the
(e} 3 i‘ Pauling’s approximation is obtained as

1 [ 30\ Nsied? 1 (81
So= lim —— In| 37site| — =In3--In| <.
81 2

Nsite— Nsite 30
(45)

0.8

04 4 1

Thus, we obtain the entropy sum as

S(T—2)=In3-8,=%In(&)=0.5. (46)

The estimate is close to the saturated value in Figh)20

The tetragonal JT distortion with a flattening of the octa-
hedra as shown in Fig(d) splits the degenerate energy lev-
els and lowers the energy of one orbital state of the first type,
i.e., the configuration in Fig.(®). In this case, all the tetra-
hedra are in the same orbital states. That is, there we expect
the orbital ordering and disappearance of the zero-
temperature entropy. The results for the case with the level
splitting are also shown in Fig. 2@ray symbols Here, for
simplicity, we incorporate the level splitting by adding the
term

D
HD=‘§E (Njg + Nip — 2n;3) (47)

to Eq. (43), which mimics the JT term in Eq16). As ex-
FIG. 20. Temperature dependences@fthe specific heat per pected, the specific heat in Fig.(2pshows a singularity at
site and(b) the entropy suniEq. (44)] for the effective orbital T~0.3)o, which indicates a phase transition. Figurg90
model (43). Black symbols show the results without the JT distor- showsS(T— ) =In 3, which indicates that the phase tran-

tion. Gray symbols show the results in the presence of the tetragQq-... . . B
nal JT level splitting withD/Jo=0.4 in Eq.(47). Ozlrtgocr; reduces the remaining entropy by lifting the degen
] . o The results in this section confirm the mean-field picture

To confirm this prediction, we perform the Monte Carlo jn Ref. 33, and explicitly show the importance of the coop-

simulation for the effective orbital mode#3). The result of  eration between the intersite orbital interaction and the JT
the specific heat per site is shown in Fig(@Qblack sym-  coupling.

bols). The data show a broad peak arouine 0.4]5 without
any singularity or any significant system-size dependence. _
This indicates that the system does not show any phase tran- B. Symmetry of orbital ordered state

sition, as predicted by the above mean-field picture. In Fig. Here, we comment on the spatial symmetry of the orbital
20(b) (black symbols we plot the temperature dependencegydered state belot. Our result in Fig. 7 indicates that the

of the entropy sum defined by orbital ordering breaks the mirror symmetry for tiel0] or
T [110] plane. The symmetry breaking will also appear in the
c(T) lattice structure through the electron-phonon coupling, which
S(T) :J K (44)  preaks thed,, and d,, symmetry, although such coupling is
0 not included in our mode[the tetragonal JT mode in Eq.

(16) does not split thel,, andd,, levels.

The entropy sum appears to saturate-at5 at high tempera- Recently, the orbital-ordered state with another symmetry
tures, which is largely suppressed from the expected value dfas been proposed, theoretic&fiyf he theory is based on the
In 3=1.1 for free three-state clock spins. This indicates thagssumption of the dominant role of the relativistic spin-orbit
there remains the entropy at zero temperature due to the deeupling. The predicted orbital order consists of the ferro-
generacy discussed above. type occupation of thel,, and (d,,+id,,) orbitals at every

One way to estimate the zero-temperature entr§pys  site. This orbital order does not break the mirror symmetry.
the so-called Pauling’s methddn this method, the ground The difference of the resultant orbital-ordered state is im-
state degeneracy in the whole system is calculated simplgortant to consider the fundamental physics of the pretggnt
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electron system. I,y electron systems, in general, there is with the ordering pattern in Fig. 7, and substitute the density

keen competition among different contributions whose enoperators in Eq(5) by their expectation values 0 or 1. That

ergy scales are close to each other; the spin and orbital exs, we here consider the effective quantum-spin model on the

change interactions, the JT coupling, and the relativistic spinpyrochlore lattice in the form

orbit coupling® In our argument, the former two

mechanisms play a primary role while the last one is not Hepin= > %S S+ > US-S, (48)

taken into account. On the contrary, in Ref. 49 the relativistic (0 i

spin-orbit coupling is assumed to be dominant. Therefore,

the determination of the orbital and lattice symmetry is rel-where the first summation should be taken over nearest-

