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Phonon thermodynamics versus electron-phonon models
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Applying the path integral formalism we study the equilibrium thermodynamics of the phonon field both in
the Holstein and in the Su-Schrieffer-Heeger models. The anharmonic cumulant series, dependent on the
peculiar source currents of the e-ph models, have been computed versus temperature in the case of a low
energy oscillator. The cutoff in the series expansion has been determined, in the liavit, using the
constraint of the third law of thermodynamics. In the Holstein model, the free energy derivatives do not show
any contribution ascribable to the e-ph anharmonic effect. We find signatures of large e-ph anharmonicities in
the Su-Schrieffer-Heeger model mainly visible in the temperature dependent peak displayed by the phonon
heat capacity.
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I. INTRODUCTION the effects of the phonon spectrum renormalization on the

The equilibrium thermodynamical properties of real sys-Polaron scattering have been studied both for the opfical
tems provide signatures of phonon anharmonicities induceand the acoustic branches. Phonon anharmonicities have
both by electron-phonon and phonon-phonon interactiond?een also proposed as a fundamental feature favoring high
While in general the exact thermodynamics of anharmoniclc superconductivity in the context of(bi)polaronic
e-ph model Hamiltonians can be derived only in one dimentheories®-2?
sion and in the classical limit, variational methods based on When the electron energy scale, set by the value of the
the Bogoliubov’'s inequality permit to obtain (i) upper tight binding overlap integral, is larger ¢or comparable tp
bounds for the partition functioAsind(ii) a correct estimate the characteristic phonon energy the lattice deformation does
of the entropy within the harmonic theory once the harmonignot follow instantaneously the electron motidand the e-ph
phonons are self-consistently replaced by the temperature diteraction becomes time dependent. The path integral
pendent phonon frequencig#Such a replacement however formalisn?* is suitable to account for time dependent inter-
does not hold for other thermodynamic functions and conactions as a retarded potential naturally emerges in the exact
stant volume anharmonic effects have to be explicitly com4integral actior?®> Moreover, being valid for any e-ph cou-
puted by diagrammatic perturbative meth4dsAs at high  pling value, the path integral method allows one to derive the
temperatures phonon-phonon anharmonicities are large, ipartition function and the related temperature derivatives
the intermediate to low temperature range the e-ph couplingithout those limitations which affect the perturbative stud-
strength may induce the dominant anharmonic effects in thées.
phonon subsystem, the latter being dependent on the pecu- Our previous investigations have focused on the equilib-
liarities of the e-ph model Hamiltonian. rium thermodynamics of the SSH model by assuming a bath

The Holstein Hamiltonighand the Su-Schriffer-Heeger of harmonic phonons for the electron particle p#ttwhile
Hamiltoniarl have been widely investigated in the last de-anharmonic corrections to the phonon free energy had been
cades also in view of the growing interest for polaroniconly partially considered in the case of a time averaged
mechanisms in highT, superconductofsand polymers.  electron particle path. However, being the e-ph SSH interac-
While the Holstein model assumes a local coupling of tighttion intrinsically nonlocal on the time scale, significant pho-
binding electrons to optical phonons, in the SSH model thehon anharmonicities may be found through a full computa-
electron-phonon interaction modifies the electron hoppingion of the cumulant expansion depending on the perturbing
matrix elements thus leading to a nonlo¢a momentum  source current of the Hamiltonian model. With the present
space coupling with vertex function dependent on both the paper we propose a comparative analysis of the equilibrium
electron and the phonon wave vectbt!As the ground state thermodynamics for the phonon system in the Holstein and
of the SSH Hamiltonian is twofold degenerate localized soli-SSH models pointing out the appearance of macroscopic an-
tonic solutions appear in the system together withharmonic features driven by the strength of the e-ph cou-
polarond?®'® whose formation depends however on thepling. In Sec. Il we outline the Hamiltonian models and the
strength of the electron coupling to the induced latticecumulant expansion for the phonon partition function. The
deformatiod* and on the value of the adiabatic paraméter. results are presented in Sec. Ill, while Sec. IV contains some

