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In sufficiently high spatial dimensions, the formation of the amorphous(i.e., random) solid state of matter,
e.g., upon sufficent crosslinking of a macromolecular fluid, involves particle localization and, concomitantly,
the spontaneous breakdown of the(global, continuous) symmetry of translations. Correspondingly, the state
supports Goldstone-type low energy, long wavelength fluctuations, the structure and implications of which are
identified and explored from the perspective of an appropriate replica field theory. In terms of this replica
perspective, the lost symmetry is that of relative translations of the replicas; common translations remain as
intact symmetries, reflecting the statistical homogeneity of the amorphous solid state. What emerges is a
picture of the Goldstone-type fluctuations of the amorphous solid state as shear deformations of an elastic
medium, along with a derivation of the shear modulus and the elastic free energy of the state. The conse-
quences of these fluctuations—which dominate deep inside the amorphous solid state—for the order parameter
of the amorphous solid state are ascertained and interpreted in terms of their impact on the statistical distri-
bution of localization lengths, a central diagnostic of the state. The correlations of these order parameter
fluctuations are also determined, and are shown to contain information concerning further diagnostics of the
amorphous solid state, such as spatial correlations in the statistics of the localization characteristics. Special
attention is paid to the properties of the amorphous solid state in two spatial dimensions, for which it is shown
that Goldstone-type fluctuations destroy particle localization, the order parameter is driven to zero, and power-
law order-parameter correlations hold.
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I. INTRODUCTION

The aim of this paper is to identify the long wavelength,
low energy fluctuations of the amorphous(i.e., random) solid
state, and to investigate their physical consequences. In par-
ticular, by constructing an effective free energy that governs
these Goldstone-typefluctuations, we shall determine the
elastic properties of the amorphous solid, including its static
shear modulus. We shall also analyze the effect of these fluc-
tuations on the amorphous solid order parameter, and hence
determine their impact on physical quantities such as the
distribution of localization lengths and the order parameter
correlations. Along the way we shall reveal the physical in-
formation encoded in these correlations. The treatment pre-
sented here is valid deep inside the amorphous solid state,
i.e., far from the critical point associated with the phase tran-
sition from the liquid to this state. Fluctuation phenomena
such as those discussed in the present paper cannot be cap-
tured by a solely percolative approach to amorphous solidi-
fication. A brief account of the work reported in the present
paper has been given elsewhere.1

We shall pay particular attention to systems of spatial di-
mension two, for which we shall see that the effect of fluc-
tuations is strong: particle localization is destroyed, the order
parameter is driven to zero, and order-parameter correlations
decay as a power law in the separation between points in the
sample. Thus we shall see that the amorphous solid state is,
in many respects, similar to other states of matter exhibiting
(or nearly exhibiting) spontaneously broken continuous sym-
metry.

This paper is organized as follows. In Sec. II we sketch
the properties of the amorphous solid order parameter, in-

cluding the form it takes in the amorphous solid state, focus-
ing on symmetry properties and how they manifest them-
selves within the replica formalism. In Sec. III we describe
the structure of the low energy, long wavelength Goldstone-
type excitations of the amorphous solid state in terms of
distortions of the value of the order parameter. Here, we also
make the identification of these order-parameter distortions
as local displacements of the amorphous solid. In Secs. IV
and V we determine the energetics of these Goldstone-type
excitations by beginning with a Landau-type free energy ex-
pressed in terms of the amorphous solid order parameter and
ending with elasticity theory. Along the way, we derive a
formula for the elastic shear modulus, which shows how this
modulus vanishes, as the liquid state is approached, at the
classical(i.e., mean-field theory) level. In Sec. VI we discuss
the impact of Goldstone-type fluctuations on the structure of
the amorphous solid state by examining how they diminish
the order parameter and modify the distribution of localiza-
tion lengths. We analyze the impact of such fluctuations on
the order-parameter correlations, and also catalog the various
length scales that feature in the paper. In Sec. VII we take a
closer look at the effects of Goldstone-type fluctuations on
structure and correlations in two-dimensional amorphous
solids. In particular, we show that Goldstone-type fluctua-
tions destroy particle localization, the order parameter is
driven to zero, and power-law order-parameter correlations
hold, and we illustrate these features for certain special
cases. In Sec. VIII we discuss the physical content of order-
parameter correlations in terms of spatial correlations in the
statistics of the localization lengths. We also introduce distri-
butions of correlators, and relate their moments to order-
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parameter correlators. Some concluding remarks are given in
Sec. IX. Technical details are relegated to four appendixes.

II. AMORPHOUS SOLID ORDER PARAMETER,
SYMMETRIES AND SYMMETRY BREAKING

A. Order parameter

The solid state of randomly and permanently constrained
matter, well exemplified by the rubbery state of vulcanized
macromolecular matter, may be detected and characterized
via the following order parameter, which depends on an ar-
bitrary numbernsù2d of tunable(but nonzero) wave vectors
hk1,k2, . . . ,knj,

Ṽsk1, . . .knd = F1

J
o
j=1

J

keik1·R jlkeik2·R jl ¯ keikn·R jlG . s1d

Here, the vectorshR jj j
J=1 give the positions of theJ particles

that constitute the system; they inhabit a large,
D-dimensional, hypercubic regionV of volume V. Angular
bracketsk¯l indicate an equilibrium expectation value taken
in the presence of a given realization of the quenched ran-
dom constraints, possibly in a state with spontaneously bro-
ken symmetry. Square brackets[¯] denote an average over
the number and specifications of the quenched random con-
straints. Periodic boundary conditions discretize the wave
vectorsk to the values 2pm /V1/D in terms of D-tuples of
integersm. Additional discussion of this circle of ideas is
given in Refs. 2 and 3.

The order parameter(1) detects and diagnoses the amor-
phous solid state by sensing and quantifying the presence of
static random waves in the particle density, as implied by
keik·R jlÞ0 (for k Þ0). To acquire some feeling for how it
works, consider the illustrative example in which a fraction
1−Q of the particles are unlocalized while the remaining
fraction Q are localized, harmonically and isotropically but
randomly, having random mean positionskR jl and random
mean-square displacements from those positions

ksR j − kR jlddsR j − kR jldd8l = ddd8j j
2, s2d

whered andd8 are Cartesian indices running from 1 toD. It
is straightforward to see that for this example the order pa-
rameter becomes

Ṽsk1, . . .knd = Qd0,oa=1
n kaE

0

`

dj2 Nsj2dexpS−
j2

2 o
a=1

n

ukau2D ,

where

Nsj2d ; FsQJd−1 o
j loc

dsj2 − j j
2dG s3d

is the disorder-averaged distribution of squared localization
lengthsj2 of the localized fraction of particles.2–4

The illustrative example correctly captures the pattern in
which symmetry is spontaneously broken when there are
enough random constraints to produce the amorphous solid
state: microscopically, random localization fully eliminates

translational symmetry; but macroscopically this elimination
is not evident. Owing to the absence of any residual symme-
try, such as the discrete translational symmetry of crystallin-
ity, all macroscopic observables are those of a translationally
invariant system. This shows up as the vanishing of the order
parameter, even in the amorphous solid state, unless the
wave vectors sum to zero, i.e.,oa=1

n ka=0.
The casen=1 is excluded from the list of order parameter

components shown in Eq.(1). This case corresponds tomac-
roscopicdensity fluctuations, and these are assumed to re-
main small and stable(i.e., noncritical) near the amorphous
solidification transition, being suppressed by forces, such as
the excluded-volume interaction, that tend to maintain homo-
geneity. Additional insight into the nature of the constraint-
induced instability of the liquid state and its resolution(in
terms of the formation of the amorphous solid state—a
mechanism for evading macroscopic density fluctuations) is
given in Ref. 3, especially Sec. 4.2.

B. Symmetries and symmetry breaking; replica formulation

How does the order parameter(1) transform under trans-
lations of the particles? If, in the elementkexpika·R jl, one
makes the translationR j →R j +r a then the element is multi-
plied by a factor expika·r a and so the order parameter ac-
quires a factor expioa=1

n ka·r a. Now, in the fluid state no
particles are localized and the order parameter has the value
zero, so it is invariant under the aforementioned translations.
By contrast, in the amorphous solid state the order parameter
is nonzero, provided the wave vectors sum to zero. Thus, the
order parameter varies under the translations unless the trans-
lation is common to each element, i.e.,r a=r . To summarize,
the liquid-state symmetry of the independent translations of
the elements is broken down, at the amorphous solidification
transition, to the residual symmetry of the common transla-
tion of the elements.

When replicas are employed to perform the average over
the quenched disorder(i.e., the number and location of the

constraints), what emerges is a theory of a fieldV̂sxd defined
over s1+nd-fold replicated spacex, so that the argumentx
means the collection of s1+nd position D-vectors
hx0,x1, . . . ,xnj conjugate to the wave vectorshk0,k1, . . . ,knj.
It is understood that the limitn→0 is to be taken at the end
of any calculation. In terms of replicas, the expectation value

of this field kV̂sxdl is proportional to

KJ−1o
j=1

J

p
a=0

n

dsxa − R j
adL s4d

and its Fourier transformVskd=edxexpsik ·xdV̂sxd, has the
form

Vskd =KJ−1o
j=1

J

expio
a=0

n

ka ·R j
aL . s5d

The field V̂sxd fluctuates subject to the demand, mentioned
above, that the critical freedoms are only the corresponding
Fourier amplitudesVskd for which at least two of the
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D-component entries in the argumentk;hk0,k1, . . . ,knj are
nonzero. Both a semimicroscopic approach and arguments
based on symmetries and length scales yield a Landau-
Wilson effective Hamiltonian governing the fluctuations of
this field, which is invariant under independent translations
of the replicas but whose precise structure we shall discuss
later. For now, let us just mention that the corresponding
expectation value of this field is the order parameter(1) with
n=1+n: it becomes nonzero in the amorphous solid state
and, in doing so, realizes the pattern of spontaneous symme-
try breaking described above. Invariance under independent
translations of the replicas breaks down to invariance under
the subgroup of common translations of the replicas.

III. GOLDSTONE FLUCTUATIONS: STRUCTURE AND
IDENTIFICATION

A. Formal construction of Goldstone fluctuations

In the amorphous solid state, one of the symmetry-related
family of classical values of the order parameter has the form

Vskd = dk tot,0
Wsktd =E

V

dxc.m.