evant to clarify the primary factor in the keen competition. neighbor pairs, while the second one be taken over third-
Experimental results on the lattice symmetry, howeverneighbor pairs coupled by bond. Under the orbital ordering

are still controversial. In Refs. 16 and 51, the x-ray scatteringn Fig. 7, exchange coupling constants are ferromagnetic

results for polycrystal samples are consistent with the symfor nearest-neighbor spin pairs on the and zx chains, J;;

metry 14,/amdbelow T,,;, which suggests the persistence of =—JB=J:<0, and antiferromagnetic for those on thg

the mirror symmetry at the low temperature phase. On thghains,J;;=JC=J,->0, while the third-neighbor couplings

contrary, in recent synchrotron x-ray data for a single crystare also antiferromagnetidg=J;C. These parameters were

sample, a new peak is found whose intensity is 3 orders-ofdefined in Eqs(10)~(15). It is important thatlag > |J¢ > J;,

magnitude weaker than a typical main péakinfortunately, ~becausep<1 and t29<t™ Roughly speaking, the small

the new peak cannot conclude whether the mirror symmetrgontrol parameter in the spin-wave theory is [3/

is broken or not, but it suggests the different symmetry fromX z (number of neighbopg. In the present cas&=1 andz

the previousl4,/amd i.e., eitherl4m2 or 14. This contro- =6, leading to a control parameter small enough, and, there-
versy, probably coming from a small electron-phonon coufore, we may expect quite good estimate from the spin-wave
pling in thist,, system, reveals the necessary of more sophistheory. _ _ .
ticated experiments for larger single crystals. Such For the magnetic order determined by the mean-field ar-
experiments are highly desired to settle the theoretical corguments in Sec. Il A and Ref. 33, we have calculated the
troversy. reduction of staggered moment Bt0 by using the linear
Another possible experiment to conclude the symmetrysPin-wave theory. The magnetic structure is shown in Fig. 2,
problem is to detect the orbital state directly. This may beand its unit cell contains 8 spins. Details of the calculations
achieved, for instance, by the resonant x-ray scatteriniy/ill be reported elsewhere; here, we show only the results
technique®? Besides, another way to distinguish the orbital- for the staggered moment.
ordered states in our results and in Ref. 49 is to examine the When the third-neighbor exchange couplings are zero
time reversal symmetry. The,+id,,) orbital order in Ref. ~(J3=0), magnons have zero energgero modep on the
49 breaks the time-reversal symmetry even above the magplanesk,=zk, in the Brillouin zone. Within the linear spin-

netic transition temperature. A possible experiment is the devave theory, magnons are treated as noninteracting to each
tection of either circular dichroism or birefringence. other, and these zero modes are excited freely without any

energy cost. This leads to the logarithmic divergence of the
. reduction of momentAS— . It is noted that in the pyro-
C. Quantum fluctuation effect chlore spin system in which all the nearest-neighbor cou-
Our classical Monte Carlo calculations have shown thaplings are antiferromagnetic with same amplitude, a half of
with approaching zero temperature, the staggered momeftagnon excitations are zero modes throughout the whole
increases and saturates at the maximum vilge>1 when Brillouin zone, and this results iIAS=c, as a manifestation
the third-neighbor couplinds is finite. In physical units, this  of strong geometrical frustratior.
value should be multiplied bySug and corresponds tMg Once the third-neighbor exchange couplind§ are
=2ug. Here, ug is the Bohr magneton and the factor is switched on, zero modes acquire a positive energy and the
assumed to be the standard valye2. This behavior was reduction of moment becomes finite. Figure 21 shows the
plotted in Figs. @a) and 18b)—18f). On the other hand, results of the reduction of momeAS as a function of; for
recent experiments shoMg~0.6ug at low temperatures, Jar=1 andJg=-0.113, corresponding tg=0.08 at which
only less than a half of this classical vaftfé! It is well ~ the MC calculations have been performed. The amplitude of
known that quantum fluctuations due to magnon excitationstaggered moment is reduced kbs=(S-AS)gug. In the
reduce the amplitude of spontaneous moment in antiferrosase of the vanadium spinel oxides wihk 1, S-AS>0 for
magnets. We expect that this effect is particularly importantl3= 1073J,¢, which indicates that the antiferromagnetic or-
in frustrated magnets like pyrochlore systems, since frustrader shown in Fig. 2 is stable down to very small third-
tion generally reduces the energy scale of magnon excitaieighbor exchange couplings. For example, at a reasonable
tions and correspondingly enhances quantum fluctuations ofalue, J3~0.02)5r, the amplitude of staggered moment is
the staggered moment. Mg~ (1-0.9gug~0.59ug. With using g=2, this corre-
Here, we examine af=0 the effect of quantum fluctua- sponds toMs~ 1ug. Hence, the reduction is significantly
tions of spin degree of freedom on the reduction of staggerethrge in the present spin-orbital-lattice coupled system, and
moment for the mode(1), by using the linear spin-wave particularly the staggered moment rapidly decreasel as
theory. For this purpose, we assume the perfect orbital ordethe realistic small; region. We consider that the estimate of
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L4 ' ' ' ' 1.4 at To: There appears a huge hysteresis when we change the
12 temperature successively by using the MC sample in the pre-
vious run as the initial state in the next run. On cooling, the
system remains in the high-temperature para state well below
the true transition temperatuii®, as a metastable state be-
cause of an exponentially large energy barrier in the first-
order transition. One way to avoid this hysteresis is to apply
a more sophisticated MC method, such as the multicanonical
technique* This interesting problem is left for further study.