Analysis of the Holstein and SSH Hamiltonians generallyfinal remarks.
assume harmonic phonon models although lattice anharmo-

nicities_ may induce rel_evant microscopic effects such_as the Il. THE HAMILTONIAN MODELS
reduction of the Holstein polaron effective mtsslong with
a consistent broadening of the polaron $izén large po- In one dimension the e-ph Holstein Hamiltonia) and

laron transport models based on the Holstein Hamiltonianthe e-ph SSH HamiltoniatHSS") read respectively,
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o N N A local e-ph interaction along theaxis, in the SSH picture the
- EE (frfran + friafo) +92 frfe(b; +by), electron hopping is accompanied by a time dependent dis-
' ' placement of the atomic coordinate.
The ground state of the SSH Hamiltonian is twofold de-
HSSH= E Jr rﬂ(f frog + frﬂf ), generate and, in real space, a soliton connects the two phases
with different senses of dimerization. As a localized elec-
tronic state is associated to the soliton the SSH model de-
__1 _ scribes in principle both electron hopping between solitons
I = =3[+ allh = U] @ and thermally activated hopping to band states. By mapping
where,g is the Holstein e-ph coupling ienergyunits, @ is  onto the r-axis we introduce time dependent electron hops
the SSH e-ph coupling in units energyength®, J is the  while maintaining the fundamental features of the SSH
nearest neighbors hopping integral for an undistorted chairblamiltonian. Equationg3) display the semiclassical nature
f" andf, create and destroy electrons on thkattice site,u,  of our method in which quantum mechanical degrees of free-
is the displacement of theth atomic group along the mo- dom interact with the classical variablesr). After setting
lecular axis,b,T andb, are the real space creation and anni-7' =0, u(0)=y(0)=0, we take the thermal averages for the
hilation phonon operators. The noninteracting phonorelectron operators over the ground states of the respective
HamiltonianH,, is assumed to be given, in both models, by Hamiltonians thus obtaining the average energies per lattice
a set of independent oscillators. Takingas the characteris- site due to electron hopping plus e-ph coupling:
tic phonon energy, the displacement field can be written as
U, =(2Mw) Y4b!+b,) andH" transforms into

() 3, _
=——E(for+1+fr+lf)+§Eurf1fr, N 28 Xhreul),
9=0\2Mo, ) <HS~°":rr>> (;mu )G -

with g dimensionally equivalent to the coupling of the
SSH model. Choosing the atomic maésof order 1¢ times
the electron mass, we gej=1.1456x g\2o[meV A™1]
whereg is given in units ofw and the latter is given in meV.
This transformation allows us to compare numerically the a
e-ph effective coupling in the two Hamiltonian models. = ;fo dk cogkx(r)JcosHexnne(ex), (4)
Let us apply to the Hamiltonians in E@l) space-time
mapping techniques previously used i.e., in the path integral
formulation of the theory of dilute magnetic allé§sand i whereN is the number of lattice site§[x(7), 7] is the elec-
the path integral study of A15 compounds with strongtron propagatora is the lattice constant,=—(J/2)cogka),
electron-phonon couplind. andng(gy) is the Fermi function.
Thus, we introduce(r) andy(7’) as the electron coordi- | general, the phonon partition function perturbed by a

nates at the andr+1 lattice sites, respectively, while the source currenj(7) can be expanded in anharmonic series as
spatial e-ph correlations contained(it) are mapped onto the

time axis by changingu, — u(7) andu,,;— u(7’). Then,H"
in (2) andHSSHin (1) transform to

G*[x(1), 7] = G[=X(7),~ 7] + G[X(7), 7]

k
, Zlj(1)] = Zh<1 +IE (= 1)I<Cl>i(r)> )
=1
HA(7,7) = - E(fT(X(T))f(y(T’)) +f1(y(7 ) f(x(7))

+ QU (D) FX(7), ﬂ
Pt (5)
HSSH 7, ) = 3, (FT () Hy(7) + Ty () Fx()), E S'””‘” p12)

