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hcp-bece structural phase transformation of titanium:  Analytic model calculations

K. Masuda-Jindo
Department of Materials Science and Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

S. R. Nishitani
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan

Vu Van Hung
Hanoi National Pedagogic University, km8 Hanoi-Sontay Highway, Hanoi, Vietham
(Received 29 July 2003; revised manuscript received 26 August 2004; published 23 November 2004

We show that the hcpa) — bcc (B) structural phase transformation of titanium occurs via anharmonicity
effect of thermal lattice vibrations. The full-potential linear muffin-tin orbital method in the local density
approximation with the generalized gradient correction is used to derive the embedded atom potential for Ti,
which allows us the analytic and realistic calculations of the thermodynamic quantities. We also discuss the
similar phase transformation but slightly different mechanism occurring in zirconium in terms of the anhar-
monicity of thermal lattice vibrations.
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I. INTRODUCTION dependence of free energies of Ti crystals, in comparison
. . ) with those of Zr crystals.

Since the pioneering work by Zenethere have been  The format of the present paper is as follows: In Sec. II,
extensive experimental and theoretical werk$ on the  the general derivations by the statistical moment method are
phase transformations of metals and alloys. The importan§iven for the thermodynamic quantities of the hcp metals.
a_md fascinating elements of the structural phase trans_forme}-he calculation results of hep bee transitions of Ti and Zr
tions are hcp transition metaf8/-B group of elementsTi,  4re presented in Secs. 11l A and 11l B, respectively. The me-
Zr, and Hf, which exhibit hcp(a-phas¢— bcee (B-phas¢  chanical instabilities of bee phases at low temperatures are

structural transitions at temperatures 1155, 1135, angdiscussed in Sec. Ill B. The final Sec. IV is devoted to the

2015 K, respectively. These elements are also interesting dygnclusions.

to the appearance of ome¢a) phases at high pressures as

well as in conjunction with the martensitic phase transitions.

However, there have been crucial lattice dynamical problems Il. THEORY

for early transition-metal elementSc, Ti, Y, Zr, La, and Hf

that certain phonon branches are unstable. The first- Let us consider a quantum system written by the follow-

principles calculations of the phonon dispersion have showing Hamiltonian:

that the entire transverdet ¢ 0] branch with polarization SN -
PP Lo 222 H=Ho- > aV;, (1)

along [110] and the longitudinalL[222] phonon are un- i

stable in the harmonic approximati®f. Therefore, it has R

been believed that they are stabilized by the anharmonic efwhere H, denotes the lattice Hamiltonian in the harmonic

fects at high temperatures, but it has never been shown thapproximation, and the second term is due to the anhamonic-

the free energies of bcc phases are actually lower than thosy of thermal lattice vibrationse; denotes a parameter char-

of hep phases in the high-temperature region, including th@cterizing the anharmonicity of lattice vibrations avidthe
anharmonicity contributions. related operator. The Helmholtz free energy of the system

In the present article, the Helmholtz free energies of crysyiven by Hamiltonian(1) is formally given by
talline systems are derived in analytic forms using the mo-

ment expansion technique in the quantum statistical 4 -
mechanic%f)ﬂhereafter re?erred to as thg statistical moment V=Y E f (Vidada, (23)
method(SMM). We will show that the hcp-bcc structural o0

phase transition of Ti occurs via anharmonicity effects of .

thermal lattice vibrations: The anharmonicity contributions (Vi)a=—dV/da, (2b)
of thermal lattice vibrations are much largéor bce phase of
Ti crystal) than those of the electronic entropi@s3We note e _ _ T

that it has been a longstanding and puzzling problem to dra®auilibrium with the (anharmonig Hamiltonian H. ¥ de-
definite conclusion on the role of the vibrational entropies onotes the free energy of the system at temperafuend ¥,

the hcp— bee structural phase transitions of IV-B elements, 1S the free energy of the harmonic lattice corresponding to
especially for titanium. We will calculate the temperaturethe HamiltonianH,. The expectation values in the above Eg.

where(- - -), expresses the expectation values at the thermal
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(2) are evaluated with the use of the density matrix formal- o 8F(a V& 2v6°
ism U>——@ 2 ) T ay(2a; - 1)

VY, = THpV], 3 2v’¢* | 2a

( >j1 (pV] 3) __726 al[—l-(zal—l)(2a1+3)], 9
where the density matrig is defined, withd=kgT, as K 3