10
08
AS

0.6

04

02

00 I I I I 0.0
0.00 0.01 0.02 0.03 0.04 0.05

J 3/JAF E. A-site substitution effect

FIG. 21. Reduction of the staggered moment due to quantum V& have shown that our spin-orbital-lattice coupled
fluctuations(open symbolgestimated by the linear spin-wave cal- model (1) exhibits two transitions that well agree with ex-
culation atJe/J,==-0.113. The staggered moment is also plottedPerimental results i\V,0,. Here, we discuss a difference
(filled symbolg, which is given byMs=(S-AS)gug and by assum- among the compounds with differeAt cations observed in

ing g=2. The lines are guides for the eyes. experiments.
Among AV ,0, with A=Zn, Mg, or Cd, CdO, shows a

. . 5

My is satisfactory and can explain the experimental value byifferent behavior neaf, from others:® As temperature de-

carefully tuning the model parameters. creases, the magnetic susceptibility for the compounds with
We also note that there may be a small contribution fronf*=2n @nd Mg shows a sudden dropTa} as in our numeri-

quantum fluctuations in the orbital degree of freedom. In ou€@! result in Fig. 12, whereas that for the Cd compound
spin-orbital-lattice coupled modél), this contribution is not  SNOWS a sharp increase. Moreover, the transition temperature

taken into account because we consider omlpond for T¢, is substantially higher in the Cd case than in the Zn and

hopping integrals. Other hopping integrals lead to small orM9 casesT¢;=97 K for Cd whileT¢;=52 K and 64.5 K for
bital exchange interactions, causing small quantum fluctugZn @nd Mg, respectively. On the other hand, the AF magnetic
tions of orbitals. This will slightly reduce the orbital sublat- ransition temperaturd, is almost the same among three
tice moment and may lead to a further reduction of thefOmpounds;T.;=44,45, and 35K for Zn, Mg, and Cd,

i 6
staggered spin moment. respectively! N _
Our results show that the transition temperaffigewhich

corresponds td,, is determined by the energy balance be-
tween the intersite orbital interaction in E&) and the elas-

We have shown that the MC results for the uniform mag-tic energy gain in Eq(16). The A-site cations are honmag-
netic susceptibility in Sec. Il A5 qualitatively explain the netic and locate at the tetrahedral sites, which are separated
experimental data in the zero-field-cadFC) measurement. from the pyrochlore network of V cations; the change of the
In experiments, there has been reported that the ZFC an@l cation may affect the lattice structure becadge, tetra-
field-cool (FC) data show a large difference at low hedra share oxygen ions with \\@ctahedra. Thereby, we
temperature&? The difference between the ZFC and FC datamay consider that the Cd cation, which has relatively large
emerges at a higher temperature than the structural transitioonic radius, may modify the lattice structure and have an
temperaturdl.; and develops on cooling. One of the myster-influence on the JT energy gain as well as the form and
ies is that the difference remains finite and large even in thenagnitude of the orbital interaction.

