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The thermal and magnetic properties of spin-1 magnetic chain compounds with large single-ion and in-plane
anisotropies are investigated via the integrablesus3d model in terms of the quantum transfer matrix method and
the recently developed high temperature expansion method for exactly solved models. It is shown that large
single-ion anisotropy may result in a singlet gapped phase in the spin-1 chain which is significantly different
from the standard Haldane phase. A large in-plane anisotropy may destroy the gapped phase. On the other
hand, in the vicinity of the critical point a weak in-plane anisotropy leads to a different phase transition than the
Pokrovsky-Talapov transition. The magnetic susceptibility, specific heat, and magnetization evaluated from the
free energy are in excellent agreement with the experimental data for the compounds NisC2H8N2d2NisCNd4

and NisC10H8N2d2NisCNd4·H2O.
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I. INTRODUCTION

Haldane’s1 conjecture that spin-Schains exhibit an energy
gap in the lowest magnon excitation for 2S even with no
significant gap for 2Sodd inspired a great deal of experimen-
tal and theoretical investigation. Rich and novel quantum
magnetic effects, including valence-bond-solid Haldane
phases and dimerized phases,2,3 fractional magnetization
plateaux4 and spin-Peierls transitions5 have since been found
in low-dimensional spin systems. In this light, the spin-1
Heisenberg magnets have been extensively studied in
Haldane gapped materials.6,7 The valence-bond-solid ground
state and the dimerized state form the Haldane phase with an
energy gap.2 The Haldane gap in integer spin chains may
close in the presence of additional biquadratic terms or in-
plane anisotropies. In particular a large single-ion anisotropy
may result in a singlet ground state8,9 which is significantly
different from the standard Haldane phase.

The difference between the two gapped phases appears to
arise from the ground state and excitations. In the Haldane
nondegenerate ground state, a single valence bond connects
each neighbouring pair to form a singlet. An expected exci-
tation comes from breaking down the valence bond solid
state where a nonmagnetic stateSi =0 at sitei is substituted
for a stateSi =1. In this way a total spinS=1 excitation
causes an energy gap referred to as the Haldane gap.
Whereas the large-anisotropy-induced gapped phase in the
spin- 1 chain is caused by trivalent orbital splitting. For a
large single-ion anisotropy, the singlet can occupy all states
such that the ground state lies in the nondegenerate gapped
phase. The lowest excitation arises as the lower component
of the doublet is involved in the ground state. This excitation
results in the energy gap.

A number of spin-1 magnetic chain compounds have been
identified as planar Heisenberg magnetic chains with large
anisotropy. These include NisC2H8N2d2NisCNd4 (abbreviated
NENC), NisC11H10N2Od2NisCNd4 (abbreviated NDPK),10,11

and NisC10H8N2d2NisCNd4·H2O (abbreviated NBYC).12

This kind of system exhibits a nondegenerate ground state
which can be separated from the lowest excitation. This
gapped phase also occurs in some nickel salts with a
large zero-field splitting, such as NiSnCl6·6H2O,13

fNisC5H5NOd6gsClO4d2,
14 and NisNO3d2·6H2O.15 The theo-

retical study of these compounds relies on a molecular field
approximation for the Van Vleck equation.16 To first-order
Van Vleck approximation, the exchange interaction is ne-
glected. To obtain a good fit to the experimental data an
effective crystalline field has to be incorporated. This ap-
proximation causes uncertainties and discrepancies in fitting
the experimental data. Here we take a new approach via the
theory of integrable models.

It has been recently demonstrated17 that integrable models
can be used to study real ladder compounds via the thermo-
dynamic Bethe ansatz18 (TBA) and the exact high tempera-
ture expansion(HTE) method.19,20 In this paper we present
an integrable spin-1 chain with additional terms to account
for planar single-ion anisotropy and in-plane anisotropy. The
ground state properties and the thermodynamics of the
chains are studied via the TBA and HTE. We show that a
large planar single-ion anisotropy results in a nondegenerate
singlet ground state which is significantly different from the
Haldane phases found in Haldane gapped materials.6,7 We
examine the thermal and magnetic properties of the com-
pounds NENC10,11 and NBYC.12 Excellent agreement be-
tween our theoretical results and the experimental data for
the magnetic susceptibility, specific heat and magnetization
confirms that the strong single-ion anisotropy, which is in-
duced by an orbital splitting, can dominate the low tempera-
ture behavior of this class of compounds. Our exact results
for the integrable spin-1 model may provide widespread ap-
plication in the study of thermal and magnetic properties of
other real compounds, such as NDPK10,11 and certain nickel
salts.13–16