)= 2[.J+ a(u(r) —u(m))]. (3  where the cumulant term&');,, are expectation values of

powers of correlation functions of the perturbing current.
rand7’ are continuous variablds=[0,3]) in the Matsubara The averages are meant over the ensemble dfitharmonic
Green’s functions formalism witl8 being the inverse tem- oscillators(having energiesy;) whose partition function is
perature hence, the electron hops are not constrained to firgf. As the oscillators are decoupled we study the anharmo-
neighbors sites along the chain. Accordingly, the Hamilto-nicity induced on a single oscillator with energy by the
nians in(3) are more general than the real space Hamiltosource currents peculiar of the Hamiltonians(8). Being,
nians in(1). Note that, while the Holstein model assumes aj"(7)=gu(7) andjSSH7)=-au(n)G*[x(7), 7] we get
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=2 6 puce | 5 i || S s
(CHH= ” Du(7| g . dru(7) X(7) = Xo+ Dy 2(RX, COL wT) = Iy SIN(@0 7)),
! m=1
b M F2 2.2
xXexp| — . drz(u (7) + 0°us(7)) |, wm =27/ 3, (10)

with, in general Mg # Ng. Thus, the general cumulant term
is obtained by averaging the second of E@8.over a set of

-1 B k ; .
(C9590) = ZLﬂg Du(r){— af dTU(T)Gi[X(T),T]:| electron particle paths:

|
. 0 (Cssn= X (CjssHX). (12)
B M -5 2 5 X0 R I Xm
“en T fo dTE(u (0 + WD) |. ® Two Fourier componentévir=2) suffice to get numerical

) ) o convergence in Eq11). We point out that, the computation
As a direct consequence of the time retardation in thgy the anharmonic expansion in the SSH model requires for
SSH e-ph interactions, the SSH cumulant series turns out tgny choice of electron path coefficients, double summations
depend on the electron path coordinates. ~ over Brillouin zone[see Eq(4)], and inverse temperatute)
In order to calculate Eqe6), we expand the periodic values[see the second of Eqe5)]
oscillator path(u(7+8)=u(7)) in Ng Fourier components

IIl. PHONON THERMODYNAMICS

Ne
u(7) = Uy + >, 2(RU, cog wy7) — Ju, SiN(w,7)) The phonon thermodynamics can be derived from(&p.
n=1 via computation of the phonon free energy™(T)

=-gHIn[Zdi(D]].

To proceed one needs a criterion to find the temperature
dependent cutofk* in the cumulant series. We feel that, in
the low T limit, the third law of thermodynamics may offer
and choose a measure of integration which normalizes thﬂ‘]e suitable constraint to determiké. Then, set the input

wp = 270/ B, (7)

kinetic term in the oscillator field action parameters (g in the Holstein mode) J andw, the program
searches for the cumulant order such that phonon entropy
Eﬁf)(T) and heat capacity‘,g‘)(T) vanish in the zero tempera-
Du(7) ture limit. In a constant volume transformation, we compute
5 % % % K1) = —TEK — oK
2 EV/(T) =—[F™(T+2A) - 2F"(T+ A) /A,
= WJ dUOH::l (2wn)2f d%unj dSUn, Y
. ” ” ” Co(T) = = [FRO(T +24) - 2F0(T + A) + F¥(T)]
1 7T
M (? X (— + —) , (12
3@ Du(r)exp{— Ef druz(r)] =1, (8) A A
0

A being the incremental step akd is determined, at finite
, v T, as the minimum value for which the anharmonic cumulant
be'”g)\hﬁ‘Vﬂ'ﬁ BIM. _ series converges with an accuracy of 40The results are
As [gdru(r)=Buo, using Eqs.(7) and (8), the Holstein  gigplayed in Fig. 1 for the case of a low energy oscillator and
cumulant series can be worked out analytically as a functiony narrow band hopping integrdi=0.1 eV. Three values af
of the cutoffNg. The first of Eqs(6) gets are assumed to emphasize the dependence of the SSH model
thermodynamics on the e-ph coupling. Tgve3 value for the
-1 Ko — 1y 11 NF 2 Holstein model calculations yields @ coincident with the
(C");\'HF= ZL,(Q_&WMZ) L k+11) —I1 (2;77) 5, (9)  largesta=21.74 meV AL,
K 7 (wp) n=1 (2nm)”+ (wp) The Holstein cumulant expansion causes a slight and
slope preserving lowering of the phonon free energy with
where only everk terms survive. As the cumulants should be respect to the harmonic plot. As a consequence the Holstein
stable against the number of Fourier components in the ogntropy and heat capacity, computed via E@), are super-
cillator path expansion we set the minimuxa through the  imposed to the harmonic quantities. However, looking at Fig.
condition Ng7> wp. Since the Holstein source current does1(d) (caseg=3), we see that a large number of cumulant
not bear any dependence on the electron path coordinategrms is required to get convergence in the Holstein series as
the Holstein expansion in E@9) coincides with the cumu- the cutoff k* markedly grows below 80 K, attaining the