AF spin-ordered phase beloW,,; the FC value becomes Actually, although the symmetry is the same for the three
nearly twice of the ZFC one at the lowest temperature. Thi€ompounds, the so-calladparameter of the spinel structure
strongly suggests that the difference cannot be explained asig considerably larger for Cd)D, than for Zn and Mg com-
simple spin-glass phenomenon. pounds. Theu parameter represents the magnitude of the

A key observation is that the starting temperature of therigonal distortion. The absence of the trigonal distortion
difference between the ZFC and FC data as well as the magrivesu=0.375 by definition, and a largerdenotes a larger
nitude of the difference appears to depend on samples. lmigonal distortion. For the Zn and Mg cases;0.385 and
Ref. 12, the difference emerges Bt-100 K and becomes 0.386, respectively, whereas becomes 0.394 for the Cd
~0.8x 10° emu/V-mol atT,,;. On the other hand, in Ref. 51, compound: The trigonal distortion is substantially larger in
the difference starts affT~70 K and becomes~0.3 the Cd case than in the Zn and Mg cases. This suggests that
% 10° emu/V-mol atT,;. We also note that the temperature the peculiar behavior in Cd{D, may be ascribed to effects
dependences of the ZFC data show a sample dependenaé,the trigonal distortion.
especially near two transition temperatures. These sample The agreement between the experimental data in Zn and
dependences imply the importance of quenched disorder. EMg compounds and our numerical results, which do not in-
fects of disorder in the present spin-orbital-lattice coupledclude effects of the trigonal distortion, indicates that the
system are interesting and open problems. small trigonal distortion does not play an important role in

In our MC calculations, it is difficult to obtain the FC these two compounds. To understand the behavior of the Cd
results because the system shows a discontinuous transiticompound, i.e., the sharp increase in the magnetic suscepti-

D. Difference of ZFC and FC susceptibility
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bility as well as the highef .4, it is interesting to examine model captures the essential physics of the vanadium spinel
the effect of the trigonal distortion in our theoretical frame- compoundsAV,0,.

work. In addition to the contribution from the electron-  Our results give an understanding of the mechanism of
phonon coupling to the trigonal distortion, we may have tothe two transitions in the vanadium spinel oxides. The
include more complicated hopping integrals not only thepresent numerical study has confirmed the mean-field sce-
o-bond type but also, for instancer-bond type or the nario in our previous papé?, and, moreover, given more
second-neighbor hoppings, since the trigonal distortion afdetailed and quantitative information. The first transition
fects the network of V@ octahedra: These additional hop- with orbital and lattice orderings is induced by the intersite
pings modify the spin and orbital intersite interactions in theorbital interaction, which is a three-state clock type and spa-
derived effective model in Eq5). The complicated effects tially anisotropic depending on both the bond direction and
of this trigonal distortion are left for further study. the orbital states in two sites. The anisotropy lifts the degen-
eracy due to the geometrical frustration inherent to the pyro-
chlore lattice. The tetragonal Jahn-Teller coupling also plays
an important role to stabilize the particular orbital-ordering

