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In sufficiently high spatial dimensions, the formation of the amorphioas random solid state of matter,
e.g., upon sufficent crosslinking of a macromolecular fluid, involves particle localization and, concomitantly,
the spontaneous breakdown of ttgdobal, continuoussymmetry of translations. Correspondingly, the state
supports Goldstone-type low energy, long wavelength fluctuations, the structure and implications of which are
identified and explored from the perspective of an appropriate replica field theory. In terms of this replica
perspective, the lost symmetry is that of relative translations of the replicas; common translations remain as
intact symmetries, reflecting the statistical homogeneity of the amorphous solid state. What emerges is a
picture of the Goldstone-type fluctuations of the amorphous solid state as shear deformations of an elastic
medium, along with a derivation of the shear modulus and the elastic free energy of the state. The conse-
guences of these fluctuations—which dominate deep inside the amorphous solid state—for the order parameter
of the amorphous solid state are ascertained and interpreted in terms of their impact on the statistical distri-
bution of localization lengths, a central diagnostic of the state. The correlations of these order parameter
fluctuations are also determined, and are shown to contain information concerning further diagnostics of the
amorphous solid state, such as spatial correlations in the statistics of the localization characteristics. Special
attention is paid to the properties of the amorphous solid state in two spatial dimensions, for which it is shown
that Goldstone-type fluctuations destroy particle localization, the order parameter is driven to zero, and power-
law order-parameter correlations hold.
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I. INTRODUCTION cluding the form it takes in the amorphous solid state, focus-

The aim of this paper is to identify the long wavelength, N9 ON symmetry properties and how they manifest th‘?m'
low energy fluctuations of the amorpho@s., randon solid selves within the replica formalism. In Sec. Il we describe
state, and to investigate their physical consequences. In pdfl€ structure of the low energy, long wavelength Goldstone-
ticular, by constructing an effective free energy that governdyP€ €xcitations of the amorphous solid state in terms of
these Goldstone-typefluctuations, we shall determine the distortions of the value of the order parameter. Here, we also
elastic properties of the amorphous solid, including its statidn@ke the identification of these order-parameter distortions
shear modulus. We shall also analyze the effect of these flu@S local displacements of the amorphous solid. In Secs. IV
tuations on the amorphous solid order parameter, and hen@d V we determine the energetics of these Goldstone-type
determine their impact on physical quantities such as th&Xcitations by beginning with a Landau_-type free energy ex-
distribution of localization lengths and the order parametePr€SSed in terms of the amorphous solid order parameter and
correlations. Along the way we shall reveal the physical in-8nding with elasticity theory. Along the way, we derive a
formation encoded in these correlations. The treatment prefprmUIa for th.e elastic shear.mc')dulus, V\.’h'Ch shows how this
sented here is valid deep inside the amorphous solid statg0dulus vanishes, as the liquid state is approached, at the
i.e., far from the critical point associated with the phase tranclassicali-e., mean-field theopylevel. In Sec. VI we discuss
sition from the liquid to this state. Fluctuation phenomenall€ Impact of Goldstone-type fluctuations on the structure of
such as those discussed in the present paper cannot be céﬁ)‘? amorphous solid state by examining how they diminish
tured by a solely percolative approach to amorphous solidit€ order parameter and modify the distribution of localiza-
fication. A brief account of the work reported in the presenttion 1engths. We analyze the impact of such fluctuations on
paper has been given elsewhére. the order-parameter correl_at|ons, and also catalog the various

We shall pay particular attention to systems of spatial gilength scales that feature in the paper. In Sec. VIl we take a
mension two, for which we shall see that the effect of fluc-closer look at the effects of Goldstone-type fluctuations on
tuations is strong: particle localization is destroyed, the ordeptructure and correlations in two-dimensional amorphous
parameter is driven to zero, and order-parameter correlatiorf2lids. In particular, we show that Goldstone-type fluctua-
decay as a power law in the separation between points in tHéons destroy particle localization, the order parameter is
sample. Thus we shall see that the amorphous solid state i@dfiven to zero, and power-law order-parameter correlations
in many respects, similar to other states of matter exhibitindiold, and we illustrate these features for certain special
(or nearly exhibiting spontaneously broken continuous sym- cases. In Sec. VIII we discuss the physical content of order-
metry. parameter correlations in terms of spatial correlations in the

This paper is organized as follows. In Sec. Il we sketchstatistics of the localization lengths. We also introduce distri-
the properties of the amorphous solid order parameter, inbutions of correlators, and relate their moments to order-
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parameter correlators. Some concluding remarks are given imanslational symmetry; but macroscopically this elimination

Sec. IX. Technical details are relegated to four appendixesis not evident. Owing to the absence of any residual symme-
try, such as the discrete translational symmetry of crystallin-
ity, all macroscopic observables are those of a translationally

Il. AMORPHOUS SOLID ORDER PARAMETER, invariant system. This shows up as the vanishing of the order
SYMMETRIES AND SYMMETRY BREAKING parameter, even in the amorphous solid state, unless the
A. Order parameter wave vectors sum to zero, i.&;_k?=0.

The casev=1 is excluded from the list of order parameter
mponents shown in E@L). This case corresponds maac-
rgscopic density fluctuations, and these are assumed to re-

ain small and stabl@.e., noncritica) near the amorphous
solidification transition, being suppressed by forces, such as
the excluded-volume interaction, that tend to maintain homo-
geneity. Additional insight into the nature of the constraint-
induced instability of the liquid state and its resolutign
'ﬁ(kl, ..kY)= }E <eikl'Rj><eik2‘Rj>...<eikV'Rj> . terms of the formation of the amorphous solid state—a

Jia mechanism for evading macroscopic density fluctuajigms

given in Ref. 3, especially Sec. 4.2.

The solid state of randomly and permanently constraine%o
matter, well exemplified by the rubbery state of vulcanized
macromolecular matter, may be detected and characteriz
via the following order parameter, which depends on an ar
bitrary number(=2) of tunable(but nonzerp wave vectors
{kt, k2, ... k",

Here, the vector(st}jJ:l give the positions of thé particles
that constitute the system; they inhabit a large,
D-dimensional, hypercubic regiod of volume V. Angular B. Symmetries and symmetry breaking; replica formulation
bra:;:]kets(— ) |nd|cafte an eqwhbr:_umt.expe;:ttart]tlon valutra]tzken How does the order paramet@ transform under trans-
N the presence of a given realization ot th€ quenched rafy 4, g of the particles? If, in the elemefexpik?-R;), one
dom constraints, possibly in a state with spontaneously bro- . a . :

makes the translatioR;, — R;+r& then the element is multi-
ken symmetry. Square brackdts-] denote an average over lied by a factor ex'kja-ra ‘]';md <o the order parameter ac-
the number and specifications of the quenched random cof y o P

H N4 a, ra 1 i
straints. Periodic boundary conditions discretize the wavdires a factor e).(FEaﬂk r". Now, in the fluid state no
vectorsk to the values 2m/VLD in terms of D-tuples of particles are localized and the order parameter has the value

integersm. Additional discussion of this circle of ideas is ZBerg’o?\?r;Iatslts iIrT\t/r?{el1r;agpdheorut22c:>i|ifgr56tg]tinttrl1%n§r?j(tar?nglrztrlr?gtz.r
given in Refs. 2 and 3. Y ' P P

The order parametal) detects and diagnoses the amor-'S NNZero, provided the wave vectors sum to zero. Thus, the

phous solid state by sensing and quantifying the presence ]rder parameter varies under the translations unless the trans-

S o e n 1 b rsy 0 impleq o 8£OTO0 0 e clement e Tosurmarze
(ekRiy#0 (for k #0). To acquire some feeling for how it q y ry P

) . . . ; .~ _the elements is broken down, at the amorphous solidification
works, consider Fhe lllustrative example in which a fra.Ct.'ontransition, to the residual symmetry of the common transla-
1—Q. of the partlclgs are unlocqhzed Whl|'e the remaining - of the elements.
fraction Q are _Iocallzed, harmonlcally _and isotropically but When replicas are employed to perform the average over
randomly, hav&r?g lrandom mefan p(;]smoﬁ%j) .a.nd random the quenched disordér.e., the number and location of the
mean-square displacements from those positions constrainty, what emerges is a theory of a fieﬁ)ix) defined
(Rj—(RM4(Rj = (R)gr) = 5dd/§]?, (2)  over (1+n)-fold replicated space, so that the argument
means the collection of (1+n) position D-vectors
{x% x*, ... x"} conjugate to the wave vectofie®, k*, ... k™.

Tt is understood that the limit— 0 is to be taken at the end
of any calculation. In terms of replicas, the expectation value

whered andd’ are Cartesian indices running from 1o It
is straightforward to see that for this example the order pa
rameter becomes

* 5 v of this field (fl(x)) is proportional to
ﬁ(kl, ce kV) = anvzgzjikaj‘ déz N(fz)ex;J(— %E |ka|2) y J n
0 =t I 1 sx*-R (4)
j=1 a=0
where J R
and its Fourier transfornf)(k) = [dx exp(ik -x)Q2(x), has the
N = [(QJ)‘lE 5(52—51-2)} (3 form
j loc
J n
is the disorder-averaged distribution of squared localization o ={ Jt i k. R 5
lengthsé&? of the localized fraction of particleés? (k) gl explz) a ©

The illustrative example correctly captures the pattern in .
which symmetry is spontaneously broken when there ar&he field )(x) fluctuates subject to the demand, mentioned
enough random constraints to produce the amorphous sol@bove, that the critical freedoms are only the corresponding
state: microscopically, random localization fully eliminates Fourier amplitudes()(k) for which at least two of the
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nonzero. Both a semimicroscopic approach and arguments
based on symmetries and length scales yield a Landau-
Wilson effective Hamiltonian governing the fluctuations of
this field, which is invariant under independent translations
of the replicas but whose precise structure we shall discuss
later. For now, let us just mention that the corresponding
expectation value of this field is the order paramétemvith
v=1+n: it becomes nonzero in the amorphous solid state
and, in doing so, realizes the pattern of spontaneous symme-
try breaking described above. Invariance under independent
translations of the replicas breaks down to invariance under
the subgroup of common translations of the replicas.

