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Transport properties of itinerant electrons interacting with local spins are analyzed as a function of the
bandwidth,W, the exchange interaction,J, and the band filling,n, near the band edge. Numerical results have
been obtained within the dynamical mean-field approximation and interpreted with the help of analytical
treatments. If spatial correlations of the magnetic fluctuations can be neglected, and definingrsmd as the
magnetization dependent resistivity, we find thatdr /rs0d,n−4/3 for J/W, n!1 (weak coupling, low density
limit ), dr /rs0d,const, forJ/W@1, n!1 (double exchange, low density limit), wheredr= u]r /]m2um2→0.
Possible limitations from ignoring both localization effects and critical fluctuations are also considered.
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I. INTRODUCTION

A large variety of ferromagnetic materials can be de-
scribed in terms of a band of itinerant electrons interacting
with localized spins. Among others, we can include the man-
ganese perovskites, La2−xRexMnO3,

1 the doped pyrochlores,
derived from Tl2Mn2O3,

2–4 and many doped magnetic
semiconductors.5,6 Many of these materials show unusually
large values of the magnetoresistance near the Curie tem-
perature. The simplest description of the electronic and mag-
netic properties of these compounds includes an itinerant
band of noninteracting electrons, parametrized by the band-
width W, and a finite concentration of classical localized
spins, which interact with the electrons through a local ex-
change term,J. In the following, we assume that the concen-
tration of spins is of the same order as the number of unit
cells in the lattice, and describe the model in terms of two
dimensionless parameters, the ratioJ/W and the number of
electrons per unit cell,n. The values of these parameters for
the pyrochlore compounds typically satisfyJ/W, n!1,
while the double exchange model appropriate for the manga-
nites is such thatJ/W@1, andn can be of order unity. The
simple description used here is probably inadequate for the
dilute magnetic semiconductors, where the concentration of
local moments is small, and, moreover, disorder effects can
lead to localization of the electronic states.7

It has proven useful to identify general trends in the trans-
port properties of these materials. The resistance is typically
high in the paramagnetic phase, and decreases as the magne-
tization increases. A simple parameter used to characterize
the magnetoresistance is the dimensionless ratioC
=f]rsm2d /]m2g / urum2→0, where rsm2d is the magnetization
dependent resistance. The resistivity is dominated by scatter-
ing processes with wavevectoruq̃u,2kF,8 where kF is the
Fermi momentum. The scattering arises from magnetic fluc-
tuations, which are described by the magnetic susceptibility,
xsq̃d. Assuming thatxsq̃d can be approximated taking into
account only the low momentum critical fluctuations which
exist near the Curie temperature, one finds thatC~n−2/3

(Refs. 9 and 10).

A different regime exists at sufficiently large values of the
electronic density, whenxsuq̃u=2kFd cannot be described in
terms of critical fluctuations. In a system with a large coor-
dination number, the properties ofxsq̃d for sufficiently large
values of q̃ can be studied using an effective medium ap-
proach, which neglects the spatial correlations of the mag-
netic fluctuations. As is well known, this description be-
comes exact when the dimensionality, or the coordination
number, becomes large.11 The conductivity of models of itin-
erant electrons interacting with classical spins has already
been analyzed in this limit.12,13 In the following, we will
study numerically the dependence of the parameterC defined
above on the density of itinerant electrons, mostly in the
regime whenẽF!W, whereẽF is the Fermi energy measured
from the bottom of the band, assuming an uncorrelated mag-
netic disorder. We will perform numerical calculations in the
Coherent-Potential Approximation and use simplified ana-
lytical methods to understand the numerical results. We will
find that, forJ/W!1, the band splitting due to the magneti-
zation leads to the divergent behavior,C~n−4/3. On the other
hand, the magnetoresistance coefficientC remains finite close
to the band edge in the double exchange limitJ/W@1, a fact
easily understood in terms of a magnetization-dependent
bandwidth. The paper is organized as follows. In Sec. II we
present the model and the perturbation limit forC. The nu-
merical method is described in Sec. III. Section IV contains
results for the weak coupling limit, with a simplified analyti-
cal treatment and a discussion of possible limitations due to
localization effects. Results for the strong coupling limit and
a simplified explanation are found in Sec. V. In the last sec-
tion we summarize the main conclusions of our work and
makes contact with the experimental situation, placing out
results in the context of available compilations of magnetore-
sistance data.4,9,14