In the present work, we have investigated the microscopi®attern. The obtained orbital-ordering structure is the
mechanism of two transitions in vanadium spinel oxidesantiferro-type, which consists of the_alternatlve stapkln_g of
AV,0, with nonmagnetic divalen\ cations, such as zn, two ferro-typeab planes;(d,y,d,,) orbitals are occupied in
Mg, and Cd. We have focused on the role of theorbital ~ One plane, andd,y,d,,) orbitals are occupied in the other.
degree of freedom as well as spin in these strongly correlate@nce the orbital ordering takes place, the orbital state affects
electron systems on the geometrically frustrated lattice strud¢he spin-exchange interactions through the spin-orbital inter-
ture, i.e., the pyrochlore lattice consists of the magnetic \Wlay and reduces the magnetic frustration partially. As a con-
cations. We have derived the effective spin-orbital-latticesequence, the antiferromagnetic spin correlation develops
coupled model in the strong correlation limit from the mul- mainly in the one-dimensional chains in taé planes. We
tiorbital Hubbard model with explicitly taking account of the found typically about three-times longer correlation length in
tq Orbital degeneracy. The effective model describes the inthe xy direction than in theyz and zx directions. At the sec-
terplay between orbital and spin and reveals the contrastingnd transition, these one-dimensional chains are ordered by
form of the intersite interactions in two degrees ofthe third-neighbor exchange interaction to form the three-
freedom—the Heisenberg type for the spin part and th&limensional antiferromagnetic spin order. It was found that
three-state clock type for the orbital part. The anisotropy inthermal fluctuations stabilize the collinear state by the order-
the orbital interaction originates from the dominant role ofby-disorder-type mechanism.
the o-bond-hopping integrals in the edge-sharing configura- There still remain several open problems on this topic as
tion of VOg octahedra. The Jahn-Teller coupling with the discussed in Sec. IV: the controversy on the symmetry of the
tetragonal lattice distortion is also included. Thermodynamicorbital-ordered state, the large difference of the zero-field-
properties of the effective model have been investigated bgool and field-cool data of the magnetic susceptibility, and
the Monte Carlo simulation, which is a classical one to avoidthe A-site dependence, which is probably related to the trigo-
the negative sign problem due to the geometrical frustrationdal distortion. They need further investigation from both ex-
Quantum corrections are examined by the spin-wave apPerimental and theoretical viewpoints. In addition, another
proximation. Main results are summarized below. important problem is the carrier doping effect on the Mott

Our effective spin-orbital-lattice coupled model exhibits insulating materials, such as the Li doping inyZi,V,0,.
two transitions at low temperatures. As temperature deln experiments, it is known that the doping rapidly destroys
creases, first the orbital ordering transition occurs assisted bjie ordered states at=0, and replaces them by a glassy
the tetragonal Jahn-Teller distortion. This is a first-order transState Finally, at x=1, the system becomes metallic and
sition. Successively, at a lower temperature, the antiferroshows a heavy-fermion behavidr?? We believe that our
magnetic spin order sets in. This transition is second orderpresent results give a good starting point to study the inter-

For realistic parameter values, our numerical results agre@sting doping effects.
with experimental data semiquantitatively. The estimates of
two transition temperatures aig,~40 K and Ty~ 20 K, ACKNOWLEDGMENT
while the experimental values aré;;~50K and T,
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ment atT=0 is largely reduced by quantum fluctuations, and
the estimate by the spin-wave theory reasonably agrees with
the experimental data. The temperature dependence of the
uniform magnetic susceptibility is similar to the experimen-  In this appendix, we examine the conditions fpand A
tal data. The agreement strongly indicates that our effectiven the Hamiltonian(16) to stabilize the orbital order in Fig.

APPENDIX A
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4(b) accompanied by the tetragonal JT distortion with a flat{@) (xy, zx)

) e ( ) (b) @y =)
tening of VO octahedra as shown in Fig(a} at low tem- 73 JE
peratures. We employ the mean-field-type argument to dis z
cuss the instability at high temperatures as in Ref. 33. Here \L"
we consider only the nearest-neighbor interactions and ne Y x
glect small contributions fron 3. With considering a spin
disordered state and replaciBgS; by (S;-S;)=0 in Eq.(1), 02, 20 (3, y2) 2. 20 (0, y2)
we obtain the effective Hamiltonian for the orbital and JT e e
parts as

vz, zx)

©) Gy (521

Ho-yr=Jo > Mia(ij)Nadj) + Hars (A1)
((B)

whereJo=J(2A-C). The first term is equivalent to E#3) y L

and to Eq.(5) in Ref. 33 up to irrelevant constants.
We consider the orbital state and the JT distortion in the vz, zx) (vz, zx)

tetrahedron unit shown in Fig(Hd). For an orbital configu- 0z, 2x) 0z, zx)

ration at the four sites, the expectation value of the JT part

H;r for one tetrahedron is written in the following quadratic

form

FIG. 22. (Color) Orbital-ordering patterng), (b), (c), and(d)
for the categories 1, 2, 3, and 4 specified by Eg@s?)—Al0),
respectively. The ferro-typ@ntiferro-type orbital bonds are shown

Q) =Q-MQ+Q-A+A-Q, (A2) by the blue solidred dasheyllines.

