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Numerical methods are applied to study the elastic wave propagation in a so-called locally resonant sonic
material. The structure is a two-dimensional analog of a three-dimensional structure proposed recently, which
offers interesting attenuation properties at low frequencies[K. M. Ho et al., Appl. Phys. Lett. 83, 5566
(2003)]. The present structure is based on heavy cylinders located on a square lattice, immersed in a soft
polymer, and separated from each other by a rigid grid. It is demonstrated that the grid induces Fano reso-
nances, improving the sound attenuation performances of the system compared with the mass law. The trans-
mission characteristics of a stacking of different layers of this material are studied and compared with those of
a 2D phononic crystal obtained by removing the grid. For equivalent mass and size, the latter is shown to have
even better attenuation performances on a larger range of frequencies due to Bragg interference phenomena at
low frequencies.
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I. INTRODUCTION

Sound attenuation is a recursive problem addressed to in-
dustry and science for several decades. The main challenge is
to design efficient devices able to reduce the noise distur-
bances at low frequencies. One of the earliest and easiest
techniques to lower the attenuation band frequencies consists
of increasing the mass or the thickness of the insulation slab.
This is the so-called mass law effect. In most cases, however,
this technique requires large-dimension insulators, difficult
to manage in practice.

Recently a new technique for sound attenuation appeared.
It is based on wave scattering inside heterogeneous periodic
materials called phononic crystals.1–8 It was proven that, for
suitable periodic parameters and elastic contrasts between
the components, a large frequency gap can be created, lead-
ing to a low sound transmission in a wide frequency range as
the result of destructive interferences of the scattered waves
within the gap or, in case of strong scattering, to a collective
response of the scatters opposite to the excitation.9 Recent
studies have demonstrated the improvement of the gap insu-
lation in comparison with the mass law.10,11 Then, specific
efforts were accomplished to bring this gap in the low-
frequency range. Simple scaling laws predict that the largest
the periodicity length, the lowest the frequency gap is. In an
opposite way, the smallest the sound velocity, the largest the
frequency gap is. Accordingly, samples with a large period
need to be considered for frequencies in the audible range.
However, this solution faces important practical limitations
simply due to the size of the crystal. Furthermore, the scaling

laws forbid the use of elastic(solid) components whose char-
acteristic velocities are too high to address the low frequency
insulation goal. For instance, a phononic crystal based on
steel scatters embedded in an epoxy matrix opens a gap
around 200 kHz for a periodic lattice parameter of 6 mm.12

In order to bring this gap at low frequency(500 Hz, for
example), the structure should have a lattice parameter of
2.4 m.

Therefore, several groups have decided to deal with low
velocity material. Air was naturally chosen for its low sound
velocity and mass density.10,11 In particular, air filled enclo-
sures in water may lead to interesting sound attenuation.9,13

Of course, solid media are preferable for practical applica-
tions. Goffauxet al.10 have proven that a steel and air struc-
ture is able to create efficient gap at low frequency. Never-
theless, it was shown that reasonable size is still a difficult
parameter to cope with.

More recently, several articles focused their investigations
on a new class of materials issued from the phononic crys-
tals, the so-called locally resonant sonic materials
(LRSM).14–17 The most recent study investigated a three-
dimensional periodic assembly of heavy spheres immersed in
a soft polymer, the periodic cells being separated from each
other by a rigid grid.15 It was demonstrated that this associa-
tion of soft and rigid bodies is responsible for the appearance
of resonant phenomena, leading to drastic transmission dips
for specific and extremely low frequencies. These dips have
an asymmetric line shape typical of a Fano resonance(see
below), whose main characteristics can beautifully be ex-
plained by a one-dimensional mass-and-spring model.16,17A
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simplified version of this mechanical model has been redis-
covered recently.18 This latter model is designed for repro-
ducing the frequencies of the resonances but is not able to
describe the Fano shape of the transmission dips. By stack-
ing a series of different LRSM layers on each other,15 a
practical insulation device was created. The improvement of
performances in comparison with the mass law was demon-
strated experimentally, while keeping reasonable dimensions
of the structure.

In this paper, we present a numerical investigation of the
elastic characteristics of a two-dimensional(2D) analog of
the LRSM described above, made of cylinders on a 2D
square lattice instead of spheres on a 3D lattice. Our numeri-
cal results support the experimental data obtained elsewhere
for the 3D LRSM system.15 Our calculations highlight the
important role of the grid in the resonant phenomena appear-
ance.

