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Applying the path integral formalism we study the equilibrium thermodynamics of the phonon field both in
the Holstein and in the Su-Schrieffer-Heeger models. The anharmonic cumulant series, dependent on the
peculiar source currents of the e-ph models, have been computed versus temperature in the case of a low
energy oscillator. The cutoff in the series expansion has been determined, in the lowT limit, using the
constraint of the third law of thermodynamics. In the Holstein model, the free energy derivatives do not show
any contribution ascribable to the e-ph anharmonic effect. We find signatures of large e-ph anharmonicities in
the Su-Schrieffer-Heeger model mainly visible in the temperature dependent peak displayed by the phonon
heat capacity.
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I. INTRODUCTION

The equilibrium thermodynamical properties of real sys-
tems provide signatures of phonon anharmonicities induced
both by electron-phonon and phonon-phonon interactions.
While in general the exact thermodynamics of anharmonic
e-ph model Hamiltonians can be derived only in one dimen-
sion and in the classical limit, variational methods based on
the Bogoliubov’s inequality1 permit to obtain (i) upper
bounds for the partition functions2 and(ii ) a correct estimate
of the entropy within the harmonic theory once the harmonic
phonons are self-consistently replaced by the temperature de-
pendent phonon frequencies.3 Such a replacement however
does not hold for other thermodynamic functions and con-
stant volume anharmonic effects have to be explicitly com-
puted by diagrammatic perturbative methods.4,5 As at high
temperatures phonon-phonon anharmonicities are large, in
the intermediate to low temperature range the e-ph coupling
strength may induce the dominant anharmonic effects in the
phonon subsystem, the latter being dependent on the pecu-
liarities of the e-ph model Hamiltonian.

The Holstein Hamiltonian6 and the Su-Schriffer-Heeger
Hamiltonian7 have been widely investigated in the last de-
cades also in view of the growing interest for polaronic
mechanisms in highTc superconductors8 and polymers.9

While the Holstein model assumes a local coupling of tight
binding electrons to optical phonons, in the SSH model the
electron-phonon interaction modifies the electron hopping
matrix elements thus leading to a nonlocal(in momentum
space) coupling with vertex function dependent on both the
electron and the phonon wave vector.10,11As the ground state
of the SSH Hamiltonian is twofold degenerate localized soli-
tonic solutions appear in the system together with
polarons12,13 whose formation depends however on the
strength of the electron coupling to the induced lattice
deformation14 and on the value of the adiabatic parameter.15

Analysis of the Holstein and SSH Hamiltonians generally
assume harmonic phonon models although lattice anharmo-
nicities may induce relevant microscopic effects such as the
reduction of the Holstein polaron effective mass16 along with
a consistent broadening of the polaron size.17 In large po-
laron transport models based on the Holstein Hamiltonian,

the effects of the phonon spectrum renormalization on the
polaron scattering have been studied both for the optical18

and the acoustical19 branches. Phonon anharmonicities have
been also proposed as a fundamental feature favoring high
Tc superconductivity in the context of(bi)polaronic
theories.20–22

When the electron energy scale, set by the value of the
tight binding overlap integral, is larger of(or comparable to)
the characteristic phonon energy the lattice deformation does
not follow instantaneously the electron motion23 and the e-ph
interaction becomes time dependent. The path integral
formalism24 is suitable to account for time dependent inter-
actions as a retarded potential naturally emerges in the exact
integral action.25 Moreover, being valid for any e-ph cou-
pling value, the path integral method allows one to derive the
partition function and the related temperature derivatives
without those limitations which affect the perturbative stud-
ies.

Our previous investigations have focused on the equilib-
rium thermodynamics of the SSH model by assuming a bath
of harmonicphonons for the electron particle path26 while
anharmonic corrections to the phonon free energy had been
only partially considered27 in the case of a time averaged
electron particle path. However, being the e-ph SSH interac-
tion intrinsically nonlocal on the time scale, significant pho-
non anharmonicities may be found through a full computa-
tion of the cumulant expansion depending on the perturbing
source current of the Hamiltonian model. With the present
paper we propose a comparative analysis of the equilibrium
thermodynamics for the phonon system in the Holstein and
SSH models pointing out the appearance of macroscopic an-
harmonic features driven by the strength of the e-ph cou-
pling. In Sec. II we outline the Hamiltonian models and the
cumulant expansion for the phonon partition function. The
results are presented in Sec. III, while Sec. IV contains some
final remarks.