II. MODEL HAMILTONIAN. MAGNETORESISTANCE
IN THE PERTURBATIVE LIMIT

We consider free electrons coupled to core spins and mod-
eled by the following Hamiltonian:
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H = o
k,s

ekck,s
† ck,s − Jo

i

Si · si , s1d

where s= ±1 is a spin index,ek is the band structure of
carriers in the unperturbed system,si are Pauli spin opera-
tors for carriers at sitei, andJ is the coupling constant be-
tween carriers and core spinsSi, the latter treated classically
as unit length vectorsSi

2=1. It should be understood from the
beginning that our aim is the study of transport properties of
the carriers, and not the ground state ofH. Therefore, we
consider the random distribution of core spinas given, pa-
rametrizing the problem. Consistently with the discussion of
the Introduction, we assume this probability distribution to
be site uncorrelated, and chosen to describe the change from
a paramagnetic situation to a(weakly) ferromagnetic one.
This can be achieved, for instance, with a probabilityPsSd
~expshef fSzd. Within this parametrization,hef f=0 corre-
sponds to the paramagnetic phase, andhef fÞ0 describes a
phase where the core spins are polarized along thez axis.

Following standard practice, we define the magnetoresis-
tance coefficient,C, as

rs0d − rsmd
rs0d

= Cm2, s2d

where rsmd is the resistivity corresponding to an average
polarization of core spinsm=kSzl. Notice that Eq.(2) only
makes sense to orderm2, the only situation we will consider
here.

Before embarking on more complex formalisms, let us
consider what perturbation theory(in the couplingJ) has to
say about the magnetoresistance. In the standard relaxation
time approximation, the resistivity is given by

r =
mb

ne2t−1, s3d

wheren is the number of carriers,e the unit charge,mb the
band mass, andt is the relaxation time, given to lowest order
in the random potential by

t−1 ~ J2skS2l − kSl2dDseFd, s4d

DseFd being the density of states per spin at the Fermi level.
Upon magnetizing the core spins, only changes in the fluc-
tuating potential will modify the conductivity to orderJ2.
Therefore, the relevant dependence ist−1smd,J2s1−m2d,
leading to

rs0d − rsmd
rs0d

=
t−1s0d − t−1smd

t−1s0d
= m2. s5d

We conclude that the magnetoresistance coefficientC is
given by

C = 1, s6d

a universal number, independent of the carrier concentration.
This uninteresting result seems to preclude further consider-
ation of the weak coupling limit, but, as we will show in the
following sections, this is not the whole story. We will obtain
that, close to band edges, this perturbative result fails, lead-

ing to an enhancement ofC with decreasing carrier concen-
tration.

III. COHERENT-POTENTIAL APPROXIMATION

The Hamiltonian of Eq.(1) describes noninteracting elec-
trons moving in a random potential. The obtention of elec-
tronic properties requires, therefore, performing configura-
tion averages over the random orientation of core spins. The
Coherent-Potential Approximation(CPA),15,16 a procedure
that we sketch here, offers a convenient way in order to
obtain such averages(see, for instance, Ref. 17 for coverage
of the original literature). We start with the first term of Eq.
(1) as our unperturbed HamiltonianH0=ok,sekck,s

† ck,s, lead-
ing to a Green’s function or resolvent whose local matrix
elements are given by

goszd = ki,susz− Hod−1ui,sl =E de
Dosed
z− e

, s7d

whereui ,sl is the electron state at sitei and spins, andz is
a complex energy in the upper plane. This unperturbed sys-
tem is characterized by a reference density of states(per
spin) D0sed=−p−1 Im g0se+ i0+d, which we take to be the
usual semielliptical function:

Dosed =
2

pW
Î1 −S e

W
D2

; s8d

notice that band edges are entirely consistent with a three
dimensional system.