D-component entries in the arguméek {k° k*, ... k" are X’ ‘\i
typ

N\

Ill. GOLDSTONE FLUCTUATIONS: STRUCTURE AND
IDENTIFICATION
FIG. 1. Aclassical state in replicated real space: a hik gpace
with its ridge aligned in thex, direction and passing through the
In the amorphous solid state, one of the symmetry-relatedrigin. The thickness of the lines is intended to suggest the ampli-
family of classical values of the order parameter has the forntude of the order parameter, the thicker the line the larger the am-
g plitude. Symmetry-related classical states follow from rigid dis-
QK = 5kt tOW(kT) :J X\C/'m'e'ktot"‘C-mW(kT), (6) g:z:;:g?ts of the hill perpendicular to the ridge, i.e., in xhe

A. Formal construction of Goldstone fluctuations

in which W is real and depends only on the magnitudéof contours of constant height oriented aloxg as shown in

Some geometry is needed to define the variables in this fol-!9- 1. The peak height of the ridge determines the fraction

mula. We introduce a complete orthonormal basis set in repr localized particles; the decay of the height in the direction

lica space[e®¥"_ in terms of which vectork are expressed X~ determines_ the distribution of Iocali_zation lengths. The
Paceea=o P width of the hill corresponds to the typical value of the lo-

as N i
calization length. Symmetry-related classical states are gen-
n erated from Eq(6) by translating the hill rigidly, perpendicu-
k=2 k. (7)  lar to the ridge line (i.e., parallel to x,). Such a
a=0 transformation corresponds to relatigput not common
We also introduce theeplica body-diagonalinit vector translations of the replicagSee Fig. 2.

This pattern of symmetry breaking suggests that the Gold-

1 2 stone excitations of a classical state are constructed from it
€= “/—E Ea; (8)
\1 +Na=0 “ X2

relative to which we may decompose vectéarsto longitu-
dinal (\) and transversér) components,

k=ky+k, ky=(k-e¢ k.=k-(k-ee. (9)

We find it convenient to parametrize the longitudinal compo- \
nents of position and wave vectors in the following distinct

ways: - .
: o
1

%= (14 e, Xom =2 X", (109 u
a=0 T X
n
K= (1+0) K, k= 2 Kk*. (10b)
a=0

. FIG. 2. Goldstone-distorted state in replicated real space: the
Thenx.m andk are, respectively, the analogs of the fol- jj s displaced perpendicular to the ridge to an exierthat varies
lowing conjugate pair of vectors: the center-of-mass positionyith positionx, along the ridge. Note that the scale of this figure is
and the total momentum. With them one then has, e.gmuch larger than that used for Fig. 1: the thick line lies along the
Ky X\ =Kiot*Xc.m- ridge of the classical state, but now it is thedth of the line that
The variables just introduced exhibit the structure of aindicates the width of the hilfy,. The Goldstone-type fluctuations
classical state Eq6) as a rectilineanill in x space, with  occur on wavelengths longer thag,,
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via x, (or equivalentlyx,)-dependent translations of the " )
hill in the x, direction, i.e., ripples of the hill and its ridge. In ~ VQ(K) = f X, € e emV(K,) +iK, - v (K WIK,),
two equivalent realizations, this gives Y

(14)

with arbitrary replica-transverse amplitudgk,,;). That this
linear glimpse of the Goldstone-type excitations is in accor-
N - dance with the nonlinear view focused on in the present pa-
VO(X) = WX, = U(Xem)]- (110 per follows by expanding Eq13) to linear order in the
oldstone fieldsi. and omitting the non-Goldstone fields

us arriving at

V(K = f dXe € o em eV (k), (11
1%

Note that we are choosing to define Fourier transforms at%

follows:
AX) = f dk ek e ke koemA(K),  (124) VQ(K) = f AXg €10 *emPV (k)
v
A(k):fdX7ch.m,eikT'XTeikmt'xc-mA(X); (12b) +ikf'fch.m.eiklm.xc‘mur(xc.m)w(kr)u (15
v

also note that which shows thatv (k) is the Fourier transform of

A i u.(Xe.m). The reality ofQ)(x) ensures thaf)(—k) =Q(k)* and,
Wix,) EJdkTe KWk, (120 \ia Eq. (14), that v(~K,)=v (Kig)*. Via Eq. (15), this in
o L turn ensures the reality af(x.,). In Ref. 6 it was shown

Here and elsewhere, bars indicate division by factorsmf 2. ¢ ng other branches of low energy excitations exist; hence
on integration measures there is one such division for eaclys Goldstone excitations of E¢L1a exhaust the spectrum
variable _of integration._The details of th_e excitation are en- |ow energy excitations.
coded in the replica-transverse fieldi(Xcm), an Some insight into the structure of the Goldstone excita-
nD-component field that depends on the replica-longitudinaljons, which induce deformations of the classical state, is

poSition X m; these are théGoldstone bosonsor phonon  gptained from its replicated real-space version. Consider the
excitations, of the amorphous solid state. For consistency, Wi%ter retation ofﬁ(x) as a guantity broportional to the prob-
require that the Fourier content of the Goldstone field P q y brop b

u,(X.m) occurs at wavelengths long compared with the hillab'l'.ty density for the pos;:tLon§ of the In+replicas of a
width (i.e., the typical localization length Otherwise the particle to have the valugs©},-, see Eq(4). Then_classwal
energy of the fieldu (x, ) would be comparable to other states, Eq(11b) at constantu, are ones that describe a trans-
excitations which have been neglected. lationally invariantbound states()(x) does not depend on

The Goldstone excitations that we have just constructe¢he meanlocation of the replicax.,, but does depend on
are analogs of the capillary excitations of the interface betheir relative locations, throughx,, and decays the more the
tween coexisting liquid and gas states; see Ref. 5 for a ré€plicas are separated. This point is exemplified by the par-
view. In the liquid-gas context they similarly accompany aticular form given in Eq(263. Now, the Goldstone-distorted
spontaneous breaking of translational symmetry associatedate, Eq.(11b) with u; varying with x.,, also describes
with the choice of interface location. bound states of the replicas, but ones in which the depen-

Do the Goldstone excitations exhaust the spectrum of lovflence of the probability density on relative locations varies
energy excitations of the broken-symmetry state? The comWith X¢ . The particular form26a, which gives
plete spectrum of excitations is accounted for by decorating

the Goldstone-type parametrizatiqila with additional . y
freedomsw(k,), so that the field)(k) is expressed as VQ(x) = Qf d&2 M&)(2mg?) D72
0
Vﬂ(k) = f dXC.m. elkIOI'XC.m.+|kT'UT(XC.m-)(W(kT) + W(k)), Xexq_ |X7-_ UT(XC m)|2/2§2), (16)
1%

exemplifies this point; in particular, one sees that the most
(13 . .

probable value, of therelative locationsx, now depends on
wherew is a real-valued field that depends kp suitably  the center-of-massocation x. ,,. These remarks are ampli-
constrained to be independent of the Goldstone excitationgied in Fig. 3.
To see that the Goldstone modéd g do indeed exhaust the Returning to the issue of the structure and properties of
spectrum of low energy excitations, we make contact withthe Goldstone-type excitations of the amorphous solid state,
the linear stability analysis of the classical broken-symmetryrecall that the critical Fourier amplitudes of the field are
state, due to Castill@t al.® which identified a family of those that reside in the higher-replica sedie., HRS, for
linearly additive Goldstone-type normal modes of excitationwhich at least twoD-vector elements of the argument of
indexed byKq, Q(k) are nonzerp Do the proposed Goldstone distortions of
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to make density fluctuations there must be some compression
amongst the elements® of u..

[.QQJ
[...J
[..Q]

B. Identifying the Goldstone fluctuations as local
displacements

In this section our aim is to establish the connection be-
s N\ N\ N tween the Goldstone fields and the displacement fields of
@ ® ® conventional elasticity theord? Inter alia, this identifies the
o o o — stiffness associated with the Goldstone fluctuations as the
elastic modulus governing shear deformations of the amor-
L JEEN J J phous solid. As we shall see, the discussion is general
enough to apply t@ny amorphous solid that breaks transla-
tional symmetry microscopically but preserves it macro-
4 N\ N N scopically, in regimes where the constituent particles are
® ® ® strongly localized in position.
@ @ @ — Recall the amorphous solid order parameter, @&j.

Vs
-
4
.
'd
.

