PHYSICAL REVIEW B 70, 184412(2004)

Absence of long-range order in a spin-half Heisenberg antiferromagnet on the stacked kagomé
lattice
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We study the ground state of a spin-half Heisenberg antiferromagnet on the stacked kagomé lattice by using
a spin-rotation-invariant Green'’s function method. Since the pure two-dimensional kagomé antiferromagnet is
most likely a magnetically disordered quantum spin liquid, we investigate the question whether the coupling of
kagomé layers in a stacked three-dimensional system may lead to a magnetically ordered ground state. We
present spin-spin correlation functions and correlation lengths. For comparison we apply also linear spin wave
theory. Our results provide strong evidence that the system remains short-range ordered independent of the sign
and the strength of the interlayer coupling.
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[. INTRODUCTION ~0.57, for the 2D square latticésee, e.g., Refs. 34—40 and
references therejrbut does not show this kind of quantum
In frustrated quantum spin lattices the interplay of quan-phase for the 3D body-centered cubic lattiéé? Moreover,
tum and frustration effects causes interesting physics, se@e know from the Mermin-Wagner theoréhthat the inter-
e.g., the recent reviews? Special attention was focused on layer coupling in quasi-2D Heisenberg magnets is crucial for
the problem of the ground stat&S) nature of the Heisen- magnetic ordering at finite temperatures. The role of the in-
berg antiferromagneiHAFM) on the two-dimensional2D)  terlayer coupling in quasi-2D systems becomes particularly
kagomé lattice. In the classical limit the GS of the HAFM on interesting if the decoupled layers themselves are magneti-
the kagomé lattice exhibits a huge nontrivial degeneracgally disordered, e.g., due to strong frustration. Though this
(see, e.g., Refs. 2 and 5-7ntensive work over the last question is relevant for real 3D solids with a layered arrange-
decade on the spin-half quantum version of the nfottéf ~ ment of magnetic atoms it ha; been Igess studied to date.
led to the conclusion that for the quantum HAFM the GS is In this paper we address this question for the HAFM on a
most likely a short-range ordered spin liquid without anycongruently stacked kagomé lattice. For such a system it is
kind of long-range orde(LRO). However, we mention that Ot known, whether an appropriate interlayer coupling may
the GS properties in the quantum case are far from beinéead to a semiclassically ordered magnetic GS. However, one
fully understood, yet. Most of the conclusions are drawn; an expect that in the special limit of infinite ferromagqeﬂc
from finite-lattice results of up tdi=36 sites. \ery recently, mtgrlayer couplln.g the physms of the classiCyB) kagorr_le
the rotation-invariant Green’s function method introduced byantlferromagnet IS obta|ne¢ee 'Seq. VR W.e empha3|ze.
Kondo and Yamaji has been successfully applied on thethat the Lanczos exact diagonalization of flnltg lattices being
spin-half HAFM on the 2D kagomé latti82In the frame- the most powerful method to study the HAFM in the pure 2D

work of this approach one obtains also a spin-liquid GS Withkagom(_é case i; in_appropriate in 3D. Therefore we will dis_-
an energy per spift,/ JN=—0.4296 which agrees well with cuss this question in our paper by the above-mentioned spin-

the best available results obtained by other methods like thiptation-invariant Green's function methc_)d, having in mind
exact diagonalizatidhfi718 (Eo/IN=-0.4344 and the that this melthod was S}Jccessfully applied to.the pure 2D
coupled-cluster methdd(E,/IN=-0.4252. Note that addi- 25" In particular, we will calculate the correlation functions
tional second-neighbor couplings may lead to a magnetically?nd the <_:orre|at|oE Iengtgs\./ Infadd|t|on, we will discuss the
ordered GS phadd28.29 inear spin-wave theorydl SWT) for comparison.