N where
p=expg — |. (4) _
0 a; =1 +xcothx/2, (109

Firstly, we expand the potential energy of the system in

terms of the thermal atomic displacements 8, = 13/3 + 4K cothx/6 + 23¢ cothx?/6 +x° cothx?/2,

, PE, (10b)
U:E Ef+ 2> au au ) Uielis —
: ap 2 THia"TiA eq X=hwl20 = hVkim/26, (100
NEDS <L> U U
Bupy \UigdUigdui, ) oq o y=4(y1+ 72, (100
1 = -
Ly (—> Botglith, + - b K=k- 83y. (108
12&,,8,)/,7] &uia&uiﬁ&uiyﬁui” eq

The Helmholtz free energ¥ of our system(hcp a-phase
(5  can be derived from the functional form of the internal en-
ergy of the above Eq6) through the straightforward ana-
lytic integrationsly, I,, andl;, with respect to the three an-
harmonicity “variablesy,, y,, and 8 (fourth-order moment
approximation:

whereu;, denotese-Cartesian component of the atomic dis-
placement ofth atom. Using Eq(5), the thermal average of
potential energy of the hcp crystal is given in terms of the
power momentsu”) of the thermal atomic displacements
and harmonic parameté& and three anharmonic expansion fvz

coefficientsg, y;, andy, as Iy = (u?)?

0

71
71200'72, = L (W] 71,
(U)=Uo+ 3N(g<u2> + BUXU?) + ya(uf) + (U + - ) : -

B
(6) I3=f(u}u?®dB. The final expression of the Helmholtz free

where o
energy is given by
_ [ #E =
“\ae ), P\ ) W = g+ NGx-+ In(1~e 2]
02 2 2’)’1
1(&4Ei) 6( & E, ) +3NY 3| 72X cotlﬁFx—?a1
=—| — = — 7
T 2a\ ) P 28\ a2 ) ) il 4
with a# B=x, y, or z. In the above Eq(7), eq means the * F[é’éalx cOthx = 2(4; +2y17,)24(2a - 1)]
thermal averaging over the equilibrium ensemble. Here, we 12 3/ K
note that the above treatment of the moment expansion tech- + (%) E92+ {(%’%) B+ ﬂ’ﬂz] B
nique has been done in a similar fashion to the so-called 3k3 K 3K3 K6

“potential switch” Monte Carlo(MC) method?? In this (11)
method for treating solid phase, the “Einstein crystal” is

taken as reference system, for which the exact free energyimilar expressions of the Helmholtz energy can be also
expressions are well known. The physical quantities are degiven for cubic crystal§! The Helmholtz energies are
rived from the thermal averages of sufficiently large numberghen used to calculate the various thermodynamic quantities
of random configurations. The similarity between the presen@nd to investigate the hepbcc phase transitions of IV-B
SMM and potential switch MC method are discussed in moreelements. Here, we note that we do not use the phonon dis-
details in the Appendix. By using our “real space” approachersion curves calculated in the harmonic approximatioe

we bypass the anomalous phonon branches in the phon(ﬂmhal’moniCity of the thermal lattice vibrations is taken into

dispersions in deriving the thermodynamic quantities. account as a correction teyiwhich causes the difficulties in
Using moment expansion formul&%2! one can find the calculating the free energy of the bcc phase of early
lowest-order moment&i?) and(u? of the hcp crystal as transition-metal elemerft$® at low temperatures. The vari-
ous thermodynamic quantities, such as specific heats, ther-
(W) = ﬁx cothx + EZﬂza + 2?’293a (2a, - 1) 8) mal lattice expansion coefficients, elastic moduli, and Gru-
K 3 K3 ks R h neisen constant, which are closely related to the
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FIG. 1. Schematic representation of the behcp transition,

with \; and\, distortion modes.

anharmonicity of thermal lattice vibrations, are derived from

the Helmholtz free energy of Eq. (11).

