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Using the model of the DM interaction inXY antiferromagnetic spin chain with spin-phonon coupling, the
nonadiabatic effects on the DM interaction have been studied by developing a nonadiabatic analytical ap-
proach. The results show that in the nonadiabatic case, to a certain finite phonon frequency, there exists a finite
critical value of spin-phonon coupling. As the spin-phonon coupling decreases to the critical value, the system
becomes gapless and the spin dimerization is destroyed. The DM interaction leads the system to have a finite
critical value of spin-phonon coupling even in the adiabatic limit. The increase in staggered DM interaction
will decrease the critical value of spin-phonon coupling, but increase that of phonon frequency, therefore,
favors the dimerization. The nonadiabaticity plays an important role in suppressing the enhancement effects of
the DM interaction to the dimerization. The dimerized ground state when DM interaction is present can be
destroyed by the quantum lattice fluctuations. The threshold value ofb changing the effect of the DM inter-
action on the dimerization from suppression to promotion is not simply a constant but a crossover. For
appropriate fixed values of spin-phonon coupling, phonon frequency andb, asD increases, the system under-
goes a reentry of phase between spin-dimer state and gapless state.
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I. INTRODUCTION

Recently, the revealment of the existence of
Dzyaloshinsky-Moriya(DM) interaction1,2 in a variety of
quasi-one-dimensional magnets3–5 has stimulated extensive
investigations on the physical properties of DM interaction
in these materials. The experiments such as high field
neutron-scattering measurements on Cu benzoate6 and elec-
tron paramagnetic resonance investigations in CuGeO3
(Refs. 7–9) manifest that in these materials the DM interac-
tion plays an important role10–14 and a study of one-
dimensional DM Hamiltonians seems to be of great
importance.15 The DM interaction has been used to interpret
an anomalous magnetic behaviors in BaCu2M2O7 (M =Si,
Ge),16,17 La2CuO4,

18 Yb4As3,
10 and YVO3-SrVO3 systems.19

The DM interaction is an antisymmetric spin exchange inter-
action between two nearest spins and in a magnetic chain the
DM vector may spatially vary in both direction and magni-
tude. However, the symmetry arguments usually rule out
most of the possibilities and the theoretical discussions focus
mainly on two principal cases, the uniform20,21 and the stag-
gered DM interactions.15,21,22For the spin-Peierls system, us-
ing numerical calculation, Derzhko and his co-workers23

analyzed the ground-state energy of the dimerized spin-1
2

transverseXX and Heisenberg chains with DM interaction to
study the influence of the latter interaction on the spin-
Peierls instability. They found that uniform DM interaction
may act against the dimerization but staggered DM interac-
tion may act in favor of the dimerization. However, whether
the staggered DM interaction always enhances the dimeriza-
tion or the uniform DM interaction always acts against the
dimerization has not been clearly answered. Up to now, all of
the theoretical studies on DM interaction in spin-chain sys-
tems have used the static model(so called adiabatic approxi-
mation or frozen phonon approximation) with the static

dimerization parameterd, and treated the problem in adia-
batic limit. By considering the static model, several attempts
have been performed to treat the spin-phonon coupling.23,24

The validity of this static model is based on the assumption
that the frequencies of the phonons associated with the
dimerization are much smaller than the dimerization gap and
the exchange integral. However, this is questionable, and the
amplitude of the dimerization is substantially underestimated
when compared with estimates from structural data in the
spin-Peierls phase.25 It has been shown that the quantum
lattice fluctuations must be taken into account to satisfacto-
rily describe some physical properties of quasi-one-
dimensional spin-Peierls system.26–29An interesting and still
controversial problem is how the DM interaction on the
dimerized ground state is modified when quantum lattice
fluctuations are taken into account. Furthermore the effect of
quantum fluctuations in quasi-one-dimensional systems is
more significant than in higher-dimensional systems, result-
ing in many interesting phenomena. However, with the cou-
pling of spin systems to quantum phonons, this problem is
rather difficult to handle analytically, which has brought
much uncertainty in the interpretation of experimental data
and has limited our understanding of many interesting quan-
tum phenomena of low-dimensional magnetic materials. An
analytical and nonadiabatic study of the DM interaction in
spin-Peierls system will make it possible to have an insight
into the intrinsical properties of the spin chain materials.