It is well-known that the dimensionality is crucial for the Il. MODEL
existence of order. Roughly spoken one can say, the higher . . .
the dimensionality of the spin system the more the influence.. we conS|der.congruer.1tIy stacked ""’?90”‘6 layers ;hown n
of quantum or thermal fluctuations is suppressed. For the G 9. 1. The vertices of .th's s_tacked Ia_ttlce are occupiedlby
of quantum spin systems one finds several examples, Wheﬁ?'ns one-half interacting via the Heisenberg exchange cou-
the physical properties change basically going from one t¢''n9
two dimensions or from two to three dimensions. For in- 1
stance, the transition from the linear-chain to the square- HZE 2 JnangSmaSnp: (1)
lattice HAFM was studied in Refs. 30-33. Another example ma.ng
is the frustratedl;-J, HAFM, which exhibits a magnetically where the sum runs over all unit cellsbeled bym andn)
disordered quantum paramagnetic GS phase arolind and all spins within a unit celllabeled by running indicea
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GS, namely, the so-called3 x V3 state and the so-calleg

=0 state(see, e.g., Fig. 17 in Ref.)4are often used for
discussing possible magnetic LRO in the kagomé lattice.
These two particular planar states can also be considered as
variants of possible GS ordering for the stacked kagomé lat-
tice.

Let us remind the reader of the fact, that starting from the
V3 3 state as well as from thg=0 state the linear spin-
wave theory(LSWT) for the pure 2D kagomé HAFNRefs.

5 and 16 leads to one flat zero mode and two degenerate

FIG. 1. Sketch of one kagomé layer in the congruently stackednodes producing divergent integrals in the sublattice magne-
lattice with its in-plane geometrical unit vectoes=(0,2,0,a, tization, which might be taken as a hint on the absence of
=(13,1,0.The out-of plane unit vectaaz=(0,0,1) is not shown.  semi-classical magnetic order.

Within a geometrical unit cell the spins are distinguished by a run- _For_the stacked3D) system we start also from both the
ning indexa=1,2,3. V3 X |3 state and theg=0 state and perform the LSWT as
usual. Taking into account that we have three spins per unit
and g, see Fig. 1 One unit cell contains three spins, there- cell we have to introduce three different kinds of magnons.
fore the number of cells i?N/3. The exchange coupling As in the 2D case'® the spin wave spectrum is equivalent
Jma,ng is NONZero for nearest neighbai$N), only. We intro-  for all coplanar classical GS configurations because the di-
duce two different exchange parametdrandJ, according rectional cosine of in-plane neighbors is always —1/2 while
t0 Jnang— J(1-6, 5 +J, 6, 5.Since we are interested in the the directional cosine of out-of-plane neighbors is either 1 or

stacked kagomé HAFM, we considér>0 but allow both -1 depending on the sign df . ForJ, >0 we obtain for the
signs forJ, . spin-wave dispersions

>< layers are identical. Two particular variants for the classical

w1 =542 (1-cod q,) + 633, (L +cosqy),  (2)
I1l. CLASSICAL GROUND STATE AND LINEAR
SPIN WAVE THEORY

qu = S\‘J’aq + bq, (,03q = S\“‘Jaq - bqy (3)
We start with a brief discussion of the classical GS of Eqwith

(1). Because there is no additional frustration caused hy _

the classical GS within a certain layer is not modified, and ) q \V3q q q

the nontrivial huge degeneracy due to corner-sharingqs =4 (2 coé—ZY +| cos’ > * CO§_2¥ 1-2 co§—2¥

triangle$>"is not lifted. The only effect of a ferromagnetic

(antiferromagnetiginterlayer couplingl, is the paralle(an- +4J, (1 - codq,) +33,J, (3~ cosq,), (4)
tiparalle) orientation of interacting spins of adjacent layers.
Thus for a certain classical GS the spin configurations in all bg=J3J,(1-3 cosq,Dy, (5)
|
"’5 J'E
Dq= \/9 +16 cod 1 16 08" F 02 _ g 02 2% _ 24 o2 (6)
2 2 2 2 2
[
For J, <0 we find by =JJ, (1 - cosq,)Dy. (10

w1 = S\,/4‘_]i(1 ~ cosq,)? - 6J,J, (1 - cosqy), (7)  The quantitys in Egs.(2), (3), (7), and(8) is the spin quan-
tum number which can be considered as parameter of the
’ model (1) within the LSWT. If J, goes to zero, the known
woq=SVag+ Dby, wgq=sVag— Dy, (8)  flat zero mode as well as the both degenerate n¥d@ese
. recovered. But even for nonzede we have a flat zero mode
with w1q and degenerate,, and wg, in the g,—q, plane for cer-
taing,. ForJ, >0, wyq is a flat zero mode at,= 7, andw,

