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Magnetoresistance of itinerant electrons interacting with local spins
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Transport properties of itinerant electrons interacting with local spins are analyzed as a function of the
bandwidth,W, the exchange interactiod, and the band fillingn, near the band edge. Numerical results have
been obtained within the dynamical mean-field approximation and interpreted with the help of analytical
treatments. If spatial correlations of the magnetic fluctuations can be neglected, and definings the
magnetization dependent resistivity, we find tidaf p(0) ~n~#3 for J/W, n<1 (weak coupling, low density
limit), 8p/p(0)~const, forJ/W>1, n<1 (double exchange, low density linitwhere sp= dp/In?|z_o.
Possible limitations from ignoring both localization effects and critical fluctuations are also considered.
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I. INTRODUCTION A different regime exists at sufficiently large values of the

A large variety of ferromagnetic materials can be de-E/€ctronic density, when([|=2kg) cannot be described in
scribed in terms of a band of itinerant electrons interacting®'ms of critical fluctuations. In a system with a large coor-
with localized spins. Among others, we can include the mandination number, the properties gfq) for sufficiently large
ganese perovskites, aReMnOs,! the doped pyrochlores, Values ofg can be studied using an effective medium ap-
derived from TjMn,0;2* and many doped magnetic Proach, which neglects the spatial correlations of the mag-
semiconductor8® Many of these materials show unusually Netic fluctuations. As is well known, this description be-
large values of the magnetoresistance near the Curie ter§omes exact when the dimensionality, or the coordination
perature. The simplest description of the electronic and mag2umber, becomes largéThe conductivity of models of itin-
netic properties of these compounds includes an itinerarfant electrons interacting with classical spins has already
band of noninteracting electrons, parametrized by the bandi€en analyzed in this limi:* In the following, we will
width W, and a finite concentration of classical localized Study numerically the dependence of the parametéefined
spins, which interact with the electrons through a local ex-2bove on the density of itinerant electrons, mostly in the
change termy. In the following, we assume that the concen- 'egime whene <W, wheree is the Fermi energy measured
tration of spins is of the same order as the number of unifrfom the bottom of the band, assuming an uncorrelated mag-
cells in the lattice, and describe the model in terms of twonetic disorder. We will perform numerical calculations in the
dimensionless parameters, the rati®v and the number of Coherent-Potential Approximation and use simplified ana-
electrons per unit cell). The values of these parameters for lytical methods to understand the numerical results. We will
the pyrochlore compounds typically satisf/W, n<1, find that, forJ/W<1, the band splitting due to the magneti-
while the double exchange model appropriate for the mangazation leads to the divergent behaviée: n™#/3. On the other
nites is such thal/W= 1, andn can be of order unity. The hand, the magnetoresistance coeffic&n¢mains finite close
simple description used here is probably inadequate for theo the band edge in the double exchange liMitv> 1, a fact
dilute magnetic semiconductors, where the concentration ofasily understood in terms of a magnetization-dependent
local moments is small, and, moreover, disorder effects cabandwidth. The paper is organized as follows. In Sec. Il we
lead to localization of the electronic stafes. present the model and the perturbation limit tbrThe nu-

It has proven useful to identify general trends in the transimerical method is described in Sec. Ill. Section IV contains
port properties of these materials. The resistance is typicallyesults for the weak coupling limit, with a simplified analyti-
high in the paramagnetic phase, and decreases as the magoel treatment and a discussion of possible limitations due to
tization increases. A simple parameter used to characteridecalization effects. Results for the strong coupling limit and
the magnetoresistance is the dimensionless rafio a simplified explanation are found in Sec. V. In the last sec-
=[ap(m?)/ am?]/ p|wz_o, Where p(n?) is the magnetization tion we summarize the main conclusions of our work and
dependent resistance. The resistivity is dominated by scattemakes contact with the experimental situation, placing out
ing processes with wavevectd| ~ 2k.,2 where kg is the  results in the context of available compilations of magnetore-
Fermi momentum. The scattering arises from magnetic flucsistance dat&?4
tuations, which are described by the magnetic susceptibility,
x(@). Assuming thaty(q) can be approximated taking into
account only the low momentum critical fluctuations which
exist near the Curie temperature, one finds tBatn 23 We consider free electrons coupled to core spins and mod-
(Refs. 9 and 1p eled by the following Hamiltonian:

Il. MODEL HAMILTONIAN. MAGNETORESISTANCE
IN THE PERTURBATIVE LIMIT
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H=> 6kCE,ng,g—JE S -, (1) L?gtigonan enhancement ¢f with decreasing carrier concen-
k,o i .

where o=%1 is a spin index.g, is the band structure of
carriers in the unperturbed system, are Pauli spin opera- l1l. COHERENT-POTENTIAL APPROXIMATION
tors for carriers at siteé, andJ is the coupling constant be-

tween carriers and core spifg the latter treated classically tro
as unit length vector§?=1. It should be understood from the

beginning that our aim is the study of transport properties o{
the carriers, and not the ground statetbf Therefore, we
consider the random distribution of core sg@ia given pa-

The Hamiltonian of Eq(1) describes noninteracting elec-
ns moving in a random potential. The obtention of elec-
ronic properties requires, therefore, performing configura-
ion averages over the random orientation of core spins. The
Coherent-Potential ApproximatioftCPA),'>16 a procedure

trizing th bl Consistently with the di ; hat we sketch here, offers a convenient way in order to
rametrizing the probiem. Lonsistently wi € dISeussion Olypiain such averagésee, for instance, Ref. 17 for coverage

Lhe I.?trOdUCt'OT'the aszun;]e thlstprgbabl_lkl;[y t?]'Str'EUt'on ftoof the original literature We start with the first term of Eq.
€ sie uncorrte; a e‘t ! 6:.” Ct osen ISI efscrl € he ? ange Iron) as our unperturbed Hamiltoni&ﬂb:Eky(,ekc;gck,m lead-
a paramagnetic situation p(ayea Y erromagnetic one. ing to a Green’s function or resolvent whose local matrix
This can be achieved, for instance, with a probabilys) -
- ) L elements are given by
cexp(hessS,). Within this parametrizationh.=0 corre-

sponds to the paramagnetic phase, apg+ 0 describes a ] 1 Dy(e)
phase where the core spins are polarized along ties. 90(2) = (i,0(z=Ho) i, 0) :f de 7—¢’ (7)
Following standard practice, we define the magnetoresis-
tance coefficientC, as whereli, o) is the electron state at siteand spino, andz is
a complex energy in the upper plane. This unperturbed sys-
p(0) — p(m) =Cm? 2) tem is characterized by a reference density of stgbes
p(0) ' spin Dy(e)=—7"11m gy(e+i0*), which we take to be the
. e . usual semielliptical function:

where p(m) is the resistivity corresponding to an average

polarization of core spinen=(S,). Notice that Eq.(2) only 2 €\?

makes sense to ordar, the only situation we will consider Do(€) = W 1- (V_V> ; (8)

here.

Before embarking on more complex formalisms, let ushotice that band edges are entirely consistent with a three
consider what perturbation theofiy the coupling)) has to ~ dimensional system. _
say about the magnetoresistance. In the standard relaxation The configuration average of the Green’s function for the

time approximation, the resistivity is given by entireH: g,(2)=((i,0](z—H)™"i, o)) (external brackets stand
for the configuration averagés calculated by the CPA from
p= ﬂT—l, (3) that of the unperturbed system by means of a self-engggy
ne? in the following manner:
wheren is the number of carrierg the unit chargem, the 0,(2=04(z=-2,), 9
band mass, andis the relaxation time, given to lowest order ) )
in the random potential by where the self-energy.,(2), itself a function ofz, can be
) thought of as providing an effective medium that substitutes
7o () = (9 D(er), (4)  the real system. This self-energy is obtained by imposing that

the local scattering produced when we replace an effective
site by a real one be, on average, zErAdapted to our case,
the self-energy obeys the following equati@atational sym-
metry around the axis assumed