J

I (RN Ry - (@R |
FIG. 3. Molecular bound stateview of the classical and = _
Goldstone-distorted states in replicated real space. The full circleand focus on a single elemet@Ri). It is convenient to
within a border represent the replicas of a given monomer locationgonsider the element in the form

Repetitions of them along a row indicate that the center of mass of )

the bound states is distributed homogeneously. Upper bars, one e'k'rj/zj(k), (19
classical state; the probability density is peaked at the shown con- h s th f th it f tich d
figurations, in a manner independent of the location of the center of/N€rer; 1S the mean of the position of partclk and.

mass of the bound state of the replicated particles. Middle bars(,jescrlbes fluctuations about the mean. Now consider the im-

another classical state, obtained by the former one via a relatin,aCt ofa Iong. wavelength shear dlspl_a.cement,_ encodeq inthe
translation of the replicas that does not vary with the location of thd1€!d V(x), which deforms the probability density associated
center of mass. Lower bars, a Goldstone-distorted state; the proMvith the positionR; of particlej. By assuming that the typi-
ability density is peaked in a manner that varies with the location ofcal localization length is much smaller than the length scale
the center of mass. associated with variations of the deformation we are able to
retain only therigid displacement of the probability density

the classical state excite the lower-replica sectorsg, If so, thj];zr Ri. and neglect any deformqtlon of #hape Thus, under
would be suppressed by interactions, such as particle repuil® displacement the element is deformed as

sion, that tend to preserve homogeneity. To see that they do (&4 Riy = €K7, (k) — &I, (K). (20)

not, let us examine the Goldstone-distorted state in the zero-

(i.e., k=0) and one<i.e., k=ge* with q+ 0) replica sectors. Inserting such deformations into the order parameter, with an
In the former, one readily sees from Hdl4) that it has its  independent displacement field for each element, gives the
undistorted value. A straightforward calculation shows thadistorted form

in the latter sector the distorted order parameter contains the T
factor [321 eigszlka'rjeiEgzlka'Va(rj)/g/j(kl) .. /’l(k )
dx . . .
j % eXan “Xem F1q 'ua(xc.m))’ (17) ar < a a
5 :J Ve|2a:1k (r+v (r))[/z/j(kl) .. ,///j(kV)], (21)

where u*=u_-€*. By introducing the transformation .,

— X m =Xem U Xem) We see that the Goldstone-distorted
state remains zero in the one-replica sector, provided a
D-vector elementsi® of the Goldstone fieldi,(x.,) obey
the condition

where we have arrived at the second form by noting that, in
e amorphous solid state, the mean position of any patrticle
distributed homogeneously. Next, we decompose the col-
lection of displacement field§v®} into longitudinal and
transverse parts, according to the geometrical prescription
|det( Sygr + Ul = 1, (18)  9given in Sec. lll A, but keeping in mind the fact that there
are nowv copies(rather than 1+). The essential point is
which, for small amplitude distortions, reducesdu{=0. that the longitudinal part ofv®}, which corresponds toom-
That this condition corresponds to incompressibilitye.,,  mondeformations of the elements, does not generate a new
pure sheay will be established in Sec. Ill BHere and else- value of the order parameter, in contrast with the transverse
where, summations from 1 tb are implied over repeated part (which generateselative deformations Therefore, the
Cartesian indices, such dsandd’.) This is as it should be, physicaldisplacements are the transverse pafvé}. To see
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this point, consider the special situation in which the transtomolecules, and./ €, is the number of segments per mac-
verse part ofv@} is position dependent but the longitudinal romolecule.

partis not In this case(V time9 the order parameter be- In terms ofSy,, the replica partition functior®, ,, is given
comes integrating over the critical modes 6¥,
f dr @>a=tk*rgkrodD ikoveml , (k1) - (k)] (22) 2y~ f DO &S0 (24)

As things stand, in the presencewafr), a longitudinal part Then, according to the replica scheme of Deam and

Vem. Would have the effect of producing a new value of theEdwards% the disorder-averaged free enefigys given by
order parameter. As, on physical grounds, we expect that it

should not, we see thagthysical displacements are purely F Zm—Z21 9

transverse. This is a consequence of the fact that, for the long -—==Ilim Tz lim —In 2.y, (25)
wavelength displacements under consideration, the deformed -0 Ny n—0.Jn

amorphous solid state continues to preserve translational i'@/filhereT is the temperature

variance macroscopically. This argument for the absence of |; \\ a5 shown in Ref. 4see also Refs. 2, 3, and jl(hat

the longitudinal part of the displacement field continues tomakingSQ stationary with respect tf) results in the classi-
hold when it has position dependence: if, when constant, it state(6), with

does not generate a new state degenerate with the old one
then, when varying, it should not generate a low-energy de- o
formation. _ 2\ 2\ 22

Thus we have realized the goal of this section: by com- Wiks) _QJ dg Mg)e 2, (263
paring Eqgs.(113 and (22) we see that the formally con- 0
structed Goldstone fields, are in fact the physical displace-
ment fieldsv .. Actually, there is one further point to address, Q=2a7/3g, (26b)
concerning the argument of the final factor in Eg2), viz.
[/»,-(kl)---//,-(k”)].Apparently, there is dependence on the full o2 .
set of wave vectorgk?, ... k*}, whereas Eq(11g indicates M) = (&lare)) m(&y/are?), (260
dependence only on the transverse part of this collection. Th\?/here 7(6) is the universal classical scaling function dis-
resolution of this apparent discrepancy lies in the observatiogussed in Refs. 4 and 10. Distorting the classical state. via
that, for position independent,, Eq. (22) must revert to a : : g '

classical state, for which the final factor does not depend or?q' (113 or (11b), inserting the resulting state int, and

Kot As the final factor consists of probability clouds, which (:iogritﬁgn(g;;ieénftﬁgeeagﬁefﬁ, ;\r/]e‘g?hzufce)llfvxfize gcljsrlttorirgﬁtin:n
we are assuming to be undeformed by the displacements, thﬁ " Y g '

factor continues to be independentqg, in Eq. (22). which arises solely from the quadratic “gradient” termSig:

_ Mn
IV. ENERGETICS OF GOLDSTONE FLUCTUATIONS; Sy= oT dx(dyu, - dyu,), (273

ELASTIC FREE ENERGY v

The simplest Landau-Wilson effective Hamiltonian con-

. Tc 2k2
trolling the order parametdl has the form pn=——15% Vndkfgo—Tw(kT)Z, (27b)
1 (1+n) nD
So=Vc X (— ar+ =&k k)Q(k)Q(— k) _ _
2 in the former of which there are scalar products over both the

keHRS
nD independent components of and theD components of
-Veg > Ok rhyri, 082 (K1) (K)o (K3), x. The derivation of this elastic free energy is given in Ap-
kykokgeHRS pendix A. As we have discussed in Sec. Il B, and shall re-

(23 visit in Sec. V, g is the elastic shear modulus. By using the

. . . . . specific classical form foiV, Eq. (26d, and passing to the
wherec is the number of entities being constrained per un'treplica limit, n— 0, we obtain

volume, and{ar, &,,q} are, respectively, the control param-

eter for the density of constraints, the linear size of the un- 5(2)
derlying objects being linked, and the nonlinear coupling wo=TcQ@ ngN(gz)dg’zN(g’z)W (283

constant controlling the strength with which tkE fluctua-

tions interact. HRS indicates that only wave vectors in the

higher-replica sector are to be included in the summations. A 4a? L m(0)m(6)
semimicroscopic model of vulcanized macromolecular mat- :TC739_92 f dode glygt
ter yieldsa=1/2, r=(m?-mp)/n%, &=L¢,/2D, andg=1/86,

wherem controls the mean number of constraitémd has which, for the case of the semimicroscopic parameters stated
critical valuem¢=1), €, is the persistence length of the mac- shortly after Eq(23), becomes

(28b
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m(0)7(6) =1/Tfdx f(x)-u(x); becausau, is zero, only the transverse
gl o1 (280 term, —=1/Tfdx f(x)-u/ x), remains. As forf itself, it is

taken to haveD-vector elements that vanish in the zeroth
The main technical steps of this derivation are given in Ap-replica and are identically equal fan the remaining repli-
pendix B. Thus, we have arrived at the effective free energyas. This reflects the fact that the force density is envisaged
controlling elastic deformations, in the harmonic approxima-as being appliesubsequentp the cross-linking process, and
tion. It is consistent with the result obtained in Ref. 11, intherefore does not feature in the replica that generates the
which the free energy cost of imposing a macroscopic sheagross-link distribution, but is repeated in theermodynamic
deformation of the sample was determined. replicas(by which we mean the replicas that generate the
logarithm of the partition function, not the disorder distribu-
tion). Thus, one has

o= 2TC7-3J dede’

V. IDENTIFICATION OF THE SHEAR MODULUS:
MACROSCOPIC VIEW

n n—0

f o f=f-f-f, -f,=nf-f—(f - e?=——f -f - nf -f.

In Sec. Il B, we have explained why the Goldstone-type 1+n
fluctuations are identified with local displacements of the (30)
amorphous solid by considering the impact of these fluctua-
tions at a semimicroscopic level. In the present section W&y,
again address this identification, but now from a more ma
roscopic perspective, by coupling the Goldstone fields to
force-density field.