J”E
8= 4\15(2 co§32¥ N <c0§\ qu N c0§g2¥)(l 5 co%%Y)) and w3, become degenerate at any,,q, for

g,=arccos 1/3.Fod, <0, w;q becomes a flat zero mode in
the g,—qy plane forg,=0, andw,q and ws, are degenerate at
+43% (1 - cosq,)? - 93, (1 - cosq,), (9 anyq,,q, also forg,=0. Thus, in both cases there is no finite
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sublattice magnetization due to the resulting logarithmic di-The combination of Eqg12) and(13) yields

vergencies in the involved integrals. We conclude, that the

LSWT yields very similar behavior for the pure 2D and the . )

3D stacked case. , , (S S = (1S5 Sapl) + (= i Sgp)er
For completeness we give the expression for the GS en-

ergy per spirgy/N (14)

E 1 3 The operator é;a:[[sga,H],H] contains products of three
D=+ Dss+ )+ -2 > wng,  (11)  Spin operators along NN sequences. Those operator products
N 2N 1 were treated in the spirit of the decoupling scheme by Shi-

mahara and Takad4.This decoupling is performed in the
. . . . site representation of the Green'’s functions. For example, the
\I/Evherezthewqu are th7e resdpectlve spin wave dispersions fromoperator product S;S,St is replaced by 7 s(S:SS
gs.(2) and(3) or (7) and(8). +7a.c(SaSe)Ss, WhereA, B, C represent spin sites. The quan-
tities #,,, are vertex parameters introduced to improve the
IV. SPIN-ROTATION-INVARIANT approximation scheme. In the minimal version of the theory
GREEN'S-FUNCTION THEORY we introduce just as many vertex parameters as independent
conditions for them that can be formulated. Because there are

The Green's function method is one of the most powerfullust two such conditiongsee below we consider two differ-
techniques for the investigation of quantum many-body sys€nt parametersy, and 7, attached to intralayer and inter-
tems and was successfully applied to spin systems over magyer correlators, respectively. After the decoupling we write
decades. The rotation-invariant decoupling scheme was irf=d- (14) in @ compact matrix form omitting the running in-
troduced by Kondo and Yamaji to study the one- dicesa andp
dimensional Heisenberg antiferromagnet and ferromagnet at
finite temperatures. This decoupling scheme was developed 2 —
to improve the description of magnetic short-range order and (0"~ Fg)xg (@) ==Mq,
allows us to describe magnetic order-disorder transitions

driven by quantum fluctuations as well as by thermal ﬂuc'wherqu andM,, are the frequency and momentum matrices,

tuations. Later on the spin-rotation-invariant Green’s f”nc'respectively Since the unit cell contains three spiias M

tion theory was used to discuss several two—dimensionaéndx+- are é>< 3-matrices. For the sake of brevity We’ qu, not
45 - . . .

Snogilé,'\/:‘%;’?é(amdplfﬁ the ptl.”ﬁ HAFM’t the flt'u:ga[edll th give ﬂqe lengthy expressions for the matrix elements-pof

2 | ,tt'cgan ﬁ spatrlla )(/janlsao ropic latti OI:]AFE/I and M, but give their eigenvalues, only. Both matrices are

square fatice as well as the doped square-iatlice hermitean and commute with each other. Hence, the solution

(t-3-mode).*"*® The quasi-two-dimensional and the three- ' - - -
. . X ; 9 g.(15) in terms of the common set of normalized eigen-
dimensional HAFM have been investigated, t88&° vectors|jaof x;~ reads

Let us outline the main ideas of this method based on the
equation-of-motion technique. To evaluate the relevant cor-

(15

relation functions we have to calculate a set of Fourier- -
transformed Green’s funct|c.>n<$sga;5iq[%>>fu. yvhlch ?re re- X;_(w) =—> T_m7|jQ><jQ|' (16)
lated to the dynamic spin susceptibilities b,yq;ﬁ(w) j=1 0T Wjg

=—<<S(;a;SZqﬁ>>w. Their equation of motion reads
For the eigenvaluesy, of M, and w]_Zq of Fq we find
(S S0 = (S Sqpl) + (1S 4: Sge- (12)
Myg == 1231 0,0~ 4 Co 0,1 — COSQ,), 17
Supposing rotational symmetry we havyg, =0 for any
spin and, as a resull(,[Sc;a,SiqB])EO. Furthermore, we ) , ,
have (5,55 =3(ShShe) €., It is sufficient to calculate  @1q = 3J[1+27(2C100% C11,0% C2,0,0] + J1(1 ~cosqy)

