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We study the ground state of a spin-half Heisenberg antiferromagnet on the stacked kagomé lattice by using
a spin-rotation-invariant Green’s function method. Since the pure two-dimensional kagomé antiferromagnet is
most likely a magnetically disordered quantum spin liquid, we investigate the question whether the coupling of
kagomé layers in a stacked three-dimensional system may lead to a magnetically ordered ground state. We
present spin-spin correlation functions and correlation lengths. For comparison we apply also linear spin wave
theory. Our results provide strong evidence that the system remains short-range ordered independent of the sign
and the strength of the interlayer coupling.
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I. INTRODUCTION

In frustrated quantum spin lattices the interplay of quan-
tum and frustration effects causes interesting physics, see,
e.g., the recent reviews.1–4 Special attention was focused on
the problem of the ground state(GS) nature of the Heisen-
berg antiferromagnet(HAFM) on the two-dimensional(2D)
kagomé lattice. In the classical limit the GS of the HAFM on
the kagomé lattice exhibits a huge nontrivial degeneracy
(see, e.g., Refs. 2 and 5–7). Intensive work over the last
decade on the spin-half quantum version of the model5,8–26

led to the conclusion that for the quantum HAFM the GS is
most likely a short-range ordered spin liquid without any
kind of long-range order(LRO). However, we mention that
the GS properties in the quantum case are far from being
fully understood, yet. Most of the conclusions are drawn
from finite-lattice results of up toN=36 sites. Very recently,
the rotation-invariant Green’s function method introduced by
Kondo and Yamaji27 has been successfully applied on the
spin-half HAFM on the 2D kagomé lattice.22,23 In the frame-
work of this approach one obtains also a spin-liquid GS with
an energy per spinE0/JN=−0.4296 which agrees well with
the best available results obtained by other methods like the
exact diagonalization4,8,17,18 sE0/JN=−0.4344d and the
coupled-cluster method21 sE0/JN=−0.4252d. Note that addi-
tional second-neighbor couplings may lead to a magnetically
ordered GS phase.17,28,29

It is well-known that the dimensionality is crucial for the
existence of order. Roughly spoken one can say, the higher
the dimensionality of the spin system the more the influence
of quantum or thermal fluctuations is suppressed. For the GS
of quantum spin systems one finds several examples, where
the physical properties change basically going from one to
two dimensions or from two to three dimensions. For in-
stance, the transition from the linear-chain to the square-
lattice HAFM was studied in Refs. 30–33. Another example
is the frustratedJ1-J2 HAFM, which exhibits a magnetically
disordered quantum paramagnetic GS phase aroundJ2

,0.5J1 for the 2D square lattice(see, e.g., Refs. 34–40 and
references therein) but does not show this kind of quantum
phase for the 3D body-centered cubic lattice.41,42 Moreover,
we know from the Mermin-Wagner theorem43 that the inter-
layer coupling in quasi-2D Heisenberg magnets is crucial for
magnetic ordering at finite temperatures. The role of the in-
terlayer coupling in quasi-2D systems becomes particularly
interesting if the decoupled layers themselves are magneti-
cally disordered, e.g., due to strong frustration. Though this
question is relevant for real 3D solids with a layered arrange-
ment of magnetic atoms it has been less studied to date.

In this paper we address this question for the HAFM on a
congruently stacked kagomé lattice. For such a system it is
not known, whether an appropriate interlayer coupling may
lead to a semiclassically ordered magnetic GS. However, one
can expect that in the special limit of infinite ferromagnetic
interlayer coupling the physics of the classicalOs3d kagomé
antiferromagnet is obtained(see Sec. V B). We emphasize
that the Lanczos exact diagonalization of finite lattices being
the most powerful method to study the HAFM in the pure 2D
kagomé case is inappropriate in 3D. Therefore we will dis-
cuss this question in our paper by the above-mentioned spin-
rotation-invariant Green’s function method, having in mind
that this method was successfully applied to the pure 2D
case. In particular, we will calculate the correlation functions
and the correlation lengths. In addition, we will discuss the
linear spin-wave theory(LSWT) for comparison.