V
eik tot·xc.m.Wsktd, s6d

in which W is real and depends only on the magnitude ofkt.
Some geometry is needed to define the variables in this for-
mula. We introduce a complete orthonormal basis set in rep-
lica spaceheaja=0

n , in terms of which vectorsk are expressed
as

k = o
a=0

n

kaea. s7d

We also introduce thereplica body-diagonalunit vector

e ;
1

Î1 + n
o
a=0

n

ea, s8d

relative to which we may decompose vectorsk into longitu-
dinal sld and transversestd components,

k = kl + kt, kl ; sk · ede, kt ; k − sk · ede. s9d

We find it convenient to parametrize the longitudinal compo-
nents of position and wave vectors in the following distinct
ways:

xl = s1 + nd1/2xc.m.e, xc.m.;
1

1 + n
o
a=0

n

xa, s10ad

kl = s1 + nd−1/2k tote, k tot ; o
a=0

n

ka. s10bd

Then xc.m. and k tot are, respectively, the analogs of the fol-
lowing conjugate pair of vectors: the center-of-mass position
and the total momentum. With them one then has, e.g.,
kl ·xl=k tot·xc.m..

The variables just introduced exhibit the structure of a
classical state Eq.(6) as a rectilinearhill in x space, with

contours of constant height oriented alongxl, as shown in
Fig. 1. The peak height of the ridge determines the fraction
of localized particles; the decay of the height in the direction
xt determines the distribution of localization lengths. The
width of the hill corresponds to the typical value of the lo-
calization length. Symmetry-related classical states are gen-
erated from Eq.(6) by translating the hill rigidly, perpendicu-
lar to the ridge line (i.e., parallel to xt). Such a
transformation corresponds to relative(but not common)
translations of the replicas.(See Fig. 2.)

This pattern of symmetry breaking suggests that the Gold-
stone excitations of a classical state are constructed from it

FIG. 1. A classical state in replicated real space: a hill inx space
with its ridge aligned in thexl direction and passing through the
origin. The thickness of the lines is intended to suggest the ampli-
tude of the order parameter, the thicker the line the larger the am-
plitude. Symmetry-related classical states follow from rigid dis-
placements of the hill perpendicular to the ridge, i.e., in thext

direction.

FIG. 2. Goldstone-distorted state in replicated real space: the
hill is displaced perpendicular to the ridge to an extentut that varies
with positionxl along the ridge. Note that the scale of this figure is
much larger than that used for Fig. 1: the thick line lies along the
ridge of the classical state, but now it is thewidth of the line that
indicates the width of the hilljtyp. The Goldstone-type fluctuations
occur on wavelengths longer thanjtyp.
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via xl (or equivalentlyxc.m.)-dependent translations of the
hill in the xt direction, i.e., ripples of the hill and its ridge. In
two equivalent realizations, this gives

VVskd =E
V

dxc.m.e
ik tot·xc.m.+ikt·utsxc.m.dWsktd, s11ad

VV̂sxd = Ŵfxt − utsxc.m.dg. s11bd

Note that we are choosing to define Fourier transforms as
follows:

Âsxd =E d–kt d–k tote
−ikt·xte−ik tot·xc.m.Askd, s12ad

Askd =E dxt dxc.m.e
ikt·xteik tot·xc.m.Âsxd; s12bd

also note that

Ŵsxtd ; E d–kt e−ikt·xtWsktd. s12cd

Here and elsewhere, bars indicate division by factors of 2p;
on integration measures there is one such division for each
variable of integration. The details of the excitation are en-
coded in the replica-transverse fieldutsxc.m.d, an
nD-component field that depends on the replica-longitudinal
position xc.m.; these are theGoldstone bosons, or phonon
excitations, of the amorphous solid state. For consistency, we
require that the Fourier content of the Goldstone field
utsxc.m.d occurs at wavelengths long compared with the hill
width (i.e., the typical localization length). Otherwise the
energy of the fieldutsxc.m.d would be comparable to other
excitations which have been neglected.

The Goldstone excitations that we have just constructed
are analogs of the capillary excitations of the interface be-
tween coexisting liquid and gas states; see Ref. 5 for a re-
view. In the liquid-gas context they similarly accompany a
spontaneous breaking of translational symmetry associated
with the choice of interface location.

Do the Goldstone excitations exhaust the spectrum of low
energy excitations of the broken-symmetry state? The com-
plete spectrum of excitations is accounted for by decorating
the Goldstone-type parametrization(11a) with additional
freedomswsktd, so that the fieldVskd is expressed as

VVskd =E
V

dxc.m.e
ik tot·xc.m.+ikt·utsxc.m.dsWsktd + wskdd,

s13d

wherew is a real-valued field that depends onkt, suitably
constrained to be independent of the Goldstone excitations.
To see that the Goldstone modes(11a) do indeed exhaust the
spectrum of low energy excitations, we make contact with
the linear stability analysis of the classical broken-symmetry
state, due to Castilloet al.,6 which identified a family of
linearly additive Goldstone-type normal modes of excitation
indexed byk tot,

VVskd =E
V

dxc.m.e
ik tot·xc.m.Wsktd + ikt ·vtsk totdWsktd,

s14d

with arbitrary replica-transverse amplitudevtsk totd. That this
linear glimpse of the Goldstone-type excitations is in accor-
dance with the nonlinear view focused on in the present pa-
per follows by expanding Eq.(13) to linear order in the
Goldstone fieldsut and omitting the non-Goldstone fieldsw,
thus arriving at

VVskd < E
V

dxc.m.e
ik tot·xc.m.Wsktd

+ ikt ·E
V

dxc.m.e
ik tot·xc.m.utsxc.m.dWsktd, s15d

which shows thatvtsk totd is the Fourier transform of
utsxc.m.d. The reality ofVsxd ensures thatVs−kd=Vskd* and,
via Eq. (14), that vts−k totd=vtsk totd*. Via Eq. (15), this in
turn ensures the reality ofutsxc.m.d. In Ref. 6 it was shown
that no other branches of low energy excitations exist; hence
the Goldstone excitations of Eq.(11a) exhaust the spectrum
of low energy excitations.

Some insight into the structure of the Goldstone excita-
tions, which induce deformations of the classical state, is
obtained from its replicated real-space version. Consider the

interpretation ofV̂sxd as a quantity proportional to the prob-
ability density for the positions of the 1+n replicas of a
particle to have the valueshxaja=0

n ; see Eq.(4). Then classical
states, Eq.(11b) at constantut, are ones that describe a trans-

lationally invariantbound states: V̂sxd does not depend on
the meanlocation of the replicasxc.m., but does depend on
their relative locations, throughxt, and decays the more the
replicas are separated. This point is exemplified by the par-
ticular form given in Eq.(26a). Now, the Goldstone-distorted
state, Eq.(11b) with ut varying with xc.m., also describes
bound states of the replicas, but ones in which the depen-
dence of the probability density on relative locations varies
with xc.m.. The particular form(26a), which gives

VV̂sxd = QE
0

`

dj2 Nsj2ds2pj2d−nD/2

3exp„− uxt − utsxc.m.du2/2j2
…, s16d

exemplifies this point; in particular, one sees that the most
probable valueut of therelative locationsxt now depends on
the center-of-masslocation xc.m.. These remarks are ampli-
fied in Fig. 3.

Returning to the issue of the structure and properties of
the Goldstone-type excitations of the amorphous solid state,
recall that the critical Fourier amplitudes of the field are
those that reside in the higher-replica sector[i.e., HRS, for
which at least twoD-vector elements of the argument of
Vskd are nonzero]. Do the proposed Goldstone distortions of
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the classical state excite the lower-replica sectors¿ If so, they
would be suppressed by interactions, such as particle repul-
sion, that tend to preserve homogeneity. To see that they do
not, let us examine the Goldstone-distorted state in the zero-
(i.e., k=0) and one-(i.e., k=qea with qÞ0) replica sectors.
In the former, one readily sees from Eq.(11a) that it has its
undistorted value. A straightforward calculation shows that
in the latter sector the distorted order parameter contains the
factor

E
V

dxc.m.

V
exp„iq ·xc.m.+ iq ·uasxc.m.d…, s17d

where ua=ut ·ea. By introducing the transformationxc.m.
→xc.m.8 ;xc.m.+uasxc.m.d we see that the Goldstone-distorted
state remains zero in the one-replica sector, provided all
D-vector elementsua of the Goldstone fieldutsxc.m.d obey
the condition

udetsddd8 + ]dud8
a du = 1, s18d

which, for small amplitude distortions, reduces to]dud
a=0.

That this condition corresponds to incompressibility(i.e.,
pure shear) will be established in Sec. III B.(Here and else-
where, summations from 1 toD are implied over repeated
Cartesian indices, such asd andd8.) This is as it should be,

to make density fluctuations there must be some compression
amongst the elementsua of ut.

B. Identifying the Goldstone fluctuations as local
displacements

In this section our aim is to establish the connection be-
tween the Goldstone fields and the displacement fields of
conventional elasticity theory,7,8 Inter alia, this identifies the
stiffness associated with the Goldstone fluctuations as the
elastic modulus governing shear deformations of the amor-
phous solid. As we shall see, the discussion is general
enough to apply toany amorphous solid that breaks transla-
tional symmetry microscopically but preserves it macro-
scopically, in regimes where the constituent particles are
strongly localized in position.