D(er) being the density of states per spin at the Fermi level
Upon magnetizing the core spins, only changes in the fluc
tuating potential will modify the conductivity to ordeF.
Therefore, the relevant dependence7ig(m)~ J3(1-nv),

leadi 1 J?sir? 0
eading to _ <F(,(z, 6) - Si > (10
p(0) - p(m) _ 710) - 7 X(m) 2 5 9o(z—2,) F_.(z,6)
p(0) - 70) - 5) where co9=S,, brackets stand for averages over the distri-

) o bution of core spin orientations, and the auxiliary function

We conclude that the magnetoresistance coeffic@nis F,(z,6) is given by F,(z,0)=3,+0J cos6+1/gy(z-3,),
given by whereo=+1(-1) for up (down) electron spin.

c=1, (6) Although prima_rily intended for one-body properties

(such as the density of stajeshe CPA can be applied to

a universal number, independent of the carrier concentratioritansport properties. The basic idea consists in decoupling
This uninteresting result seems to preclude further considethe two-body correlations that appear in the Kubo formula
ation of the weak coupling limit, but, as we will show in the into products of one-body correlators, which are then ob-
following sections, this is not the whole story. We will obtain tained with the CPA self-energy. Skipping further details, the
that, close to band edges, this perturbative result fails, leadelevant expressio(see Ref. 1yadapted to our case is
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FIG. 1. Magnetoresistance coefficigh{Eq. (2)] versus carrier € & &

density for two values of. Inset: enlarged view of the low density ) ) ) )
region. FIG. 2. The schematic density of states showing the relative

positions of Fermi levels upon magnetization.

pi=2 Pzrl' (11) blows up the low density regime, where valuesCot 100
7 are easily obtained. In fact, our numerical results are com-
where the conductivity for spitw) carriers,p,”, is given by  patible with a divergent behavior 6fin that limit. Figure 1
5 is representative of the small coupling regidwW: no mat-
plo f de’ f(e’)(lm 1 ) ter how We_akJ is chosen, we can always find large enhance-
7 e+i0" -2 (+i0)-€ /"’ ments ofC if we approach the band edge. In fact, the smaller
(12) the value ofJ, the smaller the range of densities required to
see this enhancement, as shown in the inset on Fig. 1. Notice
where e is the Fermi level and the functiorf(e’) that this effect does not formally contradict the perturbative
x (1-(€' IW)?)%2 accounts for matrix elements of the veloc- result: for fixed carrier density(i.e. fixed Fermi level
ity operatort”18 C—1 whenJ—0. Nevertheless, the quantitative failure of
The whole CPA procedure for transport properties can béhe perturbative results for a givdrseems unavoidable upon
considered as a mean-field approximation. Actualtjoable  approaching the band edges. In what follows, we will ad-
mean field: first for the resolvent and later for transgdg-  dress the origin of this failure with a simplified analytical
coupling. Therefore, its main shortcoming will be fluctua- procedure.
tion related effectqi.e. localization. Nevertheless, we ex-
pect the 3d nature of our problem to mitigate this limitation.
In fact, the CPA has been shown to provide a good descrip- ) ) o
tion of 3-d disordered systems, being one of the very few Our numerical resultéand the analysis to folloyindicate
nonperturbative methods available. In recent times, this apthat the nommal_ crlterlon_ fqr the validity of the perturbative
proximation is often termed aynamical mean fiel#t an  result,J<W, valid well within the band, has to be replaced
approach invented for genuine many-body problems that b2y J<€, where’e=e-~(-W), is the distance of the Fermi
come equivalent to the CPA when applied to a HamiltoniarieVel to the band edge. To see how this comes about and its
like that of Eq.(1). effect on the magnetoresistance, the original CPA equations
are rather opaque and inconvenient. Instead, we will start
with the perturbative treatment of Sec. I, adding the effect
IV. RESULTS. WEAK COUPLING LIMIT: J/W<1 we believe is at the origin of the enhancement: band Sp“t-
ting. The first manifestation of a net polarization of core
We have calculated the magnetoresistance coefficient bypins, m, is a band splitting of the unperturbed density of
direct numerical subtraction of the CPA conductivities in thestatesD,(e+Jm). This splitting does not show up in the re-
paramagnetic and ferromagnetic cases, the latter inducegstivity if one keeps the calculation to ordd#, but will
with a tiny effective field in the probability distribution for affect higher order terms. The situation is depicted in Fig. 2,
core spinsP(S) « exp(heS,). Representative results for cou- where the up and down densities have been aligned to share
pling constants well below the bandwidth<W) are shown  a common origin, leading to differemipparentFermi levels
in Fig. 1, where the magnetoresistance coefficiénis plot-  for up and down electron&; €, =2mJ. Transport properties
ted versus the carrier density per ditg. Notice that, in this depend on the density of states at the apparent Fermi levels
weak coupling regime, the perturbative valtrel is closely  which, in turn, changes rapidly upon splittifghagnetiza-
approached over most of the concentration range. Yet, sigion) close to a band edge. Therefore, it is not unexpected
nificant enhancement @ is evident for small carrier con- that this mere shift can cause a large effect on the magne-
centration, that is, close to the band edge. The inset of Fig. foresistance. We will see that this is the case.

