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We present our theoretical and numerical results on thermodynamic properties and the microscopic mecha-
nism of two successive transitions in vanadium spinel oxidesAV2O4 (A=Zn, Mg, or Cd) obtained by Monte
Carlo calculations of an effective spin-orbital-lattice model in the strong correlation limit. Geometrical frus-
tration in the pyrochlore lattice structure of V cations suppresses development of spin and orbital correlations,
however, we find that the model exhibits two transitions at low temperatures. First, a discontinuous transition
occurs with an orbital ordering assisted by the tetragonal Jahn-Teller distortion. The orbital order reduces the
frustration in spin-exchange interactions and induces antiferromagnetic correlations in one-dimensional chains
lying in the perpendicular planes to the tetragonal distortion. Second, at a lower temperature, a three-
dimensional antiferromagnetic order sets in continuously, which is stabilized by the third-neighbor interaction
among the one-dimensional antiferromagnetic chains. Thermal fluctuations are crucial to stabilize the collinear
magnetic state by the order-by-disorder mechanism. The results well reproduce the experimental data, such as
transition temperatures, temperature dependence of the magnetic susceptibility, changes of the entropy at the
transitions, and the magnetic ordering structure at low temperatures. Quantum fluctuation effect is also exam-
ined by the linear spin-wave theory at zero temperature. The staggered moment in the ground state is found to
be considerably reduced from saturated value and reasonably agrees with the experimental data.
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I. INTRODUCTION

Geometrical frustration in strongly correlated systems is
one of the long-standing problems in condensed-matter phys-
ics. Frustration suppresses a formation of a simpleminded
long-range order and results in nearly degenerate ground-
state manifolds of a large number of different states. Many
well-known examples are found in frustrated antiferromag-
netic (AF) spin systems. There, all the antiparallel spin con-
ditions between interacting pairs cannot be satisfied at the
same time because closed loops contain an odd number of
sites. The degeneracy due to the frustration yields nontrivial
phenomena, such as complicated ordering structures, spin-
liquid states, and glassy states.1,2 Besides the spin degree of
freedom, charge-ordering phenomena are also much affected
by the geometrical frustration.3 Quantum and thermal fluc-
tuations play important roles in these systems, which are
difficult to handle in a controllable manner.

Pyrochlore lattice is a typical example of the geometri-
cally frustrated structures, and it consists of a three-
dimensional(3D) network of corner-sharing tetrahedra as
shown in Fig. 1(a). Spin systems on the pyrochlore lattice
have been intensively studied.2,4–10In particular, for quantum
S=1/2 spin systems with only nearest-neighbor interactions,
it is predicted that a macroscopic number of singlet states lie
inside the singlet-triplet gap.4 Several types of symmetry
breakings are predicted within the singlet subspace, e.g.,
dimer/tetramer ordering, but without magnetic long-range
ordering.5–8 Antiferromagnetic(AF) classical spin systems
on the pyrochlore lattice are also believed to show no long-

range ordering at any temperature.2,9,10 Due to the three di-
mensionality and the large unit cell(16 sites in the cubic unit
cell), pyrochlore systems remain a big challenge to theoreti-
cians and are still far from comprehensive understanding.

We can find many pyrochlore systems in real compounds.
Most typically, pyrochlore systems are realized in so-called
B spinel oxides, where onlyB-site cations are magnetic in
the general chemical formulaAB2O4. Figure 1(b) shows the
B spinel structure, which consists of a network of edge-
sharingBO6 octahedra.B cation is shown by a ball in center
of each octahedron, and octahedron corners are occupied by
oxygen ions, while nonmagneticA-site cations are not shown
for simplicity. With omitting oxygen ions on the corners of
the octahedra, one obtains the pyrochlore lattice ofB cations
in Fig. 1(a).

In this paper, we will investigate insulating vanadium spi-
nel oxides,AV2O4 with divalentA-site cations, such as Zn,
Mg, or Cd. In these compounds, each V3+ cation has two 3d
electrons in a high-spin state by the Hund’s-rule coupling,
and they are Mott insulators.11 Thus, we may consider that
pyrochlore spin systems withS=1 are realized. Curie-Weiss
temperature is estimated from the magnetic susceptibility as
uQCWu,1000 K, and any long-range ordering does not occur
down to significantly lower temperatures thanuQCWu due to
the geometrical frustration.11 For instance, in ZnV2O4, a
structural phase transition occurs atTc1.50 K from the
high-temperature cubic phase to the low-temperature tetrag-
onal phase with a flattening of VO6 octahedra in thec
direction.12 Successively, an AF transition occurs atTc2
.40 K (Ref. 12). Neutron scattering experiments revealed
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that the AF-ordering structure belowTc2 is a collinear one
that consists of the staggered AF chains in theab planes
stacking in thec direction with a four-times period as up-up-
down-down-… as shown in Fig. 2.13,14These two successive
transitions are commonly seen in compounds MgV2O4 and
CdV2O4.

15,16 This indicates that the degenerate ground-state
manifolds in the pyrochlore systems are lifted at low tem-
peratures in some manner.

A few years ago, Yamashita and Ueda proposed a scenario
to explain the mechanism of the transitions inAV2O4.

17

Their approach is based on a valence-bond-solid picture for
S=1 spins and takes account of the coupling to Jahn-Teller
(JT) lattice distortions. They claimed that the first transition
at Tc1 is due to the JT effect, which lifts the degeneracy of
the spin-singlet local ground states at each tetrahedron unit.
This scenario based on the spin-JT coupling is appealing,
however, some difficulty still remains. The problem is that it
is difficult to explain the magnetic transition at a lower tem-
peratureTc2. In this approach, a finite energy gap is assumed
between the spin-singlet ground-state subspace and the spin-
triplet excitations, and a low-energy effective theory is de-
rived to describe a phase transition within the spin-singlet
subspace. High-energy excitations with total spinSÞ0 are

already traced out at the starting point, and, therefore, their
effective model has no chance to describe the AF ordering
within their theory.

A similar JT scenario was also examined for classical spin
systems.18 In this case, although the problem to have AF
order does not exist, there is another difficulty to explain the
following generic difference from chromium family of
ACr2O4 (A=Zn, Mg, or Cd). These chromium oxides are also
B spinels and magnetic Cr cations constitute a pyrochlore
lattice. However, in contrast to the two transitions in vana-
dium compounds, the chromium compounds exhibit only
one transition, i.e., the AF order appears simultaneously with
the structural transition.19,20 This clear difference is generic,
being independent of divalentA cations, and ascribed to the
difference of magnetic cations V3+ and Cr3+, which cannot
be explained by the classical spin approach based on the
spin-JT effect unless there exists essential difference in the
model parameters between the two families.

Therefore, these spin-JT-type theories appear to be insuf-
ficient to explain the mechanism of two transitions in vana-
dium spinelsAV2O4. These insulating compounds are un-
doped states of LiV2O4 that exhibits a unique heavy fermion

FIG. 1. (Color) Cubic unit cell of the lattice structure of vana-
dium spinel oxidesAV2O4. (a) The pyrochlore lattice of vanadium
cations(red balls). (b) The 3D edge-sharing network of VO6 octa-
hedra. Oxygen ions are on the corners of octahedra. TetrahedralA
sites are omitted.

FIG. 2. (Color) Spin-ordering structure proposed for ZnV2O4 on
the basis of the neutron scattering results. The ordering pattern con-
sists of staggered AF chains in theab plane(red solid lines), which
stack with a four-times period in thec direction as up-up-down-
down-… (blue dashed lines). (b) Projection of(a) from thez direc-
tion. Symbols1 and2 denote the up and down spins, respectively.
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behavior.21,22 The origin of the mass enhancement is still
controversial between the scenario based on the Kondo
effect23–25 and the scenario of strong correlations with the
geometrical frustration.26–30 Since the doping of Li shows
systematic changes of magnetic11 and transport properties,31

as well as the phase diagram,12,32 understanding of undoped
materials may give a starting point to discuss the doped state
in LiV 2O4. Therefore, it is also highly desired to clarify the
mechanism of orderings in the undoped compoundsAV2O4.

The generic difference between vanadium and chromium
spinels mentioned above suggests an importance oft2g or-
bital degrees of freedom. In the case of chromium spinels,
each Cr3+ cation has three electrons in threefoldt2g levels
and large Hund’s-rule coupling leads to a high-spin state,
and, therefore, there is no orbital degree of freedom. On the
contrary, in the case of vanadium spinels, since each V3+

cation has two electrons, the orbital degree of freedom is
active. With taking account of thist2g orbital degeneracy, the
authors have derived an effective spin-orbital-lattice coupled
model in the strong correlation limit and investigated it by
mean-field-type arguments.33 A reasonable scenario was ob-
tained, but discussions were limited to a qualitative level. In
order to investigate temperature dependences of physical
properties semiquantitatively accurate enough to be com-
pared with experimental data, we need more elaborate analy-
sis.

In the present study, we will investigate thermodynamic
properties of the effective spin-orbital-lattice model derived
by the authors in Ref. 33 by extensive Monte Carlo(MC)
calculations. We will show that this model indeed exhibits
two successive transitions in a reasonable parameter range
and clarify the microscopic mechanism of these transitions in
detail. First, an orbital order appears with the tetragonal JT
distortion which flattens VO6 octahedra. This orbital order
reduces magnetic frustration partially and enhances AF spin
correlations in one-dimensional(1D) chains in theab planes.
At a lower temperature, the third-neighbor exchange interac-
tion and thermal fluctuations align these 1D AF chains co-
herently and stabilize a 3D collinear AF order. With compar-
ing numerical results of physical quantities to experimental
data, we will show that our theory captures essential physics
at low temperatures in the vanadium spinelsAV2O4.

This paper is organized as follows. In Sec. II, we intro-
duce the effective spin-orbital-lattice coupled model and
briefly summarize the mean-field arguments discussed in
Ref. 33. Realistic parameter values and MC method are also
described. In Sec. III, we show numerical results in compari-
son with experimental data. We then make several remarks,
in particular, on comparisons with experimental results and
other theoretical proposals in Sec. IV. Section V is devoted to
summary.

II. MODEL AND METHOD

A. Effective spin-orbital-lattice model

In the present study, we will investigate thermodynamic
properties of the spin-orbital-lattice coupled model, which is
proposed by the authors in Ref. 33. The Hamiltonian consists
of two terms as

H = HSO+ HJT. s1d

The first term describes exchange interactions in spin and
orbital degrees of freedom and the second term is for orbital-
lattice couplings of the Jahn-Teller type.