The configuration average of the Green’s function for the
entireH: gsszd=kki ,susz−Hd−1ui ,sll (external brackets stand
for the configuration average) is calculated by the CPA from
that of the unperturbed system by means of a self-energySs,
in the following manner:

gsszd = gosz− Ssd, s9d

where the self-energy,Ssszd, itself a function ofz, can be
thought of as providing an effective medium that substitutes
the real system. This self-energy is obtained by imposing that
the local scattering produced when we replace an effective
site by a real one be, on average, zero.17 Adapted to our case,
the self-energy obeys the following equation(rotational sym-
metry around thez axis assumed):

1

gosz− Ssd
=KFssz,ud −

J2 sin2 u

F−ssz,udL , s10d

where cosu=Sz, brackets stand for averages over the distri-
bution of core spin orientations, and the auxiliary function
Fssz,ud is given by Fssz,ud=Ss+sJ cosu+1/g0sz−Ssd,
wheres= +1s−1d for up (down) electron spin.

Although primarily intended for one-body properties
(such as the density of states), the CPA can be applied to
transport properties. The basic idea consists in decoupling
the two-body correlations that appear in the Kubo formula
into products of one-body correlators, which are then ob-
tained with the CPA self-energy. Skipping further details, the
relevant expression(see Ref. 17) adapted to our case is
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r−1 = o
s

rs
−1, s11d

where the conductivity for spinssd carriers,rs
−1, is given by

rs
−1 ~E de8 fse8dSIm

1

eF + i0+ − SsseF + i0+d − e8
D2

,

s12d

where eF is the Fermi level and the functionfse8d
~ (1−se8 /Wd2)3/2 accounts for matrix elements of the veloc-
ity operator.17,18

The whole CPA procedure for transport properties can be
considered as a mean-field approximation. Actually adouble
mean field: first for the resolvent and later for transport(de-
coupling). Therefore, its main shortcoming will be fluctua-
tion related effects(i.e. localization). Nevertheless, we ex-
pect the 3-d nature of our problem to mitigate this limitation.
In fact, the CPA has been shown to provide a good descrip-
tion of 3-d disordered systems, being one of the very few
nonperturbative methods available. In recent times, this ap-
proximation is often termed adynamical mean field,11 an
approach invented for genuine many-body problems that be-
come equivalent to the CPA when applied to a Hamiltonian
like that of Eq.(1).

IV. RESULTS. WEAK COUPLING LIMIT: J /W™1

We have calculated the magnetoresistance coefficient by
direct numerical subtraction of the CPA conductivities in the
paramagnetic and ferromagnetic cases, the latter induced
with a tiny effective field in the probability distribution for
core spins:PsSd~expshef fSzd. Representative results for cou-
pling constants well below the bandwidthsJ!Wd are shown
in Fig. 1, where the magnetoresistance coefficientsCd is plot-
ted versus the carrier density per sitesnd. Notice that, in this
weak coupling regime, the perturbative valueC=1 is closely
approached over most of the concentration range. Yet, sig-
nificant enhancement ofC is evident for small carrier con-
centration, that is, close to the band edge. The inset of Fig. 1

blows up the low density regime, where values ofC.100
are easily obtained. In fact, our numerical results are com-
patible with a divergent behavior ofC in that limit. Figure 1
is representative of the small coupling regimeJ!W: no mat-
ter how weakJ is chosen, we can always find large enhance-
ments ofC if we approach the band edge. In fact, the smaller
the value ofJ, the smaller the range of densities required to
see this enhancement, as shown in the inset on Fig. 1. Notice
that this effect does not formally contradict the perturbative
result: for fixed carrier density (i.e. fixed Fermi level),
C→1 whenJ→0. Nevertheless, the quantitative failure of
the perturbative results for a givenJ seems unavoidable upon
approaching the band edges. In what follows, we will ad-
dress the origin of this failure with a simplified analytical
procedure.