whereQ is a four-dimensional vector that denotes the ampli-

—tr_ _ _

tude of the JT distortion in each site @'(Q;,Q,,Q3,Qy), A1=1(= 12,7 %2,=2.), (A7)
andM is the 4x 4 matrix whose matrix elements are given .
by Mij:% for i=j and M;;=-\ for i #]. The vectorA de- Ao=(=v2,=¥12,7,7), (A8)
scribes the electron-phonon coupling part and depends on the

: . H =t(_ - — —
orbital §tate, for |ns.tange°,\—'( yl2,-vl2,~yl2, y/.2) for As='= 2,777, (A9)
the orbital occupation in Fig. (). Here, we consider the
physical situation in which the system does not show any .
spontaneous lattice distortion without the coupling to elec- A= (1777, (A10)
trons of the second and third terms in E42). This is sat-
isfied when the matriXM is positive definite. Three of the As='(—yI2,—yI2,— yI2,-4I2), (A11)

eigenvalues ofM are (1+20)/2 and the last one ig1 . _ _
—6)\)/2, and, therefore, by noting that we consider only posi_where arbitrary permutations of components in each vector

tive \ as mentioned in Sec. Il A, the condition is give the same energy. Typical orbital configurations are
L shown in Fig. 22[The configuration foA5 is shown in Fig.
0<A<j. (A3)  4(b).]

On the basis of the above consideration on the JT energy,
we calculate the expectation value of the HamiltonjAd),
for the five types of orbital configurations. With considering
eP)=(P+B)-(P+B)-B-B, (A4)  the orbital interaction energy from the first term in E41),
R N .~ A R the minimized values of the energy per tetrahedron are ob-
whereP=LQ, B=L"!A, andL=MY2is well defined, aM is  tained as
a positive-definite matrix under the condition of H#3).

The quadratic form o&;7in Eq. (A2) can be transformed
to the following form:

Therefore, we find that the JT energy takes its minimum ~ YA(7 - 4Q\)
value e =4)- 21+ 20)(1-6n)’ (A12)
in=—-B.B=-A -MA, (A5)
: . . 5-26\)
for the amplitude of the distortions e,=4J,— 72(— A13
- A 2 O (1+2)\)(1—67\), ( )
QMn=—-MA. (AB)
For instance, for the configuration in Fig(b4, we obtain _ Y (13 -28\)
elin=—2,2/(1-6)) for QM'=4Q,Q,Q,Q) with Q=/(1 &= 8o~ o -6’ (A14)
—6\).
All the different orbital configurations witkn;,»)=0 or 1
are classified by the energy valag into five groups, which e,= 8]0~ 8y , (A15)
are described by the vectér as 1-6\
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0.7

ZK(k) 22 2 taanpK)Ch(K)cpe(k), (B2

0.6 - k ab ap

B which is the Fourier transform of the first term of E®).

N Here, a,b=0,1,2,3 are theatom indices in the primi-

tive unit cell containing four V atoms, whose relative

positions are labeled byd,=(0,0,0, 6,=(0,1/4,1/4,

- 6,=(1/4,0,1/9, 65=(1/4,1/4,0, respectively.

Since the pyrochlore lattice consists of three different

chains in thexy, yz, andzx directions, and we here consider

00 o 003 010 o015 020 only the g-bond hopping integrals, which are finite only

VT along thg chainsK(k) is g|\{en by the summation of the
0 contributions from each chain as

0.4
Yz/JO 03
02

0.1

FIG. 23. The parameter region of Eg817)—A19) is shown by _ nn 3rd
the shaded area. The dashed and solid lines denote the conditions of K(k) = E [U§K§ (k) + UKy k)], (B3)
Egs.(A18) and(A19), respectively. ¢

where (=1 (y2), 2 (z¥, 3 (xy) denote the three different
2y types of the chains and,,v, are the nearest-neighbor and
1-6\' (A16)  the third- -neighbor hopping integrals along thije chain,
respectively. In the Hamiltonia(R), u;=u,=us=t)" and v,
Note that there are 12 bonds per 1 tetrahedron. =v,=v5=t>"9, but they are deliberately denoted by different
By comparinges with other four values (i=1-4), we  parameters for later use. Each term in E8@) is defined by
obtain the stability conditions for the orbital configuration of
Fig. 4b). First, the conditione;< e; andes < e, are satisfied KIM(k) = 2 cogk - op[chy(k)ciy(k) + cli(k)cor(k)]

when +2 cogk - B9k (K)Car(k) + K)ok,
E<A<g. (A17) (B4)

e=4Jo~

In this range, the conditior;<e; leads to

Y <

13 (k) = 2 cog2k - [ chy(K)Coa(k) + cly(K)cra(K)]