The spin-orbital HamiltonianHSO is derived from a mul-
tiorbital Hubbard model with threefoldt2g orbital degeneracy
by the perturbation in the strong correlation limit.34 The
startingt2g Hubbard model is given in the form

HHub = o
i,j

o
a,b

o
t

ftabsr i − r jd ciat
† cjbt + H.c .g

+ 1
2o

i
o

ab,a8b8
o
tt8

Uab,a8b8ciat
† cibt8

† cib8t8cia8t, s2d

wherei , j andt ,t8 are site and spin indices, respectively, and
a ,b=1 sdyzd ,2 sdzxd ,3 sdxyd are orbital indices. The first
term of HHub is the electron hopping, and the second term

FIG. 3. (Color) Hopping integrals for thes bonds;ts
nn and ts

3rd

are for the nearest-neighbor sites and for the third-neighbor sites,
respectively. The overlaps betweendxy orbitals within thexy plane
(the solid arrows) and those betweendyz orbitals within theyzplane
(the dashed arrows) are shown. Thedzx overlaps are similarly taken
into account. The gray arrow shows an example of second-neighbor
pair.

FIG. 4. (Color) (a) Tetragonal distortion and the level splitting.
(b) The orbital-ordering pattern for the model(1) predicted by the
mean-field argument in Ref. 33. The ferro-type(antiferro-type) or-
bital bonds are shown by the blue solid(red dashed) lines.
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describes Coulomb interactions, for which we use the stan-
dard parametrizations,35

Uab,a8b8 = U8daa8dbb8 + JHsdab8dba8 + dabda8b8d, s3d

U = U8 + 2JH. s4d

We do not include here the relativistic spin-orbit coupling
and the trigonal distortion in the model(2). Effects of these
neglected elements will be discussed in Sec. IV B and IV E.

Considering that the vanadium spinel oxides are insula-
tors, it is reasonable to start from the strong correlation limit
and treat the hopping term as perturbation. The unperturbed
states are atomic eigenstates with two electrons on each V
cation in a high-spin state. As for the perturbation part, on
the basis of the tight-binding fit for the band structure27 (see
Sec. II B), we take account of hopping integrals ofs bonds
for nearest-neighbor pairsts

nn and for third-neighbor pairs
ts
3rd, as shown in Fig. 3. Note that the third-neighbor pair

corresponds to the next-nearest-neighbor pair along each
chain. The hopping integral between second-neighbor pairs
(the gray arrow in Fig. 3) is expected to be small because of
the geometry of the pyrochlore lattice,36 and, moreover, the
exchange interaction derived from it is frustrated.

The second-order perturbation ints
nn and ts

3rd gives the
Hamiltonian in the form

HSO= HSO
nn + HSO

3rd, s5d

HSO
nn = − Jo

ki,jl
fho−AF

si j d + ho−F
si j d g, s6d

HSO
3rd = − J3 o

kki,jll
fho−AF

si j d + ho−F
si j d g, s7d

ho−AF
si j d = sA + BSi ·Sjdhniasi j df1 − njasi j dg

+ f1 − niasi j dgnjasi j dj, s8d

ho−F
si j d = Cs1 − Si ·Sjdniasi j dnjasi j d, s9d

whereSi is theS=1 spin operator andnia=ot ciat
† ciat is the

density operator for sitei and orbitala. The summations
with ki , jl and kki , jll are taken over the nearest-neighbor
sites and third-neighbor sites, respectively. Here,asi j d is the
orbital which has a finite hopping integral between the sitesi
and j , for instance,asi j d=3 sdxyd for i and j sites in the same
xy plane. The other parameters in Eqs.(6)–(9) are deter-
mined by coupling constants in Eq.(2) as37

J = sts
nnd2/U, s10d

J3 = sts
3rdd2/U, s11d

A = s1 − hd/s1 − 3hd, s12d

B = h/s1 − 3hd, s13d

C = s1 + hd/s1 + 2hd, s14d

h = JH/U, s15d

and each site is subject to the local constraint,oa=1
3 nia=2.

Realistic values of these parameters are given in Sec. II B.
An important feature ofHSO is the highly anisotropic

form of the orbital intersite interaction. It is a three-state
clock-type interaction, corresponding to three different or-
bital states, in which there is no quantum fluctuation because
the density operatornia is a constant of motion. This aniso-
tropy comes from the orbital diagonal nature of thes-bond
hopping integrals, which do not mix different orbitals. More-
over, the orbital interaction depends on both the bond direc-
tion and the orbital states in two sites. On the other hand, the
spin exchange interaction is Heisenberg type and isotropic,
independent of the bond direction.

The orbital-lattice termHJT in Eq. (1) reads

HJT = go
i

Qisni1 + ni2 − 2ni3d + o
i

Qi
2/2 − lo

ki,jl
QiQj ,

s16d

where g is the electron-phonon coupling constant andQi
denotes the amplitude of local lattice distortion at sitei.
Here, we take account of only the tetragonal mode in thez
direction. Note that this simplification breaks the cubic sym-
metry of the system. We choose the sign ofQi such that it is
positive for a flattening of VO6 octahedra which leads to the
level splitting in Fig. 4(a). The second term in Eq.(16) de-
notes the local elastic energy of distortions. Finally, the third
term denotes the interaction of JT distortions between
nearest-neighbor sites, which mimics the cooperative aspect
of the JT distortion. It is reasonable to assume a positive
value ofl because a tetragonal distortion of a VO6 octahe-
dron modifies its neighboring octahedra in a similar distor-
tion due to the edge-sharing 3D network of octahedra in Fig.
1(b). For simplicity, here we neglect the quantum nature of
phonons. Although JT distortions modifyHSO through
changes of hopping integrals, we neglect these corrections in
the present study.

We normalized the variableQi to absorb the elastic con-
stant in the second term in Eq.(16), hence, the dimension of
Qi is senergyd1/2. As a result, the dimensions ofg andl are
senergyd1/2 and (energy), respectively.

For the following discussions, we briefly summarize the
results of the mean-field-type analysis on the model(1) ob-
tained in Ref. 33. The analysis predicts that first, the degen-
eracy due to the geometrical frustration will be partially
lifted in the orbital channel. There, the anisotropy of the
orbital interaction inHSO

nn plays a crucial role; the interaction
is a three-state clock type and depends on the orbital states as
well as the bond direction. The remaining degeneracy of or-
bital states is lifted by the tetragonal JT coupling inHJT. A
flattening of VO6 octahedra splits the threefold orbital levels
as shown in Fig. 4(a) and selects the orbital-ordering struc-
ture as shown in Fig. 4(b). There, one of the two electrons
occupies thedxy orbital at every site, and the other occupies
eitherdyz or dzx orbital in an alternative manner along thez
direction. When we consider only the nearest-neighbor inter-
actionsHSO

nn , this orbital occupation induces AF-spin interac-
tions on the bonds within theab planes[the blue solid lines
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in Fig. 4(b)] and ferromagnetic spin interactions on the
bonds among theab planes[the red dashed lines in Fig.
4(b)]. The coupling constant for the former AF interaction is
JC and for the latter ferromagnetic interaction is −JB. Be-
causeh is a small parameter of the order of 0.1 as estimated
in Sec. II B, the former AF interaction is much larger than
the latter ferromagnetic one. Moreover, the ferromagnetic in-
teractions are frustrated for the AF spin configuration within
the ab planes because of the geometry of the pyrochlore
lattice. Hence, under the orbital ordering shown in Fig. 4(b),
the AF spin correlations develop within the 1D chains in the
ab planes, and the 1D AF chains are independent with each
other; relative angles among the AF moments are not yet
determined at this stage. The relative angles are partially
fixed by including the third-neighbor interactionsHSO

3rd: The
third-neighbor interactions align the AF moments in two
next-neighboringab planes and lead to a 3D collinear AF
order with the wave vectorq=s0,0,2p /cd. (See Fig. 10.) In
the ordered state, however, there are two independent AF
sublattices; one consists of[110] chains and the other con-

sists off11̄0g chains. The relative angle between the AF mo-
ments on the two sublattices is still free in this mean-field
argument. From the spin-wave calculation of the zero-point
energy, we discussed that quantum fluctuations fix the rela-
tive angle and stabilize a collinear AF order in Fig. 2 that is
consistent with the neutron scattering result.

The mean-field argument gives a reasonable scenario for
two transitions inAV2O4, but the argument is limited to a
qualitative level. In order to confirm the scenario and under-
stand the experimental results more quantitatively, we need
more sophisticated analysis, especially for the thermody-
namic properties of the system. In the present study, we will
perform the Monte Carlo simulation for this purpose.

B. Parameters

Here, we estimate realistic values of parameters in the
model(1), which are given by the parameters in the starting
t2g Hubbard model(2). As for the hopping parameters
tabsr i −r jd in HHub, a tight-binding fit to the results of the
first-principle band calculation suggests the dominant hop-
ping integrals are those ofs bonds and givests

nn

,−0.32 eV andts
3rd,−0.045 eV for nearest-neighbor and

third-neighbor pair of sites, respectively.27,36 For Coulomb
interactions, there are estimates based on the cluster analysis
for optical experiments for vanadium perovskitesAVO3,
which also have a VO6 octahedral unit.38 The estimates are
U,6 eV andJH,0.68 eV, thus,h=JH/U in Eq. (15) is a
small parameter of the order of 0.1. We will seth=0.08 in
the following numerical calculations. The estimates ofts

nn,
ts
3rd, andU give J,200 K andJ3,4 K, i.e., J3/J,0.02. In

the Monte Carlo calculations, we study mainly the case of
J3/J=0.02, but we vary the value ofJ3/J from 0 to 0.05 to
examine the systematic change byJ3. Hereafter, we will set
J=1 as an energy unit and the lattice constant of cubic unit
cell as a length unitsa=b=c=1d, and use the convention of
the Boltzmann constantkB=1.

It is hard to estimate the electron-phonon interaction pa-
rametersg and l, and, therefore, we treat them as variable

parameters in the present study. In the present MC calcula-
tions to confirm the above mean-field scenario, we are inter-
ested in the parameter region where the orbital order in Fig.
4(b) is stabilized by the tetragonal JT distortion with a flat-
tening of VO6 octahedra. The stability conditions for this
orbital and lattice order will be obtained in Appendix A by a
mean-field-type argument. In the following MC calculations,
we will show MC results for typical values ofg andl which
satisfy the conditions asg2/J=0.04 andl /J=0.15.

C. Monte Carlo method

In the present study, we will use MC calculations to in-
vestigate thermodynamic properties of the effective spin-
orbital-lattice model(1). Quantum MC simulations for frus-
trated systems are known to be difficult because of the
negative sign problem. In the present MC study, we neglect
quantum fluctuations and approximate the model in the clas-
sical level. This approximation retains effects of thermal
fluctuations that may play dominant roles in finite-
temperature transitions. The quantum nature originates only
from spinS=1 operators in the model(1) because the orbital
interaction is classical and is a diagonal one of three-state
clock type, and because JT distortions are also treated as
classical variables. Thus, we approximate the spin operators
by classical vectors with the modulusuSu=1 [the length of
the vector is normalized to give the same largestz compo-
nent Sz=1 (classical part)]. Effects of quantum fluctuations
will be discussed by using the spin-wave approximation in
Sec. IV C. Thereby, the model(1) consists of the classical
Heisenberg part for spins, the three-state clock part for orbit-
als, and the classical phonon part. We use a standard me-
tropolis MC algorithm.