A. Effect of band splitting. Analytical treatment

184420-3
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We assume the simplified_situation described in Fig. 2 ' ' ' ' ' ' B
with a parabolic band,(€) ~ V¢, and apply standard trans- 100k . |
port theory over this already split situation. Therefore, we ° }//‘x: %% o
have to discriminate between up and down contributions to
the conductivity: °
]
n 62 8] "
-1_ () - .
pl=2 1, (13) 50 o
o My 7 oo'o
. . : . of
wheren,, is the number of carriers for each spin species, of i &
course satisfying the constrainEX_n,. The inverse relax- ,-'
ation times are given by 0 . | . | . | .
0 50 100 150 200
7t o P Do(€) (S) = mP) + D€ (S + S, awyn*?
-1_ 2 _ FIG. 3. Magnetoresistance coefficiefitversus carrier density
e J [DO(EL)(<§> mz) * DOGT)<§ * %ﬂ’ for two values of] illustrating the scaling behavior of E@l5) in

where the first contribution comes from transitions within thethe low density limit.
same spin species, and the second term accounts for spin-flip
transitions (notice the different density of states in each quantum corrections to transport can be expected to be rel-

case. evant when the mean free path diminishes to become of the
Going from the paramagnetic situatighe Fermilevel at  order of the de Broglie wavelength for electrons at the Fermi
'€, in Fig. 2) to the ferromagnetic ongrermi levels a, |), level. This sets a characteristic distance to the band &gge

the magnetoresistance picks up contributions coming fronsuch that, if the Fermi level is below #,<¢g, localization
changes in carrier spin populationg and lifetimesr,, in is expected to dominate. In our case, this criterion can be
addition to the standard contribution already described irnwritten as the condition

Sec. Il. Keeping consistently terms to orae?in Eq. (13), it 1~

is only very tedious to show that the magnetoresistance co- TIR ™~ €R (16)

efficient can be written as where g is the lifetime afér. Using the perturbative result

19( J )2 for the lifetime, this leads to

C=1+— (14)