The specific heat€,, andCp at constant volume and con-

stant pressure, respectively, are given by

Cy= 3Nk X2 +2_0{(2 +ﬁ>x3cothx
Ve sinhx  K2|\“727 3 ) sinhX

+ﬁ(1+ NG )_ ( x4 +2x“cotl~?x>]
37 sinh®x/) "\ sinn* " sinhx

— Z(gLaJ-)llzﬁa_ 6|:<gﬁ>3/zﬂ+ 2:2_’(};2’32} 02}

(12a

3K®/ K 3K
and
9TVa?
Cp = CV + . (12b)
XT

The isothermal and adiabatic compressibiliti@sverse of
the bulk modul) are derived from the free energy of EG1)

as
1(&V> <a>2<c> [ 2\3 1(&@”
Vo\dP/+ ay/ \Co c 3N\da" /¢
(133
Cy
Xs= , (13b)
° Cext

whereP denotes the pressure, afalc) and(ay,cy) are the
lattice spacings of hcp crystal at temperatdreand those
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IIl. RESULTS AND DISCUSSIONS

To describe the bcc to hep transition, we consider Burg-
er’s distortions?® Keeping the atomic volume at a constant,
the simplest paths of transition from a bcc lattice into the hcp
structure are through the base-centered orthorhorold4 in
Pearson’s symbol; space group Cmcstructure, as sche-
matically shown in Fig. 1. This includes a shear deformation
from bcc (110) plane to the hexagonal basal plane and an

alternate slide alonf110] of the planegT;N mode in bcg.
Intermediate 0S4 structures are mapped on a two-

dimensional parameter space in terms\pfind\,: We take

N\, to represent the shear deformation andthe slide dis-

placement. The bcc and hcp structures are denote@,By

and (1,1), respectively. Taking bcc lattice constaat the

orthorhombic lattice parameters are written as

ap(Ny) =ala(\y),
bo(Ay) = a(A)\2a,

co=12a,
where
a(hy) =1 +{(3/2Y9 - 1}\,.

Here,a is the lattice constant and is the parameterae=0
for bcc anda=1 for hcp structures.
Furthermore, the primitive cell has one of the atoms at

3+ 1
R)\l + )\2) = [Ov?ZbO()\l)izco} .
The detailed features in the energy surfaces, so-called Burg-
er’s surfacegwhich will be presented in Fig. 2 for Ti crys-
tal), for the bcc—hcp phase transitions are of great impor-
tance in analyzing the phase transitions of titanium group of

elements.

A. Titanium crystal

In order to reduce the numerical inaccuracies in the cal-
culation of the free energies of the metallic systems, we em-
ploy the analytic form of embedded atom meth@AM)
type of potentials. In particular, the full-potential linear
muffin-tin orbital method(FP-LMTO0)242%is used to derive
the EAM potential for Ti crystal. In the FP-LMTO, the core
energy shifts and Perdew and Wang type of generalized-
gradient approximatioliGGA)?® are included. In the calcu-
lations, particular attention has also been paid to the total
energy convergence because of small energy differences be-
tween bcc and hcp structures. Very stable convergence is
attained by evaluating the total energy using the
Harris-Foulke$"22 energy functional of the output and input
electron densities at each iterati®&nThe ground state total
energies of bce, hep, and phases of Ti crystal are calcu-
lated to be -0.477 43, —0.484 29, and —-0.484 24 Ry/atom,

values atT=0, respectively. On the other hand, the Gri-respectively. The bulk moduli of bce, hep, andhases of Ti
neisen constang, can be derived straightforwardly from the crystals are 107, 112, and 112 GPa, respectively. The shear

volume dependence of the vibrational frequercy

elastic constan€’ of bcc phase is negative and —-22.7 GPa.
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FIG. 2. Adiabatic potential
surface for Burger’s path with
contours of step 20 meV
(1.47 mRy: (a) and (b) are from
FP-LMTO method with GGA cor-
rections, while(c) and (d) by the
EAM potential of Eq.(14).
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(All the elastic moduli are calculated without including the bility calculations, however, the relative stabilities between
contributions of zero-point vibrationsThe calculated equi- the hcp and bcec phases are of primary importance, and their
librium atomic volumeQ) of hcp crystal is 0.99,, )y being  absolute values are of less importance.

the experimental value. Thus, the present FP-LMTO method We have also checked the thermal expansion coefficients
provides us the quite accurate cohesive energies, elast®¥ Ti crystal calculated by the present SMM. From the defi-
moduli, and Burger’s surfaces of Ti crystal from bcc to hephition of the linear thermal expansion coefficieatsand the
structures. Helmholtz energyW¥, a1 is simply given byar=(kgx+/3)