II. MODEL

We consider congruently stacked kagomé layers shown in
Fig. 1. The vertices of this stacked lattice are occupied byN
spins one-half interacting via the Heisenberg exchange cou-
pling

H =
1

2 o
ma,nb

Jma,nbSmaSnb, s1d

where the sum runs over all unit cells(labeled bym andn)
and all spins within a unit cell(labeled by running indicesa
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andb, see Fig. 1). One unit cell contains three spins, there-
fore the number of cells isN/3. The exchange coupling
Jma,nb is nonzero for nearest neighbors(NN), only. We intro-
duce two different exchange parametersJi andJ' according
to Jma,nb→Jis1−da,bd+J'da,b.Since we are interested in the
stacked kagomé HAFM, we considerJi .0 but allow both
signs forJ'.

III. CLASSICAL GROUND STATE AND LINEAR
SPIN WAVE THEORY

We start with a brief discussion of the classical GS of Eq.
(1). Because there is no additional frustration caused byJ',
the classical GS within a certain layer is not modified, and
the nontrivial huge degeneracy due to corner-sharing
triangles2,5–7 is not lifted. The only effect of a ferromagnetic
(antiferromagnetic) interlayer couplingJ' is the parallel(an-
tiparallel) orientation of interacting spins of adjacent layers.
Thus for a certain classical GS the spin configurations in all

layers are identical. Two particular variants for the classical
GS, namely, the so-calledÎ33Î3 state and the so-calledq
=0 state(see, e.g., Fig. 17 in Ref. 4), are often used for
discussing possible magnetic LRO in the kagomé lattice.
These two particular planar states can also be considered as
variants of possible GS ordering for the stacked kagomé lat-
tice.

Let us remind the reader of the fact, that starting from the
Î33Î3 state as well as from theq=0 state the linear spin-
wave theory(LSWT) for the pure 2D kagomé HAFM(Refs.
5 and 16) leads to one flat zero mode and two degenerate
modes producing divergent integrals in the sublattice magne-
tization, which might be taken as a hint on the absence of
semi-classical magnetic order.

For the stacked(3D) system we start also from both the
Î33Î3 state and theq=0 state and perform the LSWT as
usual. Taking into account that we have three spins per unit
cell we have to introduce three different kinds of magnons.
As in the 2D case5,16 the spin wave spectrum is equivalent
for all coplanar classical GS configurations because the di-
rectional cosine of in-plane neighbors is always −1/2 while
the directional cosine of out-of-plane neighbors is either 1 or
−1 depending on the sign ofJ'. ForJ'.0 we obtain for the
spin-wave dispersions

v1q = sÎ4J'
2 s1 − cos2 qzd + 6JiJ's1 + cosqzd, s2d

v2q = sÎaq + bq, v3q = sÎaq − bq, s3d

with

aq = 4Ji
2S2 cos2

qy

2
+ Scos2

Î3qx

2
+ cos2

qy

2
DS1 – 2 cos2

qy

2
DD

+ 4J'
2 s1 − cos2qzd + 3JiJ's3 − cosqzd, s4d

bq = JiJ's1 – 3 cosqzdDq, s5d

Dq =Î9 + 16 cos4
qy

2
+ 16 cos2

Î3qx

2
cos2

qy

2
− 8 cos2

Î3qx

2
− 24 cos2

qy

2
. s6d

For J',0 we find

v1q = sÎ4J'
2 s1 − cosqzd2 − 6JiJ's1 − cosqzd, s7d

v2q = sÎaq + bq, v3q = sÎaq − bq, s8d

with

aq = 4Ji
2S2 cos2

qy

2
+ Scos2

Î3qx

2
+ cos2

qy

2
DS1 – 2 cos2

qy

2
DD

+ 4J'
2 s1 − cosqzd2 − 9JiJ's1 − cosqzd, s9d

bq = JiJ's1 − cosqzdDq. s10d

The quantitys in Eqs.(2), (3), (7), and(8) is the spin quan-
tum number which can be considered as parameter of the
model (1) within the LSWT. If J' goes to zero, the known
flat zero mode as well as the both degenerate modes5,16 are
recovered. But even for nonzeroJ' we have a flat zero mode
v1q and degeneratev2q andv3q in the qx−qy plane for cer-
tain qz. For J'.0, v1q is a flat zero mode atqz=p, andv2q
and v3q become degenerate at anyqx,qy for
qz=arccos 1/3.ForJ',0, v1q becomes a flat zero mode in
theqx−qy plane forqz=0, andv2q andv3q are degenerate at
anyqx,qy also forqz=0. Thus, in both cases there is no finite

FIG. 1. Sketch of one kagomé layer in the congruently stacked
lattice with its in-plane geometrical unit vectorsa1=s0,2,0d ,a2

=sÎ3,1,0d.The out-of plane unit vectora3=s0,0,1d is not shown.
Within a geometrical unit cell the spins are distinguished by a run-
ning indexa=1,2,3.
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sublattice magnetization due to the resulting logarithmic di-
vergencies in the involved integrals. We conclude, that the
LSWT yields very similar behavior for the pure 2D and the
3D stacked case.