In this paper, we focus on the properties of the dimeriza-
tion order parameter and the Peierls instability of a spin-
Peierls chain system with the view of understanding the ef-
fects of quantum lattice fluctuations on the DM interaction in
the system. A nonadiabatic analytical approach is developed
to study the phonon-staggered ordering parameter, the spin
dimerization gap and the phase diagram of the system. We
find that the threshold value ofb is not simply a constant but

PHYSICAL REVIEW B 70, 184405(2004)

1098-0121/2004/70(18)/184405(8)/$22.50 ©2004 The American Physical Society70 184405-1



a crossover and for appropriate fixed values ofl2J/K, vp /J,
and b, there exists a reentry of the system into spin-dimer
state asD /J increases. The nonadiabaticity plays an impor-
tant role in suppressing the Peierls dimerization. The paper is
organized as follows. In Sec. II, by mapping the Hamiltonian
into the Jordan-Wigner fermions and using unitary transfor-
mations, we obtain an effective Hamiltonian from the one-
dimensional spin-Peierls-HeisenbergXY spin chain coupled
with phonons. In Sec. III we use the Green’s function
method to implement perturbation treatment and get the
renormalized band function, the renormalized gap function,
and self-consistent equation determining the dimerized lat-
tice displacement ordering parameter. The phonon-staggered
ordering parameter is calculated. In Sec. IV we study the
spin dimerization gap and the phase diagrams. Finally, a
brief summary will conclude our presentation in Sec. V.

II. EFFECTIVE HAMILTONIAN

We start from the one-dimensional spin-Peierls-
HeisenbergXY spin chain model with a coupling between
spins and phonons15,23,30,31

H = o
l

JlSl ·Sl+1 + o
l

Dl · sSl 3 Sl+1d + Hph, s1d

where the phonon energy, the exchange energy and the mod-
ule of the DM vector are, respectively,

Hph = o
l
S 1

2M
Pl

2 +
1

2
Kul

2D , s2d

Jl = Jf1 + lsul − ul+1dg, s3d

Dl = Df1 + lbsul − ul+1dg. s4d

In the model,Sl is the spin-12 operator on sitel , J.0 is the
usual antiferromagnetic exchange energy,ul (with conju-
gated momentumPl) is the displacement of thel ion which
modulates the exchange integralJ and the module of the DM
vector,l is the magnetoelastic(spin-phonon) coupling con-
stant,K is the elastic constant, andM the mass of ions. In
this model, the spin couples to the difference between the
phonon amplitudes on the two neighboring sites and the form
of the lattice vibration energy leads the phonons to be dis-
persionless.

It has been argued that the directions ofDl are not
changed by the dimerization,9 however, the dependence of
the isotropic exchange interaction and the DM interaction on
the intersite distance may be different.2 Therefore, two kinds
of DM interaction, i.e., uniform and staggered interaction
will be studied. The parameterb is introduced to describe the
effect of different DM interaction dependence on the intersite
distance. Ifb=0 the DM interaction does not depend on the
lattice distortion, i.e., DM interaction is uniform, whereas for
b=1 the dependence of DM interaction on the lattice distor-
tion is the same as that for the isotropic exchange interaction
Jl. Although it was estimated that the DM vector had two
components15 from the specific heat, neutron scattering, and
ESR measurement data of copper benzoate, the numerical

study by density matrix renormalization group found that a
DM vector with only one component gave the best fit to the
experimental observations.32 In view of this as well as for
simplification, we choose the vectorDl to be directed along
the z-axis,Dl =Dlk. Thus,

H = Jo
l

f1 + lsul − ul+1dgsSl
xSl+1

x + Sl
ySl+1

y d

+ Do
l

f1 + lbsul − ul+1dgsSl
xSl+1

y − Sl
ySl+1

x d

+ o
l
S 1

2M
Pl

2 +
1

2
Kul

2D . s5d

After the expansion of the operators of lattice modes,ul and
Pl, by the phonon creation and annihilation operatorsbq