II. THE HAMILTONIAN MODELS

In one dimension the e-ph Holstein HamiltoniansHHd and
the e-ph SSH HamiltoniansHSSHd read respectively,
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HH = −
J

2o
r

sf r
†f r+1 + f r+1

† f rd + go
r

f r
†f rsbr

† + brd,

HSSH= o
r

Jr,r+1sf r
†f r+1 + f r+1

† f rd,

Jr,r+1 = − 1
2fJ + asur − ur+1dg, s1d

where,g is the Holstein e-ph coupling inenergyunits, a is
the SSH e-ph coupling in units energy3 length−1, J is the
nearest neighbors hopping integral for an undistorted chain,
f r
† and f r create and destroy electrons on ther-lattice site,ur

is the displacement of therth atomic group along the mo-
lecular axis,br

† and br are the real space creation and anni-
hilation phonon operators. The noninteracting phonon
HamiltonianHph is assumed to be given, in both models, by
a set of independent oscillators. Takingv as the characteris-
tic phonon energy, the displacement field can be written as
ur =s2Mvd−1/2sbr

†+brd andHH transforms into

HH = −
J

2o
r

sf r
†f r+1 + f r+1

† f rd + ḡo
r

ur f r
†f r ,

ḡ = gÎ2Mv, s2d

with ḡ dimensionally equivalent to the couplinga of the
SSH model. Choosing the atomic massM of order 104 times
the electron mass, we getḡ.1.14563gÎ2vfmeV Å−1g
whereg is given in units ofv and the latter is given in meV.
This transformation allows us to compare numerically the
e-ph effective coupling in the two Hamiltonian models.

Let us apply to the Hamiltonians in Eq.(1) space-time
mapping techniques previously used i.e., in the path integral
formulation of the theory of dilute magnetic alloys28 and in
the path integral study of A15 compounds with strong
electron-phonon coupling.29

Thus, we introducexstd andyst8d as the electron coordi-
nates at ther and r +1 lattice sites, respectively, while the
spatial e-ph correlations contained in(1) are mapped onto the
time axis by changing:ur →ustd andur+1→ust8d. Then,HH

in (2) andHSSH in (1) transform to

HHst,t8d = −
J

2
sf†sxstddfsyst8dd + f†syst8ddfsxstddd

+ ḡustdf†sxstddfsxstdd,

HSSHst,t8d = Jt,t8sf†sxstddfsyst8dd + f†syst8ddfsxstddd,

Jt,t8 = − 1
2fJ + asustd − ust8ddg. s3d

t andt8 are continuous variablessPf0,bgd in the Matsubara
Green’s functions formalism withb being the inverse tem-
perature hence, the electron hops are not constrained to first
neighbors sites along the chain. Accordingly, the Hamilto-
nians in (3) are more general than the real space Hamilto-
nians in(1). Note that, while the Holstein model assumes a

local e-ph interaction along thet-axis, in the SSH picture the
electron hopping is accompanied by a time dependent dis-
placement of the atomic coordinate.

The ground state of the SSH Hamiltonian is twofold de-
generate and, in real space, a soliton connects the two phases
with different senses of dimerization. As a localized elec-
tronic state is associated to the soliton the SSH model de-
scribes in principle both electron hopping between solitons
and thermally activated hopping to band states. By mapping
onto thet-axis we introduce time dependent electron hops
while maintaining the fundamental features of the SSH
Hamiltonian. Equations(3) display the semiclassical nature
of our method in which quantum mechanical degrees of free-
dom interact with the classical variablesustd. After setting
t8=0, us0d;ys0d;0, we take the thermal averages for the
electron operators over the ground states of the respective
Hamiltonians thus obtaining the average energies per lattice
site due to electron hopping plus e-ph coupling:

kHHstdl
N

= −
J

2
G±fxstd,tg + ḡustd,

kHSSHstdl
N

= − S J

2
+ austdDG±fxstd,tg,

G±fxstd,tg = Gf− xstd,− tg + Gfxstd,tg

=
2a

p
E

0

p/a

dkcosfkxstdgcoshs«ktdnFs«kd, s4d

whereN is the number of lattice sites,Gfxstd ,tg is the elec-
tron propagator,a is the lattice constant,«k=−sJ/2dcosskad,
andnFs«kd is the Fermi function.