Recall the amorphous solid order parameter, Eq.(1),

FJ−1o
j=1

J

keik1·R jlkeik2·R jl ¯ keikn·R jlG ,

and focus on a single elementkeik·R jl. It is convenient to
consider the element in the form

eik·r jp jskd, s19d

where r j is the mean of the position of particlej , and p
describes fluctuations about the mean. Now consider the im-
pact of a long wavelength shear displacement, encoded in the
field vsxd, which deforms the probability density associated
with the positionR j of particle j . By assuming that the typi-
cal localization length is much smaller than the length scale
associated with variations of the deformation we are able to
retain only therigid displacement of the probability density
for R j and neglect any deformation of itsshape. Thus, under
the displacement the element is deformed as

keik·R jl = eik·r jp jskd → eik·sr j+vsr jddp jskd. s20d

Inserting such deformations into the order parameter, with an
independent displacement field for each element, gives the
distorted form

F1

J
o
j=1

J

eioa=1
n ka·r jeioa=1

n ka·vasr jdp jsk1d ¯ p jskndG
=E dr

V
eioa=1

n ka·sr+vasr ddfp jsk1d ¯ p jskndg, s21d

where we have arrived at the second form by noting that, in
the amorphous solid state, the mean position of any particle
is distributed homogeneously. Next, we decompose the col-
lection of displacement fieldshvaj into longitudinal and
transverse parts, according to the geometrical prescription
given in Sec. III A, but keeping in mind the fact that there
are nown copies(rather than 1+n). The essential point is
that the longitudinal part ofhvaj, which corresponds tocom-
mondeformations of the elements, does not generate a new
value of the order parameter, in contrast with the transverse
part (which generatesrelative deformations). Therefore, the
physicaldisplacements are the transverse part ofhvaj. To see

FIG. 3. Molecular bound stateview of the classical and
Goldstone-distorted states in replicated real space. The full circles
within a border represent the replicas of a given monomer location.
Repetitions of them along a row indicate that the center of mass of
the bound states is distributed homogeneously. Upper bars, one
classical state; the probability density is peaked at the shown con-
figurations, in a manner independent of the location of the center of
mass of the bound state of the replicated particles. Middle bars,
another classical state, obtained by the former one via a relative
translation of the replicas that does not vary with the location of the
center of mass. Lower bars, a Goldstone-distorted state; the prob-
ability density is peaked in a manner that varies with the location of
the center of mass.
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this point, consider the special situation in which the trans-
verse part ofhvaj is position dependent but the longitudinal
part is not. In this case,(V times) the order parameter be-
comes

E dr eioa=1
n ka·reikt·vtsr d+ik tot·vc.m.fp jsk1d ¯ p jskndg. s22d

As things stand, in the presence ofvtsr d, a longitudinal part
vc.m. would have the effect of producing a new value of the
order parameter. As, on physical grounds, we expect that it
should not, we see thatphysical displacements are purely
transverse. This is a consequence of the fact that, for the long
wavelength displacements under consideration, the deformed
amorphous solid state continues to preserve translational in-
variance macroscopically. This argument for the absence of
the longitudinal part of the displacement field continues to
hold when it has position dependence: if, when constant, it
does not generate a new state degenerate with the old one
then, when varying, it should not generate a low-energy de-
formation.

Thus we have realized the goal of this section: by com-
paring Eqs.(11a) and (22) we see that the formally con-
structed Goldstone fieldsut are in fact the physical displace-
ment fieldsvt. Actually, there is one further point to address,
concerning the argument of the final factor in Eq.(22), viz.
fp jsk1d¯p jskndg. Apparently, there is dependence on the full
set of wave vectorshk1, . . . ,knj, whereas Eq.(11a) indicates
dependence only on the transverse part of this collection. The
resolution of this apparent discrepancy lies in the observation
that, for position independentvt, Eq. (22) must revert to a
classical state, for which the final factor does not depend on
k tot. As the final factor consists of probability clouds, which
we are assuming to be undeformed by the displacements, this
factor continues to be independent ofk tot in Eq. (22).

IV. ENERGETICS OF GOLDSTONE FLUCTUATIONS;
ELASTIC FREE ENERGY

The simplest Landau-Wilson effective Hamiltonian con-
trolling the order parameterV has the form

SV = Vc o
kPHRS

S− at +
1

2
j0

2k ·kDVskdVs− kd

− Vcg o
k1,k2,k3PHRS

dk1+k2+k3,0Vsk1dVsk2dVsk3d,

s23d

wherec is the number of entities being constrained per unit
volume, andhat ,j0,gj are, respectively, the control param-
eter for the density of constraints, the linear size of the un-
derlying objects being linked, and the nonlinear coupling
constant controlling the strength with which theV fluctua-
tions interact. HRS indicates that only wave vectors in the
higher-replica sector are to be included in the summations. A
semimicroscopic model of vulcanized macromolecular mat-
ter yieldsa=1/2, t=sm2−mc

2d /mc
2, j0

2=L,p/2D, andg=1/6,
wherem controls the mean number of constraints(and has
critical valuemc=1), ,p is the persistence length of the mac-

romolecules, andL /,p is the number of segments per mac-
romolecule.

In terms ofSV, the replica partition functionZ1+n is given
integrating over the critical modes ofV,

Z1+n ,E DV e−SV. s24d

Then, according to the replica scheme of Deam and
Edwards,9 the disorder-averaged free energyF is given by

−
F

T
= lim

n→0

Z1+n − Z1

nZ1
= lim

n→0

]

]n
ln Z1+n, s25d

whereT is the temperature.
It was shown in Ref. 4(see also Refs. 2, 3, and 10) that

makingSV stationary with respect toV results in the classi-
cal state(6), with

Wsktd = QE
0

`

dj2 Nsj2de−j2kt
2/2, s26ad

Q = 2at/3g, s26bd

Nsj2d = sj0
2/atj4dpsj0

2/atj2d, s26cd

where psud is the universal classical scaling function dis-
cussed in Refs. 4 and 10. Distorting the classical state, via
Eq. (11a) or (11b), inserting the resulting state intoSV and
computing theincrease, Su, in SV due to the distortionut

(i.e., the elastic free energy) gives the following contribution,
which arises solely from the quadratic “gradient” term inSV:

Su =
mn

2T
E
V

dxs]xut · ]xutd, s27ad

mn ;
Tc

s1 + nd1+D/2 E Vn d–kt

j0
2kt

2

nD
Wsktd2, s27bd

in the former of which there are scalar products over both the
nD independent components ofut and theD components of
x. The derivation of this elastic free energy is given in Ap-
pendix A. As we have discussed in Sec. III B, and shall re-
visit in Sec. V,m0 is the elastic shear modulus. By using the
specific classical form forW, Eq. (26a), and passing to the
replica limit, n→0, we obtain

m0 = TcQ2E dj2 Nsj2ddj82 Nsj82d
j0

2

j2 + j82 s28ad

=Tct34a2

9g2 E du du8
psudpsu8d
u−1 + u8−1 s28bd

which, for the case of the semimicroscopic parameters stated
shortly after Eq.(23), becomes
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m0 = 2Tct3E du du8
psudpsu8d
u−1 + u8−1 . s28cd

The main technical steps of this derivation are given in Ap-
pendix B. Thus, we have arrived at the effective free energy
controlling elastic deformations, in the harmonic approxima-
tion. It is consistent with the result obtained in Ref. 11, in
which the free energy cost of imposing a macroscopic shear
deformation of the sample was determined.

V. IDENTIFICATION OF THE SHEAR MODULUS:
MACROSCOPIC VIEW

In Sec. III B, we have explained why the Goldstone-type
fluctuations are identified with local displacements of the
amorphous solid by considering the impact of these fluctua-
tions at a semimicroscopic level. In the present section we
again address this identification, but now from a more mac-
roscopic perspective, by coupling the Goldstone fields to a
force-density field.

Accounting solely for the Goldstone-type fluctuations
[i.e., ignoring the fieldw in the parametrization of the fieldV
in Eq. (13)], we approximate the replica partition function
(24) as

Z1+nfftg , e−SV,clE Dut expS−
m0

2T
E
V

dx ]xut · ]xut

+
1

T
E
V

dx ftsxd ·utsxdD , s29d

in which SV,cl is the effective free energy(23) evaluated in
the classical state(6), andDut indicates functional integra-
tion over replicated displacement fieldshuasxdj subject to the
following conditions:u is replica-transverse[cf. Eq. (9)]; the
D-vector elements it contains are pure shear[cf. Eq. (18)];
and the Fourier content is restricted to wavelengths longer
than a short-distance cutoff,, (which is we take to be on the
order of the typical localization length) but shorter than a
long-distance cutoff,. (which is commonly on the order of
the linear size of the sample). The reason for the restriction
to wavelengths longer than the typical localization length is
that by restricting our attention to the Goldstone sector of
fluctuations we are omitting the effects of massive fluctua-
tions. To be consistent, we should also omit the effects of
Goldstone-type fluctuations with wavelengths sufficiently
short that their energy scale is comparable to or larger than
the scale for the(omitted) least massive fluctuations. The
appropriate criterion is that the short-distance cutoff be taken
to be on the order of the typical localization length. This can
be appreciated pictorially from Figs. 1 and 2: Goldstone-type
fluctuations having wavelengths smaller that the hill width
are omitted. Note that we have ignored the Jacobian factor
connected with the change of functional integration variable
from V to u.

In order to reconfirm the identification of the shear modu-
lus, we have, in Eq.(29), coupled the displacement fieldu
linearly to a replicatedforce density field fthough a term

−1/Tedx fsxd ·usxd; becauseul is zero, only the transverse
term, −1/Tedx ftsxd ·utsxd, remains. As forf itself, it is
taken to haveD-vector elements that vanish in the zeroth
replica and are identically equal tof in the remaining repli-
cas. This reflects the fact that the force density is envisaged
as being appliedsubsequentto the cross-linking process, and
therefore does not feature in the replica that generates the
cross-link distribution, but is repeated in thethermodynamic
replicas (by which we mean the replicas that generate the
logarithm of the partition function, not the disorder distribu-
tion). Thus, one has

ft · ft = f · f − fl · fl = nf · f − sf · ed2 =
n

1 + n
f · f →

n→0

nf · f .

s30d

The integration overu in Eq. (29) is Gaussian, and thus
straightforward, requiring only the elastic correlator
kudsydud8sy8dl, which is given in terms of the elastic Green
function Gdd8sy−y8d,

kudsydud8sy8dl

;
E Du expS−

m0

2T
E

V
dx ]xu · ]xuDudsydud8sy8d

E Du expS−
m0

2T
E

V
dx]xu · ]xuD

=
T

m0
Gdd8sy − y8d, s31ad

Gdd8syd = E
2p/,.

2p/,,

d–k e−ik·yGdd8skd,

Gdd8skd = sk2ddd8 − kdkd8d/k
4, s31bd

where ,. and ,, are, respectively, the long- and short-
distance cutoffs on the wave-vector integration, mentioned
above. This elastic Green function will be derived in Appen-
dix C. In terms of the elastic Green function and the force
density, one finds for the increaseFffg−Ff0g in free energy
due to the applied force-density field,

Fffg − Ff0g = − T lim
n→0

Z1+nffg − Z1+nf0g
nZ1f0g

= − T lim
n→0

]

]n
ln

Z1+nffg
Z1+nf0g

s32ad

<−
1

2m0
E
V

dx dx8 o
d,d8=1

D

fdsxdGdd8sx − x8dfd8sx8d,

s32bd

which indicates thatm0 is the shear modulus; see Refs. 7 and
8.
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VI. EFFECT OF GOLDSTONE FLUCTUATIONS ON THE
ORDER PARAMETER AND ITS CORRELATIONS

In this section we discuss, how Goldstone fluctuations
affect the expectation value and the correlations of the order
parameter. Our discussion is based on harmonic elasticity
theory as described by the free energy of Eqs.(27a). We shall
make frequent use of the elastic Green function, which is
defined in Eqs.(31b) and computed in Appendix C. The
effects of Goldstone fluctuations are most striking in two
dimensions, hence the two-dimensional solid will be dis-
cussed separately in Sec. VII.