lant series for a time averaged electron particle path. valuek*=40 atT=1 K. Thus, e-ph anharmonicities strongly
To compute the second of Eg®), we expand also the renormalize the Holstein partition function, essentially stabi-
electron path under the closure conditi(r+ 8) =x(7): lize the system, but there is no trace of anharmonicity in the

184301-3



MARCO ZOLI PHYSICAL REVIEW B 70, 184301(2004)

R R N ERERE R s s
= = G ]
[} 3= 4 RN —
E 2T / <]
~ <[ a=2174 7 N
> % . ]
é E [ a=145) ]
& = P a=7.25 ]
E 2 + g=3 // ///// ]
g \‘ % L ! /// B
= b (&) 1= / e
S) 8 L
: S -
g -20 77 w=20meV v i T L , w=20meV
AY - L
SRR U U I BN O T 9 3 A N SR
50 100 150 200 250 300 50 100 150 200 250 300
(a) Temperature (K) (c) Temperature (K)
a po T T T T
— I i
‘M w=R20meV 5 a==l.74 1
= 30 — —
g L i
L x g=13 4
2 PRl g 1
> b E
S 20 —
& & .
= L™ ]
% 10 [— eeoecex mm=s
Z F ]
O [EensEEnnns] 4]
s I o ]
e 2z I IV IS NI I B
50 100 150 200 250 300 0 50 100 150 200 250 300
(b) Temperature (K) (d) Temperature (K)

FIG. 1. Phonon(a) free energy,(b) entropy, and(c) heat capacity versus temperature in the Su-Schrieffer-Heeger model with e-ph
anharmonic contributions due to three values of the couglifigunits meV AL, The Holstein model results are computed for the coupling
g (in units of w) corresponding to the largest of the threevalues. Also the harmonic phonon functions are plotted for compar{sipn.
Number of anharmonic terms in the cumulant series yielding convergent thermodynamical quantities versus temperature both in the
Su-Schrieffer-Heeger modéd casg and in the Holstein mod€ly casg. A low energy oscillator is assumed.

phonon free energy temperature derivati¥es. The location of the heat capacity peak along the tempera-
Much different is the trend of the anharmonic correctionsture axis strongly varies with the oscillator energy. In Fig. 2
in the SSH model. The main features can be summarized age select two energy values and report the crossover tem-
follows: (i) the phonon free enerdyig. 1(a)] and its deriva-  peratures for a set of e-ph coupling strengths. By increasing
tives [Figs. Xb) and Xc)] largely deviate from the harmonic w at fixed a the peak shifts towards high and it shows up
plots and strongly depend am (ii) there is a thresholde  above a minimunw whose value increases at largerThus,
value above which the heat capacity displays a peak. Byigher energy oscillators are more stable against e-ph in-
enhancingx [Fig. 1(c)] the height of the peak grows and the duced anharmonicity since larger couplings are required to
bulk of the anharmonic effects on the heat capacity is shiftedhtroduce signatures of nonlinear behavior in the phonon
towards lowerT; (iii) at highT the anharmonic corrections heat capacity.
renormalize downwards the phonon free energy but their ef- So far we have focused on the thermodynamics of the
fect on the heat capacity tends to decrease signaling that e-pihonon subsystem. The question arises whether and to which
nonlinearities are rather to be seen in the intermediate tenextent theanharmonic phonoieat capacity affects thetal
perature range. Note that the size of the anharmonic enhanckeat capacity of the SSH model. As discussed in Ref. 26 the
ment is about a factor 4 larger than the value of the harmonitotal heat capacity is given by the phonon contribution plus a
oscillator heat capacity dt~ 170 K; (iv) the cutoffk* in the  source heat capacity which includes both the electronic con-
SSH modelFig. 1(d)] attains the value 10 at room tempera- tribution (related to the electron hopping integraind the
ture while the cumulant series converges with a low numbecontribution due to the source actiftne latter being:a?,
of terms(k*=2) at low T. At intermediateT €[90,270, the  see Eqs(6) in Ref. 2§. A bath of harmonic phonons has
SSH cutoff overlaps the Holstein cutoff at the vakre=8. been assumed in our previous work. Now we compare the
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on the electronic and on the e-ph coupling terms. The plot
displaying the largest peak in Fig(cl is reported on in Fig.
3(a) while C;P is computed according to the method de-
scribed in Ref. 26 after setting=21.74 meV AL, Also the
total heat capacityC%'=C2"+C2P) is shown in Fig. 8). At