The EAM potentials are composed of two terms, embedX (9P/36)y, with P=—(s¥/V)y, where P is the pressure
ding function and interactionp terms: E=g+Sh2(r). To and yr the isothermal compressibility. The calculated linear
guarantee the transferability of EAM potentials for bcc andt€rmal expansion coefficieaty for a-phase of Ti crystal is

- 6 51 i
hcp phases, the spatial dependences of the above two terrﬁ@"g'SX 10 _(deg ) atroom temperature, which compares
are taken as avorably with the experimental results 8.2-10.4

X 1076 (deg?).2?3° The specific heat€, and Cp given by
[ r ) p{ [\ o ne | Egs. (123 and (12b), respectively, are also strongly influ-
o(r)=Aexp - p(— - 1) exp) p| — (—) + <—> , enced by the anharmonicity of thermal lattice vibrations. In
LMoo /] L \le fe Table I, we present the calculated specific heais-3f crys-
(149 tal as a function of the temperature, in comparison with the
experimental results. In this calculation, the Lennard-Jones
I ; 1 [\ ne | (L-J) type of potential(8.5—4.5 type one only fitting to ex-
h(r) = B expl -q<— - 1) exp) q —( ) +< ) perimental bulk modulysis also used for comparison. One
L ) J can see in Table | that the calculated temperature dependence
(14b) of the specific heats of hcp Ti crystal are in good agreement
with the experimental results. It is noticeable that the L-J
The parameters of EAM potential of Ti crystal are chosen taype of potential gives also excellent results on the thermo-
beq=2.8,p=12.6,r.=1.4ryp, n;=7.5,A=0.177 621 eV, and dynamic quantities ofa-Ti crystal (although it underesti-
B=-2.020 161 eV, so as to reproduce the overall features ahates the specific heats and it fails to predict the stability of
the Burger’s; surfaces calculated by FP-LMTO methodbce structure at the high temperature regiofhese results
which are shown and compared in Fig. 2. In Figa2we  convince us to use the EAM potential for the energetics of
present the Burger's surfaces of Ti crystal calculated by FPhcp— bee phase transition of Ti crystal.
LMTO method, together with its projection onto tha, In Fig. 3 we show the temperature dependence of Helm-
—\,) basal plane in Fig. (®). The corresponding results ob- holtz energies of Ti crystals for bcc, fcc, and hep phases by
tained by the EAM potential are shown in FiggcPand 2d) dot-dashed, dashed, and solid curves, respectively. One sees
respectively. The topological features of the Burger's surin Fig. 3 that the Helmholtz energies of hcp and fcc phases
faces of Figs. &) and 2d) by EAM potential are in good are almost identical for temperature region lower than
agreement with those of Figs(&2 and 2b) by FP-LMTO  ~500 K, and hcp phase becomes more stable than fcc phase
method. One sees in Fig. 2 that there are considerable diffefer higher temperature thar500 K. The reason for the al-
ences in the absolute values of Burger’s surface energies beost identical Helmholtz energies for lower temperatures is
tween the two calculations. In the thermodynamic phase stasimply due to the fact that the EAM potential does not give
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TABLE |. Calculated specific heats,, andCp of a-Ti.

Potential T(K) 300 400 500 600 700 800 900
a(A) 2.0583 29622 29661 2.9698 2.9733 2.9768  2.9801
EAM Cy (cal/mol K) 5.74 5.90 5.98 6.05 6.10 6.15 6.19
EAM Cp (cal/mol K) 5.92 6.14 6.29 6.43 6.52 6.60 6.71
L-J Cy (cal/mol K) 5.67 5.83 6.92 5.97 6.02 6.05 6.08
L-J Cp (cal/mol K) 5.80 6.00 6.12 6.21 6.29 6.36 6.42
C¥® (callmol K)  5.97 6.26 6.51 6.76 7.01 7.27