A. Order parameter reduction due to Goldstone fluctuations

Classically, the order parameter expectation value is given
by Eq. (6) or, equivalently,

kVVsx,ktdl ; KE d–k tot e
−ik tot·xVVskdL s33ad

=o
k tot

e−ik tot·xkVskdl < Wsktd. s33bd

The effect of Goldstone fluctuations on the order parameter
expectation value is estimated from the Gaussian theory
(27a), via which we compute the mean value of the distorted
classical state,

kVVsx,ktdl =KE d–k tot e
−ik tot·xVVskdL s34ad

=o
k tot

e−ik tot·xkVskdl s34bd

<keikt·utsxdlWsktd. s34cd

This is readily evaluated via the Gaussian property ofu, and
hence we find

kVVsx,ktdl < W̃sktd, s35ad

W̃sktd ; exps− TGDkt
2/2m0dWsktd, s35bd

for the fluctuation-renormalized form ofWsktd. Here DGD

;uGddsxdux=0 and summation over repeated Cartesian indices
is implied. Recalling the classical structure forW, Eq. (26a),
we see that the effect of the fluctuations is to induce, in say
Eq. (6) or (33b), the replacement

Wsktd = QE
0

`

dj2 Nsj2de−j2kt
2/2 → W̃sktd, s36ad

W̃sktd ; e−TGDkt
2/2m0QE

0

`

dj2 Nsj2de−j2kt
2/2

= Q E
TGD/m0

`

dj2 Nsj2 − sTGD/m0dde−j2kt
2/2

= QE
0

`

dj2 Ñsj2de−j2kt
2/2, s36bd

i.e., a rigid shift of the distributionN to longer (squared)
localization lengths, as encoded in the new distributionÑ.
This is to be expected: the locally fluctuating localized ob-
jects are also subject to collective fluctuations—phonons.

This shift ofN is determined by the value ofGD which, as
shown in Appendix C, has the following leading-order de-
pendence onD:

GD <5
SD

s2pd2

D − 1

DsD − 2d
1

,,
D−2 for D . 2,

1

4p
lns,./,,d for D = 2.6 s37d

whereSD is the area of thesD−1d-dimensional surface of a
D-dimensional sphere of radius unity, viz,

SD = 2pD/2/GsD/2d, s38d

in which GsDd [not to be confused withGD of Eq. (37)] is the
conventional gamma function. We see that in dimensionD
greater than two the shift isfinite. However, at and below
D=2 the shiftdivergeswith the long-distance cutoff,., viz.,
the linear size of the system, doing so logarithmically in two
dimensions. Not surprisingly, fluctuations destroy particle lo-
calization in two-dimensional amorphous solids and thus re-
store the symmetry broken at the classical level(see below).

We now consider the scaling behavior of the fluctuation-

induced shift of the distribution fromN to Ñ. We see from
Eqs. (36) that this shift is parametrized by the lengthjfl ,
which is defined via

jfl
2 ; GDT/m0. s39d

How does this length compare with the typical localization
lengthjtyp, as defined, say, via the most probable value ofj
predicted by the classical theory? From Eq.(26c) we see that

jtyp
2 , j0

2/t, s40d

and thus we have that

jfl
2/jtyp

2 , GDTt/m0j0
2. s41d

Now, from Eq.(28c) we have that

m0/T , ct3, s42d

and we use this to eliminatem0/T in Eq. (41). Furthermore,
from Eq. (37) we have that, forD.2,
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GD , ,,
2−D , jtyp

2−D, s43d

provided we take the short-distance cutoff to be of orderjtyp,
as discussed in Sec. V. We use this to eliminateGD in favor
of jtyp. Finally, by using Eq.(40) to eliminatet in favor of
jtyp/j0 we obtain, forD.2,

jfl
2/jtyp

2 , scj0
Dd−1sjtyp/j0d6−D. s44d

At D=6 we findone-parameter scalingin the sense thatjfl
,jtyp, up to the factorcj0

D, which measures the number of
crosslinked entities within a region of order the size of a
single one. This is to be expected, because we have used
classical exponents for the divergence ofjtyp and vanishing
of m0 with t, and six is the upper critical dimension for the
transition to the amorphous solid state. In fact, if we were to
replace these classical exponent by their anomalous values
we would expect to recover one-parameter scaling at arbi-
trary D.

B. Two-field order parameter correlations

As with their effect on the order parameter itself, the ef-
fect of Goldstone fluctuations on the two-field correlator can
be determined from the Gaussian theory(27a), which gives

kVVsx,ktdVVsx8,kt8d * l < keikt·utsxde−ikt8·utsx8dlWsktdWskt8d.

s45d

The required correlatorkexpikt ·utsxdexp−ikt8 ·utsx8dl is also
readily evaluated via the Gaussian property ofu, and hence
we have

kVVsx,ktdVVsx8,kt8d * l

< expS−
TGD

2m0
ukt − kt8u

2DexpS−
T

m0
sGdd8s0d

− Gdd8sx − x8ddktd ·ktd8
8 DWsktdWskt8d, s46d

where the scalar productsktd·ktd8
8 and ukt−kt8u

2 are, respec-
tively, taken overn and nD components. Recall, from Eq.
(37), that uGDuD=2 diverges with the long-distance cutoff.
This, together with the positive-semidefiniteness of the qua-
dratic formfGdd8s0d−Gdd8sx−x8dgktd·ktd8

8 in Eq. (46), makes
it evident that the correlatorkVVsx ,ktdVVsx8 ,kt8d* l given in
Eq. (46) vanishes atD=2 (and below) unlessk=k8. This
vanishing is a second facet of the fluctuation-induced resto-
ration of symmetry discussed for the case of the order pa-
rameter, following Eq. (37). [The correlator
kVVskdVVsk8d* l vanishes inany dimension unlesskl=kl8,
owing to the preserved symmetry of common translations of
the replicas, which encodes the homogeneity of the random-
ness in the amorphous solid state, i.e., its macroscopic trans-
lational invariance.] If k=k8 then, regardless of dimension,
the correlator decays with increasing separationx−x8, as
shown by Eq.(46).

For D.2 it is convenient to analyze the two-field cor-
relator normalized by its disconnected part, i.e.,

kVsx,ktdVsx8,kt8d * l
kVsx,ktdlkVsx8,kt8d * l

. s47d

Equations(46) and (35) show this quotient to be given by

expS T

m0
Gdd8sr dktd ·ktd8

8 D , s48d

where the separationr ;x−x8.
We illustrate this behavior by considering the case ofD

=3 and the regime,,! ur u!,., for which, as shown in
Appendix C(see also, e.g., Ref. 8), we may use

Gdd8
s3d sr d <

1

8pur u
sddd8 + r̂dr̂d8d, s49d

where the unit vectorr̂ ; r / ur u, and by choosingk=k8
=h0,q ,−q ,0, . . . ,0j. Then in this regime the normalized
two-field correlator is given by

expS T

4pm0

uqu2

ur u
s1 + cos2 wdD , s50d

which depends strongly on the anglew between the vectorsq
and r .

We may also examine the normalized two-field correlator
in the regimeur u!,,. Making use ofG

dd8
s3d sr d in this regime,

as given in Eq.(C10) of Appendix C, we find that the nor-
malized two-field correlator is given by

expS 4T

3pm0

uqu2

,,
DexpS 2T

45pm0

uqu2

,,

ur u2

,–,
2 s− 2 + cos2 wdD ,

s51d

where,–,;,, /2p (and,–.;,. /2p). Of course, in this re-
gime the result for the correlator is incomplete, as there will
also be contributions from the non-Goldstone excitations.

C. Intermezzo on length scales

We pause to catalog the various length scales featured in
the present paper, and to indicate where they first appear.

The shortest length is,p, the persistence length of a mac-
romolecule, which appears alongsideL, the arclength of a
macromolecule, shortly after Eq.(23). Together, they yield
j0, the linear size of the objects being linked, which may be
substantially larger than,p. It is only throughj0 that ,p and
L feature in the free energy, Eq.(23). The densityc of enti-
ties being constrained also first features in Eq.(23), and sets
a length scale,c−1/D, in Eq. (44). Comparable to or longer
than j0 is the lengthj, the (distributed) localization length,
first featuring in Eqs.(2) and (3). The typical value ofj is
denotedjtyp, first mentioned around Eq.(40). The amount by
which fluctuations shift the distribution ofj is encoded in the
fluctuation lengthjfl , first mentioned around Eq.(39). The
short- and long-distance cutoffs for the Goldstone-type fluc-
tuations are, respectively, denoted,, and ,., and are first
mentioned in Sec. V. The linear size of the sample is denoted
L; see the beginning of Sec. VII.
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VII. AMORPHOUS SOLIDS IN TWO DIMENSIONS

We now focus on amorphous solids intwo dimensions.
By taking the long-distance cutoff,. to be the linear size of
the sampleL, so that its area isL2, we see from Eqs.(35)
and (37) that the expectation value of the order parameter
does indeedvanish algebraicallywith the sample size, doing
with an exponent that depends, inter alia, onkt,

kL2Vsx,ktdl < Wsktdexps− 1
2hskt

2dlnsL/,,dd
= WsktdsL/,,d−hskt

2d/2, s52d

where the exponenthsk2d varies continuously with wave
number and is defined via

hsk2d ;
Tk2

4pm0
. s53d

To arrive at this result we have made use of the two-
dimensional real-space elastic Green function evaluated at
the origin, computed in Appendix C and stated in Eq.(37). It
confirms the expectation, mentioned above, that in two di-
mensions fluctuations destroy particle localization and re-
store the broken symmetry. Note, however that, due to the
purely entropic nature of the elasticity the exponent does not
depend on temperature[cf. Eq. (28c)].