In the actual MC calculations, the MC sampling is per-
formed to measure spin vectorsSi, three-state clock spins for
the orbital states(defined in Sec. III A 2), and amplitudes of
the JT distortionQi at all the lattice sites. We typically per-
form 105 MC samplings for measurements after 105 steps for
thermalization. The measurements are performed in every
Nint-times MC update, and we typically takeNint=2. Results
are divided into five bins to estimate statistical errors by
variance of average values in the bins. Here, one MC update
consists of several-times sweeps(typically twice) for spin
directions, orbital states, and JT distortions. The one sweep is
Nsite-times trials by choosing a site randomly, whereNsite is
the number of lattice sites. In the sampling on spin direc-
tions, we apply the so-called pivot rotation when a trial is
rejected, which is a precession without energy cost. The
pivot rotation of a spin is achieved by a random rotation with
keeping the relative angle to the mean-field vector deter-
mined by its nearest-neighbor and third-neighbor spin and
orbital states. This accelerates the MC sampling in the con-
figurational space.

As shown in Sec. III, the orbital transition accompanied
by the JT distortion is first order. To avoid a hysteresis and
determine the transition temperature precisely, we start MC
calculations at each temperature from a mixed initial condi-
tion for orbital and lattice states in which a half of the system
takes a low-temperature ordered configuration and the rest
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takes a high-temperature disordered configuration. This tech-
nique is known to be free from trapping at a metastable state
for large enough system sizes.39 At very low temperatures,
we use a perfectly ordered initial state to accelerate the con-
vergence. The system sizes in the present work are up toL
=12, whereL is the linear dimension of the system measured
in the cubic units, i.e., the total number of sitesNsite is given
by L3316.

III. RESULTS

In this section, we present MC results for the model(1) in
comparison with experimental data. In Secs. III A–III C, we
show the results for the typical case ofJ3/J=0.02. System-
atic changes withJ3/J and a generic phase diagram will be
discussed in Sec. III D.

A. Two transitions

In the following, we present MC results forJ3/J=0.02 to
show that the model(1) exhibits two phase transitions with
temperature. In Sec. III A 1, we present the MC results for
the internal energy and the specific heat, which show two
different anomalies. We also discuss the changes of the en-
tropy related to the two transitions. In Secs. III A 2 and
III A 3, we discuss the nature of the two transitions by cal-
culating the order parameters. In Sec. III A 4, we examine
the magnetic ordering structure in the low temperature phase,
and point out the importance of thermal fluctuations. Sec.
III A 5 contains MC results for the uniform magnetic suscep-
tibility for comparison with experimental data.

1. Internal energy and specific heat

Figure 5 shows temperature dependences of the internal
energy and the specific heat per site. The internal energy per
site is calculated by the thermal average of the Hamiltonian
(1) as

E = kHl/Nsite. s17d

The specific heat is calculated by fluctuations of the internal
energy as

C =
kH2l − kHl2

T2Nsite
. s18d

As shown in Fig. 5(a), the internal energyE jumps atT
.0.19J. It indicates that a first-order transition occurs at this
temperature. The jump is also found in the specific heat at
the same temperature in Fig. 5(b). The specific heat shows
another anomaly at a lower temperatureT.0.115J. There,
we find a systematic enhancement of the peak as the system
size increases, which is a sign of second-order phase transi-
tion. Thus, MC data in Fig. 5 indicate that the system shows
two different transitions; the first-order transition atTO
.0.19J and the second-order transition atTN.0.115J. In
the following sections, the two transitions are to be assigned
to the orbital ordering with tetragonal lattice distortion and
the AF spin ordering, respectively.

It is noted that the specific heat approaches3
2 (in units of

kB) as T→0 as shown in Fig. 5(b). A finite value of C at
T=0 is characteristic to classical models, and one degree of
freedom remaining at the ground state contributes1

2 to C.
Hence, the data in Fig. 5(b) suggests that there remain three
degrees of freedom atT=0 in the present model. From the
discussions of the ordered phase at low temperatures in the
following sections, they can be ascribed to two transverse
modes of the AF spin order and one JT mode.

From the jump of the internal energy in Fig. 5(a), we
estimate the entropy jumpDS associated with the first-order
transition from the disordered phase aboveTO to the ordered
phase belowTO. The two phases have the same free energy
F=E−TS at TO, which gives us the entropy differenceDS as

DS = lim
d→0

EsTO + dd − EsTO − dd
TO

, 0.4. s19d

This corresponds to,30–40% of ln 3 per site.
The amount of the entropy that is related to the fluctuation

around the second-order transition atTN is estimated from
the area of the anomalous peak atTN in the plot ofC/T as a
function of T. Although it is difficult to estimate because of
the large system-size dependence ofC as well as the large
error bars in Fig. 5(b), a rough estimate is obtained by an
interpolation with polynomial functions for the normal con-

FIG. 5. (a) The internal energy per site[Eq. (17)] and (b) the
specific heat per site[Eq. (18)] at J3/J=0.02. Error bars are smaller
than symbol sizes in(a). Typical error bars are shown in(b).
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tribution and a numerical integration of the anomalous part.
The estimate is roughly 0.05–0.1, which corresponds to
,5–10% of ln 3 per site.

In experiments, the amounts of entropy related to the two
transitions are also estimated from the specific heat. In
ZnV2O4, the entropy change in the higher-temperature tran-
sition at Tc1 is ,3–4 J/mol K, i.e.,,20% of ln 3 per V
cation.40 The entropy related to the lower-temperature tran-
sition at Tc2 is small and not estimated quantitatively, but
roughly less than 1 J/mol K, i.e.,&5% of ln 3 per V
cation.40 In MgV2O4, the former is estimated as
,3 J/mol K, i.e., ,16% of ln 3, and the latter is
,0.4 J/mol K, i.e.,,2% of ln 3 per V cation.15 Our esti-
mates from the MC results in Fig. 5 show semiquantitative
agreement with these experimental values, and particularly,
explain that the entropy related to the lower-temperature
transition is considerably smaller than that for the higher-
temperature transition. The small entropy related to the tran-
sition atTN is likely due to the magnetic frustration and a 1D
AF correlation well developed aboveTN which will be dis-
cussed in Sec. III B.

2. High-temperature transition: Orbital ordering

To characterize two transitions in Fig. 5, we calculate cor-
responding order parameters. First, we consider the transition
at the higher temperatureTO.0.19J. Figure 6(a) shows the
sublattice orbital moment, which is defined in the form

MO =
4

Nsite
ku o

iPsublattice
I iul, s20d

where the summation is taken over the sites within one of the
four sublattices in Fig. 4(b). Here,I i is the three-state clock
vector at the sitei, which describes three different orbital
states as shown in the inset of Fig. 6(a); I i =s1,0d for sxy,yzd,
I i = s−1

2 ,
Î3
2

d for syz,zxd, and I i = s−1
2 ,−

Î3
2

d for szx,xyd orbital
occupations, respectively. It is found that the values ofMO
for four different sublattices have the same value within the
error bars so that we omit the sublattice index in Eq.(20). As
shown in Fig. 6(a), MO shows a clear jump at the same
temperature as for the internal energy and the specific heat.
This suggests that a four-sublattice orbital ordering occurs at
TO. At low temperatures,MO approaches its maximum value
1, which indicates the four-sublattice orbital order becomes
almost perfect there.

Figures 6(b)–6(e) show the orbital distribution for four
sublattices 1–4 shown in Fig. 4(b), respectively, which is
defined as

n̄a =
4

Nsite
o

iPsublattice
knial, s21d

where a=1 sdyzd, 2 sdzxd, and 3sdxyd. The results indicate
that at TO the orbital distributions suddenly change from
equally distributedn̄a, 2

3 in the para phase aboveTO to al-
most polarizedn̄a,0 or 1 for T,TO. In the orbital ordered
phase belowTO, dyz sa=1d anddxy sa=3d orbitals are occu-
pied in the sublattices 1 and 4, anddzx sa=2d and dxy sa
=3d orbitals are occupied in the sublattices 2 and 3(Ref. 41).

This orbital-ordering structure is shown in Fig. 7. This pat-
tern is consistent with the mean-field prediction in Fig. 4(b).

Accompanying the transition atTO, a tetragonal JT distor-
tion occurs discontinuously. In Fig. 8, we plot the average of
the JT distortions, which is calculated by

Q̄ = o
i

kQil/Nsite. s22d

The positive value ofQ̄ belowTO corresponds to a ferro-type
tetragonal JT distortion with a flattening of VO6 octahedra as
mentioned in Sec. II A. Therefore, the level splitting shown

in Fig. 4(a) is realized. The value ofQ̄ approaches 2 at low
temperatures, which is the mean-field value obtained in Ap-

pendix A. We note thatQ̄ is small but finite even forT.TO.
This is becauseHJT breaks the cubic symmetry of the system
as mentioned before.

Therefore, the discontinuous phase transition atTO is as-
cribed to the orbital ordering with the pattern of Fig. 7 ac-
companied by the tetragonal JT distortion with the flattening
of VO6 octahedra. From Figs. 6 and 8, we estimate
TO=s0.19±0.01dJ for J3/J=0.02.

FIG. 6. (a) The sublattice orbital moment in Eq.(20) at J3/J
=0.02. The inset shows the three-state clock vector for the orbital
state.(b)–(d) Electron density in each orbital for four sublattices
1–4 shown in Fig. 4(b) for L=12 [Eq. (21)]. Error bars are smaller
than the symbol sizes.
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3. Low-temperature transition: Antiferromagnetic spin ordering

Next, we consider the other transition atTN.0.115J. Fig-
ure 9(a) shows the temperature dependence of the staggered
magnetization defined in the form

MS = kuf u2l1/2, s23d

where the structure factor is given by

f =
2

Nsite
o

ich=1

Nch

exps2pil ich

z dFo
i

8Sis− 1d4yiG . s24d

This definition looks complicated but nothing but the order
parameter of the spin-ordering pattern shown in Fig. 2. Here,
the first summation is taken over different chains lying in the
xy planes(Nch is the total number of thexy chains in the
system, i.e.,Nch=4L2 whereL is the linear dimension of the
system measured in the cubic units), and the second summa-
tion o8 is taken over the sites in theichth xy chain.yi is they
coordinate of the sitei, andl ich

z is thez coordinate of theichth

xy chain measured in the cubic units. We set the normaliza-
tion in Eq. (24) such thatMS becomes 1 for the fully satu-
rated AF order in Fig. 2. Note that the structure factorf
cannot be defined only by a real phase factor because of the
complicated AF-ordering pattern which is expected to have
the four-period structure in theyzandzxdirections as shown
in Fig. 2. See also the discussions in Sec. III A 4. The struc-
ture factor is also expressed in a simpler form as

f =
2

Nsite
o

i

+iSi , s25d

where the form factor+i is given by

+i = cosf2psxi + yidg + i cosf2psxi − yidg. s26d

Note that+i is specified only by thex and y coordinates of
the site i because thez coordinate is uniquely determined
within the cubic unit cell due to the special structure of the
pyrochlore lattice.[See the projection in Fig. 2(b).]