For completeness we give the expression for the GS en-
ergy per spinE0/N

E0

N
= − sJi + uJ'udsss+ 1d +

1

2No
q

o
m=1

3

vmq, s11d

where thevmq are the respective spin wave dispersions from
Eqs.(2) and (3) or (7) and (8).

IV. SPIN-ROTATION-INVARIANT
GREEN’S-FUNCTION THEORY

The Green’s function method is one of the most powerful
techniques for the investigation of quantum many-body sys-
tems and was successfully applied to spin systems over many
decades. The rotation-invariant decoupling scheme was in-
troduced by Kondo and Yamaji27 to study the one-
dimensional Heisenberg antiferromagnet and ferromagnet at
finite temperatures. This decoupling scheme was developed
to improve the description of magnetic short-range order and
allows us to describe magnetic order-disorder transitions
driven by quantum fluctuations as well as by thermal fluc-
tuations. Later on the spin-rotation-invariant Green’s func-
tion theory was used to discuss several two-dimensional
models, for example, the pure HAFM,44,45 the frustratedJ1-
J2 HAFM,38,46 and the spatially anisotropic HAFM on the
square lattice32 as well as the doped square-lattice HAFM
(t-J-model).47,48 The quasi-two-dimensional and the three-
dimensional HAFM have been investigated, too.49,50

Let us outline the main ideas of this method based on the
equation-of-motion technique. To evaluate the relevant cor-
relation functions we have to calculate a set of Fourier-
transformed Green’s functionskkSqa

+ ;S−qb
− llv which are re-

lated to the dynamic spin susceptibilities byxqab
+− svd

=−kkSqa
+ ;S−qb

− llv. Their equation of motion reads

vkkSqa
+ ;S−qb

− llv = kfSqa
+ ,S−qb

− g−l + kkiṠqa
+ ;S−qb

− llv. s12d

Supposing rotational symmetry we havekSma
z l=0 for any

spin and, as a result,kfSqa
+ ,S−qb

− g−l;0. Furthermore, we
have kSma

z Snb
z l= 1

2kSma
+ Snb

− l, i.e., it is sufficient to calculate
kSma

+ Snb
− l to know all components of the correlation function

kSmaSnbl. Going beyond the random-phase approximation
(RPA) decoupling51 we consider in a second step the equa-

tion of motion for kkiṠqa
+ ;S−qb

− llv,

vkkiṠqa
+ ;S−qb

− llv = kfiṠqa
+ ,S−qb

− g−l + kk− S̈qa
+ ;S−qb

− llv.

s13d

The combination of Eqs.(12) and (13) yields

v2kkSqa
+ ;S−qb

− llv = kfiṠqa
+ ,S−qb

− g−l + kk− S̈qa
+ ;S−qb

− llv.

s14d

The operator −S̈qa
+ =ffSqa

+ ,Hg ,Hg contains products of three
spin operators along NN sequences. Those operator products
were treated in the spirit of the decoupling scheme by Shi-
mahara and Takada.44 This decoupling is performed in the
site representation of the Green’s functions. For example, the
operator product SA

−SB
+SC

+ is replaced by hA,BkSA
−SB

+lSC
+

+hA,CkSA
−SC

+lSB
+, whereA,B,C represent spin sites. The quan-

tities hg,m are vertex parameters introduced to improve the
approximation scheme. In the minimal version of the theory
we introduce just as many vertex parameters as independent
conditions for them that can be formulated. Because there are
just two such conditions(see below) we consider two differ-
ent parametershi and h' attached to intralayer and inter-
layer correlators, respectively. After the decoupling we write
Eq. (14) in a compact matrix form omitting the running in-
dicesa andb

sv2 − Fqdxq
+−svd = − Mq, s15d

whereFq andMq are the frequency and momentum matrices,
respectively. Since the unit cell contains three spins,Fq, Mq,
andxq