Similarly, from Eq.(46) we see that thekt-diagonal two-
field correlator is given by

kL2Vsx,ktdL2Vsx8,ktd * l

< Wsktd2 expS−
T

m0
sGdd8s0d − Gdd8sr ddktd ·ktd8D ,

s54d

where, as before, the separation is denoted byr ;x−x8 and
the unit vector byr̂ ; r / ur u. In the regime,,! ur u!L, the
Green function is given by[see Eq.(C28) in Appendix C]

Gdd8s0d − Gdd8sr d =
1

4p
hddd8 lnsr/,̃,d − r̂dr̂d8j, s55d

where, for convenience, we have introduced the numerically

rescaled short-distance cutoff,̃,, defined via

,̃, ;
,,

peg+1
2

. s56d

In consequence, the correlator decays algebraically with the
magnitude rof the distance, and with an amplitude that de-
pends on theorientation r̂ of the distance(relative to kt).
Ignoring, for the moment the dependence onr̂ , we have the
leading-order result,

kL2Vsx,ktdL2Vsx8,ktd * l < Wsktd2s,̃,/rdhskt
2d. s57d

As mentioned above, thekt-off-diagonal two-field
correlator—like the order parameter—vanishes in the ther-
modynamic limit, reflecting the fluctuation-induced restora-
tion of symmetry.

This scenario is similar to the theory of two-dimensional
regular solids, taking into account harmonic phonons only, as

discussed in Ref. 12. The main difference is the absence of
Bragg peaks at reciprocal lattice vectors. Instead, there is a
divergence in the scattering function12 at zero wave number,
as can be seen from the Fourier transform of the correlator
(57) with respect tor s;x−x8d,

Ssq,ktd =E dr eir ·qkL2Vsx,ktdL2Vsx8,ktd * l

= Wsktd2,,
2 HS,.

,,
D2−hJ1sq,.d

q,.

+ Bshdsq,,dh−2J ,

Bsxd ; 2−xxGs1 − x/2d
Gs1 + x/2d

. s58d

In these formulas,J1 denotes a Bessel function and we have
abbreviatedhskt

2d ash. One needs to keep the two exhibited
terms because there is an exchange of dominance ash passes
through the value 1/2, i.e., atkt

2=2pm0/T. Specifically, for
s,. /,,d→` at fixedq,, the dimensionless factor{¯} be-
haves as

sq,,d−3/2s,./,,d
1
2

−h for h , 1/2, s59ad

sq,,dh−2 for h . 1/2. s59bd

Restoring the dependence on orientationr̂ , we arrive at
the full, anisotropic form for the decay of the two-field cor-
relator,

Wsktd2s,̃,/rdhskt
2d expshskt

2dk̂td1
· k̂td2

r̂d1
r̂d2

d. s60d

Here, the symbolk̂td indicates the unit vectorktd/ uktu. For
the illustrative case ofk=s0,q ,−q ,0, . . .d this correlator re-
duces to

WsÎ2uqud2s,̃,/rd2hsq2d exps2hsq2dcos2 wd, s61d

where, once again,w is the angle betweenq and r .
The framework adopted in the present paper allows the

identification of thequasilocalized fraction Q˜, i.e., the frac-
tion of particles that, while not truly localized, have RMS
displacements that diverge only logarithmically, as the sys-
tem sizeL goes to infinity. This fraction should be contrasted
with the delocalized fraction, i.e., the fractions that have
RMS displacements that diverge linearly withL. One way to
extract the quasilocalized fraction is via the order parameter
(52)—specifically the amplitude of its power-law decay with
L. A simpler route is via the two-field correlator(60),

Q̃2 = lim
kt→0

lim
r→`

s,̃,/rd−hskt
2dkL2Vsx,ktdL2Vsx8,ktd * l = Ws0d2.

s62d

The option of analyzing the quasilocalized fraction would
not be available to percolation-based approaches to vulca-
nized matter, as such approaches do not account for the ther-
mal motion of the constituents(e.g., macromolecules), but
only the architecture of the structures they constitute. In fact,
for the same reason, the entire circle of ideas described in the
present paper lie beyond the reach of percolation-based ap-
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proaches. This shows up especially vividly in the context of
the vulcanization transition in low(and especially two) di-
mensions. Whereas percolation theory would indicate a
lower critical dimension of unity, with nothing fundamen-
tally new happening as one reduces the dimensionality
through two, the present approach correctly finds a lower
critical dimension at two dimensions for the amorphous so-
lidification transition. This is because, in addition to incorpo-
rating the physics of percolation,14,15 this approach contains
the logically independent physics of localization and the at-
tendant issue of the spontaneous breaking of translational
symmetry. Thus, there are qualitative, and not merely quan-
titative, distinctions between the vulcanization transition and
resulting quasiamorphous solid state in two- and in higher-
dimensional settings, owing to the strong role played by
Goldstone-type fluctuations in reduced dimensions.

The results discussed in the present section echo those
found for a variety of two-dimensional statistical-mechanical
systems(for a survey see, e.g., Ref. 13), in the following
sense. A sufficient density of random constraints triggers a
phase transition from a liquid state to a quasiamorphous solid
state. In the liquid state there are no clusters of constituents
that span the system(i.e., the system does not percolate),
there are no quasilocalized particles, order-parameter corre-
lations decay exponentially with distance, and the static
shear modulus is zero. In the solid state a cluster does span
the system(i.e., percolates), there are quasilocalized par-
ticles, the static shear modulus is nonzero, and order-
parameter correlations decay algebraically, with a continu-
ously varying exponenth that depends, inter alia, on the
scale set by theprobe wave vector kt. However, the true
long-range order found in higher dimensions, fails to set in,
albeit only just, due to thermal fluctuations.

The situation is reminiscent of that found in the setting of
the melting of two-dimensional crystals, triggered not by the
density of constraints, but rather by thermal fluctuations. In
this setting, at high temperatures one has a nonrigid phase
with exponentially decaying positional correlations associ-
ated with unbound dislocations. This is the analog of the
nonpercolating state of quasiamorphous solids. At lower
temperatures one has a rigid phase, associated with bound
dislocations and algebraically decaying positional correla-
tions, but no true long-range positional order. This is the
analog of the percolating regime of amorphous solids. The
permanence of the architecture of the amorphous solid form-
ing systems discussed in the present paper prohibits the de-
struction by thermal fluctuations of a percolating raft of con-
stituents. However, percolation does not enforce true
localization.

In two-dimensional crystallization one also has the oppor-
tunity for correlations in theorientationsof the bonds con-
necting neighboring particles. Thus, at low temperatures one
has, in addition to quasilong range positional correlations,
true long-range orientational correlations. This brings the op-
portunity for an intermediate regime of temperatures, in
which dislocations are unbound but disclinations, which
would disrupt the orientational order, remain bound: the
hexatic phase of two-dimensional crystals.

This opportunity does not seem to be present in the model
of vulcanized matter discussed here, which focuses exclu-
sively on positional order and does not support topological
excitations. Richer settings, such as those involving macro-
molecules with liquid crystalline degrees of freedom, seem
likely to raise interesting opportunities for order in low-
dimensional random systems.

VIII. PHYSICAL CONTENT OF CORRELATORS

A. Identifying the statistical information in the two-field
correlator

What is the meaning of the correlators in the amorphous
solid state of the vulcanization field theory? Let us begin
with the two-field correlatorkVsk1dVsk2d* l. Specializing to
the case in which the zero-replica entriesk1

0 andk2
0 are zero,

the interpretation of this replica quantity is given by

ukVsk1dVsk2d * luk1
0=k2

0=0 = F 1

J2 o
j1,j2=1

J

p
a=1

n

keik1
a·R j1

−ik2
a·R j2lG ,

s63d

which expresses the connection with the(semimicroscopic)
correlators of all pairs of particles that constitute the system.
Consider a simple illustrative example, in which the posi-
tions of pairs of localized particles fluctuate about their mean
positions according to a general Gaussian correlated distri-
bution. For such particles we would then have

keik1·R j1
−ik2·R j2l = eik1dr j1d−ik2dr j2de−1

2
Dr j1j1d1d2

k1d1
k1d2

3e−1
2

Dr j2j2d1d2
k2d1

k2d2eDr j1j2d1d2
k1d1

k2d2,

s64d

where the mean, variancess j1= j2d and covariancess j1Þ j2d
of the positions are given by

r j = kR jl , s65ad

Dr j1j2d1d2
= ksRj1d1

− kRj1d1
ldsRj2d2

− kRj2d2
ldl, s65bd

and summations over repeated Cartesian indicesd1 and d2
are implied.

Setting such contributions together from all pairs oflocal-
ized, particles we have

ukVsk1dVsk2d * luk1
0=k2

0=0

= Q2E dr̂ 1 dr̂ 2 dDrˆ 11 dDrˆ 22 dDrˆ 12

3Psr̂ 1, r̂ 2,Drˆ 11,Drˆ 22,Drˆ 12deir̂ 1doa=1
n k1d

a −ir̂ 2doa=1
n k1d

a

3e−1/2Drˆ 11d1d2
oa=1

n k1d1

a k1d2

a
e−1/2Drˆ 22d1d2

oa=1
n k2d1

a k2d2

a

3eDrˆ 12d1d2
oa=1

n k1d1

a k2d2

a
, s66d
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Psr̂ 1, r̂ 2,Drˆ 11,Drˆ 22,Drˆ 12d

; F 1

sQJd2 o
j1,j2 loc

dsr̂ 1 − r j1
ddsr̂ 2 − r j2

ddsDrˆ 11 − Dr j1j1
d

3dsDrˆ 22 − Dr j2j2
ddsDrˆ 12 − Dr j1j2

dG ,

where we have introducedP, the disorder-averaged joint dis-
tribution, over the pairs of localized particles, of the means,
variances and covariances of the particle positions. The mac-
roscopic translational invariance of the amorphous solid state
ensures thatP depends onr̂ 1 and r̂ 2 only through their dif-
ference, and thus we replaceP by V−1Psr̂ 1

− r̂ 2,Drˆ 11,Drˆ 22,Drˆ 12d. By appealing to permutation symme-
try, including the zeroth replica, we can reinstate the depen-
dence on the zeroth-replica wave vectors, and hence arrive at
a hypothesized form for the two-point correlator,

kVsk1dVsk2d * l

= Q2E dr̂ 1 dr̂ 2 dDrˆ 11 dDrˆ 22 dDrˆ 12 V−1

3Psr̂ 1 − r̂ 2,Drˆ 11,Drˆ 22,Drˆ 12deir̂ 1doa=0
n k1d

a −ir̂ 2doa=0
n k1d

a

3e−1/2Drˆ 11d1d2
oa=0

n k1d1

a k1d2

a
e−1/2Drˆ 22d1d2

oa=0
n k2d1

a k2d2

a

3eDrˆ 12d1d2
oa=0

n k1d1

a k2d2

a
. s67d

What about contributions to the double sum over particles
in Eq. (63) associated with one or twounlocalizedparticles?
Such contributions certainly exist, except in the limit of large
cross-link densities(where all constituents are bound to the
infinite cluster and are, therefore, localized); in the liquid
state they would, of course, be the only contributions. There,
they would give rise todiagonalcontributions, i.e., the cor-
relator kVsk1dVsk2d* l would vanish unlessk1=k2, owing to
the intact symmetry of independent translations of the repli-
cas. In the solid state, contributions associated with unlocal-
ized particles are expected to gives rise to short-ranged cor-
relations. As such correlations are not the main focus of the
present paper, we neglect contributions to the two-field cor-
relator associated with unlocalized particles.