II. THE INTEGRABLE SPIN-1 MODEL

In contrast to the standard Heisenberg spin-1 materials,
experimental measurements on the new spin-1 compound
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LiVGe2O6
21 and the compounds NENC and NBYC10,12 ex-

hibit unexpected behavior, possibly due to the presence of
biquadratic interaction and a strong single-ion anisotropy,
making it very amenable to our approach. The axial distor-
tion of the crystalline field in the compounds NENC and
NBYC results from the triplet3A2g splitting. Specifically, the
triplet orbit splits into a low-lying doubletsdxy,dyzd and a
singlet orbitalsdxzd at an energyDCF above the doublet. In-
spired by the high temperature magnetic properties of this
kind of material, we consider an integrable spin-1 chain with
Hamiltonian

H = JH0 + Do
j=1

N

sSj
zd2 + Eo

j=1

N

fsSj
xd2 − sSj

yd2g − mBgHo
j=1

N

Sj
z,

s1d

H0 = o
j=1

N

hSW j ·SW j+1 + sSW j ·SW j+1d2j.

H0 is the standardsus3d integrable spin chain, which is well

understood.22–25HereSW i denotes the spin-1 operator at sitei,
N is the number of sites and periodic boundary conditions
apply. The constantsJ, D and E denote exchange spin-spin
coupling, single-ion anisotropy and in-plane anisotropy, re-
spectively. The Bohr magneton is denoted bymB andg is the
Landé factor. We consider only antiferromagnetic coupling,
i.e., J.0 andD.0.

A. The ground state at zero temperature

For the sake of simplicity in analyzing the ground state
properties at zero temperature, we first takeE=0, i.e., no
in-plane anisotropy. In this case Hamiltonian(1), which can
be derived from thesus3d row-to-row quantum transfer ma-
trix with appropriate chemical potentials in the fundamental
basis, is integrable by the Bethe ansatz. The energy is given
by

E = − Jo
j=1

M1 1

sv j
s1dd2 +

1

4

− DN0 − mBgHsN+ − N−d, s2d

where the parametersv j
s1d satisfy the Bethe equations22,23

p
i=1

Mk−1 v j
skd − vi

sk−1d + i/2

v j
skd − vi

sk−1d − i/2
= p

l = 1
lÞ j

Mk v j
skd − vl

skd + i

v j
skd − vl

skd − i

3 p
l=1

Mk+1 v j
skd − vl

sk+1d − i/2

v j
skd − vl

sk+1d + i/2
. s3d

In the above,k=1,2 and j =1, . . . ,Mk and the conventions
v j

s0d=v j
s3d=0, M3=0 apply.N+, N0, N− denote the number of

sites with spinSz=1, 0, −1 in the Bethe eigenstates. In the
thermodynamic limit, the Bethe ansatz equations(3) admit
complex string solutions18 from which the TBA equations
can be derived.26,27Following the standard TBA analysis, we
find that the ground state in the zero temperature limit is

gapped if the single-ion anisotropyD.4J. The singlet
ground state is separated from the lowest spin excitation
by an energy gapD=D−4J. This energy gap is decreased
by the external magnetic fieldH. At the critical pointHc1
=sD−4Jd /mBg, the singlet ground state breaks down. Due
to the magnon excitation, the magnetization almost linearly
increases with the magnetic field. Once the magnetic field
is increased beyond the second critical pointHc2
=sD+4Jd /mBg the ground state is fully polarized, i.e., in the
M =Ms plateau region. The magnetization derived from the
TBA is shown in Fig. 1. We remark that a gapped phase
exists only for anisotropy values satisfying the “strong aniso-
tropy” conditionD.4J. As shown in Refs. 26 and 27 for the
spin ladders, the magnetization in the vicinity of the critical
fields Hc1 and Hc2 depends on the square root of the field,
indicating a Pokrovsky-Talapov transition. In this regime, the
anisotropy effects overwhelm the contribution from the bi-
quadratic interaction and open a gapped phase in the ground
state.

