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We show that the hcpsad→bcc sbd structural phase transformation of titanium occurs via anharmonicity
effect of thermal lattice vibrations. The full-potential linear muffin-tin orbital method in the local density
approximation with the generalized gradient correction is used to derive the embedded atom potential for Ti,
which allows us the analytic and realistic calculations of the thermodynamic quantities. We also discuss the
similar phase transformation but slightly different mechanism occurring in zirconium in terms of the anhar-
monicity of thermal lattice vibrations.
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I. INTRODUCTION

Since the pioneering work by Zener,1 there have been
extensive experimental and theoretical works2–18 on the
phase transformations of metals and alloys. The important
and fascinating elements of the structural phase transforma-
tions are hcp transition metals(IV-B group of elements) Ti,
Zr, and Hf, which exhibit hcpsa-phased→bcc sb-phased
structural transitions at temperatures 1155, 1135, and
2015 K, respectively. These elements are also interesting due
to the appearance of omegasvd phases at high pressures as
well as in conjunction with the martensitic phase transitions.5

However, there have been crucial lattice dynamical problems
for early transition-metal elements(Sc, Ti, Y, Zr, La, and Hf)
that certain phonon branches are unstable. The first-
principles calculations of the phonon dispersion have shown
that the entire transversefj j 0g branch with polarization

along f11̄0g and the longitudinalL f 2
3

2
3

2
3
g phonon are un-

stable in the harmonic approximation.6,9 Therefore, it has
been believed that they are stabilized by the anharmonic ef-
fects at high temperatures, but it has never been shown that
the free energies of bcc phases are actually lower than those
of hcp phases in the high-temperature region, including the
anharmonicity contributions.

In the present article, the Helmholtz free energies of crys-
talline systems are derived in analytic forms using the mo-
ment expansion technique in the quantum statistical
mechanics,20,21hereafter referred to as the statistical moment
method(SMM). We will show that the hcp→bcc structural
phase transition of Ti occurs via anharmonicity effects of
thermal lattice vibrations: The anharmonicity contributions
of thermal lattice vibrations are much larger(for bcc phase of
Ti crystal) than those of the electronic entropies.12,13We note
that it has been a longstanding and puzzling problem to draw
definite conclusion on the role of the vibrational entropies on
the hcp→bcc structural phase transitions of IV-B elements,
especially for titanium. We will calculate the temperature

dependence of free energies of Ti crystals, in comparison
with those of Zr crystals.

The format of the present paper is as follows: In Sec. II,
the general derivations by the statistical moment method are
given for the thermodynamic quantities of the hcp metals.
The calculation results of hcp→bcc transitions of Ti and Zr
are presented in Secs. III A and III B, respectively. The me-
chanical instabilities of bcc phases at low temperatures are
discussed in Sec. III B. The final Sec. IV is devoted to the
conclusions.

II. THEORY

Let us consider a quantum system written by the follow-
ing Hamiltonian:

Ĥ = Ĥ0 − o
i

aiV̂i , s1d

where Ĥ0 denotes the lattice Hamiltonian in the harmonic
approximation, and the second term is due to the anhamonic-
ity of thermal lattice vibrations.ai denotes a parameter char-

acterizing the anharmonicity of lattice vibrations andV̂i the
related operator. The Helmholtz free energy of the system
given by Hamiltonian(1) is formally given by

C = C0 − o
i
E

0

ai

kV̂iladai , s2ad

kV̂ila = − ]C/]ai , s2bd

wherek¯la expresses the expectation values at the thermal

equilibrium with the (anharmonic) Hamiltonian Ĥ. C de-
notes the free energy of the system at temperatureT, andC0
is the free energy of the harmonic lattice corresponding to

the HamiltonianĤ0. The expectation values in the above Eq.
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(2) are evaluated with the use of the density matrix formal-
ism

kV̂la = Trfr̂V̂g, s3d

where the density matrixr̂ is defined, withu=kBT, as

r̂ = expFC − Ĥ

u
G . s4d

Firstly, we expand the potential energy of the system in
terms of the thermal atomic displacements