+− are 333-matrices. For the sake of brevity we do not
give the lengthy expressions for the matrix elements ofFq
and Mq but give their eigenvalues, only. Both matrices are
hermitean and commute with each other. Hence, the solution
of Eq. (15) in terms of the common set of normalized eigen-
vectorsu jqlof xq

+− reads

xq
+−svd = − o

j=1

3
mjq

v2 − v jq
2 u jqlk jqu. s16d

For the eigenvaluesmjq of Mq andv jq
2 of Fq we find

m1q = − 12Jic1,0,0− 4J'c0,0,1s1 − cosqzd, s17d

v1q
2 = 3Ji

2f1 + 2his2c1,0,0+ c1,1,0+ c2,0,0dg + J'
2 s1 − cosqzd

3f1 + 2h'sc0,0,1+ c0,0,2d − 4h'c0,0,1s1 + cosqzdg

+ 4JiJ'fh'c0,0,1s1 − cosqzd − 2h'c1,0,1s1 + cosqzd

+ 7h'c1,0,1− 3hic1,0,0cosqzg, s18d

m2q = − 6Jic1,0,0− 4J'c0,0,1s1 − cosqzd − 2Jic1,0,0Dq,

s19d
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v2q
2 = Ji

2F3

2
+ 3his2c1,0,0+ c1,1,0+ c2,0,0d + 8hic1,0,0S2 cos4

qy

2
+ 2 cos2

Î3qx

2
cos2

qy

2
− cos2

Î3qx

2
− 3 cos2

qy

2
DG + J'

2 s1 − cosqzd

3f1 + 2h'sc0,0,1+ c0,0,2d − 4h'c0,0,1s1 + cosqzdg + JiJ'f− 8h'c1,0,1s1 + cosqzd − 2h'c0,0,1s1 − cosqzd − 6hic1,0,0cosqz

+ 22h'c1,0,1g +
Ji

2
hJif1 + 2his2c1,0,0+ c1,1,0+ c2,0,0dg + 4J'fh'c0,0,1s1 − cosqzd + h'c1,0,1− hic1,0,0cosqzgjDq, s20d

m3q = − 6Jic1,0,0− 4J'c0,0,1s1 − cosqzd + 2Jic1,0,0Dq, s21d

v3q
2 = Ji

2F3

2
+ 3his2c1,0,0+ c1,1,0+ c2,0,0d + 8hic1,0,0S2 cos4

qy

2
+ 2 cos2

Î3qx

2
cos2

qy

2
− cos2

Î3qx

2
− 3 cos2

qy

2
DG + J'

2 s1 − cosqzd

3f1 + 2h'sc0,0,1+ c0,0,2d − 4h'c0,0,1s1 + cosqzdg + JiJ'f− 8h'c1,0,1s1 + cosqzd − 2h'c0,0,1s1 − cosqzd − 6hic1,0,0cosqz

+ 22h'c1,0,1g −
Ji

2
hJif1 + 2his2c1,0,0+ c1,1,0+ c2,0,0dg + 4J'fh'c0,0,1s1 − cosqzd + h'c1,0,1− hic1,0,0cosqzgjDq, s22d

whereDq is defined in Eq.(6). The correlatorscl,k,m have to
be determined self-consistently; their indices correspond to a
vector R= la1/2+ka2/2+ma3 connecting two spins, i.e.,
cl,k,m=cR=kS0

+SR
− l= 2

3kS0SRl. Using the NN correlatorsc1,0,0

and c0,0,1 the GS energy per spinE0/N is given by E0/N
=3Jic1,0,0+3J'c0,0,1/2. Equations(17)–(22) contain eight
parametersc1,0,0, c1,1,0, c2,0,0, c0,0,1, c1,0,1, c0,0,2, hi, andh',
which must be determined self-consistently. The relation be-
tween the correlators and the corresponding Green’s func-
tions is given by the spectral theorem.51,52 Its application to
the correlatorscl,k,m leads to six equations, a seventh one is
the sum rulec0,0,0=1/2. Oneadditional equation is obtained
requiring that the matrix of the static susceptibilityxq