When EÞ0, the in-plane anisotropyx2−y2 breaks the
z2 symmetry and weakens the energy gap. In the presence
of the in-plane anisotropy termE, the energies split into
three levels with respect to the new basisf0= u0l and f±
=a±u−1l+ u1l, with a±=fmBgH±ÎsmBgHd2+E2g /E. In this
basis the eigenvalues of the underlying permutation
operator are the same as the eigenvalues using the
fundamental basis. The model thus remains integrable. We
find that if E,D, there is still a gapped phase with gap
D=D−4J−ÎsmBgHd2+E2 for the regionH,Hc1. Here the
critical field Hc1=ÎsD−4Jd2−E2/mBg. In this gapped phase
the ground state is the non-degenerate singlet. Subsequently,
whenH.Hc1 the statef− gets involved in the ground state.
At the critical pointHc1, the phase transition is not of the
Pokrovsky-Talapov type due to the mixture of a doublet state

FIG. 1. (Color online) Magnetization versus magnetic fieldH in
units of saturation magnetization for Hamiltonian(1) with J
=0.2 K, D=6 K, E=3.5, and 0 K,g=2.0 with parallel magnetic
field. The solid and dashed lines denote the magnetization derived
from the TBA withE=3.5 K andE=0 K, respectively. The magne-
tization curve forE=3.5 K indicates different quantum phase tran-
sitions in the vicinity ofHc1 and Hc2 than for theE=0 K square
root field-dependent critical behavior in the absence of the in-plane
anisotropy.
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in the f- state. The magnetization increases as the magnetic
field increases. Past the second critical pointHc2
=ÎsD+4Jd2−E2/mBg, the singlet state is no longer involved
in the ground state. The statef- fully occupies the ground
state. As the magnetic field is increased beyondHc2, the(nor-
malized) magnetizationM =H /ÎH2+sE/mBgd2 gradually ap-
proachesMs=1. These novel phase transition may be ob-
served from the low temperature magnetization curve, which
can be evaluated from the TBA equations atT=0, as per the
example in Fig. 1. It shows that the gap sensitively depends
on the single-ion anisotropy and the in-plane anisotropy.
These phase transitions disappear at high temperatures. In
addition, the inflection point atH=ÎD2−E2/mBg and
M = 1/2Î1−sE/Dd2 indicates that the probabilities of the
componentsf0 andf- are equal. Moreover, if the exchange
interaction decreases, the magnetization in the vicinity of the
critical pointHc1 increases steeply. ForJ=0, i.e., the case of
independent spins, the critical pointsHc1 andHc2 merge into
one point, at which a discontinuity in the magnetization oc-
curs. ForD,4J+E, there is no gapped phase.

B. Magnetic properties at high temperature

In order to study thermodynamic properties, we adopt the
quantum-transfer-matrix (QTM) approach.28 Explicitly,
following20 the eigenvalue of the QTM for the model(1) (up
to a constant) is given by

T1
s1dsv,hvi

sadjd = ebm1f−sv − idf+svd
Q1sv + i/2d
Q1sv − i/2d

+ ebm2f−svdf+svd
Q1sv − 3i/2dQ2svd

Q1sv − i/2dQ2sv − id

+ ebm3f−svdf+sv + id
Q2sv − 2id
Q2sv − id

. s4d

In the above equation the chemical potential terms are

m1 = mBgH, m2 = D, m3 = − mBgH, s5d

where for the moment we takeE=0. We have adopted the
notation from Ref. 20 with f±svd=sv± iuNdN/2, Qasvd
=pi=1

Masv−vi
sadd for a=1,2, andQ0svd=1. Here uN=−Jb /N

whereN is the Trotter number. Following the HTE scheme,20

we derive the high temperature expansion for the free energy
of model (1) in powers ofJ/T. Because the expansion pa-
rameterJ/T is small for weak intrachain couplingJ, we may
expect the free energy to accurately describe the thermody-
namic quantities at sufficiently high temperatures, even for a
small number of terms. To third order, the result is