<S§WS;B> to know all components of the correlation function X[1+27%,(Cop1+Coo02 — 47, Coo1(1+cC0Sq,)]

(SmaSnp)- Going beyond the random-phase approximation : B
(RPA) decoupling® we consider in a second step the equa- + 43 [77.Co,0,4(1 = €0S) = 277, €1 0,41 + COSQ)

tion of motion for((iS; ,; S'p) e, +77,C10,1~ 37C1,0,£0SG], (18)

w<<i'S;a;s:qB>>w = <[isaa,5:qﬁ]—> +((- s;a;szqﬁ»w' My == 6JC1,0,0~ 4J 1 Cg 0,11 — €OSQ,) — 2JC1,0 Py
(13 (19
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3 3 3
whq = Jf[i +37,(2C1 0,0+ €110+ C200 + 87701,01()(2 coé‘%Y +2 cog¥ qucos?gY —co@ o _
X[1+2n,(Co0,1% Co,02 = 47.Co,0,1(1 + cOSq)] + I I [~

J
+2279,Cr 0]+ E”{Ju[l +27(2C1,0,0% C1,1,0% C2,00] + A [ 71 Co0,1(1 —€OSQ,) + 7, C1.0.1~ 7C1,0,£0S Y]} Dy,

Mgq = = 6J)Cy,0,0~ 4 Co 0,1(1 — COSQ,) + 2],y 0, DPg.
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2

, ~3 0052922” +J2(1 - cosq,)

87,C1,0,1(1 +€0S,) = 27, Co 0,11 — €OSA,) =~ 67,C1,0,£0ST,

(20)

(21)

3 3 3
w5 = Jf[é +37,(2C1 00+ Cr1.0+ Co0,0 + 87701,o,o<2 coé‘ng +2 co§\—2qxco§gy — ok g Co§9¥)} +J2(1 - cosq,)

X[1+27,(Co 01+ Co0,2 ~ 47, Cop01(1+c0sq)]+JJ, [~

J
+227,C104) - E”{Ju[l +27(2C1,0,0% C1,1,0F C2,0,0] + 4 [7,Co0,1(1 — COSA,) + 7, Cy01~ 7C1,0,E0S ]} Dy,

whereDy, is defined in Eq(6). The correlator, y ,, have to

be determined self-consistently; their indices correspond to a

vector R=la;/2+kay/2+maz connecting two spins, i.e.,
c,,k,m:cR:<%S’R>:§(SOSR). Using the NN correlators; g o
and ¢y o1 the GS energy per spiky/N is given by Ey/N
=3JCy 0,0+ 3J,Co01/2. Equations(17)«22) contain eight
parameters; oo €110 €200 €0,0,1 €101 0,02 7, andz,,

2 2 2

87,1 ,01(1 +€0SQy) =27, Cg 0 1(1 — €OSA,) ~ 67C1,0 £OS T,

(22)

3 m
Sup(@ = > 3 0 (aljg)(jal ). (25)

j=1 20jq
The existence ofCq,5# 0 is accompanied by a diverging
static susceptibility(;’ at the magnetic wave vect@).
To describe the magnetic order in a short-range ordered
phase we use in addition to the spin-spin correlation func-

which must be determined Self'ConSiStently.. The relation betions the correlation |engt5u a|ong a certain directioav_ To
tween the correlators and the corresponding Green's funcalculateé, we apply the procedure illustrated in Refs. 44

tions is given by the spectral theoré®? Its application to

and 45. We expand that eigenvalue of the static susceptibility

the correlators; o, leads to six equations, a seventh one is,*~ which is largest at the magnetic wave vec®mround

the sum rulecy o 0=1/2. Oneadditional equation is obtained
requiring that the matrix of the static susceptibili]gxé‘
=Xy (0=0) is isotropic in the limit q—0% ie,
Iiqu_,o,qy_,o)(;"lqz:o: Iiqu_,o)(;"quzqyzo. From that constraint
we obtain

C1,0,09 1 [1—27,(3Ch01~ Co0,2]+837,(C1,01~ Co01}
= Co,0,0 [ 1 = 27(4C1,00~ C1,1,0~ C2,0,0]

+4J,(1,C101~ MC1,00}=0. (23)

this point Q. The relevant magnetic wave vectQr in the
short-range ordered phase is that vector, where the largest
eigenvalue of the static susceptibility has its maximum. Then
the square of the correlation length aloggis given by the
factor in front of the square of the corresponding component
of the g vector q,=e,(Q—q). For illustration we give the
expression for the intralayer correlation lendjtin the pure
kagomé limit (3, =0), &=-27cy 0,0/[1+27(2¢100+Cy1 1.0
+Cp0,0J, and omit the lengthy general expressions for the
inter- and intralayer correlation lengths.