In general, the phonon partition function perturbed by a
source currentjstd can be expanded in anharmonic series as

Zphf jstdg . ZhS1 + o
l=1

k

s− 1dlkCll jstdD ,

Zh = p
i=1

N
1

2 sinhsvib/2d
, s5d

where the cumulant termskCll jstd are expectation values of
powers of correlation functions of the perturbing current.
The averages are meant over the ensemble of theN harmonic
oscillators(having energiesvi) whose partition function is
Zh. As the oscillators are decoupled we study the anharmo-
nicity induced on a single oscillator with energyv by the
source currents peculiar of the Hamiltonians in(3). Being,
jHstd= ḡustd and jSSHstd=−austdG±fxstd ,tg we get
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kCkl jH =
Zh

−1

k!
R DustdFḡE

0

b

dtustdGk

3expF−E
0

b

dt
M

2
su̇2std + v2u2stddG ,

kCkl jSSHsxd =
Zh

−1

k!
R DustdF− aE

0

b

dtustdG±fxstd,tgGk

3expF−E
0

b

dt
M

2
su̇2std + v2u2stddG . s6d

As a direct consequence of the time retardation in the
SSH e-ph interactions, the SSH cumulant series turns out to
depend on the electron path coordinates.

In order to calculate Eqs.(6), we expand the periodic
oscillator pathsust+bd=ustdd in NF Fourier components

ustd = uo + o
n=1

NF

2sRun cossvntd − Jun sinsvntdd

vn = 2pn/b, s7d

and choose a measure of integration which normalizes the
kinetic term in the oscillator field action

R Dustd

;
Î2

s2lMd2NF+1E
−`

`

duopn=1

NF s2pnd2E
−`

`

dRunE
−`

`

dJun,

R DustdexpF−
M

2
E

0

b

dtu̇2stdG ; 1, s8d

beinglM =Îp"2b /M.
As e0

bdtustd=bu0, using Eqs.(7) and (8), the Holstein
cumulant series can be worked out analytically as a function
of the cutoffNF. The first of Eqs.(6) gets

kCkl jH
NF =

Zh
−1

k!

sḡblMdksk − 1d ! !

pk/2svbdk+1 p
n=1

NF s2npd2

s2npd2 + svbd2 , s9d

where only evenk terms survive. As the cumulants should be
stable against the number of Fourier components in the os-
cillator path expansion we set the minimumNF through the
condition 2NFp@vb. Since the Holstein source current does
not bear any dependence on the electron path coordinates,
the Holstein expansion in Eq.(9) coincides with the cumu-
lant series for a time averaged electron particle path.27

To compute the second of Eqs.(6), we expand also the
electron path under the closure conditionxst+bd=xstd:

xstd = xo + o
m=1

MF

2sRxm cossvmtd − Jxm sinsvmtdd,

vm = 2pm/b, s10d

with, in general,MFÞNF. Thus, the general cumulant term
is obtained by averaging the second of Eqs.(6) over a set of
electron particle paths:

kCkl jSSH= o
xo,Rxm,Jxm

kCkl jSSHsxd. s11d

Two Fourier componentssMF=2d suffice to get numerical
convergence in Eq.(11). We point out that, the computation
of the anharmonic expansion in the SSH model requires for
any choice of electron path coefficients, double summations
over Brillouin zone[see Eq.(4)], and inverse temperaturestd
values[see the second of Eqs.(6)].

III. PHONON THERMODYNAMICS

The phonon thermodynamics can be derived from Eq.(5)
via computation of the phonon free energyFskdsTd
=−b−1 lnfZphf jstdgg.