We propose a shielding LRSM assembly allowing for a
widening of the insulation range at low frequencies. It con-
sists in four layers of cylinders with different diameters. We
compare the results obtained for this stacking with the mass
law predictions. Finally, we compare the performances of the
2D LRSM system with those of a traditional 2D phononic
crystal (PC) of same thickness and mass. We demonstrate
that the PC structure is more efficient and much simpler to
realize than the LRSM. This efficiency achievement relies on
a suitable use of the scaling laws suggested above.

II. THEORETICAL APPROACH

Elastic band-gap structures have been widely studied and
described in the literature. Plane wave method,2,8 variational
model,5,6,16,17multiple scattering technique(MST),7,9,14,19,20

and finite difference time domain(FDTD) algorithm10,12,16,21

have proven their efficiencies in different situations, depend-
ing on the dimensionality of the systems and the elastic con-
trast between the crystal components.

The vectorial character of the elastic displacementu in-
duces a strong coupling between the shearing and the longi-
tudinal modes propagating inside heterogeneous structures.
Nevertheless, in two-dimensional periodic structures, a par-
tial decoupling of the elastic waves is obtained for wave
vectors perpendicular to the uniform direction. In that case, a
pure transverse solution exists for the component ofu paral-
lel to the uniform direction. Two coupled modes remain in
the periodicity plane. The partial decoupling allows us to
reduce the size of the problem, decreasing thereby the com-
putation time. For that reason, we undertook an investigation
of the in-plane modes of a 2D LRSM structure, knowing that
a straightforward extension is possible in 3D.

Elastic wave band structures of the 2D LRSM crystal
were computed with the variational method, which has al-
ready demonstrated its efficiency in this context. Details of
the method, and extension to the out-of-plane mode, can be
found elsewhere.17 The variational method was employed
with a grid of 50 nodes in each direction, which is enough to
achieve convergence of the eigenfrequencies.17

Transmission calculations across a LRSM slab were per-
formed with a FDTD method described elsewhere.12,13 For

the present work, we assumed the slab to have an infinite
extension along the lateralsxd and the vertical(i.e., uniform,
z) direction.10 The discretization steps used weredx=dy
=0.02 cm(the unit cell of the LRSM, described in Sec. III is
1.5 cm wide), 223 time stepssdt=0.0105 msd were used,
leading to a frequency resolution of 10 Hz after fast Fourier
transform of the signals. On both sides of the slab, a homo-
geneous transmission medium of 7 cm was considered with
the same discretization grid as for the LRSM. The FDTD
algorithm for the calculation of transmission coefficient has
been checked against the transfer matrix methodology in
several test cases, such as for a periodic array of steel rods in
water, and was shown to give reliable results.22 Note that the
FDTD technique has the advantage to be independent of the
geometrical shape of the scatters. This makes this technique
suitable for the study of rectangular shaped objects(such as
the grid described previously15) which cannot be addressed
by other methods like MST.

III. NUMERICAL RESULTS FOR LRSM

Numerical calculations were achieved on a 2D LRSM
made of gold cylinders(gold density, longitudinal, and trans-
verse velocities: rgold=19 500 kgm−3, cl,gold=3360 ms−1,
ct,gold=1239 ms−1). Other, less expensive, materials such as
lead can be employed without altering the conclusions.16

Moreover, in practical applications, we do not exclude the
use of hollow cylinders that will reduce the weight and the
cost.

A map of the unit cell used is shown in Fig. 1. Two
different configurations were considered. In the first configu-
ration, the cylinder, shown in dark gray in Fig. 1, has a
diametersdd of 1.1 cm and is centered in the square unit cell
with parametersad of 1.5 cm. Each cylinder is surrounded by
a soft polymer(silicon rubber14,15 density and velocities:
rsi=1300 kgm−3, cl,si=22.86 ms−1, and ct,si=5.54 ms−1). Fi-
nally, a rigid epoxy grid(shown in light gray in Fig. 1) is
used for the separation of the embedded scatters(epoxy den-
sity and velocities:rep=1180, kgm−3, cl,ep=2535 ms−1, and
ct,ep=1157 ms−1). This grid has a rectangular corner shape as
shown in Fig. 1. The thickness of the gridsed is 0.1 cm. In

FIG. 1. Maps of the two-dimensional LRSM unit cell for two
different configurations. The square unit cell is 1.5 cm large(a). It
includes a gold cylinder of 1.1 cm diameter(d) and a rectangular
epoxy corner of 0.1 cm thickness(e). In the first configuration, the
cylinder is centered in the unit cell(left-hand side panel). In the
other configuration, the cylinder is in contact with the epoxy grid
(right-hand side panel).
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the other configuration, a direct contact between the hard
scatter and the grid was achieved by a displacement of the
cylinder center(see Fig. 1). This latter configuration is used
as a reference sample,15 as explained in Sec. IV.