B. Evaluating the statistical information in the two-field
correlator

In Sec. VIII A we have connected the two-field correlator
kVVskdVVsk8d* l to the distributionP that characterizes
pairs of localized particles[see Eq.(67)], and in Sec. VI B
have evaluated the Fourier transform of this correlator,
kVVsx ,ktdVVsx8 ,kt8d* l, within the Goldstone-type fluctua-
tion approach[see Eq.(46)]. We now discuss the implica-
tions of resulting correlator for the properties of the distribu-
tion.

To do this, it is convenient to exchange the correlator in
Eq. (46) for the Fourier transform,

kVskdVsk8d * l

=E dx

V

dx8

V
eik tot·xe−ik tot8 ·x8kVVsx,ktdVVsx8,kt8d * l

< W̃sktdW̃skt8d E dx

V

dx8

V
eik tot·xe−ik tot8 ·x8

3expS T

m0
Gdd8sx − x8dktd ·ktd8

8 D
= W̃sktdW̃skt8ddk tot,k tot8 E dx

V
eik tot·x

3expS T

m0
Gdd8sxdktd ·ktd8

8 D , s68d

whereW̃sktd is the fluctuation-renormalized order parameter
given in Eqs.(35b) and(36b). Next, in Eq.(67) we perform
the integration over the center of mass ofr 1 and r 2, and
equate the resulting form of the correlator to the form given
in Eq. (68), having dropped the hats on the dummy variables,
thus arriving at a formula obeyed by the distributionP,

Q2dk1 tot,k2 totE dx dDr11 dDr22 dDr12 Psx,Dr11,Dr22,Dr12d

3eik1 tot·xe−1/2Dr11d1d2
oa=0

n k1d1

a k1d2

a
e−1/2Dr22d1d2

oa=0
n k2d1

a k2d2

a

3eDr12d1d2
oa=0

n k1d1

a k2d2

a

= W̃sk1tdW̃sk2tddk1 tot,k2 totE dx

V
eik1 tot·x

3expS T

m0
Gd1d2

sxdk1td1
·k2td2

D . s69d

By solving this equation forPsx ,Dr11,Dr22,Dr12d one learns
that it has weight only at values ofsDr11,Dr22,Dr12d of the
form sj1

21 ,j1
21 ,sT/m0dGd1d2

sydd for some values of the param-
eterssj1,j1,yd, where1 is the identity inD-dimensional Car-
tesian space. Anticipating this, it is convenient to introduce
the following parametrization in terms of a reduced distribu-
tion Psx ,j1

2,j2
2,yd:

Psx,Dr11,Dr22,Dr12d

=E dj1
2 Ñsj1

2ddj2
2 Ñsj2

2ddsDr11 − j1
21ddsDr22 − j2

21d

3E dy

V
dsDr12 − sT/m0dGsyddPsx,j1

2,j2
2,yd. s70d

Note that Psx ,j1
2,j2

2,yd only becomes a true distribution
when an appropriate Jacobian factor associated with they
dependence is introduced; nevertheless we shall continue to
refer to it as a distribution. As shown in Appendix D, Eq.
(69) can be solved for the reduced probability distribution;
the solution is given in Eq.(D9). Thus one finds for the full
distribution,
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Psx,Dr11,Dr22,Dr12d

=E dj1
2 Ñsj1

2ddj2
2 Ñsj2

2ddsDr11 − j1
21ddsDr22 − j2

21d

3E dy

V
HE d–q e−iq·sx−ydexpS1

2
sj1

2 + j2
2dq2

− Dr12d1d2
qd1

qd2
DJdfDr12 − sT/m0dGsydg. s71d

This has the structure of a source term, associated with the
range of values ofG, convoluted with an appropriate “propa-
gator.”

It should be borne in mind that, in this solution for the full
distribution, Eq.(71), the integration over wave vectorsq is
subject to the usual cutoffs, i.e., those featured in Eq.(31b).
Thus, even though the exponent in the factor expf 1

2sj1
2

+j2
2dq2−Dr12d1d2

qd1
qd2

g grows at largeq (i.e., the factor is
not a decaying Gaussian factor), the large-wave-vector cutoff
protects against divergence. In fact, if we focus on the dis-
tribution P at separationsx that are large compared with the
cutoff ,, then for values ofj1 and j2 with appreciable
weight the aforementioned exponent is small, and we may
expand to obtain

Psx,Dr11,Dr22,Dr12d

=E dj1
2 Ñsj1

2ddj2
2 Ñsj2

2ddsDr11 − j1
21ddsDr22 − j2

21d

3expS−
1

2
sj1

2 + j2
2d¹x

2 + Dr12d1d2
]d1

]d2
D

3E dy

V
d̃sx − yddsDr12 − sT/m0dGsydd s72ad

<E dj1
2 Ñsj1

2ddj2
2 Ñsj2

2ddsDr11 − j1
21ddsDr22 − j2

21d

3
1

V
expS−

1

2
sj1

2 + j2
2d¹x

2 + Dr12d1d2
]d1

]d2
Dd

3sDr12 − sT/m0dGsxdd s72bd

<E dj1
2 Ñsj1

2ddj2
2 Ñsj2

2ddsDr11 − j1
21ddsDr22 − j2

21d

3
1

V
H1 −

1

2
sj1

2 + j2
2d¹x

2 + Dr12d1d2
]d1

]d2J
3dsDr12 − sT/m0dGsxdd. s72cd

Here,]d;] /]xd, andd̃ indicates the smoothed delta function
resulting from the application of the wave-vector cutoff to
the Fourier integration that yields it. We have, however, pro-
ceeded to the second and third lines without explicitly indi-
cating the effect of this smoothing, viz., the replacement of
the factordfDr12−sT/m0dGsxdg the same quantitysmeared
over a region around the pointx having linear dimension of
order the short-distance cutoff.

C. Two- (and higher-) field correlators as distributions of
particle correlations

Let us pause to revisit the interpretation of the two-field
correlator. To do this, we introduce the disorder-averaged
distributionM2 of two-particle correlatorsC, viz.,

M2fCg ; FJ−2 o
j1,j2=1

J

p
k1,k2Þ0

dcsCk1k2
− keik1·R j1

+ik2·R j2ldG ,

s73d

in which dcsx+ iyd;dsxddsyd. We can then observe that the
two-field correlator, Eq.(63), can be expressed as a suitable
moment ofM2,

kVsk1dVsk2dl =E DC M2fCgp
a=0

n

Ck1
ak2

a. s74d

Note that we have appealed to replica permutation symmetry
in order to reinstate the dependence on the zeroth-replica
wave vectors.

It is straightforward to extend this discussion to the gen-
eral case ofr-particle correlatorskeik1·R j1

+ik1·R j1
+¯+ikr·R j rl, for

which the distributionMr is given by

MrfCg ; F 1

Jr o
j1,. . .,j r=1

J

p
k1,k2,. . .,krÞ0

dcsCk1k2¯kr

− keik1·R j1
+ik1·R j1

+¯+ikr·R j rldG . s75d

Observe that ther-field correlator can also be expressed as a
suitable moment,

kVsk1dVsk2d ¯ Vskrdl =E DC MrfCgp
a=0

n

Ck1
ak2

a
¯kr

a.

s76d

Again we have appealed to replica permutation symmetry in
order to reinstate the dependence on the zeroth-replica wave
vectors. The distributionsMr are natural generalizations of
the distribution of local density fluctuations, explored, e.g.,
in Ref. 10.

IX. CONCLUDING REMARKS

In this paper we have identified the long wavelength, low
energy Goldstone-type fluctuations of the amorphous solid
state, and investigated their physical consequences. By con-
structing an effective free energy governing these fluctua-
tions, we have determined the elastic properties of the amor-
phous solid, including its static shear modulus which, we
have reconfirmed, vanishes as the third power of the amount
by which the constraint density exceeds its critical value(at
the classical level). We have also analyzed the effect of these
fluctuations on the amorphous solid order parameter, finding
that, in spatial dimensions greater than two, they induce a
simple, rigid shift of the distribution of(squared) localization
lengths. In addition, we have explored the properties of the
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order-parameter correlations in the amorphous solid state,
establishing their physical content in terms of a joint prob-
ability distribution characterizing pairs of localized particles.
Moreover, we have computed the corresponding correlator
induced by Goldstone-type fluctuations and, hence, obtained
a specific formula for this joint probability distribution.

We have paid particular attention to systems of spatial
dimension two. In this setting we have shown that fluctua-
tions restore the symmetries broken spontaneously at the
classical level, particle localization is destroyed, the order
parameter is driven to zero, and order-parameter correlations
decay as a power law in the separation between points in the
sample. The state is aquasiamorphous solidstate, inasmuch
as it possesses algebraically decaying correlations and rigid-
ity.