the differences in the ground state total energies between theefunction of temperature in Fig. 4. The solid curve in Fig. 4
hcp and fce structures and the same mathematical form ishows the difference in the vibration free enedyy i, by
used for the harmonic free energi®g. The most striking the present SMM including the anharmonicity of thermal
feature in Fig. 3 is that the Helmholtz energy of bcc phasdattice vibrations, while the dashed one by Morehial 12 in
decreases very rapidly as increasing the temperature, whiche quasiharmonic approximation. We also show in Fig. 4, by
cannot be expected from its initial slogearmonic approxi- dot-dashed curve, th&W ;, calculated in the harmonic ap-
mation) near the absolute zero temperature. This rapid deproximation of the present method, without including the
crease in the Helmholtz energy with temperature results fronanharmonic contributions. It is noted that the harmonic ap-
the anharmonicity of thermal lattice vibrations. Here, it proximation of the present SMM and quasiharmonic theory
should be noted that the anharmonicity effects of thermaby Moroni et all? give the positiveAV,;,, which indicates
lattice vibrations are more pronounced for the bcc phase witlthat hcp phase becomes more stable than bcc phase upon
loser close packing structurgsmaller lattice coordination increasing the temperature. Therefore, it has been claimed by
numbers and also for hcp structure with lower crystal sym- Moroni et al}? that the electronic entropy plays an important
metry compared to those of the closed packed (fatic) role in the hcp—bcc phase transition of Ti crystal, afnd
structure, as can be seen in Fig. 3 by three free energy lines: 2050 K has been calculated by them including the thermal
In order to see more clearly the contributions of vibra-electronic contributions. Here, it is remarkable that drastic
tional entropy to the hcp> bee transition, we also plot the changes occur in thaWw;, behavior of Ti crystal, when one
differences in the vibrational free energidsV, (:\If‘v’ﬁf takes into account the anharmonicity effects of thermal lat-
—‘P[]icbp, as defined in Ref. J2between hcp and bcc phases astice vibrations; theAW ;, value becomes negative aroumd
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> 800 ] o %
@ g
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~1150 K from positive value and bcc phase is stabilizedSMM and more direct use of the first-principles theory for
strongly for higher temperatures in contrast to the harmonithe energetics. The transition temperatufgf hcp— bcc
AV i, (always positivg calculations. transformation of Ti crystal have been calculated by a num-

The contribution of electronic entropy on the hcp-bccber of authorg?425Moroni et all? calculated theT, of Ti
transition is estimated from the standard entropy formula andrystal using the quasiharmonic approximation, and found
electronic densities of statés.The thermal electronic en- that T,~2050 K. On the other hand, Craieviet al!* cal-
tropy contribution obtained by the present FP-LMTO methodculated T,~ 3350 K of Ti crystal, taking into account the
is very close to that of Craievicét al,* but it decreases the thermal electronic  contribution Wy, T)=Epand T)
transition temperatur@; of Ti crystal only by~10 Kinthe  -TS,,{T), without including the contributions of thermal
present calculations. The calculated critical temperafy e lattice vibrations. The similail, value of 3300 K has also
hcp— bcc transition including the electronic entropy contri- been obtained by Nishitaet al?® including only the thermal
bution is shown in Table II, together with the transition tem- electronic contributions. The theoretical estimate of 3350 K
peratures of other calculations. In Table II, the hepcc by Craievichet all4 is significantly higher than that found
transition temperatur&, of Ti crystal by the present SMM (2050 K) by Moroni et al1? This difference, however, can be
are referred to as cal{1L308 K) and cal-2(1295 K), which  simply attributed to the hcp- bee (“internal”) energy differ-
are calculated without and with the thermal electronic conence used in theT, calculations (99 meV/atom versus
tributions, respectively. The preseit value of 1295 K is 62 meV/atom, which can be understandable by simply scal-
still higher than the experimental values of 1155-ing the temperatures by the hepbcc energy differences
~1156 K, but we can expect that tigvalue of 1295 K can  The discrepancy between the calculations most likely results
be decreased for more refined calculations, e.g., by includinffom Moroni et al’s use of the atomic-sphere
the higher order power moments than fourth order in theapproximation-?

TABLE II. Transition temperature$; of hcp— bcc transition of

Ti. B. Zirconium crystal
_ . Here, we also discuss the hegbcc phase transformation
Present SMM Present SMMMoroni et al. Craievichet al. occurring in zirconium in terms of the anharmonicity of ther-
Cal-1 Cal-2 (Ref. 12 (Ref. 14 EXP- mal lattice vibrations. For comparison with the previous re-
1308 1295 2050 3350 1155 lated theoretical calculations, we use the EAM potential of