The in-plane band structure calculations were performed
by variational method along theG-X direction for both con-
figurations[see Figs. 2(a) and 3(a)]. In both cases, gap and
characteristic frequencies show up in an extremely low fre-
quency range. These frequencies are two orders of magni-
tude lower than the ones we would have reached with the
corresponding PC obtained without coating, i.e., with gold
cylinders in an epoxy matrix. More details can be found
elsewhere.16,17

These unusual low frequency characteristics result from a
Fano mechanism: an elastic wave traveling inside the struc-
ture can interact with localized modes, while part of the
wave can use a nonresonant way to travel across the struc-
ture. As a consequence, interferences between both traveling
wave components may occur, which results in resonant
asymmetric peaks in the transmission spectra, as shown in
Fig. 2(b). As already demonstrated elsewhere,16 slight differ-
ences between the peak positions of the transmission coeffi-
cient and the branches of the band structure exist. This is so
because the variational and FDTD methods differ, and the
convergence of the former technique may be difficult to
achieve due to the important elastic contrasts. It should also
be kept in mind that the slab is only one unit cell thick,
whereas the band structure is for a 2D crystal with infinite
extension in all directions. This is the reason why the band
gap does not correspond to a deep transmission valley of the
present thin slab. The transmission spectrum across a finite
slab was calculated by assuming epoxy incident and emer-
gent media on both sides in order to avoid all the interfacial
phenomena that could alter the results. Therefore, the com-
puted transmission coefficient is close to 1 at low frequen-
cies.

The transmission spectrum calculated for a one-layer slab
of the centered structure shows two important dips[see Fig.
2(b)]. These are the manifestations of localization phenom-
ena described above. The modes are confined either in the
hard cylindrical unit or in the silicon rubber coating, as
shown in Figs. 4(a1) and 4(a2), where the modulus of the
inplane displacement are drawn for the third and the fourth

FIG. 2. (a) In-plane band structure of the LRSM centered con-
figuration illustrated on the left-hand side of Fig. 1 at normal inci-
dence(G−X direction). The wave vector is given in units ofp /a,
wherea is the lattice constant. The centered configuration gives rise
to a large band gap and shows branches with little dispersion, even
at the lowest frequencies;(b) transmission coefficient of an incident
wave issued from an epoxy medium and crossing a one-layer slab
of the LRSM medium. The transmission spectrum presents two
main dips(280 and 1500 Hz) induced by Fano phenomena.

FIG. 3. (a) In-plane band structure of the LRSM connected con-
figuration illustrated on the right-hand side of Fig. 1 at normal
incidence(G−X direction). The wave vector is given in units of
p /a, wherea is the lattice constant. By comparison with Fig. 2(a),
the lowest branches present a large dispersion and the band gap is
reduced;(b) transmission coefficient of an incident wave issued
form an epoxy medium and crossing a one-layer slab of the LRSM
medium. The transmission spectrum presents one main dip at
1380 Hz, slightly below the corresponding dip in Fig. 2(b), which
can be explained by the polymer configuration change between the
two configurations of the LRSM.

FIG. 4. Gray-scale maps of the in-plane displacement fielduuu
inside the unit cell of the LRSM for two modes at theX point of the
band structures(black: zero amplitude, white: maximum ampli-
tude). The left-hand side column depicts results for the centered
configuration, where one can see a strong localization of the third
mode (a1) and the fourth mode(a2) in the cylinder and in the
polymer, respectively. In the connected case(right-hand side col-
umn), the cylinder localization vanishes for the second mode of the
band structure(b1) due to the cylinder attachment to the grid, while
the polymer resonant character remains for the fourth mode(b2).
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modes at theX point of the band structure.14,16

In a different way, the connected configuration of the unit
cell causes an elastic coupling between the cylinder and the
grid, avoiding the resonance of the former. This effect is
responsible for the dispersive character of the lowest fre-
quency modes[see Fig. 3(a)] and the concomitant disappear-
ance of the first transmission dip that was present around
280 Hz[see Fig. 3(b)]. Evidence of nonresonant character is
given by Fig. 4(b1), which represents a map of the second
mode at theX point of the band structure. This mode is
equivalent to the third mode of the centered configuration.
Note that localization in the polymer still exists along the
fourth branch, as demonstrated in Fig. 4(b2). A small fre-
quency shift of the corresponding transmission dips appears
in the spectra of the two configurations, because the cylinder
position has changed, altering the silicon configuration(see
Fig. 1). This observation highlights the crucial role played by
the grid in the resonant phenomena. Without this grid, we
obtain a classical PC. Section V is dedicated to this case.