−
1

T
fsT,Hd = ln C0 + C1,0

1 J

T
+ C2,0

1 S J

T
D2

+ C3,0
1 S J

T
D3

+ ¯ .

s6d

The coefficientsCb,0
1 , b=1,2,3, aregiven by20

C1,0
1 = 2A+,

C2,0
1 = 3A+s1 – 2A+d + 3A−,

C3,0
1 =

10

3
A+S1 −

27

5
A+ + 8A+

2D + 8A−s1 – 3A+d, s7d

with

C0 = B0,D,

A+ = BD,0/B0,D
2 ,

A− = expsD/Td/B0,D
3 ,

Bx,y = 2 expsx/TdcoshsmBgH/Td + expsy/Td. s8d

For later use, we also give the HTE free energy with
in-plane rhombic anisotropyE. If the external magnetic field
is parallel to thez axis, the chemical potentials in Eq.(4)
become

m1 = h, m2 = D, m3 = − h, s9d

whereh=ÎE2+smBgiHd2.In this case the functionBx,y in Eq.
(8) changes to

Bx,y = 2 expsx/Tdcoshsh/Td + expsy/Td. s10d

On the other hand, if we apply a perpendicular magnetic
field to the Hamiltonian(1), the chemical potential terms in
Eq. (4) are replaced by

m1 =
1

2
sD − E + h8d,

m2 = E,

m3 =
1

2
sD − E − h8d, s11d

where h8=ÎsD+Ed2+4g'
2 mB

2Ha
2 with a=x or y.29 Subse-

quently, we have

C0 = BsD−Ed/2,D,

A+ = BsD+Ed/2,D−E/BsD−Ed/2,D
2 ,

A− = expsD/Td/BsD−Ed/2,D
3 , s12d

with now Bx,y=2 expsx/Tdcoshsh8 /Td+expsy/Td.
Equation(6) for the free energyfsT,Hd is our key result.

Physical properties such as the susceptibility, magnetization
and the specific heat follow in the usual way by differentia-
tion. We also usefsT,Hd to calculate the phase diagram for
both T.0 K and finite temperatures(see Fig. 6). We find
that considering up to 3rd order inJ/T is sufficient as higher
orders are negligibly small. This is in stark contrast to other
series expansions which need many orders to accurately de-
scribe physical properties. This is mainly because here the
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coefficents are not just constants, but functions of the exter-
nal model parameters, e.g., the magnetic field and the cou-
pling strength.

III. SPIN-1 COMPOUNDS

A. The compound NENC

It is known that antiferromagnetic spin-1 chains6,7 with
weak planar anisotropy can exhibit a nonmagnetic gapped
phase. The largeD gapped phase has been observed in the
compounds NENC, NDPK, and NBYC.10,12 In these com-
pounds the in-plane anisotropyx2−y2 breaks thez2 symme-
try and weakens the planar anisotropy. From experimental
analysis, it was inferred that the in-plane anisotropyE in
NENC10 is negligible in comparison with the largeD single-
ion anisotropy, where the Nickel(II ) z2 orbit along thec-axis
forms a strong crystalline field. As a result the low tempera-
ture physics is dominated by this strong crystalline field. The
antiferromagnetic exchange interaction further lowers the en-
ergy but its contribution to the ground state as well as the
low-lying excitations is minimal. As a consequence, the
Hamiltonian(1) can be expected to describe this compound
quite well. Experimentally, the specific heat was measured
up to a temperature around 10 K in the absence of magnetic
field.10 A typical round peak for short range ordering atT
<2.4 K is observed, see Fig. 2. An exponential decay is
detected for temperatures below approx 2.4 K. Our calcu-
lated HTE specific heat for the Hamiltonian(1) with best
visual fit constantsJ=0.17 K andD=6.4 K in the case(5)
(the solid line in Fig. 2) is in excellent agreement with the
experimental curve in the temperature regionT.0.8 K. In
particular, the analytic result for the specific heat gives a
better fit with experimental data than the result from pertur-

bation theory.10 For low temperatures(below 0.8 K), para-
magnetic impurities and a small rhombic distortion are the
main reasons for the discrepancy. The inset of Fig. 2 shows
that the inclusion of a small rhombic anisotropyE=0.7 K
gives a better fit for low temperatures than withE=0. How-
ever, at high temperature this rhombic anisotropy is negli-
gible.