As shown in Fig. 9(a), the staggered magnetizationMS
develops continuously belowTN.0.115J and approaches
the fully saturated valueMS=1 asT→0. Figure 9(b) shows
the staggered magnetic susceptibility obtained by

xS =
Nsite

T
skuf u2l − ukflu2d. s27d

Here, we calculate the susceptibility by usingkuf ul instead of
ukflu in Eq. (27) for convenience of numerical calculations
because both quantities agree with each other in the thermo-
dynamic limit. The susceptibilityxS shows a diverging be-
havior atTN, and the peak value increases with the system
size. In Fig. 9(c), we show the Binder parameter for the
staggered magnetization, which is defined as42

gS = 1 −
ksuf u2d2l
3kuf u2l2 . s28d

It is known that the Binder parameter becomes larger
(smaller) for larger system sizes in the ordered(disordered)
phase, and, hence, the crossing point of the Binder parameter
for different system sizes gives a good estimate of the tran-
sition temperature. The MC data in Fig. 9(c) shows the cross-

FIG. 8. The average of the JT distortion defined in Eq.(22) at
J3/J=0.02. Error bars are smaller than the symbol sizes.

FIG. 7. (Color) Orbital-ordering structure obtained by MC cal-
culations. Dark blue and light yellow octahedra in(a) contain V
cations wheresdxy,dzxd and sdxy,dyzd orbitals are occupied, respec-
tively. They stack alternatively in thez direction. Some ofdzx and
dyz orbitals are shown by white and black lobes, respectively.(b) is
the projection of(a) from the z direction. dxy orbitals are singly
occupied at all the sites and not shown in the figures.
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ing at the same temperature of the divergence ofxS in Fig.
9(b), which indicates the phase transition by the order pa-
rameterMS at TN.

All these results in Fig. 9 indicate that the phase transi-
tion at TN is caused by the continuous growth of the stag-
gered magnetic order. From Figs. 9(b) and 9(c), we estimate
TN=s0.115±0.005dJ for J3/J=0.02. The magnetic ordering
pattern will be discussed next.

4. Collinearity of magnetic ordering

The mean-field argument in Ref. 33 and in Sec. II A pre-
dicts that the staggered magnetizations develop indepen-
dently on two sublattices and the relative angle between two
AF moments is free. The two sublattices are shown in Fig.
10; one consists of the[110] chains and the other consists of

the f11̄0g chains. The staggered magnetizationMS defined in
Eq. (23) is the order parameter of the 3D AF spin ordering in
Fig. 2, but cannot measure the collinearity between two stag-
gered magnetizations. For example,MS takes the value of 1
independent of the relative angle between staggered mo-
ments in two sublattices,M 1 and M 2, shown in Fig. 10,
when both sublattice moments saturate. The spin configura-
tion in Fig. 10 is a noncollinear one, while that in Fig. 2 is a
collinear one, and both giveMS=1.

Here, we measure the collinearity between the staggered
moments in the two sublattices by

C12 =K sM 1 ·M 2d2

sM 1d2sM 2d2L = kcos2u12l. s29d

Here we may consideru12 the angle betweenM 1 andM 2. In
the present calculations, the two sublattice moments are ob-
tained by the real and imaginary parts of the structure factor
f in Eq. (24) as

M 1 = Resfd, M 2 = Imsfd, s30d

respectively. If the AF order is collinear, i.e.,M 1iM 2, the
value of C12 become 1. Figure 11 shows the MC results.
Below TN.0.115J, C12 is rapidly enhanced, becomes larger
and approaches 1 as the system size increases. This indicates
that the magnetic state is collinear belowTN. Thus, the AF
order belowTN is identified by the collinear AF spin order
whose pattern is given by Fig. 2.

The result indicates that thermal fluctuations in the clas-
sical version of the model(1) lift the degeneracy of the rela-
tive angle between two sublattice magnetizations and stabi-
lize the collinear spin structure. This is a kind of the so-
called order-by-disorder phenomenon.43 In Sec. II A and Ref.

FIG. 9. (a) The staggered moment defined in Eq.(23). Error bars
are smaller than the symbol sizes.(b) The staggered magnetic sus-
ceptibility in Eq.(27). (c) The Binder parameter defined in Eq.(28).
The lines are guides for the eyes. All the results are calculated at
J3/J=0.02.

FIG. 10. (Color) Two sublattices; one consists of the[110]

chains(blue dashed lines) and the other consists of thef11̄0g chains
(red solid lines). In each sublattice, chains are connected by the
third-neighbor exchangeJ3 in the yz and zx directions. Black
(white) arrows show spins in the sublattice momentM 1sM 2d.
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33, we discussed that the collinear order may appear also by
quantum fluctuations. Thus, we can conclude that both ther-
mal and quantum fluctuations favor a collinear state of the
two sublattice magnetizations. It is known that in many frus-
trated systems, thermal and quantum fluctuations favor a col-
linear state. This is also the case for the model(1).

5. Uniform magnetic susceptibility

We show in Fig. 12 the temperature dependence of the
uniform magnetic susceptibility calculated by

x =
Nsite

T
skMtot

2 l − kMtotl2d, s31d

where Mtot is the total magnetic moment per site,Mtot
= uoiSiu /Nsite. The result corresponds to the zero-field-cool
(ZFC) result in experiments rather than the field-cool(FC)
result because the susceptibility is measured by starting the
MC simulation from an initial state with zero magnetic field
at each temperature as described in Sec. II C. The MC results
show a sudden drop atTO.0.19J and a little continuous
change atTN.0.115J. These features qualitatively agree
with the experimental results.12

In experiments, a large difference between ZFC and FC
results has been found. The difference develops from well

aboveTc1 and remains substantial even belowTc2. We will
comment on this behavior in Sec. IV D.

B. One-dimensional spin correlation in the intermediate phase

As shown in Fig. 9(a), MS in finite-size systems are en-
hanced belowTO even aboveTN. In this section, we show
that there the short-range AF correlation is much enhanced
along 1D chains in thexy planes compared to theyz andzx
chains.

The mean-field arguments in Sec. II A and in Ref. 33
suggest that the orbital order enhances 1D AF correlations
within the xy chains in the intermediate phaseTN,T,TO.
To examine the spatially anisotropic spin correlation, we cal-
culate the staggered magnetic moments along the chains in
different directions. The staggered moment along thexy
chains may be defined by

MS
sxyd =KF 1

Nch
o

ich=1

Nch U 1

4L
o

i
8Si exps4pixidU2G1/2L ,

s32d

where the summations are taken in the same manner as in
Eq. (24) and the phase factor describes the↑-↓-↑-↓-¯ struc-
ture in thexy chains as shown in Fig. 2. Similarly, the “stag-
gered” moment along theyz chains is calculated by

MS
syzd =KF 2

Nch
o

ich=1

Nch U 1

4L
o

i
8Si exps2pizidU2G1/2L ,

s33d

where the first summation is taken over all theyz chains in
the system and the second summation is taken over the sites
within the ichth yzchain with a phase factor of period four in
the z direction with considering the↑-↑-↓-↓-¯ structure as
shown in Fig. 2. Here,Nch is the number of thexy or yz
chains, i.e.,Nch=4L2 whereL is the linear dimension of the
system measured in the unit cell. The normalization factors
in Eqs.(32) and(33) are given such that bothMS

sxyd andMS
syzd

become 1 in the fully saturated AF state withuM 1u= uM 2u
=1 in Eq. (30).

Figure 13 shows the MC results. The moment in thezx
chainsMS

szxd has the same value asMS
syzd within the statistical

error bars. BelowTO.0.19J, the moment in thexy chains
MS

sxyd is much more enhanced compared to that in theyz and
zx chainsMS

syzd andMS
szxd. This indicates that in the interme-

diate phaseTN,T,TO, the AF spin correlations develop
mainly within thexy chains.

The system-size dependence of these moments within the
chains provides further information. Figure 14 plots the
system-size extrapolations of the MC data in Fig. 13. In the
ordered phase belowTN.0.115J, the MC data are extrapo-
lated to finite values, which indicates a long-range order. The
extrapolated values ofMS

sxyd and MS
syzd to L→` agree with

each other within the error bars as expected in this 3D or-
dered phase. On the other hand, in the disordered phase
aboveTO.0.19J, the MC data for bothMS

sxyd andMS
syzd well

scale to 1/ÎL and are extrapolated to zero.(Only the data at

FIG. 11. The collinearity defined in Eq.(29) at J3/J=0.02. The
lines are guides for the eyes.

FIG. 12. The uniform magnetic susceptibility in Eq.(31) at
J3/J=0.02. Error bars are smaller than the symbol sizes.
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T=0.22J are shown in the figures as a typical example but
other data atT.TO show a similar behavior.) This scaling
implies the exponential decay of the spin-spin correlation
along the chain as explained below. Compared to the rather
isotropic behavior forT,TN andT.TO, we find a contrast-
ing behavior betweenMS

sxyd and MS
syzd in the intermediate

phaseTN,T,TO; almost all the data ofMS
syzd well scale to

1/ÎL even for the smallest system size in the present calcu-
lations with L=2, while the data ofMS

sxyd show a clear de-
viation from the scaling in the small-L region.

In order to analyze this contrasting behavior in the inter-
mediate phase, we introduce the correlation lengthj along
the chain and assume a simple scaling form of the spin-spin
correlation function. That is, we assume that the amplitude of
staggered spin-spin correlation becomes an almost constant
value within the length scalej and decays exponentially for
further distance thanj;

ukSi ·Sjlu , c for r ij , j

, c expf− sr ij − jd/jg for r ij . j, s34d

wherec is a constant andr ij = ur i −r ju is the distance between
sitesi and j along the chain measured in the cubic units. The
staggered moments in Eqs.(32) and(33) can be rewritten by
using the spin-spin correlation. For instance, Eq.(32) is re-
written in the form

MS
sxyd , F 1

s4Ld2o
i j

8kSi ·Sj cos 4psxi + yidlG1/2

, F 1
Î2L

E ukS0 ·SrludrG1/2

, s35d

by introducing the continuum limit to evaluate the summa-
tion. Note thatÎ2L is the length of the chains in theL3

system. Therefore, by assuming the scaling form in Eq.(34),
we obtain

MS
sxyd , 3 1

Î2L
E
0

Î2L

cdr4
1/2

= Îc s36d

for the case ofj.Î2L, and

FIG. 13. The staggered magnetic moment along(a) the xy
chains [Eq. (32)] and (b) the yz chains [Eq. (33)] at J3/J=0.02.
Error bars are smaller than the symbol sizes.