A. Effect of band splitting. Analytical treatment

Our numerical results(and the analysis to follow) indicate
that the nominal criterion for the validity of the perturbative
result,J!W, valid well within the band, has to be replaced
by J!ẽ, where ẽ=eF−s−Wd, is the distance of the Fermi
level to the band edge. To see how this comes about and its
effect on the magnetoresistance, the original CPA equations
are rather opaque and inconvenient. Instead, we will start
with the perturbative treatment of Sec. II, adding the effect
we believe is at the origin of the enhancement: band split-
ting. The first manifestation of a net polarization of core
spins,m, is a band splitting of the unperturbed density of
statesD0se±Jmd. This splitting does not show up in the re-
sistivity if one keeps the calculation to orderJ2, but will
affect higher order terms. The situation is depicted in Fig. 2,
where the up and down densities have been aligned to share
a common origin, leading to differentapparentFermi levels
for up and down electrons:ẽ↑− ẽ↓=2mJ. Transport properties
depend on the density of states at the apparent Fermi levels
which, in turn, changes rapidly upon splitting(magnetiza-
tion) close to a band edge. Therefore, it is not unexpected
that this mere shift can cause a large effect on the magne-
toresistance. We will see that this is the case.

FIG. 1. Magnetoresistance coefficientC [Eq. (2)] versus carrier
density for two values ofJ. Inset: enlarged view of the low density
region. FIG. 2. The schematic density of states showing the relative

positions of Fermi levels upon magnetization.
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We assume the simplified situation described in Fig. 2
with a parabolic bandDosẽd,Îẽ, and apply standard trans-
port theory over this already split situation. Therefore, we
have to discriminate between up and down contributions to
the conductivity:

r−1 = o
s

nse2

mb
ts, s13d

wherens is the number of carriers for each spin species, of
course satisfying the constraintn=osns. The inverse relax-
ation times are given by

t↑
−1 ~ J2fDosẽ↑dskSz

2l − m2d + Dosẽ↓dkSx
2 + Sy

2lg,

t↓
−1 ~ J2fDosẽ↓dskSz

2l − m2d + Dosẽ↑dkSx
2 + Sy

2lg,

where the first contribution comes from transitions within the
same spin species, and the second term accounts for spin-flip
transitions (notice the different density of states in each
case).

Going from the paramagnetic situation(the Fermi level at
ẽo in Fig. 2) to the ferromagnetic one(Fermi levels atẽ↑,↓),
the magnetoresistance picks up contributions coming from
changes in carrier spin populationsns and lifetimests, in
addition to the standard contribution already described in
Sec. II. Keeping consistently terms to orderm2 in Eq. (13), it
is only very tedious to show that the magnetoresistance co-
efficient can be written as

C = 1 +
19

36
S J

ẽo
D2

. s14d

We see that it is just a matter of getting close enough to the
band edgeẽoøJ to obtain arbitrarily large corrections to the
nominal perturbative result.

In this simplified scheme, owing to the fact thatn, ẽo
3/2,

the magnetoresistance becomes divergent in the low carrier
density with the following law:

C − 1 , S J

W
D2

n−4/3. s15d

This scaling seems to be obeyed by the CPA results, as illus-
trated in Fig. 3, where the result for two values ofJ!W
collapse onto the same straight line. This makes us believe
that this simple treatment: splitting plus standard relaxation
time transport, captures the essence of the enhancement ob-
served in the CPA calculations.