Our work can be extended in several directions. We have
focused here on the critical behavior of the shear modulus. It
is also of interest to study elasticity in the strongly
crosslinked limit, in which(geometrical and thermal) fluc-
tuations are less important and mean-field theory should
even be quantitatively correct. Whereas for long-chain mac-
romolecules this limit is difficult to achieve, it may well be
possible for Brownian particles, i.e., networks that are built
from small units, in the simplest case just monomers.16 Even
more interesting is a generalization to nonlinear elasticity.
Rubber can withstand very large deformations—up to
1000%—thus allowing large amounts of elastic energy to be
stored in the system. Our approach can be generalized to
include nonlinear terms in the strain tensor, which will arise
from two sources: the expansion of the Goldstone-type fluc-
tuations(11a) and higher-order nonlinearities in the Landau-
Wilson free energy(23). Work along these lines is in
progress.
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APPENDIX A: FROM LANDAU-WILSON HAMILTONIAN
TO ELASTIC FREE ENERGY

In this appendix we show how to get from the Landau-
Wilson effective HamiltonianSV, Eq. (23), to the elastic free
energy(27b). Specifically, we compute the increaseSu in SV

when the classical valueVcl, Eqs.(6) and(26), is replaced by
Goldstone-distorted classical state(11a), parametrized by
utsxd. There are three terms in(23) to be computed. Two are
“potential,” terms, which we shall see to have no dependence
on utsxd; the third is a “gradient” term, and this is the origin
of the dependence ofSu on utsxd.

Before focusing on any individual terms, we note that we
can express summations over higher-replica sector wave vec-
tors as unrestricted summations, less lower-replica sector
contributions; e.g.,

o
kPHRS

= o
k

− o
kP1RS

− o
kP0RS

. sA1d

Here, the two components of the lower-replica sector, viz.,
the one- and zero-replica sectors, are, respectively, denoted
1RS and 0RS.

Applying this sector decomposition to the first term in Eq.
(23), and recognizing that there is no contribution from the
one-replica sector and that the zero-replica sector contribu-
tion is simple, we have

o
kPHRS

uVskdu2 = So
k

− o
kP1RS

− o
kP0RS

DuVskdu2

= o
k

uVskdu2 − 0 −Q2. sA2d

Recall that we are concerned with the increase inSV due to
the Goldstone distortion. Evidently, of the contributions con-
sidered so far only the unrestricted sum has the possibility of
being sensitive to the distortion. However, as we shall now
see, not even this contribution has such sensitivity:

1

Vno
k

uVskdu2 = VE d–kl d–ktE dx1

V

dx2

V
e−ik tot·x1+ik tot·x2e−ikt·utsx1d+ikt·utsx2dWsktd2

= VE dx1

V

dx2

V
E d–kt Wsktd2e−ikt·„utsx1d−utsx2d…E d–kl e−ik tot·sx1−x2d

= VE dx1

V

dx2

V
E d–kt Wsktd2e−ikt·„utsx1d−utsx2d…s1 + nd−D/2dsx1 − x2d

= s1 + nd−D/2E d–kt Wsktd2, sA3d
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independent ofutsxd. Note that here and elsewhere in the present appendix we shall anticipate the taking of the replica limit
by omitting factors ofVn.

Turning to the third term in(23), the nonlinearity, and handling the constraints on the summation with care, we are faced
with the term

V o
k1,k2,k3

dk1+k2+k3,0Vsk1dVsk2dVsk3d =E d–k1 d–k2 d–k3E dye−iy·sk1+k2+k3d

3E dx1 dx2 dx3 eik1 tot·x1+ik2 tot·x2+ik3 tot·x3eik1t·utsx1d+ik2t·utsx2d+ik3t·utsx3dWsk1tdWsk2tdWsk3td

=E d–k1l d–k2l d–k3lE dyl

V
e−iyl·sk1l+k2l+k3ld E d–k1t d–k2t d–k3tE dyt e−iyt·sk1t+k2t+k3td

3E dx1 dx2 dx3 eik1 tot·x1+ik2 tot·x2+ik3 tot·x3eik1t·utsx1d+ik2t·utsx2d+ik3t·utsx3dWsk1tdWsk2tdWsk3td

=s1 + ndDE d–k1 d–k2 d–k3E dy

V
e−iy·sk1+k2+k3d E d–k1t d–k2t d–k3tE dyt e−iyt·sk1t+k2t+k3td

3E dx1 dx2 dx3 eik1·x1+ik2·x2+ik3·x3eik1t·utsx1d+ik2t·utsx2d+ik3t·utsx3dWsk1tdWsk2tdWsk3td

=s1 + ndDE d–k1t d–k2t d–k3t dk1t+k2t+k3t,0E dy

V
E dx1 dx2 dx3 dsx1 − yddsx2 − yddsx3 − yd

3 eik1t·utsx1d+ik2t·utsx2d+ik3t·utsx3dWsk1tdWsk2tdWsk3td

=s1 + ndDE d–k1t d–k2t d–k3t dk1t+k2t+k3t,0E dy

V
eisk1t+k2t+k3td·utsydWsk1tdWsk2tdWsk3td

=s1 + ndDE d–k1t d–k2t d–k3t dk1t+k2t+k3t,0
Wsk1tdWsk2tdWsk3td. sA4d

This is independent ofutsxd.
Turning to the second term in(23), the gradient term, we have

1

Vno
k

k ·kuVskdu2 = VE d–kl d–ktskl ·kl + kt ·ktd E dx1

V

dx2

V
e−ik tot·x1+ik tot·x2 3 e−ikt·utsx1d+ikt·utsx2dWsktd2. sA5d

Of the two contributions arising from this term, fromkl
2 and fromkt

2, the latter has noutsxd dependence. This follows via the
mechanism that we saw for the first term, viz., the development of a factor ofdsx1−x2d. As for the former contribution, to
evaluate it we replacekl ·kl by s1+nd−1k tot·k tot and generate this factor via suitable derivatives,

1

Vno
k

k ·kuVskdu2 = VE d–kl d–kt kl ·klE dx1

V

dx2

V
e−ik tot·x1+ik tot·x2e−ikt·utsx1d+ikt·utsx2dWsktd2

=s1 + nd−D/2s1 + nd−1VE d–kt d–k totE dx1

V

dx2

V
s]−ix1

e−ik tot·x1d · s]ix2
eik tot·x2de−ikt·utsx1deikt·utsx2dWsktd2.

sA6d

Next, we integrate by parts, once with respect tox1 and once with respect tox2, to transfer the derivatives to the exponential
factors containingut, arriving at
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s1 + nd−1−D/2VE dx1

V

dx2

V
3E d–k tot e

−ik tot·sx1−x2d E d–kt Wsktd2 3 s]−ix1
e−ikt·utsx1dd · s]ix2

eikt·utsx2dd. sA7d

Powers ofkl higher than two would, via the corresponding derivatives, produce higher gradients ofut, as well as nonlinearities
involving lower-order derivatives. By performing the derivatives that we have here, as well as thek tot integration, which
generates a factordsx1−x2d and allows us to integrate over, say,x2, we obtain

s1 + nd−1−D/2V−1E d–kt Wsktd2

3E dx„kt · ]xutsxd… · „kt · ]xutsxd…, sA8d

where the scalar products inside the parentheses are overnD-component replica-transverse vectors while the outside scalar
product is overD-component position vectors. The next step is to observe that, owing to the rotationally invariant form of
Wsktd, Eq. (26a), thekt integration includes an isotropic average of two components ofkt, and is therefore proportional to the
identity in nD-dimensional replica-transverse space. Thus, we arrive at the form

s1 + nd−1−D/2

nD
E d–kt Wsktd2kt ·ktE dx

V
„]xutsxd]xutsxd…, sA9d

which involves the two types of scalar product mentioned beneath Eq.(A8). Reinstating the factor ofVc from Eq. (23), we
identify the stiffness divided by the temperaturemn/T and, hence, arrive at Eqs.(27).

APPENDIX B: EVALUATING THE STIFFNESS (ALSO KNOWN AS SHEAR MODULUS OR RIGIDITY)

In this appendix we display the main steps for obtaining the stiffnessm0, Eqs.(28), by evaluating the formula formn, given
in Eq. (27b) and derived in Appendix A, in terms of the elements of the classical state, Eqs.(26). This involves the evaluation
of the right-hand side(RHS) of Eq. (27b), which proceeds as follows:

E d–kt kt
2Wsktd2 = Q2E d–kt kt

2E
0

`

dj2 Nsj2ddj82 Nsj82de−sj2+j82dkt
2/2

= Q2E
0

`

dj2 Nsj2ddj82 Nsj82d E d–kt kt
2e−sj2+j82dkt

2/2

= Q2E
0

`

dj2 Nsj2ddj82 Nsj82du]−A/2uA=j2+j82E d–kt e−Akt
2/2

= Q2E
0

`

dj2 Nsj2ddj82 Nsj82du]−A/2uA=j2+j82s2pAd−nD/2

= Q2E
0

`

dj2 Nsj2ddj82 Nsj82dnDs2pAd−nD/2uA−1uA=j2+j82

<
n→0

nDQ2E
0

`

dj2 Nsj2ddj82 Nsj82dsj2 + j82d−1. sB1d

APPENDIX C: ELASTIC GREEN FUNCTION

The elastic Green functionGdd8sx−x8d featuring in Eq.(31a) arises via functional integration over the displacement field
usxd. This integration comprises fields configurations that are(i) volume preserving(at least to leading order in the gradient of
the displacement field) and(ii ) have Fourier content only from wavelengths lying between the short- and long-distance cutoffs
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,, and,.. As the weight in Eq.(31a) is Gaussian with respect tousxd, we have thatsT/m0dGdd8sx−x8d is proportional to the
inverse of the operator appearing sandwiched between two displacement fields in the exponent of the Gaussian,

m0

T
E
V

dxs]xu · ]xud, sC1d

provided this inverse is the one associated with the Hilbert space of vector-field configurations contributing to the functional
integral. An application of the divergence theorem shows that, in addition to conditions(i) and(ii ), the Green function obeys
the equation

− ¹x
2Gdd8sxd = ddd8dsxd, sC2d

in which the delta function is to be interpreted as the identity in the appropriate Hilbert space, mentioned above. To determine
Gdd8sxd we express it in its Fourier representation,

Gdd8sxd =E d–k e−ik·xGdd8skd. sC3d

Next, we insert this representation into Eq.(C2) to obtain

− ¹x
2E d–ke−ik·xGdd8skd =E d–k k2e−ik·xGdd8skd = E

2p/,.

2p/,,

d–ke−ik·xsddd8 − k−2kdkd8d, sC4d

where,–,;,, /2p and,–.;,. /2p. The final term, the integral representation of the appropriate delta function, accommo-
dates restrictions(i) and (ii ). Then, from the linear independence of the plane waves, we see that the Fourier integral
representation of the Green function is given by Eq.(C3), with the amplitude given by

Gdd8skd = Hsk2ddd8 − kdkd8d/k
4 for ,–.