† and
bq, and by means of mapping the Hamiltonian into the
Jordan-Wigner spinless fermions and the Fourier transforma-
tion to momentum space, the Hamiltonian(5) becomes

H = o
q

vpSbq
†bq +

1

2
D + o

k

ekck
†ck

+
1

ÎN
o
k,q

gsk,k + qdsb−q
† + bqdck+q

† ck, s6d

whereN is the total number of sites. The bare band function
of the fermions, the phonon frequency and the coupling
function are

ek = J cosk − D sink, s7d

vp =ÎK

M
, s8d

gsk,k + qd = ilÎ 1

2Mvp

hJfsink − sinsk + qdg

+ Dbfcosk − cossk + qdgj. s9d

Within the static assumption and adiabatic limit approxi-
mation, this model can be solved exactly,31 while for realistic
case, when the quantum phonons are taken into account, the
theoretical analysis becomes much more difficult. In follow-
ing, we will treat the Hamiltonian(6) nonadiabatically.

Sinceek can be rewritten as

ek = Jh cossk + ad, s10d

with a=arctansD /Jd and h=Î1+sD /Jd2, the Fermi level is
given by the conditionekF

=0, and therefore the Fermi wave
vector kF= ±p /2−a. In momentum space, compared with
the spin-Peierls system without the DM interaction, the
Fermi surfacekF shifts bya asD varies, but the size of the
Fermi sea is unchanging. Accordingly, the filling situation of
fermions of this system is also unchanging.

The spin-phonon coupling and the Peierls dimerization
are two main respects in this model. In order to take into
account the spin-phonon correlation and the static phonon-
staggered ordering induced by the move of the neighboring
ions in opposite directions in the dimerized state to form a
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dimer pattern, the unitary transformation is applied toH,33,34

H̃=expsSdH exps−Sd. After averaging the transformed
Hamiltonian over the phonon vacuum state we get an effec-
tive Hamiltonian for the fermions

Heff =
1

2
KNu0

2 + o
k

E0skdck
†ck + o

k

iD0skdck−p
† ck

−
1

N
o

q,k,k8

gsk,k + qdgsk8,k8 − qd
vp

3dsk + q,kdf2 − dsk8 − q,k8dgck+q
† ckck8−q

† ck8, s11d

where

E0skd = ek −
1

N
o
k8

gsk8,kdgsk,k8d
vp

2 dsk8,kddsk,k8dsek − ek8d,

s12d

D0skd = 2lu0fJ sink + Db coskgf1 − dsk − p,kdg, s13d

and

dsk + q,kd = s1 + uek+q − eku/vpd−1 s14d

is a function of the energies of the incoming and outgoing
fermions in the fermion-phonon scattering process. The
dimerized lattice displacement ordering parameteru0 can be
determined by the variational principle to minimize the
ground state energy.

Note that in the adiabatic limit, wherevp=0, one has
dsk8 ,kd=0 and Heff goes back to the adiabatic mean-field
Hamiltonian

Heffsvp = 0d =
1

2
KNu0

2 + o
k

ekck
†ck

+ o
k

i2lu0fJ sink + Db coskgck−p
† ck. s15d

By means of the Bogoliubov transformation(15) can be di-
agonalized exactly. Thus, our effective Hamiltonian works
well in the adiabatic limitvp=0. In fact, if we take the static
assumption and adiabatic limit(neglect the kinetic energy),

i.e., let lsul −ul+1d=s−1dld, after the Jordan-Wigner and the
Fourier transformations, the Hamiltonian(5) becomes

H =
1

2
KNS d

2l
D2

+ o
k

sJ cosk − D sinkdck
†ck

+ o
k

idsJ sink + Db coskdck−p
† ck. s16d

If we let d=2lu0, this model is same as that of our effective
Hamiltonian in the adiabatic limit(15). This model can be
solved exactly and the ground state energy is

Eg =
1

2
KNS d

2l
D2

− o
k.0

ÎsJ cosk − D sinkd2 + d2sJ sink + Db coskd2.

s17d

By means of the variational principle, the equation to deter-
mine d can be obtained,

1 =
1

N
o
k.0

4l2

K

sJ sink + Db coskd2

ÎsJ cosk − D sinkd2 + d2sJ sink + Db coskd2
.

s18d

The last term inHeff is a four-fermion interaction. As we
are dealing with a one-dimensional system in nonadiabatic
circumstances due to finite phonon frequencyvp, how to
treat this four-fermion interaction is a difficult problem.