FIG. 14. System-size extrapolations of the staggered magnetic
moment along(a) the xy chains and(b) the yz chains atJ3/J
=0.02. Error bars are smaller than the symbol sizes. The gray lines
are the fits to a linear function of 1/ÎL. See the text for details.
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MS
sxyd , 3 1

Î2L5E
0

j

c dr + ceE
j

Î2L

expS−
r

j
Ddr64

1/2

= F 1
Î2L

H2cj − cej expS−
Î2L

j
DJG1/2

,
21/4Îcj

ÎL

s37d

for the case ofj,Î2L. The staggered moment in theyz
chains in Eq.(33) is also estimated in a similar manner.

With considering the above arguments based on the scal-
ing form (34), we can roughly estimatej from the crossover
of the scaling from 1/ÎL [Eq. (37)] to the constant[Eq. (36)]
(1 corrections) in the system-size dependence in Fig. 14.
That is, the linear dimension of the system size where the
crossover occurs gives a rough estimate ofj. For instance, at
T=0.13J, MS

sxyd deviates from the scaling of 1/ÎL at L&8,
on the contrary,MS

syzd obeys the scaling down toL,3. This
suggests thatjsxyd,6 (,16 sites) and jsyzd,2 (,6 sites).
[Note that the longest distance along the chain in the periodic
L3 systemsNsite=16L3d is L /Î2.] The correlation length in
thexy direction is about three times longer than in theyzand
zx directions. We note that the crossover length systemati-
cally shifts to a longer value as decreasing temperature,
which suggests divergence ofj asT→TN. [j is expected to
diverge in all the directions with the same critical exponent
although the divergence ofjsyzd is not clear in Fig. 14(b)
compared tojsxyd.]

Therefore, we find a 1D anisotropy of the spin correlation.
The magnitude of the moment is much enhanced and the
correlation length is much longer in thexy chains than in the
yz andzx chains. As predicted in the mean-field arguments,
the staggered spin correlation develops dominantly in thexy
chains due to the cooperation of the orbital ordering and the
geometrical frustration.

Recently, the neutron scattering experiment has been per-
formed in both above and belowTc1.

44 A clear difference of
the q dependence of the inelastic neutron intensity has been
found between the data above and belowTc1 and ascribed to
the 1D spin anisotropy due to the orbital ordering. The pro-
posed pattern of the orbital order is the same as our result in
Sec. III A 2.

C. Anisotropy in optical response

It has been recognized that the interplay between orbital
and spin degrees of freedom often causes an anisotropic elec-
tronic state, which is observed in optical measurements. For
instance, in perovskite vanadium oxides, a strong 1D nature
in the 3D lattice structure has been observed in the optical
measurement,45 and theoretically ascribed to the anisotropic
orbital exchange in the spin ordered state.46 Therefore, we
expect that the 1D anisotropy found in the previous section
also shows up in the optical response.

We consider the anisotropy of the optical response by
calculating the spectral weight in the present spinel case. The
spectral weight is the total weight of the optical conductivity
defined by

Im =
2"2

pe2E
0

`

smmsvddv, s38d

wheree is the electron charge,"=h/2p is the Planck’s con-
stant,smm is the diagonal element of the optical conductivity
tensor, andm=x,y, or z. Here, we consider only the optical
transfer within the 3d t2g electron bands and neglect that to
the other bands, such as the 3d eg bands and the oxygenp
bands. In experiments, the integral of Eq.(38) is calculated
up to an appropriate energy cutoff to extract the spectral
weight from the relevantt2g levels. The spectral weight in
Eq. (38) is generally given by the kinetic energy in thet2g
Hubbard model(2).47,48 In the strong correlation limit, it is
calculated by the spin and orbital exchange energy in the
effective model(5).46 We show in the following only the
results of the calculations. Details of the calculations are ex-
plained in Appendix B.

In the calculation of the spectral weight for the present
model, there are three points to be noted. One is that the
original Hubbard model(2) contains not only the nearest-
neighbor but also the third-neighbor hoppings. These two
types of hopping contribute differently to the spectral weight.
The second point is that the directions of the electron hop-
pings are different from the crystal axes. Electrons hop along
the xy, yz, andzx chains, which are canted by 45° from two
crystal axes and perpendicular to the remaining one. From
this, for instance,Iz is given by the kinetic energy both in the
zx andyz chains but not in thexy chains. The third point is
the crystal symmetry. Because the system shows the tetrag-
onal lattice distortion belowTO, there holds a general rela-
tion in the form

Ix = Iy Þ Iz s39d

for T,TO. We note that there remains weak anisotropy of
Eq. (39) even in the high-temperature phase aboveTO be-
cause of the broken cubic symmetry inHJT. With taking
account of these points, we can derive the following expres-
sions:

Ix =
− 1

2Nsite
o

z=zx,xy

fksHSO
nn dzl + 4ksHSO

3rddzlg, s40d

Iy =
− 1

2Nsite
o

z=xy,yz

fksHSO
nn dzl + 4ksHSO

3rddzlg, s41d

Iz =
− 1

2Nsite
o

z=yz,zx

fksHSO
nn dzl + 4ksHSO

3rddzlg, s42d

where we sete="=1, andsHSO
nn dz and sHSO

3rddz represent the
matrix elements of Eqs.(6) and (7) in the z chains, respec-
tively (z=yz, zx, or xy). The derivation of Eqs.(40)–(42) will
be given in Appendix B.

In Fig. 15, we show the MC results for the spectral
weight. The spectral weight becomes highly anisotropic in
the tetragonal phase belowTO with satisfying the relation
(39); the spectral weight in thez direction Iz is suddenly
suppressed atTO, while those in thexy plane Ix and Iy are
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slightly enhanced there. Moreover, in the orbital-ordered
phase belowTO, Ix and Iy increase monotonically with de-
creasing temperature, whereasIz shows a complicated tem-
perature dependence although the dependence itself is small;
Iz slightly decreases aboveTN, and it turns to increase below
TN. The increase belowTN comes from the energy gain in the
yzandzxdirections by the development of the AF spin order.

The anisotropic electronic state indicated by our MC re-
sults can be observed in the optical measurements with ap-
plying the electric field in each direction. It needs a clean
surface in the single crystal. Unfortunately, it is difficult to

grow a single crystal large enough thus far, and the experi-
mental confirmation of our results remains for further study.

D. Systematic changes forJ3/J and phase diagram

Here, we discuss systematic changes with respect to the
value of J3/J. Figures 16–18 show the specific heat in Eq.
(18), the uniform magnetic susceptibility in Eq.(31), and the
orbital and magnetic moments in Eqs.(20) and(23), respec-
tively, for several values ofJ3/J. The orbital and JT transi-
tion temperaturesTO are indicated by the dashed lines in the
figures, which are monitored by discontinuous changes ofC,

x, and MO as well asE and Q̄ (not shown here). The AF
transition temperaturesTN are indicated by the downward
arrows in the figures, which are determined by the singular
peak ofC and a continuous development ofMS as well as the
diverging peak ofxS and the crossing point ofgS (not shown
here).

In the case ofJ3=0, the system shows only the orbital and
lattice transition, and there is no AF ordering down to the
lowest temperature. Upon switching onJ3, the magnetic tran-
sition appears at a finite temperatureTN, below which the 3D
AF order exists. As shown in Figs. 16–18,TN increases
whereasTO slightly decreases asJ3/J increases. The increase
of TN is easily understood because the AF spin ordering is
stabilized by the third-neighbor exchange interactionJ3. The
reason for the decrease ofTO is not so clear, but it might be
due to the strong interplay between spin and orbital degrees
of freedom as well as the frustration betweenJ andJ3 within
the same chains. ForJ3/J*0.04,TN coincides withTO, and
there is only one discontinuous transition where both orbital

FIG. 16. Temperature dependences of the specific heat at(a)
J3/J=0.0,(b) 0.01,(c) 0.02,(d) 0.03,(e) 0.04, and(f) 0.05, respec-
tively. The dashed lines(the downward arrows) indicateTO sTNd.
Typical error bars are shown.

FIG. 15. The spectral weights for thex, y, and z directions
calculated by Eqs.(40)–(42) at J3/J=0.02. Error bars are smaller
than the symbol sizes. The solid(dashed) line showsTN sTOd.

FIG. 17. Temperature dependences of the uniform magnetic sus-
ceptibility at (a) J3/J=0.0,(b) 0.01,(c) 0.02,(d) 0.03,(e) 0.04, and
(f) 0.05, respectively. The dashed lines(the downward arrows) in-
dicateTO sTNd. Error bars are smaller than the symbol sizes.
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and AF spin moments become finite discontinuously.
Figure 19 summarizes the phase diagram in theJ3-T pa-

rameter space determined by the analysis of the results in

Figs. 16–18 as well as other quantities, such asE, Q̄, xS, and
gS. The shaded area forTN,T,TO shows the orbital-

ordered phase with the tetragonal JT distortion with a flat-
tening of VO6 octahedra as shown in Fig. 4(a). The 1D an-
isotropy of spin correlation found in Sec. III B appears in
this region. The hatched area forT,TN is the AF-ordered
phase concomitant with the orbital and lattice orders.

From estimates of parameters in Sec. II B, we obtained
J,200 K and J3,0.02J,4 K. From Fig. 19, these esti-
mates giveTO,40 K andTN,20 K. The experimental val-
ues areTc1.50 K and Tc2.40 K in ZnV2O4 (Ref. 12).
Thus, two transitions atTc1 andTc2 in experiments are con-
sistently understood by the orbital and lattice ordering tran-
sition at TO and the AF-ordering transition atTN, respec-
tively. The semiquantitative agreement of the transition
temperatures between our MC results and the experimental
values is satisfactory with considering the assumptions on
the derivation of the model(1) and on parameter estimates in
Sec. II B. In particular, we note thatg andl in the JT part in
Eq. (16), are parameters in our theory for which there has not
been any experimental estimate to our knowledge as men-
tioned in Sec. II B. The agreement in spite of these assump-
tions strongly suggests that our model(1) captures essential
physics in vanadium spinel oxidesAV2O4.

IV. DISCUSSIONS

A. Role of tetragonal JT distortion

The orbital and lattice orderings atTO are considered to
be caused by the cooperation between the intersite orbital
interaction in Eq.(5) and the JT coupling in Eq.(16). In this
section, we examine the role of the JT distortion in more
detail.

We focus on the instability in the orbital sector and ne-
glect spins momentarily. That is, we here consider the effec-
tive orbital model, which is derived from the model(5), by
assuming the spin paramagnetic state in the mean-field level
as discussed in Ref. 33. We replaceSi ·Sj by kSi ·Sjl=0 in Eq.
(5), and obtain the effective orbital Hamiltonian in the form

HO = JOo
ki,jl

niasi j dnjasi j d, s43d

whereJO=Js2A−Cd. For simplicity, we neglect small contri-
butions from theJ3 terms in this section. SinceJO.0, the
Hamiltonian is an AF three-state clock model, which is the
same as Eq.(5) in Ref. 33 up to irrelevant constants.