Accounting solely for the Goldstone-type fluctuations (Ug(y)ugr(y"))
[i.e., ignoring the fieldv in the parametrization of the field
in Eq. (13)], we approximate the replica partition function
(24) as f Du exp(

Zil T~ e‘Sﬂvclf Du,expl — @f dx dyu, - dyeu, fDu exp — ﬂj dxdyu - dyu
2T ) 21/,

T ’
+ 'IE'J dx f(x) -uT(x)), (29 = E)gdd’(y_y ) (319
Vv

The integration oveu in Eg. (29) is Gaussian, and thus
aightforward, requiring only the elastic correlator
CZud(y)ud,(y’)>, which is given in terms of the elastic Green
function Gaa (Yy-Y'),

. . . . . 2alt
in which S,  is the effective free energ§23) evaluated in i

the classical statés), and Du, indicates functional integra- Gaar(y) = f ak e YGyqy k),
tion over replicated displacement fields*(x)} subject to the
following conditions:u is replica-transversgef. Eq.(9)]; the
D-vector elements it contains are pure shigdr Eq. (18)];
and the Fourier content is restrictgd to wgeleggghs)]longer Gaw (K) = (K*Sgar ~ ke /K, (31b)
than ashort—distgnce cutc_ﬁ‘& (_Which is we take to be on the \ypere ¢- and ¢_ are, respectively, the long- and short-
order _of the typical Iocall_zatlpn lengttbut shorter than a  gistance cutoffs on the wave-vector integration, mentioned
long-distance cutoff. (which is commonly on the order of 4,6ve. This elastic Green function will be derived in Appen-
the linear size of the sampleThe reason for the restriction iy ¢ In terms of the elastic Green function and the force

to wavelengths longer than the typical localization length isdensity, one finds for the increaséf]—F[0] in free energy
that by restricting our attention to the Goldstone sector oy a to the applied force-density field

fluctuations we are omitting the effects of massive fluctua-
tions. To be consistent, we should also omit the effects of  Zy0lf]- Z1.400]
Goldstone-type fluctuations with wavelengths sufficientlyF[f] - F[0]=-Tlim ———————

27/€~

short that their energy scale is comparable to or larger than n—0 nZz,[0]

the scale for thglomitted least massive fluctuations. The 0 Zif]

appropriate criterion is that the short-distance cutoff be taken =-Tlim n In Z0.[0] (323
to be on the order of the typical localization length. This can o 1n

be appreciated pictorially from Figs. 1 and 2: Goldstone-type o

fluctuations having wavelengths smaller that the hill width 1 , , ,
are omitted. Note that we have ignored the Jacobian factor =" 240 dxdx’ X fu(X)Gaar (X=X )y (x"),
connected with the change of functional integration variable % dd’=1

from Q to u. (32b)

In order to reconfirm the identification of the shear modu-
lus, we have, in Eq(29), coupled the displacement field  which indicates that is the shear modulus; see Refs. 7 and
linearly to a replicatedorce density field fthough a term 8.
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VI. EFFECT OF GOLDSTONE FLUCTUATIONS ON THE *
ORDER PARAMETER AND ITS CORRELATIONS ~ _ 2 _22
Wik,) = e Mok f A& N(@)e €%
0

In this section we discuss, how Goldstone fluctuations

affect the expectation value and the correlations of the order -
parameter. Our discussion is based on harmonic elasticity 02
theory as described by the free energy of E§%a). We shall =Q f dé&® M& = (Tl pl uo))e £ 72

make frequent use of the elastic Green function, which is
defined in Eqgs.(31b) and computed in Appendix C. The .
effects of Goldstone fluctuations are most striking in two _ s

dimensions, hence the two-dimensional solid will be dis- :Qf d&2 M(£2)e %72, (36h)
cussed separately in Sec. VII. o

oo

i.e., a rigid shift of the distributionV to longer (squaregl

localization lengths, as encoded in the new distribution
Classically, the order parameter expectation value is giveiThis is to be expected: the locally fluctuating localized ob-

by Eq.(6) or, equivalently, jects are also subject to collective fluctuations—phonons.

This shift of Vis determined by the value &%, which, as

i shown in Appendix C, has the following leading-order de-
(VQ(x,k,) = Jdktotel XV ((K) (338 pendence om:

A. Order parameter reduction due to Goldstone fluctuations

S, D-1

1
_ 5 ~ 5 forD>2,
:2 e korX(Q(k)) = W(k,). (33b) I'p=~ (2m”D(D - 2) £ (37)

ktot 1
— In(€=/€.) forD=2.
47

The effect of Goldstone fluctuations on the order parameter . _ _
expectation value is estimated from the Gaussian theoryhereXp is the area of th —1)-dimensional surface of a
(274, via which we compute the mean value of the distortedD-dimensional sphere of radius unity, viz,

classical state, S =2731(D/2), (39

_ i in whichT'(D) [not to be confused with'y of Eq.(37)] is the
VQ(x k) = ek o € VA (K) (349 conventional gamma function. We see that in dimendion
greater than two the shift iBnite. However, at and below
D=2 the shiftdivergeswith the long-distance cutoff-, viz.,
= ek (k) (34b) the linear size of the system, doing so logarithmically in two
dimensions. Not surprisingly, fluctuations destroy particle lo-
calization in two-dimensional amorphous solids and thus re-
_ store the symmetry broken at the classical legeke below
~ (WK, (349 We now consider the scaling behavior of the fluctuation-
induced shift of the distribution fromV to /. We see from
This is readily evaluated via the Gaussian property,dnd  Eqs. (36) that this shift is parametrized by the lenggh,
hence we find which is defined via

Ktot

2
(VO(x,k,)) = W(k,), (353 & =TpTlpo. (39)

How does this length compare with the typical localization
_ length &, as defined, say, via the most probable valug of
W(k,) = exp(— TTpk42ug)W(K,), (35b) predicted by the classical theory? From E2fc) we see that

2 2
for the fluctuation-renormalized form df/(k,). Here DI'p Syp ~ &/, (40)
= G4d(X)|x=0 @and summation over repeated Cartesian indicesind thus we have that
is implied. Recalling the classical structure fot, Eq.(263), 0o 5
we see that the effect of the fluctuations is to induce, in say &l &yp ~ ' T pods- (41)
Eq. () or (33b), the replacement Now, from Eg.(28c) we have that

ol T~ c72, (42)

_ 22 ~
Wik;) = Qf de? M(§)e 472 — Wik,), (368 and we use this to eliminatey/T in EqQ. (41). Furthermore,
0 from Eq.(37) we have that, foD > 2,
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Ip~¢ZP~ghb (43) QX k) QX" k) * )

typ
provided we take the short-distance cutoff to be of oggigr QO k)X k) ™)
as d|scu§sed in Sec._ V. We use thls_to_ellmlri_ééen favor Equations(46) and (35) show this quotient to be given by
of &, Finally, by using Eq(40) to eliminater in favor of
&ypl €0 We obtain, forD> 2,

&1&h~ (D) Myl £0)°7°. (44)
At D=6 we find one-parameter scalinin the sense thag,  Where the separation=x-x’. o
~ &yp UPp 1O the factorcgg, which measures the number of  We illustrate t_hls behavior by con3|d_er|ng the caserf
crosslinked entities within a region of order the size of a=3 and the regimef- <|r[<¢., for which, as shown in
single one. This is to be expected, because we have uséPPendix C(see also, e.g., Ref)8we may use
classical exponents for the divergenceégf, and vanishing 1
of ,uo_yvith 7, and six is the upper critical dimen_sion for the gfd{(r) ~ ——(8yg +Ffar), (49)
transition to the amorphous solid state. In fact, if we were to 8rlr|
replace these classical exponent by their anomalous valueﬁ1 . .

Where the unit vectorf

we would expect to recover one-parameter scaling at arbli{o,q,—q,o, ... 0} Then in this regime the normalized

(47)

T
ex;{—gdd/(r)kﬂj . k:’d') y (48)
Ko

=r/|r|, and by choosingk=k’

trary D. : L
Y two-field correlator is given by
B. Two-field order parameter correlations T 2
. . . p( E(1 +cod ¢) |, (50)
As with their effect on the order parameter itself, the ef- Amrpg |r|

fect of Goldstone fluctuations on the two-field correlator can .
be determined from the Gaussian the@ya), which gives Wh('jCh depends strongly on the angiédetween the vectors
andr.

(VXK )VQX' k) * ) ~ <eik7.uT(x)e—ik;.uT(x')>W(kT)W(k;). _ We may also examine _the normalié;ed tvyo—figld cqrrelator
(45) in the regimelr| < ¢_. Making use ofgdd,(r) in this regime,

as given in Eq(C10) of Appendix C, we find that the nor-
The required correlatdexpik,-u,(x)exp-ik’-u.(x')) is also ~ Malized two-field correlator is given by

readily evaluated via the Gaussian propertyupind hence P 2112
4T 2T r
we have p( ﬂ)ex;{—ﬂ|—2(—2+co§ go)),
37 € A5ty € €5
(VOX,k)VQ(X' k) * ) (51)

~ exp<— E|kT— k’T|2> exp(— l(gdd,(O) whereé_={(_/2m (and4.={-./2m). Of course, in this re-
K0 Mo gime the result for the correlator is incomplete, as there will
also be contributions from the non-Goldstone excitations.
= Gaa (X=X )Kg - k;dr>W(kT)W(k;), (46)
C. Intermezzo on length scales
where the scalar productsq-k’,, and [k,~k!|? are, respec-
tively, taken overn and nD components. Recall, from Eq.
(37), that TI'p|p-, diverges with the long-distance cutoff.
This_, together with the positiye—sem,idgfiniteness of the 9U3omolecule, which appears alongsitle the arclength of a
dratic form[Guq (0) = Gaa (x=X') Ikza-Ky, in EQ. (46), makes  acromolecule, shortly after EGR3). Together, they yield
it evident that the correlatdv((x, k)VQ(x",k)*) givenin £ the linear size of the objects being linked, which may be
Eq. (46) vanishes aD=2 (and below unlessk=k'. This  substantially larger thafi,. It is only through¢, that¢,, and
vanishing is a second facet of the fluctuation-induced restot feature in the free energy, E®3). The densityc of enti-
ration of symmetry discussed for the case of the order paties being constrained also first features in E®), and sets
rameter, following Eq. (37). [The correlator a length scalec™P, in Eq. (44). Comparable to or longer
(VQ(KVQ(K')*) vanishes inany dimension unlesk,=k;,  than g, is the lengthé, the (distributed localization length,
owing to the preserved symmetry of common translations ofirst featuring in Eqs(2) and (3). The typical value of is
the replicas, which encodes the homogeneity of the randondenoteds,,, first mentioned around E¢40). The amount by
ness in the amorphous solid state, i.e., its macroscopic transgshich fluctuations shift the distribution @fis encoded in the
lational invariancg. If k=k’ then, regardless of dimension, fluctuation length&;, first mentioned around Eq39). The
the correlator decays with increasing separatiorx’, as  short- and long-distance cutoffs for the Goldstone-type fluc-