III. ANALYTIC APPROACH

Note that the four-fermion term in Eq.(11) goes to zero
whenvp→0 [see Eq.(15)], therefore, in this case, the four-
fermion term can be treated as a perturbationHeff8 and the
others as unperturbed HamiltonianHeff

0 . We use the Green’s
function method to implement the perturbation treatment.
The unperturbed Green’s function is

G0sk,vnd = hivn − E0skdsz − D0skdsxj−1.

The self-energyS*sk,vnd can be calculated by the perturba-
tion theory35

S*sk,vnd = −
T

N
o

k8.0

o
m

gsk,kdgsk8,k8d
vp

TrfszG0sk8,vmdgsz

+
T

N
o

k8.0

o
m

gsk,k8dgsk8,kd
vp

dsk8,kdf2 − dsk,k8dgfG0sk8,vmd + szG0sk8,vmdszg

+
T

N
o

k8.0

o
m

gsk − p,k8dgsk8 − p,kd
vp

dsk8,k − pdf2 − dsk,k8 − pdgfisyG0sk8,vmdisy − sxG0sk8,vmdsxg

−
T

N
o

k8.0

o
m

gsk − p,kdgsk8 − p,k8d
vp

fdsk,k − pd + dsk8,k8 − pd

− dsk,k − pddsk8,k8 − pdghTrfisyG0sk8,vmdgisy + TrfsxG0sk8,vmdgsxj. s19d

NONADIABATICAL APPROACH TO THE… PHYSICAL REVIEW B 70, 184405(2004)

184405-3



In the perturbation calculation we have taken into account
the fact that the forward and backward scattering terms con-
tribute nothing to the “charge” gap.36,37 From Eq.(19) one
can get thatS*sk,vnd is irrelative tovn, therefore the spec-
trum structure ofGsk,vnd should be

Gsk,vnd = hivn − Eskdsz − Dskdsxj−1.

From Gsk,vnd the renormalized band function and the gap
function can be derived

Eskd = E0skd −
1

N
o
k8

gsk,k8dgsk8,kd
vp

3dsk8,kdf2 − dsk,k8dg
E0sk8d

ÎE0
2sk8d + D0

2sk8d
, s20d

Dskd = 2lu0sJ sink + Db coskdfc − ddsk − p,kdg, s21d

where

c = 1 +
1

N
o
k.0

2l2

K
sJ sink + Db coskd

3dsk − p,kd
D0skd

2lu0
ÎE0

2skd + D0
2skd

, s22d

d = c −
1

N
o
k.0

2l2

K
sJ sink + Db coskd

D0skd

2lu0
ÎE0

2skd + D0
2skd

.

s23d

The self-consistent equation to determineu0 is

1 =
1

N
o
k.0

4l2

K
sJ sink + Db coskd2f1 − dsk − p,kdg

3
c − ddsk − p,kd
ÎE2skd + D2skd

. s24d

If let vp=0 andd=2lu0, this equation becomes the same as
Eq. (18). This also verifies our effective Hamiltonian works
well in the adiabatic limit.

For investigation on the nonadiabatic effect on DM inter-
action to the dimerization of the system, we calculate the
phonon-staggered ordering parameter

mp =
1

N
o

l

s− 1dlkull =
1

N
o
k.0

2l

K
fJ sink

+ Db coskg
Dskd

ÎE2skd + D2skd
. s25d

In the nonadiabatic case, the phonon-staggered ordering
parametermp is determined by not onlyD andb but alsol
andvp. Figure 1(a) shows the dimensionless parameterlmp
as functions of the spin-phonon couplingl2J/K in the cases
of D /J=0.6,vp /J=0.01 with different staggered DM inter-
action parameters,b=0.9(dash line), 0.5(solid line), and 0.1
(dash-dot line). One can see that because of the nonadiabatic
effect, for a certain value ofb, there exists a finite critical
value of spin-phonon coupling constant.lmp decreases as