The mean-field argument for the model(43) predicts that
a degeneracy remains partially in the tetrahedron unit.33

There are totally 34=81 different orbital states in the four-
sites unit, and 30 states among them are in the lowest energy
state, which have four antiferro-type and two ferro-type or-
bital bonds. The 30 degenerate states are categorized into
two different types shown in Fig. 2(a) and 2(b) in Ref. 33.
[The former corresponds to Fig. 4(b), and the latter corre-
sponds to Figs. 22(a) and 22(b) in the present paper.] In the
first type, two ferro-type bonds do not touch with each other,
while they touch at one site in the second type. Thus, we
expect that in the absence of the JT coupling, the orbital
degeneracy remains partially and prevents the emergence of
a particular ordered state.

FIG. 18. Temperature dependences of the orbital sublattice mo-
ment and the staggered magnetic moment at(a) J3/J=0.0,(b) 0.01,
(c) 0.02, (d) 0.03, (e) 0.04, and(f) 0.05, respectively. The dashed
lines (the downward arrows) indicate TO sTNd. Error bars are
smaller than the symbol sizes.

FIG. 19. Phase diagram for the spin-orbital-lattice coupled
model (1) determined by classical Monte Carlo calculations. The
shaded areaTN,T,TO shows the orbital- and lattice-ordered
phase. The hatched area belowTN is the AF-ordered phase con-
comitant with the orbital and lattice orders. The orbital and lattice
transition atTO (the dashed line) is a first-order transition, while the
AF transition atTN (the solid line) is a second-order one. The lines
are guides for the eyes.
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To confirm this prediction, we perform the Monte Carlo
simulation for the effective orbital model(43). The result of
the specific heat per site is shown in Fig. 20(a) (black sym-
bols). The data show a broad peak aroundT.0.4JO without
any singularity or any significant system-size dependence.
This indicates that the system does not show any phase tran-
sition, as predicted by the above mean-field picture. In Fig.
20(b) (black symbols), we plot the temperature dependence
of the entropy sum defined by

SsTd =E
0

T

CsT8d
T8

dT8. s44d

The entropy sum appears to saturate at,0.5 at high tempera-
tures, which is largely suppressed from the expected value of
ln 3.1.1 for free three-state clock spins. This indicates that
there remains the entropy at zero temperature due to the de-
generacy discussed above.

One way to estimate the zero-temperature entropyS0 is
the so-called Pauling’s method.2 In this method, the ground
state degeneracy in the whole system is calculated simply

multiplying the local degeneracy. In the present case, the
total number of states is 3Nsite, and 30 of 81 states constitute
the degenerate ground state in each tetrahedron as mentioned
above. With noting that there areNsite/2 tetrahedra in the
system and assuming that the tetrahedra are independent
with each other, the zero-temperature entropy within the
Pauling’s approximation is obtained as

S0 = lim
Nsite→`

1

Nsite
lnF3NsiteS30

81
DNsite/2G = ln 3 −

1

2
lnS81

30
D .

s45d

Thus, we obtain the entropy sum as

SsT → `d = ln 3 −S0 = 1
2 lns 81

30d . 0.5. s46d

The estimate is close to the saturated value in Fig. 20(b).
The tetragonal JT distortion with a flattening of the octa-

hedra as shown in Fig. 4(a) splits the degenerate energy lev-
els and lowers the energy of one orbital state of the first type,
i.e., the configuration in Fig. 4(b). In this case, all the tetra-
hedra are in the same orbital states. That is, there we expect
the orbital ordering and disappearance of the zero-
temperature entropy. The results for the case with the level
splitting are also shown in Fig. 20(gray symbols). Here, for
simplicity, we incorporate the level splitting by adding the
term

HD = −
D

3 o
i

sni1 + ni2 − 2ni3d s47d

to Eq. (43), which mimics the JT term in Eq.(16). As ex-
pected, the specific heat in Fig. 20(a) shows a singularity at
T,0.3JO, which indicates a phase transition. Figure 20(b)
showsSsT→`d. ln 3, which indicates that the phase tran-
sition reduces the remaining entropy by lifting the degen-
eracy.

The results in this section confirm the mean-field picture
in Ref. 33, and explicitly show the importance of the coop-
eration between the intersite orbital interaction and the JT
coupling.

B. Symmetry of orbital ordered state

Here, we comment on the spatial symmetry of the orbital
ordered state belowTO. Our result in Fig. 7 indicates that the
orbital ordering breaks the mirror symmetry for the[110] or

f11̄0g plane. The symmetry breaking will also appear in the
lattice structure through the electron-phonon coupling, which
breaks thedyz and dzx symmetry, although such coupling is
not included in our model[the tetragonal JT mode in Eq.
(16) does not split thedyz anddzx levels].

Recently, the orbital-ordered state with another symmetry
has been proposed, theoretically.49 The theory is based on the
assumption of the dominant role of the relativistic spin-orbit
coupling. The predicted orbital order consists of the ferro-
type occupation of thedxy and sdyz+ idzxd orbitals at every
site. This orbital order does not break the mirror symmetry.

The difference of the resultant orbital-ordered state is im-
portant to consider the fundamental physics of the presentt2g

FIG. 20. Temperature dependences of(a) the specific heat per
site and(b) the entropy sum[Eq. (44)] for the effective orbital
model (43). Black symbols show the results without the JT distor-
tion. Gray symbols show the results in the presence of the tetrago-
nal JT level splitting withD /JO=0.4 in Eq.(47).
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electron system. Int2g electron systems, in general, there is
keen competition among different contributions whose en-
ergy scales are close to each other; the spin and orbital ex-
change interactions, the JT coupling, and the relativistic spin-
orbit coupling.50 In our argument, the former two
mechanisms play a primary role while the last one is not
taken into account. On the contrary, in Ref. 49 the relativistic
spin-orbit coupling is assumed to be dominant. Therefore,
the determination of the orbital and lattice symmetry is rel-
evant to clarify the primary factor in the keen competition.

Experimental results on the lattice symmetry, however,
are still controversial. In Refs. 16 and 51, the x-ray scattering
results for polycrystal samples are consistent with the sym-
metry I41/amdbelow Tc1, which suggests the persistence of
the mirror symmetry at the low temperature phase. On the
contrary, in recent synchrotron x-ray data for a single crystal
sample, a new peak is found whose intensity is 3 orders-of-
magnitude weaker than a typical main peak.44 Unfortunately,
the new peak cannot conclude whether the mirror symmetry
is broken or not, but it suggests the different symmetry from

the previousI41/amd, i.e., eitherI4̄m2 or I4̄. This contro-
versy, probably coming from a small electron-phonon cou-
pling in this t2g system, reveals the necessary of more sophis-
ticated experiments for larger single crystals. Such
experiments are highly desired to settle the theoretical con-
troversy.

Another possible experiment to conclude the symmetry
problem is to detect the orbital state directly. This may be
achieved, for instance, by the resonant x-ray scattering
technique.52 Besides, another way to distinguish the orbital-
ordered states in our results and in Ref. 49 is to examine the
time reversal symmetry. Thesdyz+ idzxd orbital order in Ref.
49 breaks the time-reversal symmetry even above the mag-
netic transition temperature. A possible experiment is the de-
tection of either circular dichroism or birefringence.

C. Quantum fluctuation effect

Our classical Monte Carlo calculations have shown that
with approaching zero temperature, the staggered moment
increases and saturates at the maximum valueMS→1 when
the third-neighbor couplingJ3 is finite. In physical units, this
value should be multiplied bygSmB and corresponds toMS
=2mB. Here, mB is the Bohr magneton and theg factor is
assumed to be the standard valueg=2. This behavior was
plotted in Figs. 9(a) and 18(b)–18(f). On the other hand,
recent experiments showMS,0.6mB at low temperatures,
only less than a half of this classical value.44,51 It is well
known that quantum fluctuations due to magnon excitations
reduce the amplitude of spontaneous moment in antiferro-
magnets. We expect that this effect is particularly important
in frustrated magnets like pyrochlore systems, since frustra-
tion generally reduces the energy scale of magnon excita-
tions and correspondingly enhances quantum fluctuations of
the staggered moment.

Here, we examine atT=0 the effect of quantum fluctua-
tions of spin degree of freedom on the reduction of staggered
moment for the model(1), by using the linear spin-wave
theory. For this purpose, we assume the perfect orbital order

with the ordering pattern in Fig. 7, and substitute the density
operators in Eq.(5) by their expectation values 0 or 1. That
is, we here consider the effective quantum-spin model on the
pyrochlore lattice in the form

Hspin= o
ki,jl

JijSi ·Sj + o
kki,jll

J38Si ·Sj , s48d

where the first summation should be taken over nearest-
neighbor pairs, while the second one be taken over third-
neighbor pairs coupled bys bond. Under the orbital ordering
in Fig. 7, exchange coupling constants are ferromagnetic
for nearest-neighbor spin pairs on theyz and zx chains,Jij
=−JB=JF,0, and antiferromagnetic for those on thexy
chains,Jij =JC=JAF.0, while the third-neighbor couplings
are also antiferromagnetic,J38=J3C. These parameters were
defined in Eqs.(10)–(15). It is important thatJAF@ uJFu@J38,
becauseh!1 and ts

3rd! ts
nn. Roughly speaking, the small

control parameter in the spin-wave theory is 1/fS
3z snumber of neighborsdg. In the present case,S=1 andz
=6, leading to a control parameter small enough, and, there-
fore, we may expect quite good estimate from the spin-wave
theory.

For the magnetic order determined by the mean-field ar-
guments in Sec. II A and Ref. 33, we have calculated the
reduction of staggered moment atT=0 by using the linear
spin-wave theory. The magnetic structure is shown in Fig. 2,
and its unit cell contains 8 spins. Details of the calculations
will be reported elsewhere; here, we show only the results
for the staggered moment.