36 J

4
We see that it is just a matter of getting close enough to the w
band edgé&,=<J to obtain arbitrarily large corrections to the Comparing this)* dependence with thé of Eq. (14), we
nominal perturbative result. see that there is ample room for observing the enhancement

o il ; ~3/
In this simplified scheme, owing to the fact tht-€,,  of ¢ upon approaching the band edge, before the loffe-Regel
the magnetoresistance becomes divergent in the low carrigit is reached. More quantitatively, we can define the en-

?o

density with the following law: hancement factor at the loffe-Regel limit by
A 19/ J |2
C-1~ (-) n~43, (15) ACio = _(_> 18
W R=36\2) (18

This scaling seems to be obeyed by the CPA results, as illugitn the result that
trated in Fig. 3, where the result for two values bW

collapse onto the same straight line. This makes us believe

that this simple treatment: splitting plus standard relaxation

time transport, captures the essence of the enhancement ob- )
served in the CPA calculations. Therefore, we conclude that, for our weak coupling case

J<W, large increases of the magnetoresistance coeffi€ient
are allowed before localization effects set in.

6
ACg~ 102<V3V> : (19

B. loffe-Regel criterion

We have seen that, far<W, CPA calculations and the
simplified treatment of Eq(14) support the existence of a
large magnetoresistance coefficient close to the band edge. In In this limit, the splitting between the two spin subbands
this section we address the validity of this result. The mairis large, and we can neglect the one which is at high energy,
concern comes from the fact that we have to be close to aJ. We have implemented th&=« limit in the CPA equa-
band edge, where localization effe¢tgnored in our mean- tions. A similar calculation has been carried out before by
field approachare expected to play an important réle2°  Furukawa'? but here we are mainly interested in results
To estimate the energy range of this effect, we use the loffeelose to the band edge. In Fig. 4 we show the CPA results for
Regel criterior?®?! This criterion can be stated saying that the magnetoresistance coefficightas a function of carrier

V. RESULTS. DOUBLE EXCHANGE LIMIT: J/W>1
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b rI]imOC~const. (24)
This saturation ofC is obtained in the full CPA calculation
(see Fig. 4, lending support to this simple picture of an
m-dependent bandwidth in the limit=cc. Notice that, for
this picture to apply, the number of carriers must be kept
fixed upon magnetization. If the chemical potential were kept
fixed, on the other hand, we would have obtained a divergent
behavior: lim_,C~n23,

VI. VALIDITY OF THE APPROXIMATIONS. SUMMARY

o o1 02 03 04 05 o _ _
n The analysis discussed above uses an effective medium
FIG. 4. Magnetoresistance coefficighfEq. (2)] versus the car- approach to study the transport properties of itinerant elec-

rier density forJ/W=c. Inset: an enlarged view of the low density trong coupled to classical spins. As mgntloned n the Intro-
region. ductlon,. the methpd neglects the spatl_al correlations pf the
magnetic fluctuations: a potentially serious drawback if the
source of polarization is the spontaneous magnetic order ex-
pected for the Hamiltonian of Eql). The critical behavior

f these fluctuations is particularly important in the vicinity

f the pointg=0. In addition, our scheme cannot take into
. i - account the localization of the electronic states induced by
saturation of the magnetoresistance coefficient arodnd the disorder in the magnetization near the band edges. Both
~11. limitations become important when the electronic density is

. Dlrect use .Of the CP.A equations to u_nderst_and this behavl'owered, as the relevant scattering processes are shifted to-
ior is, again, inconvenient. A simpler picture in order to in-

o M= wards low momenta, and the Fermi energy approaches the
clude the effect of a finite magnetization is to assume that th gy app

bandwidth depends am (Ref. 22 in the following manner: Band edge. We will consider these two effects separately.