As far as we know, the susceptibility was measured only
for powdered samples of this compound. Moreover, the ex-
perimental susceptibility of NENC was studied only in the
temperature range 50 mK–18 K under a static magnetic field
H=0.1 mT. From the data shown in Ref. 10 we cannot ac-
curately estimate the contributions for the Curie-Weiss term
and the paramagnetic impurity. In Fig. 3 we present our the-
oretical curves for the susceptibility with parallel and per-
pendicular field evaluated from the free energy associated
with different chemical potentials. A susceptibility estimation
for powdered samples usingxPowder< 1/3xi+ 2/3x'

16

does not fit the experimental data very well at low tempera-
tures due to the Curie-Weiss contribution and paramagnetic
impurities. A visual fit with the experimental susceptibility
suggests that the contribution from the Curie-Weiss term is
not negligible. We find that our theoretical susceptibility
xPowder for powder with a Curie-Weiss contribution
c/ sT−ud gives a satisfactory agreement with the experimen-
tal curves, wherec<0.045 cm3 K/mol andu<−0.9 K. This
fit suggests the valuesJ=0.17 K and D=6.4 K, with
g'=2.18 andgi=2.24. From the TBA analysis we find an
energy gapD<5.72 K with a parallel external magnetic field
at zero temperature for these coupling constants. The typical
antiferromagnetic behavior of the susceptibility with a mag-
netic parallel field to the axis of quantization follows from
our results. This is in accordance with the behavior of the
specific heat given in Fig. 2. The inset of Fig. 3 shows the

FIG. 2. (Color online) Comparison between theory and experi-
ment(Ref. 10) for the magnetic specific heat versus temperature of
the compound NENC. The conversion constant isCHTE

<8CexpsJ/mol Kd. The solid line denotes the specific heat evalu-
ated directly from the free energy(6) with the parametersJ
=0.17 K, D=6.4 K, g=2.24, andmB=0.672 K/T. The inset shows
the low temperature specific heat. Clearly the inclusion of in-plane
rhombic anisotropyE=0.7 K (dashed line) gives a better fit than
without rhombic anisotropy(solid line).

FIG. 3. (Color online) Comparison between theory and experi-
ment (Ref. 11) for the susceptibility versus temperature of the
compound NENC atH=0.1 mT. The fitting curve(solid line)
is obtained via the empirical relationxpowder< 1/3xi

+ 2/3x'together with a Curie-Weiss(CW) contribution. The inset
shows the comparison between theory and experiment(Ref. 10) for
the magnetization versus magnetic field of NENC at the tempera-
ture T=4.27 K. A good fit for both the susceptibility and magneti-
zation suggests the coupling constantsJ=0.17 K, D=6.4 K, g'

=2.18, and gi=2.24. The conversion constants arexHTE

<0.8123xexpscgs/mold andMHTE<8.5Mexp s103 cgs/mold.
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magnetization of a powdered sample atT=4.27 K. It is ob-
vious that the singlet is suppressed by the temperature.
Fitting suggests the empirical relationMPowder< 1/3Mi

+ 2/3M' for the powdered magnetization with the same
constants as before. HereMi andM' denote the magnetiza-
tion with the field parallel and perpendicular to the axis of
quantization.

B. The compound NBYC

We now turn to the properties of the compound NBYC,
which has also been experimentally investigated.12 In par-
ticular, in-plane anisotropyE and a large anisotropyD are
present, suggesting that the model Hamiltonian(1) may
again be a good microscopic model for this type of com-
pound. Theoretical studies based on strong-coupling expan-
sion methods30 suggest that the anisotropy of this compound
might lie in the vicinity of the boundary between the
Haldane and field-induced gapped phases.12 However, due to
the validity of the strong-coupling expansion method, the fits
for specific heat, susceptibility and magnetization become
increasingly inconsistent with each other as the rhombic an-
isotropy increases. Figure 4 presents the susceptibility for
this compound. The theoretical susceptibility curve for the
powdered sample is evaluated from the free energy(6) with
parallel and perpendicular fields[see Eq.(12) ] via the em-
pirical formulaxPowder< 1/3xi+ 2/3x'. A good fit for the
susceptibility suggests the valuesD=2.62 K, E=1.49 K, J
=0.35 K, withgi=g'=2.05. A small discrepancy at low tem-
perature can be attributed to a Curie-Weiss contribution term.
From the TBA analysis we conclude that the ground state is
gapless.