B. Ioffe-Regel criterion

We have seen that, forJ!W, CPA calculations and the
simplified treatment of Eq.(14) support the existence of a
large magnetoresistance coefficient close to the band edge. In
this section we address the validity of this result. The main
concern comes from the fact that we have to be close to a
band edge, where localization effects(ignored in our mean-
field approach) are expected to play an important role.17,19,20

To estimate the energy range of this effect, we use the Ioffe-
Regel criterion.20,21 This criterion can be stated saying that

quantum corrections to transport can be expected to be rel-
evant when the mean free path diminishes to become of the
order of the de Broglie wavelength for electrons at the Fermi
level. This sets a characteristic distance to the band edgeẽIR
such that, if the Fermi level is below it,ẽo,ẽIR, localization
is expected to dominate. In our case, this criterion can be
written as the condition

tIR
−1 , ẽIR, s16d

wheretIR is the lifetime atẽIR. Using the perturbative result
for the lifetime, this leads to

ẽIR , 8WS J

W
D4

. s17d

Comparing thisJ4 dependence with theJ2 of Eq. (14), we
see that there is ample room for observing the enhancement
of C upon approaching the band edge, before the Ioffe-Regel
limit is reached. More quantitatively, we can define the en-
hancement factor at the Ioffe-Regel limit by

DCIR =
19

36
S J

ẽIR
D2

, s18d

with the result that

DCIR , 10−2SW

J
D6

. s19d

Therefore, we conclude that, for our weak coupling case
J!W, large increases of the magnetoresistance coefficientC
are allowed before localization effects set in.

V. RESULTS. DOUBLE EXCHANGE LIMIT: J /Wš1

In this limit, the splitting between the two spin subbands
is large, and we can neglect the one which is at high energy,
,J. We have implemented theJ=` limit in the CPA equa-
tions. A similar calculation has been carried out before by
Furukawa,12 but here we are mainly interested in results
close to the band edge. In Fig. 4 we show the CPA results for
the magnetoresistance coefficientC as a function of carrier

FIG. 3. Magnetoresistance coefficientC versus carrier density
for two values ofJ illustrating the scaling behavior of Eq.(15) in
the low density limit.
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density. Notice a mild enhancement ofC close to the band
edge but, unlike the weak coupling limit, no divergent be-
havior is observed. This is more clearly seen in the inset of
Fig. 4, where the low density region is blown up, showing a
saturation of the magnetoresistance coefficient aroundC
,11.

Direct use of the CPA equations to understand this behav-
ior is, again, inconvenient. A simpler picture in order to in-
clude the effect of a finite magnetization is to assume that the
bandwidth depends onm (Ref. 22) in the following manner:
Wm=WÎs1+m2d /2. This ansatz interpolates between the
paramagneticsWm=W/Î2d and fully ferromagnetic limit
sWm=Wd, giving a reasonable approximation to the depen-
dence of the Curie temperature on band filling.23,24Assuming
a semielliptical density of states and measuring energies
from the center of the occupied band, we have

Dsed =
2

pWm
Î1 −S e

Wm
D2

, s20d

and the change in the electronic Green’s function can be
described by a self-energy,Ssz,md, such that

gsz,md = gofz− Ssz,mdg, s21d

with z=e+ i0+. This self-energy is

o sz,md =
1 − m2

2s1 + m2d
f− z+ Îz2 − Wm

2 g. s22d

We now assume that the conductivity is proportional ton
3 Im SseF ,md−1 as done in previous sections. Then

C , −
1

Im SseF,0d
U ]2 Im SseF,md

]m2 U
m2→0

. s23d

In this equation we have to take into account that, if the
number of particles is fixed, eF<WÎs1+m2d /2(−1
+fs3pd / s4Î2dg2/3n2/3) has an implicit dependence onm2.
Then ImS,n2/3Ws1−m2d /Î1+m2, and we find no diver-
gent term inC asn→0. Therefore,

lim
n→0

C , const. s24d

This saturation ofC is obtained in the full CPA calculation
(see Fig. 4), lending support to this simple picture of an
m-dependent bandwidth in the limitJ=`. Notice that, for
this picture to apply, the number of carriers must be kept
fixed upon magnetization. If the chemical potential were kept
fixed, on the other hand, we would have obtained a divergent
behavior: limn→0 C,n−2/3.