+−

=xq
+−sv=0d is isotropic in the limit q→0,32 i.e.,

limqx→0,qy→0xq
+−uqz=0= limqz→0xq

+−uqx=qy=0. From that constraint
we obtain

c1,0,0hJ'f1 – 2h's3c0,0,1− c0,0,2dg + 8Jih'sc1,0,1− c0,0,1dj

− c0,0,1hJif1 – 2his4c1,0,0− c1,1,0− c2,0,0dg

+ 4J'sh'c1,0,1− hic1,0,0dj = 0. s23d

For the discussion of the magnetic GS ordering we consider
the spin-spin correlation functionskSmaSnbl. A possible mag-
netic LRO in the system is described viakSmaSnbl at large
distancesRn−Rm. More precisely, we consider, as in Refs.
44 and 45, a condensation termCQab in the Fourier transfor-
mationSabsqd of kSmaSnbl according to

kSmaSnbl =
3

N o
qÞQ

Sabsqdexps− iqr ma,nbd

+
3

2
CQabexps− iQr ma,nbd, s24d

whereQ is the corresponding wave vector of the magnetic
order andSabsqd is given by

Sabsqd =
3

2o
j=1

3
mjq

2v jq
kau jqlk jqubl. s25d

The existence ofCQabÞ0 is accompanied by a diverging
static susceptibilityxq

+− at the magnetic wave vectorQ.
To describe the magnetic order in a short-range ordered

phase we use in addition to the spin-spin correlation func-
tions the correlation lengthjn along a certain directionen. To
calculatejn we apply the procedure illustrated in Refs. 44
and 45. We expand that eigenvalue of the static susceptibility
xq

+−, which is largest at the magnetic wave vectorQ around
this point Q. The relevant magnetic wave vectorQ in the
short-range ordered phase is that vector, where the largest
eigenvalue of the static susceptibility has its maximum. Then
the square of the correlation length alongen is given by the
factor in front of the square of the corresponding component
of the q vector qn=ensQ−qd. For illustration we give the
expression for the intralayer correlation lengthji in the pure
kagomé limit (J'=0), ji

2=−2hic1,0,0/ f1+2his2c1,0,0+c1,1,0

+c2,0,0dg, and omit the lengthy general expressions for the
inter- and intralayer correlation lengths.

V. RESULTS

A. Antiferromagnetic interlayer coupling J�.0

Solving the set of the eight self-consistency equations we
find that there is no solution with a nonzero condensation
term. Therefore we conclude that within the applied rotation-
invariant Green’s function decoupling scheme there is no
indication of magnetic LRO for the stacked 3D kagomé
HAFM with antiferromagnetic interlayer coupling. This re-
markable result is in accordance with the findings within the
LSWT (see Sec. III). To study the influence of the interlayer
coupling on the GS magnetic short-range order we calculate
the spin-spin correlation functions and the correlation
lengths. For convenience we setJi=1. In Fig. 2 we show
several first, second, and third neighbor correlation func-
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tions. The strongest change is seen in the strengths of the
interlayer correlators which increase in the interval 0øJ'

&1, for J'<1 their values are already close to those of the
pure linear chain. The change in the intralayer correlators is
small. While the NN intralayer correlator shows some de-
crease in strength, the second and third neighbor correlators
are weakly increased for smallJ'. Remarkably, already for
J',1 the interlayer correlators become stronger than the
intralayer correlators. Note that in the limitJ'=0 our values
for the GS energy as well as for the correlators coincide with
available results reported in Refs. 22 and 23.

As illustrated above, to calculate the inter- and intralayer
correlation lengthsj' andji we have to expand the extreme
eigenvalue of the static susceptibility aroundQ, which is
Q=s0,0,pd for all J'.0. The results for the intra- and in-
terlayer correlation lengths are shown in Fig. 3. The intra-
layer correlation length is of the order of the NN separation
d=1 in the pure 2D limit. It increases up to a maximal value
of aboutji <2.5d for J'<1 and goes to zero forJ'→`.
The increase of the interlayer correlation length is stronger.
Though we expect a divergingj' for the isolated chain, it
remains finite for anyJ'.0. This behavior is a drawback of
the Green’s function decoupling, which is not able to de-
scribe the critical GS with a power-law decay of the corre-
lation functions of the linear-chain HAFM.