To proceed one needs a criterion to find the temperature
dependent cutoffk* in the cumulant series. We feel that, in
the low T limit, the third law of thermodynamics may offer
the suitable constraint to determinek*. Then, set the input
parametersa (g in the Holstein model), J andv, the program
searches for the cumulant order such that phonon entropy
EV

skdsTd and heat capacityCV
skdsTd vanish in the zero tempera-

ture limit. In a constant volume transformation, we compute

EV
skdsTd = − fFskdsT + 2Dd − 2FskdsT + Ddg/D,

CV
skdsTd = − fFskdsT + 2Dd − 2FskdsT + Dd + FskdsTdg

3S 1

D
+

T

D2D , s12d

D being the incremental step andk* is determined, at finite
T, as the minimum value for which the anharmonic cumulant
series converges with an accuracy of 10−4. The results are
displayed in Fig. 1 for the case of a low energy oscillator and
a narrow band hopping integral,J=0.1 eV. Three values ofa
are assumed to emphasize the dependence of the SSH model
thermodynamics on the e-ph coupling. Theg=3 value for the
Holstein model calculations yields aḡ coincident with the
largesta=21.74 meV Å−1.

The Holstein cumulant expansion causes a slight and
slope preserving lowering of the phonon free energy with
respect to the harmonic plot. As a consequence the Holstein
entropy and heat capacity, computed via Eqs.(12), are super-
imposed to the harmonic quantities. However, looking at Fig.
1(d) (caseg=3), we see that a large number of cumulant
terms is required to get convergence in the Holstein series as
the cutoff k* markedly grows below 80 K, attaining the
valuek* =40 at T=1 K. Thus, e-ph anharmonicities strongly
renormalize the Holstein partition function, essentially stabi-
lize the system, but there is no trace of anharmonicity in the
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phonon free energy temperature derivatives.30

Much different is the trend of the anharmonic corrections
in the SSH model. The main features can be summarized as
follows: (i) the phonon free energy[Fig. 1(a)] and its deriva-
tives [Figs. 1(b) and 1(c)] largely deviate from the harmonic
plots and strongly depend ona; (ii ) there is a thresholda
value above which the heat capacity displays a peak. By
enhancinga [Fig. 1(c)] the height of the peak grows and the
bulk of the anharmonic effects on the heat capacity is shifted
towards lowerT; (iii ) at high T the anharmonic corrections
renormalize downwards the phonon free energy but their ef-
fect on the heat capacity tends to decrease signaling that e-ph
nonlinearities are rather to be seen in the intermediate tem-
perature range. Note that the size of the anharmonic enhance-
ment is about a factor 4 larger than the value of the harmonic
oscillator heat capacity atT,170 K; (iv) the cutoffk* in the
SSH model[Fig. 1(d)] attains the value 10 at room tempera-
ture while the cumulant series converges with a low number
of termssk* =2d at low T. At intermediateTP f90,270g, the
SSH cutoff overlaps the Holstein cutoff at the valuek* =8.

The location of the heat capacity peak along the tempera-
ture axis strongly varies with the oscillator energy. In Fig. 2
we select two energy values and report the crossover tem-
peratures for a set of e-ph coupling strengths. By increasing
v at fixeda the peak shifts towards highT and it shows up
above a minimuma whose value increases at largerv. Thus,
higher energy oscillators are more stable against e-ph in-
duced anharmonicity since larger couplings are required to
introduce signatures of nonlinear behavior in the phonon
heat capacity.

So far we have focused on the thermodynamics of the
phonon subsystem. The question arises whether and to which
extent theanharmonic phononheat capacity affects thetotal
heat capacity of the SSH model. As discussed in Ref. 26 the
total heat capacity is given by the phonon contribution plus a
source heat capacity which includes both the electronic con-
tribution (related to the electron hopping integral) and the
contribution due to the source action[the latter being~a2,
see Eqs.(6) in Ref. 26]. A bath of harmonic phonons has
been assumed in our previous work. Now we compare the