(A18) +2 cog2k - 9 chy(k)co(k) + chy(k)car(k)],
(B5)

43o(1 +20)(1 - 6))
91-a4)

and the conditiore; <e, leads to
€= and so on, wheré,,= 8,~ &,

Y < 2J5(1 - 6M)/3. (A19) Let us now evaluate the derivatives §tk) in Eq. (B1).
By using Eq.(B3), it is straightforward to obtain, for in-
The shaded area in Fig. 23 shows the parameter region wheggance, the derivative in terms kf in the form:
all the conditions of EQ9A17)—(A19) are satisfied. We per-
formed several MC runs to confirm the present mean-field- PK(Kk) 1 nn nn
type analysis. In the MC calculations in Sec. lll, we take W2 16[ 2k (K) + Ugk3 (K]
¥?13=0.04 and\/J=0.15 as a typical set in this region. X

1
+ =[vok3 (k) + vgrd (k)] (B6)
APPENDIX B 4

In this appendix, we derive the expressions for the specThe derivatives in terms df, andk, are obtained in a similar
tral weights in Eqs(40)—«(42) for our effective mode(1). manner. Thus, with notinyl, . =Ngie/ 4, the spectral weights
The spectral weight, which is the total weight of the op-for the multiorbital Hubbard mode&l2) are obtained in the
tical conductivity, is given by the kinetic energy of the sys-forms:
tem (f-sum rule.*”*8We may safely extend the formula for
the single-band Hubbard model,

[HHRD) 20 + (HD

. b 4Ns.te
2
lu= EJ oyu(w)dw = iE - K(zk) , (B + A{((HF,0 + <(H§rd)xy>}]v (B7)
™ Nu.c 'k &k,u

0
to our multiorbital case(We sete=A=1, andN,. is the ly= 4Nste[{< Kn)xy>+<(HKn)y2>}
number of unit celly. Here, K(k) describes the kinetic en- ' ar ar
ergy term of the multiorbital Hubbard Hamiltonian as + ((HE ) + (HED N, (B8)
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terms ofu, andv, of (Hy,, by the derivatives in terms of the

.= 4Nsne[{<(HKn) 2+ {(HL) 20} exchangel of the expectation values of the effective spin-
orbital Hamiltonian(5) as
+ A(HR )y + (HZD0H, (B9)
where (H), and (H3'), are the nearest-neighbor and the a|n|u |< Hub) = 20,” |(J) |<Hso> 2(Hsp)p, (B12)
third-neighbor matrix elements of the kinetic term in E2). ¢
along the{ chain, respectively. 5
In the strong correlation limit, the kinetic energy corre- =07 - 3r

sponds to the spin- and orbital-exchange energy as discussed  dIn |v§|< Hub) = dln |(\]3)§|<|_|So> AHs00,
below. The expectation values of the kinetic terms in Egs. (B13)
(B7)—(B9) can be represented as coupling-constant deriva-
tives, where (J)g— u?/U and (J3)= vy 2/U are the nearest-neighbor

and the thlrd -neighbor exchange coupling constants along
((H") ):<u iHH b> — (Hu, (B10) the ¢ direction, respectively; antHgy), and(HSg)g are the
K¢ Cou, H dlnju g| . nearest-neighbor and the third-neighbor matrix elements of
Egs.(6) and(7) along thel chain, respectively. In the model
. (5), (9)=I=(""/U and (Jy)=J;=(t3%/U, and they are in-
<(HKd)£> = aIn | |<HHub> (B11) dependent of the directiofi By substituting all the expecta-
tion values in Eqs(B7)«B9) by Egs.(B12) and(B13), and
Here, we have used the Hellman-Feynman theorem to exhe similar expressions, we obtain the formulas of the spec-
change the order of derivative and expectation value. In théral weights for the effective spin-orbital coupled model in
strong correlation limit, we can replace the derivatives inthe strong correlation limit as given in Eqg.0)—(42).
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