the coupling constant orb decreases. At the critical value
[for example, sl2J/Kdc=0.114 for b=0.5, D /J=0.6, and
vp /J=0.01], lmp disappears. The result of the adiabatic
limit svp=0,b=0.5d is also shown in dot line for compari-
son. If there is no DM interaction, the system is never really
gapless within the adiabatic approach, becauselmp remains
nonzero, although it becomes very small for weak spin-
phonon coupling, but, as shown in the figure, the finite DM
interaction leads the system to have a finite critical value of
spin-phonon coupling even in the adiabatic limit. The depen-
dences oflmp on the phonon frequencyvp /J in the case
of D /J=0.6,2l2J/K=0.6 are plotted in Fig. 1(b) for b
=0.1 sdot lined, 0.5 sdash lined, and 0.9ssolid lined. lmp
decreases as the phonon frequency increases orb de-
creases. At the critical valuevpc, lmp goes to zero, which
indicates that the quantum lattice fluctuations can destroy
the dimerized Peierls state. The increase of the staggered
DM interactionb will decrease the critical value of spin-
phonon coupling, but increase that of phonon frequency,
therefore, favors the dimerization.

FIG. 1. (a) The dimensionless parameterlmp as functions of the
spin-phonon couplingl2J/K in the cases ofD /J=0.6,vp /J=0.01
with different staggered DM interaction parameters,b=0.9 (dash
line), 0.5 (solid line), and 0.1(dash-dot line). The dot line is the
result of the adiabatic limitsvp=0,b=0.5d. (b) The dependences of
lmp on the phonon frequencyvp /J in the cases ofD /J
=0.6,2l2J/K=0.6 for b=0.1 (dot line), 0.5 (dash line), and 0.9
(solid line).
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When b=0 the DM interaction is uniform. The phonon-
staggered ordering parameterlmp as functions of the uni-
form DM interactionD /J are plotted in Fig. 2 for the spin-
phonon coupling l2J/K=0.2 with different phonon
frequenciesvp /J=0.01(solid line) and 0.02(dash line). The
dot line is the adiabatic limit results. It is evident that the
nonadiabaticity plays an important role in suppressing the
Peierls dimerization. The uniform DM interaction also acts
against the dimerization and can destroy the dimerization
state even in the adiabatic limit if the spin-phonon coupling
is small, which can be seen clearly in the inset of this figure.
The parameter values used in the inset areb=0, vp=0, and
l2J/K=0.07.

If 0 ,bø1, the DM interaction includes both the uniform
and the staggered components. Figure 3(a) shows the
phonon-staggered ordering parameterlmp as functions of
D /J in the cases ofl2J/K=0.5 andvp /J=0.01 with differ-
ent staggered DM interaction parameters fromb=1.0(line 1)
to b=0 (line 6). One can see that for largeb, the effect of the
DM interaction is to increase the dimerization, while the
nonadiabatic effect is to suppress it. Whenb is small, the
effect of the DM interaction on the dimerization is contrary
to that of largeb. Obviously, there exists a finite threshold
value ofb. Whenb increases to cross this value, the effect of
the DM interaction on the dimerization changes from sup-
pression to promotion. In the studying system, the total con-
tribution to the dimerization comes from the result of com-
petitions between the lattice distortion, the spin dimerization,
the uniform and the staggered DM interactions, and the
change ofb strongly influences the competition result. The
threshold valuebc can be obtained by letting the variation
]mp/]D=0 sDÞ0d, and in the nonadiabatic case,bc is de-
termined by a set of values ofD, l, andvp. If bc was simply
a constant as previous works predicted,23,24 lmp would not
change withD when b=bc as is shown in dash line in this
figure. However, in view of the determination ofmp by

D , b , l, andvp, one might wonder why the DM interaction
should have no effect on dimerization whenb=bc. Our cal-
culation indicates thatbc is not simply a constant but a cross-

FIG. 2. The phonon-staggered ordering parameterlmp as func-
tions of the uniform DM interactionD /J for the spin-phonon cou-
pling l2J/K=0.2 with different phonon frequenciesvp /J=0.01
(solid line) and 0.02(dash line). The dot line is the adiabatic limit
results. Inset: the uniform DM interaction can destroy the dimeriza-
tion state even in the adiabatic limit. The parameter values used in
the inset areb=0,vp=0, andl2J/K=0.07.