We pause to catalog the various length scales featured in
the present paper, and to indicate where they first appear.
The shortest length i6,, the persistence length of a mac-

shown by Eq(46). tuations are, respectively, denotéd and €., and are first
For D>2 it is convenient to analyze the two-field cor- mentioned in Sec. V. The linear size of the sample is denoted
relator normalized by its disconnected patrt, i.e., L; see the beginning of Sec. VII.
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VIl. AMORPHOUS SOLIDS IN TWO DIMENSIONS discussed in Ref. 12. The main difference is the absence of
Bragg peaks at reciprocal lattice vectors. Instead, there is a
divergence in the scattering functidrat zero wave number,

as can be seen from the Fourier transform of the correlator
r(57) with respect ta (=x-x’),

We now focus on amorphous solids two dimensions.
By taking the long-distance cutoff. to be the linear size of
the sampleZ, so that its area i£?, we see from Eqs(35)
and (37) that the expectation value of the order paramete

does indeedanish algebraicallywith the sample size, doing _ 5 5
with an exponent that depends, inter alia,kon S(q.k,) = f dr €"HLOX,k)LQX k) * )
(L£20Ux, k) = Wik Jexp(= 3 n(K2)In(L/e.)) 0. \213,(q¢
L =it (=) RIS g ey
= WIk)(L1€2)~™2, (52 t</ o ats
where the expone'nt;(KZ). varies continuously with wave B =2_er(l_x/2) 8
number and is defined via T T@+x2)
2
(k) = T« (53) In these formulas], denotes a Bessel function and we have

Ay abbreviatedry(kf) as 7. One needs to keep the two exhibited

terms because there is an exchange of dominanggrasses

To arrive at this result we have made use of the two- . - o
dimensional real-space elastic Green function evaluated %ttwrough the value 1/2, i.e., &=2mpu,/T. Specifically, for

the origin, computed in Appendix C and stated in Ey). It~ (¢>/{<)— atfixedq{- the dimensionless factdr -} be-
confirms the expectation, mentioned above, that in two diaves as

mensions fluctuations destroy particle localization and re- -312 1

store the broken symmetry. Note, however that, due to the (qe.)"HE=16)277 for <112, (599
purely entropic nature of the elasticity the exponent does not 2

depend on temperatufef. Eq. (280)]. (€)= for n> 1/2. (59b)

~ Similarly, from Eq.(46) we see that thé,-diagonal two- Restoring the dependence on orientatforwe arrive at
field correlator is given by the full, anisotropic form for the decay of the two-field cor-

<EZQ(X,k,.)E2Q(X',kT) *) relator,
—~ 2. ~ ~ A

~ Wik)? eXp<_ L (G4 (0) = G (1 k- kfdr) W)™ explonlkko K fafe). (60

Ho Here, the symbok 4 indicates the unit vectok q4/|K,|. For
(54) the illustrative case ok=(0,q,-q,0,...) this correlator re-

where, as before, the separation is denoted % -x’ and ~ duces to
the unit vector byf =r/|r|. In the regimef(_ <|r|<L, the BIal2T Jen2n@d )
Green function is given bysee Eq(C28) in Appendix W2|g) (€ Ir)> T exp2n(e?)cos @), (61)
1 . where, once agairy, is the angle betweeq andr.
Gaar(0) = Gyg(r) = 4—{5dd, In(ri€.) =t4fg}, (55 The framework adopted in the present paper allows the
m identification of thequasilocalized fraction Qi.e., the frac-
where, for convenience, we have introduced the numericallyion of particles that, while not truly localized, have RMS

rescaled short-distance cutdff., defined via displacements that diverge only logarithmically, as the sys-
tem sizeL goes to infinity. This fraction should be contrasted
T = = . (56) with the delocalized fraction, i.e., the fractions that have
= we’/*% RMS displacements that diverge linearly with One way to

extract the quasilocalized fraction is via the order parameter
In consequence, the correlator decays algebraically with thgs2)—specifically the amplitude of its power-law decay with
magnitude rof the distance, and with an amplitude that de-£. A simpler route is via the two-field correlat@80),
pends on theorientationt of the distancerelative tok,). __ _ )
Ignoring, for the moment the dependencefionve have the Q%= lim lim (€-/r) " (£2Q(x,k,) L2Q(x" k) * ) = W(0)2.
leading-order result, ki 01—
(62

The option of analyzing the quasilocalized fraction would
As mentioned above, thek -off-diagonal two-field not be available to percolation-based approaches to vulca-
correlator—like the order parameter—vanishes in the thernized matter, as such approaches do not account for the ther-
modynamic limit, reflecting the fluctuation-induced restora-mal motion of the constituent&.g., macromoleculgsbut
tion of symmetry. only the architecture of the structures they constitute. In fact,
This scenario is similar to the theory of two-dimensionalfor the same reason, the entire circle of ideas described in the
regular solids, taking into account harmonic phonons only, apresent paper lie beyond the reach of percolation-based ap-

(L20(x, k) L2 k) * ) = WIK)XT )™ . (57)
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proaches. This shows up especially vividly in the context of This opportunity does not seem to be present in the model

the vulcanization transition in lowand especially twpdi-  of vulcanized matter discussed here, which focuses exclu-

mensions. Whereas percolation theory would indicate &ively on positional order and does not support topological

lower critical dimension of unity, with nothing fundamen- €xcitations. Richer settings, such as those involving macro-

ta"y new happening as one reduces the dimensiona”t%O'GCU'es with |IC]L||d Crystalline degrees of freedom, seem

through two, the present approach correctly finds a lowelikely to raise interesting opportunities for order in low-

critical dimension at two dimensions for the amorphous sodimensional random systems.

lidification transition. This is because, in addition to incorpo-

rating the physics of percolatid_ﬁ’,15 this approach contains VIIl. PHYSICAL CONTENT OF CORRELATORS

the logically independent physics of localization and the at-

tendant issue of the spontaneous breaking of translational A- !dentifying the statistical information in the two-field

symmetry. Thus, there are qualitative, and not merely quan- correlator

titatiVe, distinctions between the vulcanization transition and What is the meaning of the correlators in the amorphous

resulting quasiamorphous solid state in two- and in highersolid state of the vulcanization field theory? Let us begin

dimensional settings, owing to the strong role played bywith the two-field correlatofQ(k;)Q(k,)* ). Specializing to

Goldstone-type fluctuations in reduced dimensions. the case in which the zero-replica entrigsandk$ are zero,
The results discussed in the present section echo thosRe interpretation of this replica quantity is given by

found for a variety of two-dimensional statistical-mechanical

systems(for a survey see, e.g., Ref. 13n the following 1 2" .

sense. A sufficient density of random constraints triggers a (Q(ky)Q(ky) * >|kg:kgzo: - > TT (ekiRike Ry |

phase transition from a liquid state to a quasiamorphous solid i1 am1

state. In the liquid state there are no clusters of constituents (63

that span the systerti.e., the system does not percolate

there are no quasilocalized particles, order-parameter corravhich expresses the connection with tts@mimicroscopic

lations decay exponentially with distance, and the staticorrelators of all pairs of particles that constitute the system.

shear modulus is zero. In the solid state a cluster does sp&pnsider a simple illustrative example, in which the posi-

the system(i.e., percolates there are quasilocalized par- tions of pairs of localized particles fluctuate about their mean

ticles, the static shear modulus is nonzero, and ordefOsitions according to a general Gaussian correlated distri-

parameter correlations decay algebraically, with a continubution. For such particles we would then have

ously varying exponent; that depends, inter alia, on the

scale set by therobe wave vector k However, the true <eik1'Rj1‘ik2'Rj2>:eikldrjld'ikzdrjzde'%Arjljldldzkldlkldz
long-range order found in higher dimensions, fails to set in, 1
albeit only just, due to thermal fluctuations. X €7 2811102 Ko, @10 K Kol

The situation is reminiscent of that found in the setting of (64)

the melting of two-dimensional crystals, triggered not by the
density of constraints, but rather by thermal fluctuations. InNyhere the mean, variancég =j,) and covariance§j; # )
this setting, at high temperatures one has a nonrigid pha%r the positions are given by

with exponentially decaying positional correlations associ-
ated with unbound dislocations. This is the analog of the

nonpercolating state of quasiamorphous solids. At lower ri:<Rj>’ (653
temperatures one has a rigid phase, associated with bound
dislocations and algebraically decaying positional correla- Arjljzdldzz<(R11d1_<R11d1>)(Rizd2_<Rizd2>)>’ (65b)

tions, but no true long-range positional order. This is the

analog of the percolating regime of amorphous solids. Th%nd summations over repeated Cartesian indieand d,
permanence of the architecture of the amorphous solid formére implied

ing systems discussed in the present paper _prohibits the de- Setting such contributions together from all pairdaxfal-
struction by thermal fluctuations of a percolating raft of con-; ;

. : ized particles we have
stituents. However, percolation does not enforce true
localization.