IV. ATTENUATION PERFORMANCES OF LRSM
SHIELDS

In this section, we compare the attenuation of LRSM
structures with the mass law. As the connected configuration
shown on the right-hand side of Fig. 1 eliminates the lowest
frequency resonance, one can consider that its transmission
spectrum at low frequencies results from the mass law. We
can use this spectrum as the reference transmission level
brought about by the mass effect.15 Therefore, Figs. 2(b) and
3(b) provide a straightforward comparison between the two-
resonance LRSM(first configuration of Fig. 1) and the ref-
erence sample(second configuration of Fig. 1). One con-
cludes that the two-resonance LRSM brings a slight
improvement over the mass law between 250 and 1350 Hz.
Moreover, the first dip at around 280 Hz lowers the transmis-
sion coefficient by about 25% with just one LRSM layer. By
stacking several layers, the transmission dip and the gap lev-
els become lower and lower16 (see Fig. 2 in Ref. 16 and Fig.
5 below).

Even if this transmission cutoff represents a real improve-
ment over the mass law at low frequencies, it might be too
small to be useful in practice. Enlarging the transmission dip
width may be achieved by stacking different LRSMs with
either different elastic properties or different geometric pa-
rameters. This shielding results from the superposition of the
single-layer cutoff frequencies. By adjusting correctly the
properties of the successive layers, one can obtain overlap-
ping cutoff frequencies. This is shown in Fig. 5, where the
continuous line represents the sound transmission by stack-
ing four layers made of different cylinder diameters centered
in their respective unit cells. The comparison with the trans-
mission obtained for a slab composed of four identical layers
(dotted line) demonstrates that the new structure offers a
larger range of frequencies attenuation in the first dip. Note
that the second dips of the successive layers do not overlap.

In FDTD, the transmission coefficient for a given fre-
quency is computed as the ratio between the displacement
vector amplitude transmitted across the film and that ob-

tained without the film at the same location.13 This ratio is
not restricted to remain smaller than one from energetic con-
siderations. And effectively, a transmission coefficient
slightly larger than one may be observed in frequency re-
gions where the film is transparent, such as below 250 Hz in
Fig. 5.

V. SOUND ATTENUATION COMPARISON BETWEEN
LRSM SHIELDS AND PC

The prior sections have revealed the role of the grid in the
transmission dip appearance. The Fano resonances disappear
by removing the epoxy grid. This introduces an elastic con-
nection between the periodic cells and the wave scattering
phenomena which now dominate the properties of the struc-
ture. In that case, we recover a standard 2D PC composed of
a square lattice of gold cylinders immersed in a silicon rub-
ber matrix(the geometric parameters being described in the
caption of Fig. 1). For an appropriate elastic contrast, one
can expect the opening of a periodic gap. To prove this as-
sumption and to estimate the midgap frequencyng, we can
introduce a simple approach using the lattice parameter and
the sound velocities of the constituent materials.

In the band structure, the midgap frequency is located
close to the first branch folding, i.e., at the border of the first
Brillouin zone. An approximation to the value ofng can be
calculated by using the empty lattice approach.ng must be
located at a frequency between the frequency at which the
first band for pure transverse motion and the one for pure
longitudinal motion touch the border of the Brillouin zone
along theG-X direction. Since the wave vector at the border
is p /a, wherea is the lattice constant, then

FIG. 5. Transmission coefficients of an incident wave issued
from an epoxy medium and crossing a four-layer slab of the cen-
tered configuration of the LRSM described on the left-hand side of
Fig. 1. The dotted line presents the calculations performed on a
sample of four identical layers and the solid line shows the calcu-
lations achieved for four different layers. These are based on gold
cylinders with a diameter of 1.25, 1.10, 0.95, and 0.80 mm. In both
spectra, the transmission dip and the gap levels are lowered com-
pared to Fig. 2(b) due to the layer stacking. Moreover, the use of
different geometric layers enlarges the first dip extension, improv-
ing the attenuation performances of the assembly.

GOFFAUX, SÁNCHEZ-DEHESA, AND LAMBIN PHYSICAL REVIEW B70, 184302(2004)

184302-4



ct,si

2a
, vg ,

cl,si

2a
,

therefore, one can predict that the midgap frequency will be
located at a value between 185 and 760 Hz. This rule is
confirmed by the calculation of the transmission across a slab
of four layers shown in Fig. 6, where a gap centered atng
<450 Hz appears. Also, the rule is further corroborated by
the phononic band structure calculated along the propagation
direction, which is represented in Fig. 7.