FIG. 3. (a) The phonon-staggered ordering parameterlmp as
functions ofD /J in the cases ofl2J/K=0.5 andvp /J=0.01 with
different staggered DM interaction parameters fromb=1.0 (line 1)
to b=0 (line 6). (b) The change oflmp with D /J in the region of
the crossover for different staggered DM interaction parametersb
=0.43 (dash-dot line), 0.46 (solid line), 0.49 (dash line), and 0.52
(dot line) in the case ofl2J/K=0.5 andvp /J=0.01.(c) The effect
of quantum lattice fluctuations on the dimerization parameter in the
crossover in the case ofl2J/K=0.5 andb=0.49 with different pho-
non frequenciesvp /J=0.0001 (dash line), 0.01 (solid line), and
0.02 (dot line).
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over which makes the behavior of the DM interaction in the
region of this crossover to be complicated. The change of
lmp with D /J in the region of this crossover is presented in
Fig. 3(b) for different staggered DM interaction parameters
b=0.43 (dash-dot line), 0.46 (solid line), 0.49 (dash line),
and 0.52 (dot line) in the case ofl2J/K=0.5 and vp /J
=0.01. We find that for certainl2J/K and vp /J, the cross-
over has its bottom boundarybbot and top onebtop. Whenb
is smaller(larger) thanbbot sbtopd , lmp decreases(increases)
monotonously asD /J increases, while whenbbot,b,btop,
as D /J increaseslmp decreases at first until it reaches its
minimum at a definite value ofD /J, and thereafter increases.
The definite value ofD /J changes from 1 to zero whenb
changes frombbot to btop. The effect of quantum lattice fluc-
tuations on the dimerization parameter in the crossover is
illustrated in Fig. 3(c) in the cases ofl2J/K=0.5 andb
=0.49 with different phonon frequenciesvp /J=0.0001(dash
line), 0.01 (solid line), and 0.02(dot line).

IV. SPIN DIMERIZATION AND PHASE DIAGRAM

In the spin dimerized state the Peierls distortion opens a
gap at the Fermi surface. Substituting the Fermi wave vector
kF= ±p /2−a into the gap function Eq.(21), we get the
dimerization gap

D = DskFd = 2lu0sJ cosa + Db sinadsc − dd. s26d

It can be rewritten in dimensionless form as

D/J = 2lu0sc − dd
1 + bsD/Jd2

Î1 + sD/Jd2
. s27d

Figure 4 shows the dimerization gap as function of the pho-
non frequency in the cases ofJl2/K=0.3 with different DM
interaction parameters. The dimerization gap decreases as the
phonon frequency increases, and at the critical value of pho-
non frequency the system becomes gapless. This figure also
shows clearly whether the effect of the DM interaction on the
dimerization is suppression or promotion depends on the

value of staggered DM interaction parameterb. Calculations
from Eqs.(25) and(26) indicate thatmp andD vanish at the
same critical value ofvp, which implies that the lattice dis-
tortion and the spin dimerization are two inseparable features
of the spin-Peierls ground state.

From Eq.(24), let u0=0, we get the self-consistent equa-
tion of phase-transition points