VI. VALIDITY OF THE APPROXIMATIONS. SUMMARY

The analysis discussed above uses an effective medium
approach to study the transport properties of itinerant elec-
trons coupled to classical spins. As mentioned in the Intro-
duction, the method neglects the spatial correlations of the
magnetic fluctuations: a potentially serious drawback if the
source of polarization is the spontaneous magnetic order ex-
pected for the Hamiltonian of Eq.(1). The critical behavior
of these fluctuations is particularly important in the vicinity
of the point q̃=0. In addition, our scheme cannot take into
account the localization of the electronic states induced by
the disorder in the magnetization near the band edges. Both
limitations become important when the electronic density is
lowered, as the relevant scattering processes are shifted to-
wards low momenta, and the Fermi energy approaches the
band edge. We will consider these two effects separately.

The lack of spatial correlations is a generic feature of
effective medium theories. These correlations modify the
momentum dependence of the susceptibilities at low values
of the momenta. If the number of dimensions of the system
were indeed large, these effects could be safely ignored, as
the volume of the region nearq̃=0 is negligible compared to
the volume of the unit cell. We are interested in changes in
the resistivity near the Curie temperature, so that critical
fluctuations at low momenta are always present. The length
scale at which these fluctuations become important is the
correlation length in the paramagnetic phase,j0, whereas the
length scale for transport is.kF

−110 Therefore, we expect our
results to be applicable forkFj0@1, leading to the following
condition for the carrier density:n@ sa/j0dD, whereD is the
dimension anda the lattice size. Assuming, for instance, a
typical valuej0=5a andD=3, we findnù10−2.

Localization becomes important when the mean free path
associated to the disorder,l is such thatkFl ,1. In the weak
coupling limit, its effect has been discussed before, with con-
clusions that we briefly repeat here. Localization is expected
to be relevant below the Ioffe-Regel energy,ẽIR,J4/W3.
Therefore, observing the enhanced behaviorC,n−4/3 re-
quires the following condition on the Fermi level:

J4

W3 ! ẽF ! J, s25d

a regime easily accessible in the weak coupling limit,J
!W.

In the double exchange limit,J/W@1, we have ImS
,ÎWẽFùẽF for n!1. The mean free path becomes compa-
rable to the lattice spacing at low densities, implying that

FIG. 4. Magnetoresistance coefficientC [Eq. (2)] versus the car-
rier density forJ/W=`. Inset: an enlarged view of the low density
region.
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localization effects are relevant in this regime. Notice,
though, that the applicability of the previous criterion, im-
ported from the perturbative limit, is open to question in this
strong coupling limit.25 Moreover, the use of the scheme
used here to study the phase diagram shows that the
paramagnetic-ferromagnetic transition becomes first order
for nø10−1.23 The inclusion of this effect can change signifi-
cantly the magnetoresistance.

In summary, we have studied transport properties of elec-
trons coupled to local, uncorrelated core spins. The magne-

toresistance coefficient[Eq. (2)] has been shown to diverge
in the weak coupling limit asC,n−4/3, near the band edge,
as a consequence of band splitting upon magnetization. On
the other hand, the magnetoresistance remains finite in the
strong coupling limit(double exchange model) close to the
band edge. This is understood from a simplified picture con-
sisting in a magnetization-modulated bandwidth. Possible
limitations of the previous results from the neglect of both
localization effects and critical fluctuations have been ad-
dressed.

Finally, we would like to consider the potential applica-
bility of our results to experiments. In Fig. 5, we present the
available information4,14 for the magnetoresistance in pyro-
chlores and other magnetic materials. We observe a strong
dependence on the density for the pyrochlores family, which
seems to come closer to then−4/3 law obtained in this paper
than the fit based on 2kF scattering alone9 sC,n−2/3d. Note,
however, that our calculations, as well as those in Ref. 9,
assume that the number of carriers is fixed. At very low
densities, a localized band at the Fermi energy can pin the
chemical potential, in which case the results discussed here
change significantly.14
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FIG. 5. The value ofC for the pyrochlore compounds analyzed
in Refs. 4 and 14(dark dots) and for the magnetic materials studied
in (Ref. 9) (stars). The full line is a fit to an−4/3 dependence. The
broken line is then−2/3 dependence discussed in Ref. 9.
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