On the one hand, the transmission spectrum illustrated in
Fig. 6 shows that an attenuation gap is clearly defined be-
tween 260 and 580 Hz. On the other hand, the band structure
presents a band gap from 260 to 630 Hz. The slight discrep-
ancies between the transmission valley and the band gap
come from different numerical approaches used in the calcu-
lations (FDTD and variational method, respectively), as
mentioned above.

At this point it is interesting to discuss the resonance fea-
tures below the gap in Fig. 6 and show that they can be used
to reproduce the phononic band structure. A previous work20

discussed how the reflectance minima in phononic crystal
slabs represent true phononic modes that can be use to re-
produce the band dispersion relation. In our case, the modes
are represented by the transmission maxima. Now, the model
of Ref. 20 can be applied to the maxima below the first gap
in Fig. 6. Since the external wave used in our FDTD calcu-
lations is longitudinal and impinges normally to the slab, it
will excite only longitudinal waves inside the slab. There-
fore, those maxima can be used to reproduce the longitudinal
branch associated to the phononic band structure. Following
the procedure of Ref. 20, the maxima of transmissionTsnnd
have an associated crystal momentumkn=sn/NdsG1/2d, G1

is the first reciprocal lattice vector along the propagation di-
rection,N is the number of layers andn an integer(n=1,2,
etc.). For ourGX-square-based slab,G1=2p /a, and the cor-
responding set ofskn,nnd values are represented by black
circles in Fig. 7. A larger number of modes of the phononic
band structure can be obtained simply by increasing the
thickness of the slab. The triangles and square symbols in
Fig. 7 define the maxima found in the transmission spectra
for five and seven layer slabs, respectively. Note that the
longitudinal mode does not interact with the flat mode lo-
cated around 160 Hz. The explanation and the origin of this
mode can be found elsewhere.16,17

The discussion above demonstrates the interference origin
of the attenuation gap found in the 2D PC. Moreover, the
transmission level in the gap is significantly lower than in
LRSM dip level for the same mass and the same thickness of
the slab. This fact also demonstrates the larger efficiency of
the 2D PC in comparison with the LRSM. Also, it is remark-
able that the PC presents a larger attenuation range inside the
gap. Note that in both situations, one needs to find the softest
possible material able to reach the low frequency gaps or
resonances one is looking for. In the PC case, the scaling law
introduced above is a practical tool to help industry to design
their sonic panels. The lack of grid also increases the sim-
plicity of the design in the PC case; the cylinders can be
fixed on the bottom plate of an epoxy box and the polymer
should fill up the interstitial space.

Note that to achieve an accurate comparison between PC
and LRSM, one should compare the spectra computed with
the same background medium as before, the epoxy. This con-
figuration is illustrated by the dotted curve in Fig. 6. The
conclusions are reinforced. Additional oscillations are also
found. They result in silicon/epoxy interfacial phenomena at
the entrance and exit of the PC slab.

VI. CONCLUSION

In this paper, we used different numerical methods to in-
vestigate a type of 2D LRSM offering interesting attenuation

FIG. 7. Phononic band structure along theG−X direction for a
square lattice of Au cylinders embedded in silicon rubber. Only the
in-plane modes are represented. The wave vector is given in units of
p /a, wherea=1.5 cm is the lattice constant. The cylinder diameter
is 1.1 cm. The symbols represent the maxima found in the calcu-
lated transmission across a slab consisting of four(black circles),
five (triangles), and seven layers(squares).

FIG. 6. Transmission coefficients of an incident wave issued
from an epoxy(dotted line) and a silicon rubber(solid line) medium
and crossing a four-layer slab of a 2D PC. The periodic cell is
obtained by removing the grid of the centered configuration shown
on the left-hand side of Fig. 1. Different gaps are established. The
first one is located around 450 Hz, as expected by the scaling law.
This generates an important attenuation at low frequencies. The use
of an epoxy background medium generates interfacial phenomena
responsible for the lowest general transmission level and the oscil-
lating profile of the curve.
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properties at low frequencies. The structure is based on
heavy masses immersed in a soft polymer, and separated by
a rigid grid. We demonstrated that the grid induces Fano
resonances, improving the attenuation performances in com-
parison with the mass law. We studied the characteristics of a
specific shielding of this material and we compare its trans-
mission level with the one of a 2D phononic crystal achieved
by removing the grid. We showed that the PC offers better
attenuation performances on a larger range of frequencies for
a equivalent mass and size.
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