1 =
1

N
o
k.0

4l2

K
sJ sink + Db coskd2f1 − dsk − p,kdg

3
c − ddsk − p,kd

uEskdu
. s28d

Figure 5(a) shows the phase diagram of our result in the
vp /J,2l2J/K plane. As shown in the figure, the increase in
D /J leads the phase boundary to move to a larger spin-
phonon coupling whenb is small(solid and dash-dot lines),
but move to smaller one whenb is large(dash and dot lines).
To a fixed spin-phonon coupling, there exists a finite critical
value of the phonon frequency. As the phonon frequency
increases to the critical value, the spin dimerization state is
destroyed and the system becomes gapless. Figure 5(b)
shows the ground-state phase diagram in theb,D /J plane
in the cases ofvp /J=0.01 with different spin-phonon cou-
plings. One can see that to a certain definite phonon fre-
quency, the spin-phonon coupling has a divide-line value
which is not dependent onD /J or b. Along a phase boundary
determined by a certain spin-phonon coupling being smaller
(much larger) than the divide-line value,b decreases(in-
creases) as D /J increases. If the spin-phonon coupling is
larger than, but not too much, the divide-line value, along a
phase boundary, asD /J increases the staggered DM interac-
tion parameterb increases first until it reaches its maximum,
and then decreases. This implies that on a phase boundary
line, to sameb ,l2J/K andvp /J,D /J can take two different
values, which can be seen clearly in Fig. 5(c). This phase
diagram shows the influences of DM interaction on phase
transition in thel2J/K,b plane forvp /J=0.01 with D /J
=0.2 (dash line) and 0.6(solid line). In Fig. 5(d), the phase
diagram is shown in thel2J/K,D /J plane forvp /J=0.01
with b=0.62 (solid line) and 0.64(dash line). The inset in
this figure illustrates a full view of the phase diagram for
hole range ofb (b=0, 0.65, and 1). This figure indicates that
for appropriate fixed values ofb , l2J/K, and vp /J, there
exist two critical values of DM interactionsD /Jdc1 and
sD /Jdc2. As D /J increases from zero to 1, at first, the system
is in the spin-dimer state. At the first critical valuesD /Jdc1,
the dimerization gap disappears and the system becomes
gapless. At the second critical valuesD /Jdc2, the system re-
enters the spin-dimer state. For example, by using the input
parametersvp /J=0.01,2l2J/K=0.212, andb=0.62, we ob-
tain sD /Jdc1=0.403 andsD /Jdc2=0.899.

V. CONCLUSIONS

The effects of quantum lattice fluctuations on the DM
interaction in the spin-Peierls chain model have been studied
through a nonadiabatic analytical approach and the phonon-

FIG. 4. The dimerization gap as function of the phonon fre-
quency in the cases ofJl2/K=0.3 with different DM interaction
parameters.

Q. WANG AND H. ZHENG PHYSICAL REVIEW B70, 184405(2004)

184405-6



staggered ordering parameter, the spin dimerization gap as
well as the phase diagram of the system are derived. The
results show that in the nonadiabatic case, to a certain finite
phonon frequency, there exists a finite critical value of the
spin-phonon coupling constant. As the spin-phonon coupling
decreases to the critical value, the system becomes gapless
and the spin dimerization is destroyed. The DM interaction
leads the system to have a finite critical value of spin-phonon
coupling even in the adiabatic limit. The increase in stag-
gered DM interaction will decrease the critical value of spin-
phonon coupling, but increase that of phonon frequency,
therefore, favors the dimerization. The nonadiabaticity plays
an important role in suppressing the effects of the uniform
DM interaction on the dimerization. For largeb, the effect of
the DM interaction is to increase the dimerization, while the
nonadiabatic effect is to suppress it. Whenb is small, the
effect of the DM interaction on the dimerization is contrary

to that of largeb. Obviously, there exists a finite threshold
value ofb. Whenb increases to cross this value, the effect of
the DM interaction on the dimerization changes from sup-
pression to promotion. Furthermore, our result indicates that
the threshold value ofb is not simply a constant but a cross-
over which makes the behavior of the DM interaction in the
region of this crossover to be complicated. For appropriate
fixed values ofl2J/K , vp /J, and b (in the crossover re-
gion), as D /J increases from zero to 1, the phase of the
system transits from spin-dimer state to gapless state, and,
then, enters the spin-dimer state again.
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FIG. 5. (a) The phase diagram in thevp /J,2l2J/K plane.(b) The ground-state phase diagram in theb,D /J plane in the cases of
vp /J=0.01 with different spin-phonon couplings.(c) The influences of DM interaction on phase transition in thel2J/K,b plane for
vp /J=0.01 withD /J=0.2 (dash line) and 0.6(solid line). (d) The phase diagram in thel2J/K,D /J plane forvp /J=0.01 with b=0.62
(solid line) and 0.64(dash line). The inset illustrates a full view of the phase diagram for hole range ofb (b=0, 0.65, and 1).
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