In two-dimensional crystallization one also has the oppor- (k) * >|k?:k2:0

tunity for correlations in therientationsof the bonds con- ~ . .

necting neighboring particles. Thus, at low temperatures one = sz df, df, dArq; dAr,, dAr,,

has, in addition to quasilong range positional correlations,

true Io_ng-range or_ientation_al correlgtions. This brings the op- ><7D(F1,F2,AArll,AAYZZ,A}12)eifldzqu‘fd—ifng:lkgd
portunity for an intermediate regime of temperatures, in R Rk

which dislocations are unbound but disclinations, which X @ V2Ar114,0,50-1K1q Kig @120 o1, ,% 0= 1K5q Ko,
would disrupt the orientational order, remain bound: the . 0o

hexatic phase of two-dimensional crystals. X eA120,0, % a=1k10, K20, (66)
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P(flyfzy&rn,&l’zz,&rlz) (QKQK) * )
= (QJ)Q 2 5(r1—rjl)&rz—rjz)ﬁ(Arll—Arjljl) —f vV gktorXg Kot <VQ(X,|(T)VQ(X ,kT) >
j1.io loc

N ~ A (1! d_Xd_X, iKeorX ok ! X
X 8(Arg = Arj; )8(Ar;p=Arj ) |, NW(kT)W(kT)f vvere™

><exp<lgdd,(x - X)Kyg - k;d,>

where we have introduce®, the disorder-averaged joint dis- Mo

tribution, over the pairs of localized particles, of the means, - - dx

variances and covariances of the particle positions. The mac- = WKWK Okt f ve'k“’t'x

roscopic translational invariance of the amorphous solid state

ensures thaP depends or; andf, only through their dif- T ,

ference, and thus we replaceP by VIP(f, XeXP(ggdd'(X)kfd : de'>’ (68)
—f,,Arq1,Ary,,Ary,). By appealing to permutation symme-

try, including the zeroth replica, we can reinstate the depenyhere)V(k,) is the fluctuation-renormalized order parameter
dence on the zeroth-replica wave vectors, and hence arrive gjyen in Egs.(35b) and(36b). Next, in Eq.(67) we perform

a hypothesized form for the two-point correlator, the integration over the center of massrafandr,, and
equate the resulting form of the correlator to the form given
(Qk)Q(K,) * ) in Eq.(68), having dropped the hats on the dummy variables,

thus arriving at a formula obeyed by the distributiBn
= QZJ dfl dfz dAAl’ll dA’\rzz dA’\rlz V_l

R Qzﬁklmkz MJ dx dArq; dAr 5 dAT 1, P(X,Ar 11, Ar 55,Ar 1)
XP(Fy = F Al 13, Al 55, AT 1) €7 16%a=0Kd P 205 a=0K1
. 0w - Y iK1 torX@1/2Ar 194 g Sh_ kS KTy am1/2Ar 004 g SN Koy Ky
s 2119, i K @ 1128 2 0,50 ok Koy X1 *e 1 110, 192 1720,
n @ o

. Y X @A 12d,d,% a=0K1d, Kod

X @A 120,0,a=oKo Ko, (67) ey s
I . ~ ~ dx .

What about contributions to the double sum over particles = WK I W(Ka7) S, ik o J — k1o
in Eq. (63) associated with one or twanlocalizedparticles? v
Such contributions certainly exist, except in the limit of large T
cross-link densitiegwhere all constituents are bound to the xXex ﬂ_gdldz(x)klrdl Ko, |- (69
infinite cluster and are, therefore, localizeéh the liquid 0

state they would, of course, be the only contributions. ThereBy solving this equation foP(x, Ary;, Af», Ar1,) one learns

they would give rise taliagonal contributions, i.e., the cor- ) :
relator (Q(k;)Q(ky)* Y would vanish unles; =k,, owing to that it E‘as ;Ne|ght only at values @Aryy, Arzp, Ary,) of the

. . . form (&71, &1, (T/ mo)Gy.4,(y)) for some values of the param-
the intact symmetry of independent translations of the repll-t h 11. 2th identity inD-d ional C
cas. In the solid state, contributions associated with unlocaf® ers(¢;, £.y), wherel is the identity inD-dimensional Car-

ized particles are expected to gives rise to short-ranged Cop_asian space. Anticipating this, it is convenient to introduce

relations. As such correlations are not the main focus of th&h€ following parametrization in terms of a reduced distribu-
present paper, we neglect contributions to the two-field cortiOn P(X,€1,&.):

relator associated with unlocalized particles.
P(X,Ar 11,Ar55,Ar 1)

B. Evaluating the statiit(i)c;?elliar:t}:;)rrmation in the two-field — f dﬁ K/(ﬁ)dé% K/’(f%) S(Ary, - Sﬂ) S(Ar 5y — ggl)
In Sec. VIII A we have connected the two-field correlator d_y _ 2 &2
(VQ(KVQ(K)*) to the distribution? that characterizes X f Vv NAr,— (T G(y)P(X, &3, 6,y).  (70)

pairs of localized particlegsee Eq.(67)], and in Sec. VIB

have evaluated the Fourier transform of this correlatorNote thatP(x,g"{,gg,y) only becomes a true distribution
(VQ(x, k)VQ(X' k) *), within the Goldstone-type fluctua- when an appropriate Jacobian factor associated withythe
tion approachsee Eq.(46)]. We now discuss the implica- dependence is introduced; nevertheless we shall continue to
tions of resulting correlator for the properties of the distribu-refer to it as a distribution. As shown in Appendix D, Eq.

tion. (69) can be solved for the reduced probability distribution;
To do this, it is convenient to exchange the correlator inthe solution is given in EqID9). Thus one finds for the full
Eq. (46) for the Fourier transform, distribution,
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P(X,Ar11,Ar 5, Al ) C. Two- (and higher-) field correlators as distributions of
particle correlations

= f A2 M()dE M) S(Ar 1, - E1) (AT~ £1) Let us pause to revisit the interpretation of the two-field
correlator. To do this, we introduce the disorder-averaged

dy , 1 distribution M, of two-patrticle correlatorg, viz.,
% f v qu g1 xY)ay E(éi_,_g%)qz ,

M,[C] = [J_Z 2 I adCi,—(gaRikeRyy))
- Armldzqdlqdz) AAr,— (TIudG(y)]. (71 izt k0
(73
This has the structure of a source term, associated with the \\nich s . (x-+iy) = 8(x) 8(y). We can then observe that the
range of values of;, convoluted with an appropriate “propa- two-field correlator, Eq(63), can be expressed as a suitable

gator.” moment of
It should be borne in mind that, in this solution for the full Mo,

distribution, Eq.(71), the integration over wave vectogsis n

subject to the usual cutoffs, i.e., those featured in Bdb). (Q(k) (ko)) = f DC M[C]I] Ciakg- (74)
Thus, even though the exponent in the factor [é)@ﬁf =0
+§§)q2—Ar12dld2qdlqd2] grows at largeq (i.e., the factor is Note that we have appealed to replica permutation symmetry
nota decaying Gaussian facjpthe large-wave-vector cutoff in order to reinstate the dependence on the zeroth-replica
protects against divergence. In fact, if we focus on the diswave vectors.

tribution P at separationg that are large compared with the It is straightforward to extend this discussion to the gen-
cutoff ¢ then for values of¢, and & with appreciable eral case of-particle correlatorgekiRi kiR = +ikeRj) “for
weight the aforementioned exponent is small, and we mawhich the distributionM, is given by

expand to obtain 3
1
P(XiArllvArZZ!ArIZ) MI'[C] = |:} 2 H 5C(Ck1k2"'kr
i 0=l kqKg,. . K #0

= | d& ME)dENED) S(Ary - E1) (A, - £1) o |

f EN(E)dE N(& 1~ & 2~ & _ (gaRi kR ik Ry | 75

2 202
><exp< 2(51 OVt Arlmldzadla%) Observe that the-field correlator can also be expressed as a
4 suitable moment,
X f vyé(x-y)é(Arlz—(T/Mo)g(y)) (72 n
(Qk)Q(ky) -+~ k) = f DC MLCIIT Ceaes s
a=0

f dé§ M&)dG ME) dAr1 - £1) dArz, - £1) (76)

Again we have appealed to replica permutation symmetry in
order to reinstate the dependence on the zeroth-replica wave
vectors. The distributiong, are natural generalizations of
the distribution of local density fluctuations, explored, e.g.,

1 1
< ol - S BV Mg

X (A1~ (T/u0)G(X)) (72D i Ref. 10.
f d&2 M(&)dE N(£D) (A 11— £21) J(Ar 5= £31) IX. CONCLUDING REMARKS
1 1 In this paper we have identified the long wavelength, low
><\—/ 1- §(§§+ EV2+ Ar124,4,04, 9, energy Goldstone-type fluctuations of the amorphous solid
state, and investigated their physical consequences. By con-
X 8(Ar 1= (T/ug)G(x)). (729  structing an effective free energy governing these fluctua-

tions, we have determined the elastic properties of the amor-
Here,dq= d/ dxy, ands indicates the smoothed delta function phous solid, including its static shear modulus which, we
resulting from the application of the wave-vector cutoff to have reconfirmed, vanishes as the third power of the amount
the Fourier integration that yields it. We have, however, pro-by which the constraint density exceeds its critical valae
ceeded to the second and third lines without explicitly indi-the classical leveél We have also analyzed the effect of these
cating the effect of this smoothing, viz., the replacement offluctuations on the amorphous solid order parameter, finding
the factor 5[Ar1,—(T/ng)G(X)] the same quantitgmeared that, in spatial dimensions greater than two, they induce a
over a region around the poirthaving linear dimension of simple, rigid shift of the distribution ofsquaregllocalization
order the short-distance cutoff. lengths. In addition, we have explored the properties of the
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order-parameter correlations in the amorphous solid stat&heoretical Physics at the University of California—Santa

establishing their physical content in terms of a joint prob-Barbara(P.M.G. and A.Z), where some of the work reported

ability distribution characterizing pairs of localized particles. here was undertaken. This work was supported in part by the