FIG. 1. Phonon(a) free energy,(b) entropy, and(c) heat capacity versus temperature in the Su-Schrieffer-Heeger model with e-ph
anharmonic contributions due to three values of the couplinga in units meV Å−1. The Holstein model results are computed for the coupling
g (in units of v) corresponding to the largest of the threea values. Also the harmonic phonon functions are plotted for comparison.(d)
Number of anharmonic terms in the cumulant series yielding convergent thermodynamical quantities versus temperature both in the
Su-Schrieffer-Heeger model(a case) and in the Holstein model(g case). A low energy oscillator is assumed.
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anharmonic phonon heat capacitysCV
anhd and the source heat

capacity, here termedCV
e-p to emphasize the dependence both

on the electronic and on the e-ph coupling terms. The plot
displaying the largest peak in Fig. 1(c) is reported on in Fig.
3(a) while CV

e-p is computed according to the method de-
scribed in Ref. 26 after settinga=21.74 meV Å−1. Also the
total heat capacitysCV

tot=CV
anh+CV

e-pd is shown in Fig. 3(a). At
low temperatures,CV

e-p yields the largest effect mainly due to
the electronic hopping while at highT, CV

e-p prevails as the
source action becomes dominant. In the intermediate range
sTP f90,210gd the anharmonic phonons provide the highest
contribution although their characteristic peak is substan-
tially smeared in the total heat capacity by the source term
background. Figure 3(b) comparesCV

anh andCV
e-p for two in-

creasing values ofa: while the anharmonic peak shifts
downwards(along theT axis) by enhancinga, CV

anh remains
larger thanCV

e-p in a temperature range which progressively
shrinks due to the strong dependence of the source action on
the strength of the e-ph coupling. Finally, it has to be pointed
out that the low temperature upturn displayed in thetotal
heat capacity over Tratio26 is not affected by the inclusion
of phonon anharmonic effects which tend to become negli-
gible at low temperatures.

IV. FINAL REMARKS

The Holstein and the Su-Schrieffer-Heeger Hamiltonian
present a fundamental difference with respect to the nature of
the e-ph coupling. Mapping the real space interactions onto
the time scale we have shown that the Holstein e-ph interac-
tions arelocal in time while, in the SSH model, the elec-
tronic hopping induces a time dependent lattice displacement
thus leading to anonlocale-ph coupling. As a consequence
the source current peculiar of the SSH model depends both
on time and on the electron path coordinates. We have ap-
plied the path integral method to analyse the perturbing ef-
fects of the source currents(in both models) on the phonon
subsystems by expanding the phonon partition function in

cumulant series. In the low temperature limit, the constraint
imposed by the third law of thermodynamics permits us to
determine the cutoffk* in the anharmonic expansion: while
the SSH series converges rapidly, a high number of cumu-
lants is required in the Holstein model to stabilize the lowT
equilibrium properties. At intermediate and highT, k* sTd is
comparable in both models. However, looking at the behav-
ior of the thermodynamic properties we find striking differ-
ences between the two models. The Holstein phonon heat
capacity does not show any trace of anharmonicity induced
by the e-ph coupling while the SSH phonon heat capacity
exhibits a peak whose location along theT axis strongly
depends on the strength of the couplinga. By increasinga at
a fixed T, k* grows and the phonon partition function be-
comes larger. As a result the point ofmost rapid decreasein
the SSH phonon free energy versus temperature shifts down-
wards and the associated heat capacity peak is found at lower
T. At high temperatures the free energy decreases regularly
and the anharmonic effects on the heat capacity are reduced.
Infact, at highT, the timestd retardation between electron
hopping and atomic displacement is shortened ast encoun-

FIG. 2. Temperature locations of the peak in the Su-Schrieffer-
Heeger phonon heat capacity versus e-ph coupling in units
meV Å−1.

FIG. 3. (a) Total heat capacity versus temperature in the Su-
Schrieffer-Heeger model. The contributions due to anharmonic
phonons sCV

anhd and electrons plus electron-phonon interactions
sCV

e-pd are plotted separately. The largesta of Fig. 1 is assumed.(b)
CV

anh andCV
e-p for two values ofa in units meV Å−1. v=20 meV.
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ters the upper limit of a small inverse temperature.
Finally, we have computed the general path integral in the

SSH model for an electron path moving in a bath of anhar-
monic oscillators. We have derived the total heat capacity
and pointed out the contribution of the anharmonic phonon

with respect to the purely electronic and e-ph terms. The
anharmonic effects are relevant in the intermediate tempera-
ture range whereas the peak is smeared by the electronic
hopping term (on the low temperature side) and by the
source action heat capacity at high temperatures.
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