−1 , k , ,–,
−1,

0 otherwise,
J sC5d

as given in Eq.(31b).
Before computing the real-space form of thisD-dimensional Green function, we evaluate it at argumentx=0, as well as at

small argumentsuxu!,,d. At x=0 we have

uGdd8sxdux=0 = E
hco

d–ksk2ddd8 − kdkd8dk
−4 sC6ad

=ddd8
D − 1

D
E
hco

d–kk−2 sC6bd

=ddd8GD, sC6cd

GD ;
D − 1

D

SD

s2pdDE
,–.

−1

,–,
−1

dk kD−3. sC6dd

Here and elsewhere, the subscript hco indicates that the integration is subject to the hard cutoff shown explicitly in Eq.(C6d).
Evaluating the last integral forDù2, and forD.2 retaining only the dominant contribution, givesGD, as given in Eq.(37).

Now generalizing touxu small but nonzero, i.e.,uxu!,,, we have, by expanding the exponential in Eq.(C3),

Gdd8sxd < ddd8GD −
1

2
fsD + 1dddd8 − 2x̂dx̂d8guxu2 3

SD

s2pdD

1

DsD + 2d E
,–.

−1

,–,
−1

dk kD−1 sC7d
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<ddd8GD −
1

2
fsD + 1dddd8 − 2x̂dx̂d8guxu2

3
SD

,,
D

1

D2sD + 2d
, sC8d

where, again, we have retained only the dominant contribution. Specializing toD=2 andD=3 we find

Gdd8
s2d sxd < ddd8G2 −

1

64p

uxu2

,–,
2 s3ddd8 − 2x̂dx̂d8d, sC9d

Gdd8
s3d sxd < ddd8G3 −

1

45p,,

uxu2

,–,
2 s2ddd8 − x̂dx̂d8d. sC10d

We now compute the real-space form of thisD-dimensional Green function, valid for arbitraryuxu,

Gdd8sxd =E d–k e−ik·xGdd8skd sC11d

=E
hco

d–k e−ik·xsk2ddd8 − kdkd8dk
−4 sC12d

=− sddd8¹
2 − ]d]d8dHsxd, sC13d

Hsxd ; E
hco

d–k e−ik·xk−4 sC14d

=E
,–.

−1

,–,
−1

d–k kD−1E d–D−1k̂
e−ik·x

k4 . sC15d

Specializing to the case ofD=3, and using spherical polar coordinatessk,u ,wd, we have

Hs3dsxd = s2pd−3E
,–.

,–,

dk

k2E
0

2p

dwE
0

p

du sinue−ikuxucosu =
uxu

2p2 E
uxu/,–.

uxu/,–,

dz
sinz

z3 . sC16d

To control the potential divergence at smallz we add and subtract the small-z behavior of sinz, thus obtaining

Hs3dsxd =
uxu

2p2 E
uxu/,–.

uxu/,–,

dzSsinz− z

z3 +
1

z2D sC17d

=
uxu

2p2sSi3suxu/,–,d − Si3suxu/,–.dd +
,–. − ,–,

2p2 , sC18d

Si3std ; E
0

t

dz
sinz− z

z3 , sC19d

where Si3szd is a generalized sine integral, which has asymptotic behavior

Si3std < H − t/3! for t ! 1,

− sp/4d − t−1 for t @ 1.
J sC20d

Using this behavior to approximateHs3dsxd in Eq. (C18), and inserting the result into Eq.(C13), noting that the final term
vanishes under differentiation, we obtain for,,! uxu!,.,
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Gdd8
s3d sxd < sddd8¹

2 − ]d]d8d
uxu
8p

sC21d

=
1

8puxu
sddd8 + x̂dx̂d8d. sC22d

Now specializing to the case ofD=2, and using plane polar coordinatessk,wd, we have

Hs2dsxd = s2pd−2E
,–.

−1

,–,
−1

dk

k
E
0

2p

dwe−ikuxucosw =
uxu2

2p
E

uxu/,–.

uxu/,–,

dz

z3E
0

2p

d–w e−iz cosw. sC23d

To control the potential divergence at smallz we add and subtract the small-z behavior of the integrand, thus obtaining

Hs2dsxd =
uxu2

2p
E

uxu/,–.

uxu/,–,

dz

z3E
0

2p

d–wse−iz cosw − s1 − 1
4z2dd +

uxu2

2p
E

uxu/,–.

uxu/,–,

dz

z3 s1 − 1
4z2d sC24d

=
uxu2

2p
sSsuxu/,–,d − Ssuxu/,–.dd +

,–.
2 − ,–,

2

4p
−

uxu2

8p
lns,–./,–,d, sC25d

Sstd ; E
0

t

dz

z3E
0

2p

d–wse−iz cosw − s1 − 1
4z2dd . sC26d

Noting thatSstd has asymptotic behavior17

Sstd < H 1
128t

2 for t ! 1,
1
4 lnst/2e1−gd for t @ 1,

J sC27d

wheregs=0.5772̄ d is the Euler-Mascheroni constant and using this to approximateHs2dsxd in Eq. (C25), and inserting the
result into Eq.(C13), noting that the constant term vanishes under differentiation, we obtain for,,! uxu!,. the result

Gdd8
s2d sxd < −

1

4p
sddd8 lnseg+1/2uxu/2,–.d − x̂dx̂d8d. sC28d

APPENDIX D: FROM THE CORRELATOR TO THE DISTRIBUTION

In this appendix we give the technical steps involved in going from the two-field correlator to the distributionP, as
discussed in Sec. VIII B. Beginning with Eq.(69), settingk2 tot to bek1 tot, and reorganizing, we obtain

Q2E dDr11 dDr22 dDr12 e−1/2Dr11d1d2
oa=0

n k1d1

a k1d2

a
e−1/2Dr22d1d2

oa=0
n k2d1

a k2d2

a
eDr12d1d2

oa=0
n k1d1

a k2d2

a

3E dxeik tot·xPsx,Dr11,Dr22,Dr12d = W̃sk1tdW̃sk2td E dx

V
eik1 tot·xesT/m0dGd1d2

sxdk1td1
·k2td2. sD1d

Inserting the parametrization(70) for P, performing the resulting integrations overDr11, Dr22, andDr12 on the left-hand side

(LHS), exchanging factors ofW̃ for Ñ via Eq. (36b), canceling factors ofQ, and identifying the Fourier transform

Psq,j1
2,j2

2,yd ; E dx eiq·xPsx,j1
2,j2

2,yd, sD2d

we arrive at the following equation:
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E dj1
2 Ñsj1

2ddj2
2 Ñsj2

2ddy Psk1 tot,j1
2,j2

2,yde−1/2j1
2k1

2−1/2j2
2k2

2+sT/m0dGd1d2
sydk1d1

·k2d2

=E dj1
2 Ñsj1

2ddj2
2 Ñsj2

2de−1/2j1
2k1t

2 −1/2j2
2k2t

2 E dy eik1 tot·xesT/m0dGd1d2
sydk1td1

·k2td2. sD3d

In order to clarify the content of this equation, we rewrite the wave-vector dependence on the LHS in terms of replica-
longitudinal (more precisely,kt) and replica-transverse(in fact k tot) components[see Eqs.(9) and (10b)], noting thatk1 tot
=k2 tot and writingq for each, to obtain

E dj1
2 Ñsj1

2ddj2
2 Ñsj2

2d E dy Psq,j1
2,j2

2,yde−1/2j1
2k1t

2 −1/2j2
2k2t

2 +sT/m0dGd1d2
sydk1td1

·k2td2e−fq·q/2s1+ndgsj1
2+j2

2d+sT/m0dGd1d2
sydqd1

qd2

=E dj1
2 Ñsj1

2ddj2
2 Ñsj2

2de−1/2j1
2k1t

2 −1/2j2
2k2t

2 E dy eiq·yesT/m0dGd1d2
sydk1td1

·k2td2. sD4d

Next, we identify Laplace transformations with respect toj1
2 and j2

2, equate the entities being transformed on the LHS and
RHS, and take the replica limit, thus arriving at

e−1/2sj1
2+j2

2dq2E dy Psq,j1
2,j2

2,ydesT/m0dGd1d2
sydk1td1

·k2td2esT/m0dGd1d2
sydqd1

qd2

=E dy eiq·yesT/m0dGd1d2
sydk1td1

·k2td2. sD5d

The next steps are to move the Gaussian prefactor to the RHS, and to introduce the dummy variableg, which takes on the
values held by the second-rank tensorGsyd,

E dg esT/m0dgd1d2
k1td1

·k2td2E dy dsg − GsyddPsq,j1
2,j2

2,ydesT/m0dGd1d2
sydqd1

qd2

=E dg esT/m0dgd1d2
k1td1

·k2td2e1/2sj1
2+j2

2dq2E dy eiq·ydsg − Gsydd. sD6d

Again equating entities being transformed, this time being transformed with respect tog, we find

E dy dsg − GsyddPsq,j1
2,j2

2,yd

= e1/2sj1
2+j2

2dq2E dy eiq·ydsg − Gsydde−sT/m0dGd1d2
sydqd1

qd2. sD7d

Next, we equate entities being transformed asedy dsg−Gsydd¯, thus arriving at the Fourier transform of the reduced distri-
bution,

Psq,j1
2,j2

2,yd = e1/2sj1
2+j2

2dq2
eiq·ye−sT/m0dGd1d2

sydqd1
qd2. sD8d

Finally, we invert the Fourier transform to arrive at the reduced distribution,

Psx,j1
2,j2

2,yd =E d–q e−iq·xPsq,j1
2,j2

2,yd =E d–q e−iq·sx−yde1/2sj1
2+j2

2dq·qe−sT/m0dGd1d2
sydqd1

qd2. sD9d

Convergence of this inversion is furnished by the cutoff nature of theq integration. Inserting this formula into the parametri-
zation (70) we arrive at a formula for the full distribution,

Psx,Dr11,Dr22,Dr12d =E dj1
2 Ñsj1

2ddj2
2 Ñsj2

2ddsDr11 − j1
21ddsDr22 − j2

21d

3E dy

V
HE d–q e−iq·sx−yde1/2sj1

2+j2
2dq2

e−sT/m0dGd1d2
sydqd1

qd2JdfDr12 − sT/m0dGsydg. sD10d
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