For the discussion of the magnetic GS ordering we consider

the spin-spin correlation functio$;,,S,s). A possible mag-
netic LRO in the system is described \i&,,S,s) at large
distancesR,—R,,. More precisely, we consider, as in Refs.
44 and 45, a condensation te@g,; in the Fourier transfor-
mationS,4(q) of (Sy,,Sys according to

3
(SmaSg) = 22 S XD 1 )

3 .
+ ECQaﬁeXF(‘ iQr mang)» (24)

V. RESULTS
A. Antiferromagnetic interlayer coupling J;, >0

Solving the set of the eight self-consistency equations we
find that there is no solution with a nonzero condensation
term. Therefore we conclude that within the applied rotation-
invariant Green’s function decoupling scheme there is no
indication of magnetic LRO for the stacked 3D kagomé
HAFM with antiferromagnetic interlayer coupling. This re-
markable result is in accordance with the findings within the
LSWT (see Sec. I To study the influence of the interlayer
coupling on the GS magnetic short-range order we calculate
the spin-spin correlation functions and the correlation

whereQ is the corresponding wave vector of the magneticlengths. For convenience we sgt1. In Fig. 2 we show

order andS,4(q) is given by

several first, second, and third neighbor correlation func-
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0.5 B. Ferromagnetic interlayer coupling J; <0

R=(1,00) ——

Now we turn to the cas&, <0 which appears to be more
complicated from the numerical point of view. Starting from
J, =0 we find a solution of the self-consistency equations
with zero condensation term unfll, =-J,=-1. That means
we can conclude that for ferromagnetic interlayer coupling
there is no indication for magnetic LRO fdd, |<1, too.
Beyond this point our numerical procedure fails because of
numerical instabilities in the space integrals. The reason
for that consists in the specific behavior of the dispersion

0.5 ; : relationsw,q from Eqgs.(18), (20), and(22). Increasing the
7, strength of the ferromagnetic interlayer coupling beyond
|9,/=1 we find thatw,, becomes more and more a flat zero

FIG. 2. First, second, and third neighbor intralayfR =~ mode in theq,-g, plane atq,=0, and at the same time,,
=(1,0,0;(1,1,0;(2,0,0] and interlayer[R=(0,0,2;(1,0,1; and wg, become more and more degenerate leading to diver-
(0,0,2] correlation functions in dependence on the antiferromag-gent terms inq integrals. This behavior of the, is in
netic interlayer coupling ; . coincidence with our findings within the LSWT, where we
have found a flat zero-mode and two degenerate modes in
. . . the g,—q,-plane atq,=0 (see Sec. Il)l. We believe that the
.tIOI”IS. The strongest chapge_ IS seen in the §trengths of t yg?ca?%naerpreta('?ii)n 05‘ this behavior is connected with the
Eterlayer c~0rrelatprs which increase in the intervat D, classical limit (large quantum numbes) of the pure 2D
=<1, for J, =1 their values are already close to those of thekagomé HAFM. In the largs limit the results of the LSWT

pure ””eaf chain. The_ change in the infralayer correlators i?heory become reliable. In the 3D stacked kagomé lattice
small. While the NN intralayer correlator shows some de-

. . ) with ferromagneticJ, the spins along the chains become
crease in strength, the second and third neighbor correlatogﬁronger coupled with increasing, | and can be considered
are weakly increased for small . Remarkably, already for

3. <1 the interl | b h has larges (quasiclassicalcomposite spins. These quasiclas-
oL the interlayer corre ators ecome stronger than the;c,, spins are coupled kagomélike with each other, thus we
intralayer correlators. Note that in the lindit =0 our values .~ likely faced with the classical HAFM on the
for t_f|1ebIGS enelrgy as Weg as fé)rfthezgorreéa;%rs coincide W'ﬂkagomé lattice with its huge nontrivial degeneracy of the GS.
available results reported in Refs. an ' Though we do not have rigorous statements on the zero-