Zr derived recently by Pinsook and Acklah@he calculated
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Mdr——T—" T T T T T T As we have seen in the previous sections that the bcc
4 20 structure is stabilized due to the thermal lattice vibration ef-
02 - SMM (harmonic) fects at high temperature. Therefore, one can expect that the
i ] high temperature bcc structure for these three elements
shows anomalous properties. An example of this is the ex-
perimental observation that within the bcc phase these three
metals become increasingly stiff with increasing tempera-
ture, a most unusual behavidrFurthermore, it has been
observed that IV-B element&r and Hf exhibit a crystal
structure  sequence hepw—bcc, with increasing
pressuré? In conjunction with the “mechanical instability”
of the group IV-B elements, we have calculated the shear
| ] elastic constant€’ of bcc Ti crystal as a function of the
Zr temperature as well as the function of atomic volunies
08 460 other words, the hydrostatic pressure
| In Fig. 6a), we present the calculated shear elastic con-
-1.0 T T T T T stantsC’ of bcc Ti crystal at absolute zero temperature as a
0 200 400 600 800 1000 1200 1400 1600 function of the relative atomic volumed//V,), whereV,
Temperature (K) denotes the atomic volume at zero pressure. The present re-
sults marked by symbol9 are calculated by using the EAM
FIG. 5. Calculated values of the free energy differed¥  potential of Eq(14) fitted to the first-principles calculations,
(ZWpee=Wnep) Of Zr crystals as a function of temperature. and they are compared with those of the previous theoretical
calculations of Ahujeet al,'® by symbolsA, obtained di-
free energy differencedWV between bcc and hcp phases of rectly using the first-principles total energy calculations. One
Zr crystals by the present SMM scheme, both harmonic andan see in Fig. @ that the present calculations of tig
anharmonic calculations, are presented in Fig. 5, by dotvalues are in good agreement with those by Ahefial.'©
dashed and solid lines, respectively. One can see in Fig. &specially for the small volume relaxation region (&% V)
that high temperature bcc phase of zirconium is stabilized=0.85. However, there are large discrepancies between the
within the harmonic approximatiofeven without the elec- two results for smaller values @¥/Vy) <0.85. The reason
tronic entropy contributions although the transition tem- for the large discrepancy in th&’ value between the two
peratures are estimated to be much higher than the expefialculations is due to the fact that our EAM potential is com-
mental values. The anharmonic calculations give thgosed of monotonous mathematical functions.
reasonable transition temperature of zirconium. This ten- Also shown in Fig. @) is the temperature dependence of
dency is consistent with the previous theoretical stuéfizd!  shear elastic constan® of bce Ti crystal. In Fig. 6b), the
but qualitatively different from the hcp bcc phase transi-  solid curve(cal-1) is calculated by fully taking into account
tion of titanium as discussed in the previous subsection. Inhe effects of thermal lattice vibrations, while the dashed
general, the stabilities of high temperature bcc phase of Téurve(cal-2) without including the thermal lattice vibrations,
and Zr crystals can be attributed to the characteristic nonlinbut only taking into account the thermal lattice expansion of
ear dependenc@ecreasgof the anharmonicity parameters the bcc lattice. The most striking feature of our results are the
v, andy, with respect to the increase of bcc lattice spacingsdramatic changes of the shear elastic constanfrom nega-
The strong anharmonicity effects of thermal lattice vibrationstive to positive signs, upon increasing the temperafui@ne
in bce Ti and Zr crystals have also been demonstrated in thean then expect that the stiffness of IV-B elements increases
recent study of neutron-scattering spectra by Mal 32 anomalously upon increasing the temperature, whap C
shows relatively the weak temperature dependdiits is
the case of the present calculation

/

0.0

SMM (anharmonic)

AY (eV/atom)
0
<

&
(=]
AY (10Ryd/atom )