When the third-neighbor exchange couplings are zero
sJ38=0d, magnons have zero energy(zero modes) on the
planeskx= ±ky in the Brillouin zone. Within the linear spin-
wave theory, magnons are treated as noninteracting to each
other, and these zero modes are excited freely without any
energy cost. This leads to the logarithmic divergence of the
reduction of moment,DS→`. It is noted that in the pyro-
chlore spin system in which all the nearest-neighbor cou-
plings are antiferromagnetic with same amplitude, a half of
magnon excitations are zero modes throughout the whole
Brillouin zone, and this results inDS=`, as a manifestation
of strong geometrical frustration.53

Once the third-neighbor exchange couplingsJ38 are
switched on, zero modes acquire a positive energy and the
reduction of moment becomes finite. Figure 21 shows the
results of the reduction of momentDSas a function ofJ38 for
JAF=1 andJF=−0.113, corresponding toh=0.08 at which
the MC calculations have been performed. The amplitude of
staggered moment is reduced toMS=sS−DSdgmB. In the
case of the vanadium spinel oxides withS=1, S−DS.0 for
J38*10−3JAF, which indicates that the antiferromagnetic or-
der shown in Fig. 2 is stable down to very small third-
neighbor exchange couplings. For example, at a reasonable
value, J38,0.02JAF, the amplitude of staggered moment is
MS,s1−0.5dgmB,0.5gmB. With using g=2, this corre-
sponds toMS,1mB. Hence, the reduction is significantly
large in the present spin-orbital-lattice coupled system, and
particularly the staggered moment rapidly decreases asJ38 in
the realistic small-J38 region. We consider that the estimate of

Y. MOTOME AND H. TSUNETSUGU PHYSICAL REVIEW B70, 184427(2004)

184427-16



MS is satisfactory and can explain the experimental value by
carefully tuning the model parameters.

We also note that there may be a small contribution from
quantum fluctuations in the orbital degree of freedom. In our
spin-orbital-lattice coupled model(1), this contribution is not
taken into account because we consider onlys bond for
hopping integrals. Other hopping integrals lead to small or-
bital exchange interactions, causing small quantum fluctua-
tions of orbitals. This will slightly reduce the orbital sublat-
tice moment and may lead to a further reduction of the
staggered spin moment.

D. Difference of ZFC and FC susceptibility

We have shown that the MC results for the uniform mag-
netic susceptibility in Sec. III A 5 qualitatively explain the
experimental data in the zero-field-cool(ZFC) measurement.
In experiments, there has been reported that the ZFC and
field-cool (FC) data show a large difference at low
temperatures.12 The difference between the ZFC and FC data
emerges at a higher temperature than the structural transition
temperatureTc1 and develops on cooling. One of the myster-
ies is that the difference remains finite and large even in the
AF spin-ordered phase belowTc2; the FC value becomes
nearly twice of the ZFC one at the lowest temperature. This
strongly suggests that the difference cannot be explained as a
simple spin-glass phenomenon.

A key observation is that the starting temperature of the
difference between the ZFC and FC data as well as the mag-
nitude of the difference appears to depend on samples. In
Ref. 12, the difference emerges atT,100 K and becomes
,0.83103 emu/V-mol atTc1. On the other hand, in Ref. 51,
the difference starts atT,70 K and becomes,0.3
3103 emu/V-mol atTc1. We also note that the temperature
dependences of the ZFC data show a sample dependence,
especially near two transition temperatures. These sample
dependences imply the importance of quenched disorder. Ef-
fects of disorder in the present spin-orbital-lattice coupled
system are interesting and open problems.

In our MC calculations, it is difficult to obtain the FC
results because the system shows a discontinuous transition

at TO: There appears a huge hysteresis when we change the
temperature successively by using the MC sample in the pre-
vious run as the initial state in the next run. On cooling, the
system remains in the high-temperature para state well below
the true transition temperatureTO as a metastable state be-
cause of an exponentially large energy barrier in the first-
order transition. One way to avoid this hysteresis is to apply
a more sophisticated MC method, such as the multicanonical
technique.54 This interesting problem is left for further study.

E. A-site substitution effect

We have shown that our spin-orbital-lattice coupled
model (1) exhibits two transitions that well agree with ex-
perimental results inAV2O4. Here, we discuss a difference
among the compounds with differentA cations observed in
experiments.

Among AV2O4 with A=Zn, Mg, or Cd, CdV2O4 shows a
different behavior nearTc1 from others.16 As temperature de-
creases, the magnetic susceptibility for the compounds with
A=Zn and Mg shows a sudden drop atTc1 as in our numeri-
cal result in Fig. 12, whereas that for the Cd compound
shows a sharp increase. Moreover, the transition temperature
Tc1 is substantially higher in the Cd case than in the Zn and
Mg cases;Tc1=97 K for Cd whileTc1=52 K and 64.5 K for
Zn and Mg, respectively. On the other hand, the AF magnetic
transition temperatureTc2 is almost the same among three
compounds;Tc2=44,45, and 35 K for Zn, Mg, and Cd,
respectively.16

Our results show that the transition temperatureTO, which
corresponds toTc1, is determined by the energy balance be-
tween the intersite orbital interaction in Eq.(5) and the elas-
tic energy gain in Eq.(16). The A-site cations are nonmag-
netic and locate at the tetrahedral sites, which are separated
from the pyrochlore network of V cations; the change of the
A cation may affect the lattice structure becauseAO4 tetra-
hedra share oxygen ions with VO6 octahedra. Thereby, we
may consider that the Cd cation, which has relatively large
ionic radius, may modify the lattice structure and have an
influence on the JT energy gain as well as the form and
magnitude of the orbital interaction.

Actually, although the symmetry is the same for the three
compounds, the so-calledu parameter of the spinel structure
is considerably larger for CdV2O4 than for Zn and Mg com-
pounds. Theu parameter represents the magnitude of the
trigonal distortion. The absence of the trigonal distortion
givesu=0.375 by definition, and a largeru denotes a larger
trigonal distortion. For the Zn and Mg cases,u=0.385 and
0.386, respectively, whereasu becomes 0.394 for the Cd
compound: The trigonal distortion is substantially larger in
the Cd case than in the Zn and Mg cases. This suggests that
the peculiar behavior in CdV2O4 may be ascribed to effects
of the trigonal distortion.

The agreement between the experimental data in Zn and
Mg compounds and our numerical results, which do not in-
clude effects of the trigonal distortion, indicates that the
small trigonal distortion does not play an important role in
these two compounds. To understand the behavior of the Cd
compound, i.e., the sharp increase in the magnetic suscepti-

FIG. 21. Reduction of the staggered moment due to quantum
fluctuations(open symbols) estimated by the linear spin-wave cal-
culation atJF/JAF=−0.113. The staggered moment is also plotted
(filled symbols), which is given byMS=sS−DSdgmB and by assum-
ing g=2. The lines are guides for the eyes.
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bility as well as the higherTc1, it is interesting to examine
the effect of the trigonal distortion in our theoretical frame-
work. In addition to the contribution from the electron-
phonon coupling to the trigonal distortion, we may have to
include more complicated hopping integrals not only the
s-bond type but also, for instance,p-bond type or the
second-neighbor hoppings, since the trigonal distortion af-
fects the network of VO6 octahedra: These additional hop-
pings modify the spin and orbital intersite interactions in the
derived effective model in Eq.(5). The complicated effects
of this trigonal distortion are left for further study.

V. SUMMARY

In the present work, we have investigated the microscopic
mechanism of two transitions in vanadium spinel oxides
AV2O4 with nonmagnetic divalentA cations, such as Zn,
Mg, and Cd. We have focused on the role of thet2g orbital
degree of freedom as well as spin in these strongly correlated
electron systems on the geometrically frustrated lattice struc-
ture, i.e., the pyrochlore lattice consists of the magnetic V
cations. We have derived the effective spin-orbital-lattice
coupled model in the strong correlation limit from the mul-
tiorbital Hubbard model with explicitly taking account of the
t2g orbital degeneracy. The effective model describes the in-
terplay between orbital and spin and reveals the contrasting
form of the intersite interactions in two degrees of
freedom—the Heisenberg type for the spin part and the
three-state clock type for the orbital part. The anisotropy in
the orbital interaction originates from the dominant role of
the s-bond-hopping integrals in the edge-sharing configura-
tion of VO6 octahedra. The Jahn-Teller coupling with the
tetragonal lattice distortion is also included. Thermodynamic
properties of the effective model have been investigated by
the Monte Carlo simulation, which is a classical one to avoid
the negative sign problem due to the geometrical frustration.
Quantum corrections are examined by the spin-wave ap-
proximation. Main results are summarized below.

Our effective spin-orbital-lattice coupled model exhibits
two transitions at low temperatures. As temperature de-
creases, first the orbital ordering transition occurs assisted by
the tetragonal Jahn-Teller distortion. This is a first-order tran-
sition. Successively, at a lower temperature, the antiferro-
magnetic spin order sets in. This transition is second order.

For realistic parameter values, our numerical results agree
with experimental data semiquantitatively. The estimates of
two transition temperatures areTO,40 K and TN,20 K,
while the experimental values areTc1,50 K and Tc2
,40 K. The changes of the entropy at the transitions are
comparable to the experimental values: In particular, the
small change atTN compared to the considerable change at
TO is well reproduced. The magnetic ordering structure in the
low-temperature phase is completely consistent with the neu-
tron scattering results. The magnitude of the staggered mo-
ment atT=0 is largely reduced by quantum fluctuations, and
the estimate by the spin-wave theory reasonably agrees with
the experimental data. The temperature dependence of the
uniform magnetic susceptibility is similar to the experimen-
tal data. The agreement strongly indicates that our effective

model captures the essential physics of the vanadium spinel
compoundsAV2O4.

Our results give an understanding of the mechanism of
the two transitions in the vanadium spinel oxides. The
present numerical study has confirmed the mean-field sce-
nario in our previous paper,33 and, moreover, given more
detailed and quantitative information. The first transition
with orbital and lattice orderings is induced by the intersite
orbital interaction, which is a three-state clock type and spa-
tially anisotropic depending on both the bond direction and
the orbital states in two sites. The anisotropy lifts the degen-
eracy due to the geometrical frustration inherent to the pyro-
chlore lattice. The tetragonal Jahn-Teller coupling also plays
an important role to stabilize the particular orbital-ordering
pattern. The obtained orbital-ordering structure is the
antiferro-type, which consists of the alternative stacking of
two ferro-typeab planes;sdxy,dyzd orbitals are occupied in
one plane, andsdxy,dzxd orbitals are occupied in the other.
Once the orbital ordering takes place, the orbital state affects
the spin-exchange interactions through the spin-orbital inter-
play and reduces the magnetic frustration partially. As a con-
sequence, the antiferromagnetic spin correlation develops
mainly in the one-dimensional chains in theab planes. We
found typically about three-times longer correlation length in
the xy direction than in theyz andzx directions. At the sec-
ond transition, these one-dimensional chains are ordered by
the third-neighbor exchange interaction to form the three-
dimensional antiferromagnetic spin order. It was found that
thermal fluctuations stabilize the collinear state by the order-
by-disorder-type mechanism.