Moreover, we have computed the corresponding correlatoiational Science Foundation under Grants No. NSF

induced by Goldstone-type fluctuations and, hence, obtaineBMR02-05858 (P.M.G. and S.M), No. NSF PH99-07949

a specific formula for this joint probability distribution. (P.M.G. and A.2, and by the DFG through SFB 602 and
We have paid particular attention to systems of spatialGrant No. Zi 209/6-1A.Z.).

dimension two. In this setting we have shown that fluctua-

tions restore the symmetries broken spontaneously at th@aPPENDIX A: FROM LANDAU-WILSON HAMILTONIAN

classical level, particle localization is destroyed, the order TO ELASTIC FREE ENERGY

parameter is driven to zero, and order-parameter correlations . .

decay as a power law in the separation between points in the N this appendix we show how to get from the Landau-

sample. The state isguasiamorphous solidtate, inasmuch Wilson éffective Hamiltoniarsg, Eq.(23), to the elastic free

as it possesses algebraically decaying correlations and rigi@n€rg¥(27b). Specifically, we compute the increaSgin Sq

ity. when the classical valu@, Eqs.(6) and(26), is replaced by
Our work can be extended in several directions. We havé&oldstone-distorted classical statgla, parametrized by

focused here on the critical behavior of the shear modulus. lf+(X)- There are three terms {@3) to be computed. Two are

is also of interest to study elasticity in the strongly ‘Potential,” terms, which we shall see to have no dependence

crosslinked limit, in which(geometrical and thermfluc- N U(X); the third is a “gradient” term, and this is the origin

tuations are less important and mean-field theory shoul@f the dependence &, on u.(x).

even be quantitatively correct. Whereas for long-chain mac- Before focusing on any individual terms, we note that we

romolecules this limit is difficult to achieve, it may well be can express summations over higher-replica sector wave vec-

possible for Brownian particles, i.e., networks that are builttors as unrestricted summations, less lower-replica sector

from small units, in the simplest case just mononé€fSven  contributions; e.g.,

more interesting is a generalization to nonlinear elasticity.

Rubber can withstand very large deformations—up to 2 =2X-2 -2 (A1)

1000%—thus allowing large amounts of elastic energy to be keHRS ko kelRS  keORS

stored in the system. Our approach can be generalized taere, the two components of the lower-replica sector, viz.,

include nonlinear terms in the strain tensor, which will arisethe one- and zero-replica sectors, are, respectively, denoted

from two sources: the expansion of the Goldstone-type fluciRS and ORS.

tuations(118 and higher-order nonlinearities in the Landau-  Applying this sector decomposition to the first term in Eq.

Wilson free energy(23). Work along these lines is in (23), and recognizing that there is no contribution from the

progress. one-replica sector and that the zero-replica sector contribu-

tion is simple, we have
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%2 |Qk)[2=V f dk, k. f dvxl%e-iktot-xlﬂktot-x2e—ikT-uT(xl)+ikT-uT(x2)W(kT)Z
k

=V f %% dk, Wik,)2e k- (Urx)u;(xo) f dk, e kot

=V f %% f alk, W(k,)%e Wb (1 +n) D2 5(x; — x,)

=(1+n)_D’2fdkTW(kT)2, (A3)
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independent ofi,(x). Note that here and elsewhere in the present appendix we shall anticipate the taking of the replica limit

by omitting factors ofV".
Turning to the third term i23), the nonlinearity, and handling the constraints on the summation with care, we are faced

with the term

v > Ok rhyr, 0CU(KD) Q(Kp) 2 (kg) = f ek, ek, eks J dye (kariethy
Ko koks

X J dx; dx, dxg €K1 XKz orXztiks orXaglkrUrXa) Hkor U ks XXV (k) YKo ) W (Kg,)

= f alky, ety ks, f %e-imkwkzvksv f dk, ko, ks, f dy, eVr (ke thortka)

X f dx; dx, dxg €K1 Xtz orXztiks totXaglke X Hikoru 00 ke U 8 A) (k) )INV(K,,) Wi(ks,)

dy _ .
:(1+n)Dfelklelk2 dkgf vye—ly-(kl+k2+k3)fdleGKZTGKBTf dy,.e_'yf'(klf+k27+k3f)

X f dx; dx, dxs elkixetikexetikaXgglka ) ko U X ke U)Kk )IW(Ky,) W (Ks,)

dy
=(1+n°® J aky, ey, ks, S i, 4k, 0 J v J dxy dx; dxz 8(x; = y) 8(xz —y) 8(x3 —y)
X gkartrx) ko u ) ks U3 ) (k) )W (ko) W(Ks,)

dy .
=(1+n)° f aky, e, aks, Sk, +k, 0 f vye'(kl"+k2’+k3f)'uf(y)W(klr)W(sz)W(kew)

=(1+n)° f aky, bk, eka, S i, 4k, V(K1) Wk )W(K3,). (A4)

This is independent afi (x).
Turning to the second term i{23), the gradient term, we have

%2 k-KQK)|?= Vf ak, gk (k, -k, +k, k) f %%Q_iktot'xlﬂktot'xz X @ krUAx)Hk U )2, (A5)
k

Of the two contributions arising from this term, frokf and fromk?, the latter has na,(x) dependence. This follows via the
mechanism that we saw for the first term, viz., the development of a factéixefx,). As for the former contribution, to
evaluate it we replack, -k, by (1+n) kK and generate this factor via suitable derivatives,

iz K- k|Q(k)|2 = Vf dk, gk k, -k, %%e—iktm-xl+iklm.x2e—ikT.uf(x1)+ik7.u,(xz)w(k7)2
A vV VvV
- - dx, dx ik Ko ik - i« .
=(1+n) D/Z(l +n) lVJ dk-rdktotf vlvz(a_i)(le 'ktotxl) . (aiX2e|ktotx2)e ik (xq) gk 7 uT(XZ)W(kT)Z.
(A6)

Next, we integrate by parts, once with respecki@nd once with respect t,, to transfer the derivatives to the exponential
factors containingi,, arriving at
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(1 + n)—l—D/va
VvV V

Powers ok, higher than two would, via the corresponding derivatives, produce higher gradiantsasfwell as nonlinearities
involving lower-order derivatives. By performing the derivatives that we have here, as well &g ti@egration, which
generates a factaf(x;—x,) and allows us to integrate over, say, we obtain

x f ek €7 04702 f G IV X (04 €70 - (G @072, (A7)

(1+n)_l_D/2V_1Jdk7W(kT)2

X J dX(kT ’ aXuT(X)) ' (kT ’ 0Xu'r(x))1 (A8)

where the scalar products inside the parentheses aren®+eomponent replica-transverse vectors while the outside scalar
product is overD-component position vectors. The next step is to observe that, owing to the rotationally invariant form of
W(k,), Eq.(26a), thek, integration includes an isotropic average of two componenks, @nd is therefore proportional to the
identity in nD-dimensional replica-transverse space. Thus, we arrive at the form

1+n) 102 dx

% f dk, W(k,)k, - K, f 7 (xUAX) (X)), (A9)

which involves the two types of scalar product mentioned beneathiAB]). Reinstating the factor o¥'c from Eq.(23), we
identify the stiffness divided by the temperatutg/ T and, hence, arrive at EqR7).

APPENDIX B: EVALUATING THE STIFFNESS (ALSO KNOWN AS SHEAR MODULUS OR RIGIDITY)

In this appendix we display the main steps for obtaining the stiffpgs&gs.(28), by evaluating the formula fo,,, given
in Eq.(27b) and derived in Appendix A, in terms of the elements of the classical state(F)sThis involves the evaluation
of the right-hand sidéRHS) of Eq. (27b), which proceeds as follows:

f dl KWK )? = @ f d K f dg? M(E)dg'? (g 2)e €42
0

=Q? f dg? M(E)dg'2 Mg'?) f i Ke e
0

o

=Q? f d& ME)dE? NM(E?) 0palpgrer2 J dk, A2
0

o

= f d&® MEVDE? N(E?) 0zl pmgover2(2A) O
0

o

=Q? f d& ME)dE? MEHNDRmA) "2 A\ 2,02

0

n—0 p
~ ”Dsz d& ME)dg? ME)(E+ D)™ (B1)
0

APPENDIX C: ELASTIC GREEN FUNCTION

The elastic Green functiofyy (x—x") featuring in Eq.(319 arises via functional integration over the displacement field
u(x). This integration comprises fields configurations that(greolume preservingat least to leading order in the gradient of
the displacement fiejcand(ii) have Fourier content only from wavelengths lying between the short- and long-distance cutoffs
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{_ and{-. As the weight in Eq(3139) is Gaussian with respect tgx), we have thatT/ug)Gqq(X—X") is proportional to the
inverse of the operator appearing sandwiched between two displacement fields in the exponent of the Gaussian,