The inset of Fig. 4 shows the magnetization for powdered
samples at 5 K, 10 K, and 20 K. Again our theoretical
curves are evaluated using the empirical relationMPowder
< 1/3Mi+ 2/3M' for the powdered magnetization. An
overall agreement in magnetization for different tempera-
tures gives a consistent parameter setting for the susceptibil-
ity. The singlet state is now supressed by the in-plane rhom-
bic anisotropy and the temperature.

The specific heat was measured up to a temperature of
6 K in absence of magnetic field.12 The theoretical specific
heat evaluated from the model Hamiltonian(1) (the solid line
in Fig. 5), with the same parameters used before, is in good
agreement with the experimental curve in the temperature
region 0.5 K to 6 K. For temperatures below 0.5 K the high
temperature expansion does not converge and thus cannot
provide valid predictions.

FIG. 4. (Color online) Comparison between theory and experi-
ment(Ref. 12) for the susceptibility versus temperature of the com-
pound NBYC. The conversion constants are the same as for NENC.
The solid line is the susceptibility for the powdered samples with
coupling constantsD=2.62 K, E=1.49 K, andJ=0.35 K, with gi

=g'=2.05. The small discrepancy at low temperature might be at-
tributed to a Curie-Weiss contribution. The inset shows the magne-
tizations for powdered samples at 5 K, 10 K, and 20 K. In each
case the theoretical results verify the existence of weak exchange
coupling and in-plane rhombic anisotropy, with a strong single-ion
anisotropy.

FIG. 5. (Color online) Comparison between theory and experi-
ment(Ref. 12) for the magnetic specific heat versus temperature of
the compound NBYC. The conversion constant isCHTE

<10CexpsJ/mol Kd. The solid line denotes the specific heat atH
=0.1 mT evaluated directly from the free energy(6) with the same
parameters as in Fig. 4.

FIG. 6. (Color online) Phase diagram for the compound
NENC with parametersJ=0.17 K, D=6.4 K, g=2.24, and mB

=0.672 K/T.
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IV. CONCLUSION

We have investigated the thermal and magnetic properties
of spin-1 compounds with large single-ion anisotropy, such
as NENC and NYBC, via the thermodynamic Bethe ansatz
and the high temperature expansion for the integrable model
(1). Excellent agreement was found with the experimental
magnetic properties of these compounds.31 The large single-
ion anisotropy results in a nondegenerate singlet ground state
which is different from the valence bond solid Haldane
phase. The in-plane anisotropy weakens the energy gap.

Finally, we give the full phase diagram of the compound
NENC in Fig. 6. We see that the gapped phase is quickly
exhausted as the temperature increases. The magnetic or-
dered Luttinger liquid phase lies between the curves defined
by Hc1 andHc2. The ferromagnetic polarized phase is above
the Hc2 curve. The intersection of the critical curves and the
H axis indicates the estimated valuesHc1<3.8 T andHc2
<4.7 T, which coincide with the TBA results atT=0 K dis-
cussed in Sec. II A. However, for the case where the in-plane
anisotropyEÞ0, the critical behavior is different from the

phase diagram of Fig. 6. In this case the fully-polarized
phase appears forH@Hc2 because the in-plane anisotropy
mixes the doublet componentsuSz= ±1l. We anticipate that
the exact results for the susceptibility and the magnetization
of the powdered samples as well as for the compounds with
parallel and perpendicular magnetic fields may find wide-
spread use in the study of their magnetic properties and for
identifying the quantum effects resulting from single-ion an-
isotropy. Our analytic approach via the Hamiltonian(1) may
thus describe the thermal and magnetic properties of other
compounds, such as NDPK,10,11 NiSnCl6·6H2O,13

fNisC5H5NOd6gsClO4d2,
14 and NisNO3d2·6H2O.15
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