B. Ferromagnetic interlayer coupling J�,0

Now we turn to the caseJ',0 which appears to be more
complicated from the numerical point of view. Starting from
J'=0 we find a solution of the self-consistency equations
with zero condensation term untilJ'<−Ji=−1. That means
we can conclude that for ferromagnetic interlayer coupling
there is no indication for magnetic LRO foruJ'u&1, too.
Beyond this point our numerical procedure fails because of
numerical instabilities in theq space integrals. The reason
for that consists in the specific behavior of the dispersion
relationsvaq from Eqs.(18), (20), and (22). Increasing the
strength of the ferromagnetic interlayer coupling beyond
uJ'u*1 we find thatv1q becomes more and more a flat zero
mode in theqx-qy plane atqz=0, and at the same timev2q
andv3q become more and more degenerate leading to diver-
gent terms inq integrals. This behavior of thevaq is in
coincidence with our findings within the LSWT, where we
have found a flat zero-mode and two degenerate modes in
the qx−qy-plane atqz=0 (see Sec. III). We believe that the
physical interpretation of this behavior is connected with the
classical limit (large quantum numbers) of the pure 2D
kagomé HAFM. In the larges limit the results of the LSWT
theory become reliable. In the 3D stacked kagomé lattice
with ferromagneticJ' the spins along the chains become
stronger coupled with increasinguJ'u and can be considered
as larges (quasiclassical) composite spins. These quasiclas-
sical spins are coupled kagomélike with each other, thus we
are most likely faced with the classical HAFM on the
kagomé lattice with its huge nontrivial degeneracy of the GS.
Though we do not have rigorous statements on the zero-
temperature correlation functions of the classical kagomé
HAFM, presumably atT=0 the average of the spin-spin cor-
relation over the set of all ground states does not exhibit
magnetic LRO.2,4,6 Hence we may conclude that the zero-
temperature spin-spin correlation functions within a kagomé
layer do not exhibit LRO for any ferromagneticJ'.

However, the subtile interplay between the tendency to
form large s (quasiclassical) composite spins and the still
remaining(weak) quantum fluctuations may lead to order by
disorder effects. As it was argued in Refs. 6, 7, 53, and 54 for
the pure 2D classical HAFM on the kagomé lattice at low
temperaturesT→0, the entropy of fluctuations may lead to
different relative Boltzmann weights of the classical ground
states this way favoring planar ordered ground states. Pre-
sumably there is a nematic LRO but an algebraic decay of
the spin-spin correlation forT→0.6,53 Hence, for the stacked
system considered in this paper atT=0 and forJ'→−`, due
to remaining quantum fluctuations a nematic order accompa-
nied by an algebraic decay in the intralayer spin-spin corre-
lation functions is possible.

To describe the magnetic GS in more detail we present,
similar to the caseJ'.0, the spin-spin correlation functions
and the correlation lengths in Figs. 4 and 5. Due to the
above-mentioned numerical problems our data are restricted
to 0ø uJ'uøJi=1. Several first, second, and third neighbor
correlation functions are shown in Fig. 4. Again the change
in the intralayer correlators is very small, whereas the
strengths of interlayer correlation functions increase with
growing uJ'u and become larger than those of intralayer cor-

FIG. 2. First, second, and third neighbor intralayerfR
=s1,0,0d ; s1,1,0d ; s2,0,0dg and interlayerfR=s0,0,1d ; s1,0,1d ;
s0,0,2dg correlation functions in dependence on the antiferromag-
netic interlayer couplingJ'.

FIG. 3. Intralayersjid and interlayersj'd correlation lengths in
dependence on the antiferromagnetic interlayer couplingJ'.
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relation functions except for the NN correlation.
The correlation lengths forJ',0 belong toQ=s0,0,0d.

We show the intra-sjid and interlayer sj'd correlation
lengths in Fig. 5.ji andj' increase in the parameter region
shown but are still of the order of the NN separationd.
Obviously, the increase inj' (i.e., along the chains) is sig-
nificantly stronger. We expect thatj' diverges for largeuJ'u.
As discussed above, a divergingji for J'→−` would also
be possible indicating an algebraic decay of the correlation
functions.

VI. SUMMARY

In this paper we have investigated the GS of the stacked
three-dimensional kagomé spin-half Heisenberg antiferro-
magnet for ferromagnetic and antiferromagnetic interlayer
coupling. To study the magnetic GS order we have applied a
second-order Green’s function decoupling scheme going be-
yond the RPA. Though one could expect that an increase in
the dimension from two to three would stabilize magnetic
order, we find some evidence that the interlayer coupling is
not able to create magnetic LRO within the antiferromag-
netic kagomé layers. These findings based on the Green’s
function scheme are supported by linear spin wave theory.
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