ASI |ItI_ustrIatedﬂ?bove,dto calcrL:Iate tthe mter—damd 'mtralayertemperature correlation functions of the classical kagomé
correlation lengthg, andg, we have to expand the extreme HAFM, presumably af =0 the average of the spin-spin cor-

eigenvalue of the static susceptibility arouQ_j which i‘c’_ relation over the set of all ground states does not exhibit
Q=(0,0,m) for a," J,>0. The results for thg intra- and.m- magnetic LRO>*® Hence we may conclude that the zero-
terlayer correlation lengths are shown in Fig. 3. The intrayemperature spin-spin correlation functions within a kagomé
layer correlation length is of the order of the NN separatlon|ayer do not exhibit LRO for any ferromagnetic .

d=1 in the pure 2D limit. It increases up to a maximal value However, the subtile interplay between the tendency to
of about§~2.5d for J, ~1 and goes to zero fo¥, —=. ¢4 |arge s (quasiclassical composite spins and the still
The increase of the mterlaygr correlatlorj length is S,tror,‘gerremaining(wealg quantum fluctuations may lead to order by
Though we expect a diverging, for the isolated chain, it yisorder effects. As it was argued in Refs. 6, 7, 53, and 54 for
remains finite for a_lny]L>0. Th_|s behaylor_ls a drawback of 4 pure 2D classical HAFM on the kagomé lattice at low
the Green's function decoupling, which is not able to de~gmperatureg — 0, the entropy of fluctuations may lead to
scribe the critical GS with a power-law decay of the corre-ggerent relative Boltzmann weights of the classical ground

025 |

(SoSw)

-0.25

lation functions of the linear-chain HAFM. states this way favoring planar ordered ground states. Pre-
sumably there is a nematic LRO but an algebraic decay of
4 : : the spin-spin correlation fof — 0.553 Hence, for the stacked
____________ system considered in this paperTat0 and forJ, — -, due
3 ] to remaining quantum fluctuations a nematic order accompa-

nied by an algebraic decay in the intralayer spin-spin corre-
lation functions is possible.

To describe the magnetic GS in more detail we present,
similar to the casd, >0, the spin-spin correlation functions
and the correlation lengths in Figs. 4 and 5. Due to the
above-mentioned numerical problems our data are restricted
0 ] 5 5 to 0<|J,[<J;=1. Several first, second, and third neighbor

8 correlation functions are shown in Fig. 4. Again the change
in the intralayer correlators is very small, whereas the

FIG. 3. Intralayer(&) and interlayer(é ) correlation lengths in ~ strengths of interlayer correlation functions increase with
dependence on the antiferromagnetic interlayer coupling growing|J, | and become larger than those of intralayer cor-
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05 : .
R=(1,00) ——
025 |
&
v, 0
z
025 f
03 0 0:2 014 0:6 0:3 1 FIG. 5. Intralayer(§) and interlayer(¢, ) correlation lengths in
7] dependence on the strength of the ferromagnetic interlayer coupling
3.
FIG. 4. First, second, and third neighbor intralaygR
=(1,0,0;(1,1,0;(2,0,0] and interlayer{R=(0,0,1;(1,0,1; VI. SUMMARY
(0,0,2] correlation functions in dependence on the strength of the  In this paper we have investigated the GS of the stacked
ferromagnetic interlayer coupling, |. three-dimensional kagomé spin-half Heisenberg antiferro-

magnet for ferromagnetic and antiferromagnetic interlayer
coupling. To study the magnetic GS order we have applied a
second-order Green'’s function decoupling scheme going be-
; _ yond the RPA. Though one could expect that an increase in

The correlatpn lengths foh,<0 belong tOQ_(O'O’,O)' the dimension from two to three would stabilize magnetic
We show the intra-(§) and interlayer(¢,) correlation  order, we find some evidence that the interlayer coupling is
lengths in Fig. 5§, and¢, increase in the parameter region not able to create magnetic LRO within the antiferromag-
shown but are still of the order of the NN separation netic kagomé layers. These findings based on the Green’s
Obviously, the increase ifi, (i.e., along the chainds sig-  function scheme are supported by linear spin wave theory.
nificantly stronger. We expect thét diverges for largeJ  |.

relation functions except for the NN correlation.
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