_ . . The lack of spatial correlations is a generic feature of
Wm-W\,r(1+m2)/2. ThISr ansatz interpolates bet\_/vee_n _theeﬁective medium theories. These correlations modify the
paramagnetic(W,,=W/y2) and fully ferromagnetic limit

e At momentum dependence of the susceptibilities at low values
(Wn=W), giving a reasonable approximation to the depen-sf the momenta. If the number of dimensions of the system

dence of the Curie temperature on band filf#g*Assuming  were indeed large, these effects could be safely ignored, as
a semielliptical density of states and measuring energiege volume of the region nedi=0 is negligible compared to

density. Notice a mild enhancement ©fclose to the band

edge but, unlike the weak coupling limit, no divergent be-
havior is observed. This is more clearly seen in the inset o
Fig. 4, where the low density region is blown up, showing a

from the center of the occupied band, we have the volume of the unit cell. We are interested in changes in
5 5 the resistivity near the Curie temperature, so that critical

Die)= ——/1- (i) , (20) fluctuations at low momenta are always present. The length

W, W, scale at which these fluctuations become important is the

correlation length in the paramagnetic phaggewhereas the
fength scale for transport ki.llo Therefore, we expect our
results to be applicable fd£,> 1, leading to the following
_ B condition for the carrier density1> (a/ &,)°, whereD is the
9(zm) =gJz-2(zm], (21) dimension anda the lattice size. Assuming, for instance, a
with z=e+i0*. This self-energy is typical valueé,=5a andD=3, we findn=10"2
Localization becomes important when the mean free path
1-mP — associated to the disordéris such thakgl ~ 1. In the weak
> (zm)= m[— Z+ V2= Wa). (220 coupling limit, its effect has been discussed before, with con-
clusions that we briefly repeat here. Localization is expected
We now assume that the conductivity is proportionainto 0 be relevant below the loffe-Regel ener@yz~J*/We.

and the change in the electronic Green’s function can b
described by a self-energ¥,(z,m), such that

X 1m (e, m)"! as done in previous sections. Then Therefore, observing the enhanced behaviern™2 re-
quires the following condition on the Fermi level:
o 1 (?ZIm E(GF,m) . (23) J4 _
Im (e, 0) ome 20 W= J, (25)

In this equation we have to take into account that, if thea regime easily accessible in the weak coupling lindit,
number of particles is fixed, ee=W\(1+m?)/2(-1  <Ww.

+[(3m)/(4v2)]1%?n?") has an implicit dependence am?. In the double exchange limit)/W>1, we have In%
Then ImS ~n?AW(1-m?)/y1+nm?, and we find no diver- ~ \Wé- =% for n<1. The mean free path becomes compa-
gent term inC asn— 0. Therefore, rable to the lattice spacing at low densities, implying that
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T ' T ' T ' toresistance coefficiedEq. (2)] has been shown to diverge
w0k X in the weak coupling limit ag ~n~*3, near the band edge,
Cdo. o as a consequence of band splitting upon magnetization. On
the other hand, the magnetoresistance remains finite in the
strong coupling limit(double exchange modetlose to the
band edge. This is understood from a simplified picture con-
sisting in a magnetization-modulated bandwidth. Possible
limitations of the previous results from the neglect of both
localization effects and critical fluctuations have been ad-
dressed.

Finally, we would like to consider the potential applica-
bility of our results to experiments. In Fig. 5, we present the
available informatiofi’* for the magnetoresistance in pyro-
L chlores and other magnetic materials. We observe a strong
10" 10° 102 10" 10° dependence on the density for the pyrochlores family, which
eff.u.) seems to come closer to te*? law obtained in this paper

than the fit based onk? scattering alorfe(C~ n~2%). Note,

FIG. 5. The value of for the pyrochlore compounds analyzed however, that our calculations, as well as those in Ref. 9,
in Refs. 4 and 14dark dot$ and for the magnetic materials studied assume that the number of carriers is fixed. At very low
in (Ref. 9 (starg. The full line is a fit to an™** dependence. The densities, a localized band at the Fermi energy can pin the
broken line is then™*® dependence discussed in Ref. 9. chemical potential, in which case the results discussed here

change significantly/*
localization effects are relevant in this regime. Notice,
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