low temperaturesCy P yields the largest effect mainly due to TS
the electronic hopping while at high, C{® prevails as the L
source action becomes dominant. In the intermediate range 50 100 150 =200 250 300
(T €[90,210) the anharmonic phonons provide the highest (b) Temperature (K)
contribution although their characteristic peak is substan-
tially smeared in the total heat capacity by the source ter
background. Figure(®8) compare<C3™and CP for two in-
creasing values ofw: while the anharmonic peak shifts
downwards(along theT axis) by enhancingr, C3"" remains
larger thanCy” in a temperature range which progressively
shrinks due to the strong dependence of the source action @umulant series. In the low temperature limit, the constraint
the strength of the e-ph coupling. Finally, it has to be pointedmposed by the third law of thermodynamics permits us to
out that the low temperature upturn displayed in the@l  determine the cutofk* in the anharmoni_c expansion: while
heat capacity over Tatio?® is not affected by the inclusion the SSH series converges rapidly, a high number of cumu-
of phonon anharmonic effects which tend to become neg”lants IS requlred in the Holstein model to stabilize the [Bw
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FIG. 3. (a) Total heat capacity versus temperature in the Su-
rTéchrieffer-Heeger model. The contributions due to anharmonic
phonons(Cf‘,“') and electrons plus electron-phonon interactions
(CyP) are plotted separately. The largesbf Fig. 1 is assumedb)
ah and CEP for two values ofa in units meV AL ©=20 meV.

gible at low temperatures. equilibrium properties. At intermediate and highk* (T) is
comparable in both models. However, looking at the behav-
IV. EINAL REMARKS ior of the thermodynamic properties we find striking differ-

ences between the two models. The Holstein phonon heat

The Holstein and the Su-Schrieffer-Heeger Hamiltoniancapacity does not show any trace of anharmonicity induced
present a fundamental difference with respect to the nature dfy the e-ph coupling while the SSH phonon heat capacity
the e-ph coupling. Mapping the real space interactions ontexhibits a peak whose location along tfieaxis strongly
the time scale we have shown that the Holstein e-ph interaadepends on the strength of the coupliagBy increasingy at
tions arelocal in time while, in the SSH model, the elec- a fixed T, k* grows and the phonon partition function be-
tronic hopping induces a time dependent lattice displacemertomes larger. As a result the pointmbst rapid decreasi
thus leading to aonlocale-ph coupling. As a consequence the SSH phonon free energy versus temperature shifts down-
the source current peculiar of the SSH model depends botlvards and the associated heat capacity peak is found at lower
on time and on the electron path coordinates. We have apF. At high temperatures the free energy decreases regularly
plied the path integral method to analyse the perturbing efand the anharmonic effects on the heat capacity are reduced.
fects of the source currengg both modely on the phonon Infact, at highT, the time(7) retardation between electron
subsystems by expanding the phonon partition function irhopping and atomic displacement is shortened ascoun-
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ters the upper limit of a small inverse temperature. with respect to the purely electronic and e-ph terms. The
Finally, we have computed the general path integral in theanharmonic effects are relevant in the intermediate tempera-

SSH model for an electron path moving in a bath of anharture range whereas the peak is smeared by the electronic

monic oscillators. We have derived the total heat capacityhopping term(on the low temperature sigeand by the

and pointed out the contribution of the anharmonic phonorsource action heat capacity at high temperatures.
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