C. Mechanical instability

We now prlefly comment on the phonon and/or mecham— IV. CONCLUSIONS
cal instabilities of bcc phases of group IV-B elements. It is
well known that at zero pressure and high temperature, all In conclusion, we have shown that bcc phase of Ti crystal
the group IV-B elements transform from the hcp to the bcchecomes more stable than hcp phase for temperature region
structure. This hcp to bece phase transition occurs, in “phonomigher than the transition temperatdredue to the anharmo-
language,” due to the anomaliesfpoint phonon of thél;  nicity effects of thermal lattice vibrations using the analytic
branch along th¢¢ £ 0] direction. Accordingly, at zero tem- calculations based on the statistical moment method. The
perature and zero pressure, the shear elastic m@dylde-  predicted transition temperatufe~ 1295 K of Ti crystal is
fined by C'=1/2(C,,-C,,), whereC,; and C,, are elastic close to the experimental valug4155— 1156 K), and
constanty become negative and bcc crystal structures ofnuch lower than the previously reported theoretical value
group IV-B elements are mechanically unstable. The insta=~3350 K. It has been found that in the harmonic approxi-
bility of bcc structure is observed experimentally at highmation and without including the thermal electronic contri-
temperature in all three metals. bution, hcp phase is always stable and hdpcc phase tran-
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sition never occurs in Ti crystal. The electronic entropy is an APPENDIX: SIMILARITY BETWEEN SMM
only minor contribution in determining the transition tem- AND “POTENTIAL SWITCH” MC METHOD

peratureT.. For the hcp—bcc structural phase transforma-
tion of Zr, we have also obtained results consistent with the |n this appendix, we will make a brief comment on the
previous theoretical calculatiods?®* similarity between the present statistical moment method
and the so-called “potential switch” Monte Carlo
simulations??3334 originally developed by Frenkel and
ACKNOWLEDGMENTS Ladd?? Following the potential switch MGPSMC) method,
for treating solid phase “harmonic solid” or “Einstein crys-
The authors would like to thank Professor H. Takayamaal” is taken as the reference system, for which the exact free
of Institute for Solid State Physics of the University of Tokyo energy expression is well known. For treating liquid phases,
for valuable discussions. The support of the supercomputinthe ideal gas state is taken as a reference system. The basic
facility of Institute for Solid State Physics, the University of idea is to construct a reversible path between the solid under
Tokyo is also acknowledged. consideration and an Einstein crystal with the same structure.
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The Hamiltonian and the resulting free enerdfy\) of True potential lattice True potential boundary
the system are, in a similar manner as in Ed3.and (2), \ \ \
iven by the following equations: 2 7 S
g y geq , % /
H(\) =Hg +\V, (A1) Z 7
\P()\) —\I’0+ fo <V>)\/d)\ , (A2) / /j : \
where ¥ denotes the free energy of the system with the B /
unperturbed(harmonic Einstein Hamiltonian H,. Firstly, (a) Periodic boundary  (b) Ein mmb;z;‘;:yb"""d“"('c) Double b
one can transform a given solid to an ideal Einstein crystal  condition condition conl;itiinoundary

by adding a potential term of harmonic spring constants

AV=AEN (ri-r)2. For this case, we have the relation FIG. 7. Boundary conditions used in the PSMC simulations.
aV1on=(V),. For treating the general case, the original ref-

erence state&’(\=0) can be reached from the real solid by  The efficiency of the original PSMC method has been
slowly switching on the spring constants while switching off improved by Watanabe and Reinffarby introducing the

the interatomic interactions: appropriate time-dependent switching functiarig. The in-
N termediate HamiltoniarH(\) is now given byH(\A)=\H;
dH(\") +(1-\)H,. The PSMC method has been further generalized
T(\=0)=¥(\) - dn'. A3 Ho. nast tner gene
( ) » fo < N’ > (A3) by Sugino and Cat} by coupling with the first-principles

_ _ _ _ density-functional theory. For treating tfab initio Hamil-
The free energy difference between the ideal Einstein crystabnian H,, iniio, S€cond reference systefmgge is intro-

and the interacting Einstein crystal can be found numericallyjuced, which is treated within the efficient empirical model

by performing a Monte Carlo simulation on the ideal Ein- potentials as

stein crystal, in contrast to the analytic integratiopg,, and 1 1

I3 of the present SMM formalism. = _ L\ o AN
This type of PSMC method is of great significance since itAq} JO (Hinogei™ Hrenhy dA "+ fo (Hab intio = Hmocel A"

is capable of computing the absolute free energy of arbitrary (Ad)

solid phases. The simulation cells are accompanied by the

so-called Einstein Crystal, as shown in Fig. 7, and MC simu-The first application of this scheme was reported for the

lation calculations can be done without any difficulties. Onemelting of silicon crystaf? It is also straightforward to gen-

can then obtain the thermodynamic quantities of arbitraryeralize the present SMM to couple with the first-principles

solid phases, e.g., both hcp and bcc phases of Ti and Zheory by simply evaluating the harmonic and anharmonic

crystals. coupling parameterk and 3, v, and y,.
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