There still remain several open problems on this topic as
discussed in Sec. IV: the controversy on the symmetry of the
orbital-ordered state, the large difference of the zero-field-
cool and field-cool data of the magnetic susceptibility, and
theA-site dependence, which is probably related to the trigo-
nal distortion. They need further investigation from both ex-
perimental and theoretical viewpoints. In addition, another
important problem is the carrier doping effect on the Mott
insulating materials, such as the Li doping in Zn1–xLi xV2O4.
In experiments, it is known that the doping rapidly destroys
the ordered states atx=0, and replaces them by a glassy
state.22 Finally, at x=1, the system becomes metallic and
shows a heavy-fermion behavior.21,22 We believe that our
present results give a good starting point to study the inter-
esting doping effects.
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APPENDIX A

In this appendix, we examine the conditions forg andl
in the Hamiltonian(16) to stabilize the orbital order in Fig.
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4(b) accompanied by the tetragonal JT distortion with a flat-
tening of VO6 octahedra as shown in Fig. 4(a) at low tem-
peratures. We employ the mean-field-type argument to dis-
cuss the instability at high temperatures as in Ref. 33. Here,
we consider only the nearest-neighbor interactions and ne-
glect small contributions fromHSO

3rd. With considering a spin
disordered state and replacingSi ·Sj by kSi ·Sjl=0 in Eq.(1),
we obtain the effective Hamiltonian for the orbital and JT
parts as

HO−JT= JOo
ki,jl

niasi j dnjasi j d + HJT, sA1d

whereJO=Js2A−Cd. The first term is equivalent to Eq.(43)
and to Eq.(5) in Ref. 33 up to irrelevant constants.

We consider the orbital state and the JT distortion in the
tetrahedron unit shown in Fig. 4(b). For an orbital configu-
ration at the four sites, the expectation value of the JT part
HJT for one tetrahedron is written in the following quadratic
form

eJTsQd = Q · M̂Q + Q ·A + A ·Q, sA2d

whereQ is a four-dimensional vector that denotes the ampli-
tude of the JT distortion in each site asQ=tsQ1,Q2,Q3,Q4d,
and M̂ is the 434 matrix whose matrix elements are given

by M̂ij =
1
2 for i = j and M̂ij =−l for i Þ j . The vectorA de-

scribes the electron-phonon coupling part and depends on the
orbital state; for instance,A=ts−g /2 ,−g /2 ,−g /2 ,−g /2d for
the orbital occupation in Fig. 4(b). Here, we consider the
physical situation in which the system does not show any
spontaneous lattice distortion without the coupling to elec-
trons of the second and third terms in Eq.(A2). This is sat-

isfied when the matrixM̂ is positive definite. Three of the

eigenvalues ofM̂ are s1+2ld /2 and the last one iss1
−6ld /2, and, therefore, by noting that we consider only posi-
tive l as mentioned in Sec. II A, the condition is

0 , l ,
1
6 . sA3d

The quadratic form ofeJT in Eq. (A2) can be transformed
to the following form:

eJTsPd = sP + Bd · sP + Bd − B ·B, sA4d

whereP= L̂Q, B= L̂−1A, andL̂=M̂1/2 is well defined, asM̂ is
a positive-definite matrix under the condition of Eq.(A3).
Therefore, we find that the JT energy takes its minimum
value

eJT
min = − B ·B = − A · M̂−1A , sA5d

for the amplitude of the distortions

Qmin = − M̂−1A . sA6d

For instance, for the configuration in Fig. 4(b), we obtain
eJT

min=−2g2/ s1−6ld for Qmin=tsQ,Q,Q,Qd with Q=g / s1
−6ld.

All the different orbital configurations withknial=0 or 1
are classified by the energy valueeJT into five groups, which
are described by the vectorA as

A1 = ts− g/2,−g/2,−g/2,gd, sA7d

A2 = ts− g/2,−g/2,g,gd, sA8d

A3 = ts− g/2,g,g,gd, sA9d

A4 = tsg,g,g,gd, sA10d

A5 = ts− g/2,−g/2,−g/2,−g/2d, sA11d

where arbitrary permutations of components in each vector
give the same energy. Typical orbital configurations are
shown in Fig. 22.[The configuration forA5 is shown in Fig.
4(b).]

On the basis of the above consideration on the JT energy,
we calculate the expectation value of the Hamiltonian(A1),
for the five types of orbital configurations. With considering
the orbital interaction energy from the first term in Eq.(A1),
the minimized values of the energy per tetrahedron are ob-
tained as

e1 = 4JO −
g2s7 − 40ld

2s1 + 2lds1 − 6ld
, sA12d

e2 = 4JO −
g2s5 − 26ld

s1 + 2lds1 − 6ld
, sA13d

e3 = 6JO −
g2s13 − 28ld

2s1 + 2lds1 − 6ld
, sA14d

e4 = 8JO −
8g2

1 − 6l
, sA15d

FIG. 22. (Color) Orbital-ordering patterns(a), (b), (c), and (d)
for the categories 1, 2, 3, and 4 specified by Eqs.(A7)–(A10),
respectively. The ferro-type(antiferro-type) orbital bonds are shown
by the blue solid(red dashed) lines.
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e5 = 4JO −
2g2

1 − 6l
, sA16d

Note that there are 12 bonds per 1 tetrahedron.
By comparinge5 with other four valuesei si =1−4d, we

obtain the stability conditions for the orbital configuration of
Fig. 4(b). First, the conditionse5,e1 ande5,e2 are satisfied
when

1
10 , l ,

1
6 . sA17d

In this range, the conditione5,e3 leads to

g2 ,
4JOs1 + 2lds1 − 6ld

9s1 − 4ld
, sA18d

and the conditione5,e4 leads to

g2 , 2JOs1 − 6ld/3. sA19d

The shaded area in Fig. 23 shows the parameter region where
all the conditions of Eqs.(A17)–(A19) are satisfied. We per-
formed several MC runs to confirm the present mean-field-
type analysis. In the MC calculations in Sec. III, we take
g2/J=0.04 andl /J=0.15 as a typical set in this region.

APPENDIX B

In this appendix, we derive the expressions for the spec-
tral weights in Eqs.(40)–(42) for our effective model(1).

The spectral weight, which is the total weight of the op-
tical conductivity, is given by the kinetic energy of the sys-
tem (f-sum rule).47,48 We may safely extend the formula for
the single-band Hubbard model,

Im =
2

p
E
0

`

smmsvddv =
1

Nu.c
o
k
K−

]2Kskd
]km

2 L , sB1d

to our multiorbital case.(We sete="=1, and Nu.c. is the
number of unit cells.) Here, Kskd describes the kinetic en-
ergy term of the multiorbital Hubbard Hamiltonian as

o
k

Kskd = o
k

o
a,b

o
a,b

taa,bbskdcaa
† skdcbbskd, sB2d

which is the Fourier transform of the first term of Eq.(2).
Here, a,b=0,1,2,3 are theatom indices in the primi-
tive unit cell containing four V atoms, whose relative
positions are labeled byd0=s0,0,0d, d1=s0,1/4,1/4d,
d2=s1/4,0,1/4d, d3=s1/4,1/4,0d, respectively.

Since the pyrochlore lattice consists of three different
chains in thexy, yz, andzx directions, and we here consider
only the s-bond hopping integrals, which are finite only
along the chains;Kskd is given by the summation of the
contributions from each chain as

Kskd = o
z

fuzkz
nnskd + vzkz

3rdskdg, sB3d

where z=1 syzd, 2 szxd, 3 sxyd denote the three different
types of the chains anduz ,vz are the nearest-neighbor and
the third-neighbor hopping integrals along thez chain,
respectively. In the Hamiltonian(2), u1=u2=u3= ts

nn and v1
=v2=v3= ts

3rd, but they are deliberately denoted by different
parameters for later use. Each term in Eq.(B3) is defined by

k1
nnskd = 2 cossk · d01dfc01

† skdc11skd + c11
† skdc01skdg

+ 2 cossk · d23dfc21
† skdc31skd + c31

† skdc21skdg,

sB4d

k1
3rdskd = 2 coss2k · d01dfc01

† skdc01skd + c11
† skdc11skdg

+ 2 coss2k · d23dfc21
† skdc21skd + c31

† skdc31skdg,

sB5d

and so on, wheredab=da−db.
Let us now evaluate the derivatives ofKskd in Eq. (B1).

By using Eq.(B3), it is straightforward to obtain, for in-
stance, the derivative in terms ofkx in the form:

]2Kskd
]kx

2 =
1

16
fu2k2

nnskd + u3k3
nnskdg

+
1

4
fv2k2

3rdskd + v3k3
3rdskdg. sB6d

The derivatives in terms ofky andkz are obtained in a similar
manner. Thus, with notingNu.c.=Nsite/4, the spectral weights
for the multiorbital Hubbard model(2) are obtained in the
forms:

Ix = −
1

4Nsite
fhksHK

nndzxl + ksHK
nndxylj

+ 4hksHK
3rddzxl + ksHK

3rddxyljg, sB7d

Iy = −
1

4Nsite
fhksHK

nndxyl + ksHK
nndyzlj

+ 4hksHK
3rddxyl + ksHK

3rddyzljg, sB8d

FIG. 23. The parameter region of Eqs.(A17)–(A19) is shown by
the shaded area. The dashed and solid lines denote the conditions of
Eqs.(A18) and (A19), respectively.
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Iz = −
1

4Nsite
fhksHK

nndyzl + ksHK
nndzxlj

+ 4hksHK
3rddyzl + ksHK

3rddzxljg, sB9d

where sHK
nndz and sHK

3rddz are the nearest-neighbor and the
third-neighbor matrix elements of the kinetic term in Eq.(2)
along thez chain, respectively.

In the strong correlation limit, the kinetic energy corre-
sponds to the spin- and orbital-exchange energy as discussed
below. The expectation values of the kinetic terms in Eqs.
(B7)–(B9) can be represented as coupling-constant deriva-
tives,

ksHK
nndzl =Kuz

]

]uz

HHubL =
]

] lnuuzu
kHHubl, sB10d

ksHK
3rddzl =

]

] lnuvzu
kHHubl. sB11d

Here, we have used the Hellman-Feynman theorem to ex-
change the order of derivative and expectation value. In the
strong correlation limit, we can replace the derivatives in

terms ofuz andvz of kHHubl by the derivatives in terms of the
exchangeJ of the expectation values of the effective spin-
orbital Hamiltonian(5) as

]

] lnuuzu
kHHubl = 2

]

] lnusJdzu
kHSOl = 2ksHSO

nn dzl, sB12d

]

] ln uvzu
kHHubl = 2

]

] ln usJ3dzu
kHSOl = 2ksHSO

3rddzl,

sB13d

where sJdz=uz
2/U and sJ3dz=vz

2/U are the nearest-neighbor
and the third-neighbor exchange coupling constants along
the z direction, respectively; andsHSO

nn dz and sHSO
3rddz are the

nearest-neighbor and the third-neighbor matrix elements of
Eqs.(6) and(7) along thez chain, respectively. In the model
(5), sJdz=J=sts

nnd /U andsJ3dz=J3=sts
3rdd /U, and they are in-

dependent of the directionz. By substituting all the expecta-
tion values in Eqs.(B7)–(B9) by Eqs.(B12) and(B13), and
the similar expressions, we obtain the formulas of the spec-
tral weights for the effective spin-orbital coupled model in
the strong correlation limit as given in Eqs.(40)–(42).
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