% dx(3u - d,u), (C1)
v

provided this inverse is the one associated with the Hilbert space of vector-field configurations contributing to the functional
integral. An application of the divergence theorem shows that, in addition to conditjcarsd (ii ), the Green function obeys
the equation

= V2Gq4q(X) = S4qr X), (c2

in which the delta function is to be interpreted as the identity in the appropriate Hilbert space, mentioned above. To determine
Gaar(X) we express it in its Fourier representation,

Qdd'(X):fdk e %Gy (K). (C3)
Next, we insert this representation into EG.2) to obtain
27l -
- ViJ dke_ik.xgdd/(k) = f dak kze_iklxgdd/(k) = f dke_ik'x(é‘dd/ - k_zkdkdr), (C4)
270,

where€_={_/27 and4. ={- /2. The final term, the integral representation of the appropriate delta function, accommo-
dates restrictiongi) and (ii). Then, from the linear independence of the plane waves, we see that the Fourier integral
representation of the Green function is given by Eg@), with the amplitude given by

(K?Sgqr — Kgkg)IK* for €21 < k < €2,
gdd’(k):{ o~ Kol o

. (CH)
0 otherwise,

as given in Eq(31b).
Before computing the real-space form of thisdimensional Green function, we evaluate it at argunxerd, as well as at
small argument|x| < ¢_). At x=0 we have

gdd'(x)|x=o:fdk(k25dd"kdkdf)k_4 (Céa
hco
D-1
=5dd,T dkk_z (C6b)
hco
:5dleD, (CGC)
s
D-1 3 J _
Ip=—— dk K073, C6
0= "5 (2mpP (C60)
ot

Here and elsewhere, the subscript hco indicates that the integration is subject to the hard cutoff shown expliciti@6a)Eq.
Evaluating the last integral fdd =2, and forD > 2 retaining only the dominant contribution, givEg, as given in Eq(37).
Now generalizing tdx| small but nonzero, i.e|x| <., we have, by expanding the exponential in EQ3),

@—1

1 . S 1
G (X) = Sqal'p — 5[('3 + 1) Sgar = XX JIX[* X (Z:)DMJ dk K~ (C7)
@—l
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1 A
~ O4arl'p = 5[(D + 1) Sgar — X 1IX[?

2p 1

X—= =, C8
(° DD +2) (8
where, again, we have retained only the dominant contribution. Specializibg ®andD=3 we find
2 o\ 1 xP? oo
Gaq(X) = ga 1’2 - @E@@jd' = 2XgXq1) s (C9
1 X2
(3) ~ 2L S5
gdd,(x) =~ 5dd,F3 - 457T€< '@2< (25dd’ - XdXd’) . (ClO)
We now compute the real-space form of tBisdimensional Green function, valid for arbitrapy,
Gaar (X) = f gk €7€*Gyy (k) (C1D
:f dk e_ik'x(kzb‘dd/ - kdkd/)k_4 (C12)
hco
== (840 V* = dadg YH(X), (C13
H(x) = f dk e kx4 (C14)
hco
g
R e—ik-x
=f ek IP‘lde‘lk—. (C1H
K*
«t
Specializing to the case @=3, and using spherical polar coordinat&sé, ¢), we have
£ 27 T x|/~
dk , X sin
HOx) = (2m)3 f 2 J de f dé sin gekixlcosd = % dzl?z. (C16)
£ 0 0 [x [/~
To control the potential divergence at smalive add and subtract the smalbehavior of sirg, thus obtaining
x|/
@ :Mf dz<sinz—z+l> o1
R0 =5 E (¢19
x|/~
x| . L -t
= 5(Sial(X|/e2) = Sh((x|/e-) + = 5=, (C18
t
sinz-z
Sis(t) = f dz 3 (C19

0

where Si(2) is a generalized sine integral, which has asymptotic behavior

Si() - /3! fort<1, (c20
| =
3 —(ml4) -t fort>1.

Using this behavior to approximaté®(x) in Eq. (C18), and inserting the result into EGC13), noting that the final term
vanishes under differentiation, we obtain far < |x| < (-,
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fg;(x) ~ (5dd’V2 - é’dﬁd')_ (C21)

. | | (Sgar + XgXar) - (C22

Now specializing to the case @f=2, and using plane polar coordinaigs¢), we have

|XV(¢< 2m

2) < —|k|x\c03¢ |X|2 g izcose
(x)=(2m) o : (C23

|x\/@> 0

To control the potential divergence at smalive add and subtract the smalbehavior of the integrand, thus obtaining

xo 2w x|
2 dz p x|? dz
H2( )—|7|Tf = | aele 'ZC°S¢—(1—;1122))+%[ ~(1-32) (C24)
x|/~ 0 |X[1
2 _@ __@2 X2
=|—(S(|X|/@<) S(|x[1-)) + —= <—|8—|I (1€.), (C25
t
_ dz —iz cos¢ 1.2
Sty = | = | delee=e-(1-37)). (C26)
0o o0
Noting thatS(t) has asymptotic behavidr
i fort<1
S(t) =~ 128 ' c2
() {%I (/26 fort>1, (27

where ¥(=0.5772-) is the Euler-Mascheroni constant and using this to approxit¥téx) in Eq. (C25), and inserting the
result into Eq.(C13), noting that the constant term vanishes under differentiation, we obtaif fer{x| < (- the result

G230 = = 5 (g IN(EAN126.) = 3. (c28)

APPENDIX D: FROM THE CORRELATOR TO THE DISTRIBUTION

In this appendix we give the technical steps involved in going from the two-field correlator to the distrijtias
discussed in Sec. VIII B. Beginning with E¢G9), settingk o to bek o, and reorganizing, we obtain

Q2 f dArq, dAr,, dAr, € V2Ar11g,q,% 2zokgdlkiydze_ 1/2Ar22"1"22?’FokgdlklzxdzeArl?dldzE 2zokihkgdz
) — — dx .
X f dXeI k‘OfXP(X y A r 11» A r 22 A r 12) = W( le) W( kZT) f v el kl Im.xe(-l—//hldo)gdldz(x) I(J‘le.kb'dZ . (D 1)

Inserting the parametrizatiaiv0) for P, performing the resulting integrations ov&r,4, Ar,,, andAr4, on the left-hand side
(LHS), exchanging factors ofy for A/ via Eq. (36b), canceling factors o, and identifying the Fourier transform

P(a,&.8y) = f dx €9%P(x,&,83,y), (D2)

we arrive at the following equation:
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J d&2 M) dE NED)dy P(Ky o £ £2,y) e 2K 128G+ T ko) Go 0, gy ou,

= J dé N(gi)dgg X/(gg)e-ﬂ?éfkf;l/%%kgf J dy g1 to*e(Tro)a,d,0 K1, Kord, (D3)

In order to clarify the content of this equation, we rewrite the wave-vector dependence on the LHS in terms of replica-
longitudinal (more preciselyk,) and replica-transversgn fact k,,,) componentgsee Eqs(9) and (10b)], noting thatk (o
=k, ot and writingq for each, to obtain

~ ~ 2 2,2 2
f d ﬁ M ﬁ)d gg M 5%) f dy P(q, gi g’y)e—l/2§fk1;1/2§2k2,+(T/,uo)ledz(Y)kml'kzmze—[q-q/2(l+n)](§§+§2)+(T/uo)9dld2(y)qdlqdz

:f d& M&)d& N &)e V112436, J dy e9Ye(TH0 .0,V ki, Kars,, (D4)

Next, we identify Laplace transformations with respecigiaand gg, equate the entities being transformed on the LHS and
RHS, and take the replica limit, thus arriving at

e V2AE+E)d f dy P(q, £, £2,y)e 110900, K1d; Koo, T/10)Gey0,Y) e, e,

= f dy €9Ye(Tro9a,d,Vkir, kord, (D5)

The next steps are to move the Gaussian prefactor to the RHS, and to introduce the dummy gawhixdé takes on the
values held by the second-rank tensgy),

f dg e T/H0) 90,0 K170, Kord, f dy 8(g- Q(y))P(q,ﬁ,é%,y) e(Tk09a,0,¥)dd, A,

= f dg e(T/:U“O>gdldzklml‘k27dze]-/2<§§+§g)q2 f dy €9Y5(g - G(y)). (D6)
Again equating entities being transformed, this time being transformed with respgcivefind

f dy 8(g- G(y)P(q,&,8.,y)

= e1/2(§§+§§)q2 J dy eiq'y 5(9 - g(y))e_(T/MO)gd]_dz(Y)qdlqdz_ (D?)

Next, we equate entities being transformed/dg 5(g—G(y))- -+, thus arriving at the Fourier transform of the reduced distri-
bution,

P(q,8,8.,y) = 2+ )0y (o) Gg,0,)dd, A, (D8)
Finally, we invert the Fourier transform to arrive at the reduced distribution,

P& 8y) = f dq & P(q,8,8y) = f dq &9 0Vl AE )0 (T Ga,o,(Y (DY)

Convergence of this inversion is furnished by the cutoff nature ofjthegration. Inserting this formula into the parametri-
zation(70) we arrive at a formula for the full distribution,

P(X,Ar11,Af g, AFy)) = f d& M)A ME) S(Ar1; - E1)S(Arp,— &1)

X J dvy{ f dq e-iq-(x-y)ell2(§§+é)qze-(T/uo)Gdldz(y)qdlqdz} NAr = (TIue)G(y)]. (D10)
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