U = o
i
HEi

0 + o
a,b

S ]2Ei

]uia]uib
D

eq
uiauib

+
1

3 o
a,b,g

S ]3Ei

]uia]uib]uig
D

eq
uiauibuig

+
1

12 o
a,b,g,h

S ]4Ei

]uia]uib]uig]uih
D

eq
uiauibuiguih + ¯ J ,

s5d

whereuia denotesa-Cartesian component of the atomic dis-
placement ofith atom. Using Eq.(5), the thermal average of
potential energy of the hcp crystal is given in terms of the
power momentskunl of the thermal atomic displacements
and harmonic parameterk, and three anharmonic expansion
coefficientsb, g1, andg2 as

kUl = U0 + 3NS k

2
ku2l + bkulku2l + g1ku4l + g2ku2l2 + ¯ D ,

s6d

where

k = S ]2Ei

]uia
2 D

eq

, b = S ]3Ei

]uia]uib
2 D

eq

,

g1 =
1

24
S ]4Ei

]uia
4 D

eq

, g2 =
6

24
S ]4Ei

]uia
2 uib

2 D
eq

, s7d

with aÞb=x, y, or z. In the above Eq.(7), eq means the
thermal averaging over the equilibrium ensemble. Here, we
note that the above treatment of the moment expansion tech-
nique has been done in a similar fashion to the so-called
“potential switch” Monte Carlo(MC) method.22 In this
method for treating solid phase, the “Einstein crystal” is
taken as reference system, for which the exact free energy
expressions are well known. The physical quantities are de-
rived from the thermal averages of sufficiently large numbers
of random configurations. The similarity between the present
SMM and potential switch MC method are discussed in more
details in the Appendix. By using our “real space” approach,
we bypass the anomalous phonon branches in the phonon
dispersions in deriving the thermodynamic quantities.

Using moment expansion formulas,20,21 one can find the
lowest-order momentsku2l and ku4l of the hcp crystal as

ku2l =
u

K
x cothx +

2

3

2gu2

K3 a1 +
2g2u3

K5 a1s2a1 − 1d, s8d

ku4l = −
8u2

3K2Sa1

4
+

g2u2

K4 a2D −
2gu3

K4 a1s2a1 − 1d

−
2g2u4

K6 a1F2a1

3
− s2a1 − 1ds2a1 + 3dG , s9d

where

a1 = 1 +x cothx/2, s10ad

a2 = 13/3 + 47x cothx/6 + 23x2 cothx2/6 + x3 cothx3/2,

s10bd

x = "v/2u ; "Îk/m/2u, s10cd

g = 4sg1 + g2d, s10dd

K = k − b2/3g. s10ed

The Helmholtz free energyC of our system(hcp a-phase)
can be derived from the functional form of the internal en-
ergy of the above Eq.(6) through the straightforward ana-
lytic integrationsI1, I2, and I3, with respect to the three an-
harmonicity “variables”g2, g1, andb (fourth-order moment
approximation):

I1 = UE
0

g2

ku2l2U
g1=0

b=0

dg2, I2 = uE
0

g1

ku4lu
b=0

dg1,

I3=e
0

b

kulku2ldb. The final expression of the Helmholtz free

energy is given by

C = u0 + 3Nufx + lns1 − e−2xdg

+ 3NH u2

K2Fg2x
2 coth2 x −

2g1

3
a1G

+
2u3

K4 F4

3
g2

2a1x cothx − 2sg1
2 + 2g1g2da1s2a1 − 1dG

+ S2ga1

3K3 D1/2b

K
u2 + FS2ga1

3K3 D3/2

b +
2kg

K6 b2Gu3J .

s11d

Similar expressions of the Helmholtz energy can be also
given for cubic crystals.21 The Helmholtz energiesC are
then used to calculate the various thermodynamic quantities
and to investigate the hcp→bcc phase transitions of IV-B
elements. Here, we note that we do not use the phonon dis-
persion curves calculated in the harmonic approximation(the
anharmonicity of the thermal lattice vibrations is taken into
account as a correction term) which causes the difficulties in
calculating the free energy of the bcc phase of early
transition-metal elements6,19 at low temperatures. The vari-
ous thermodynamic quantities, such as specific heats, ther-
mal lattice expansion coefficients, elastic moduli, and Grü-
neisen constant, which are closely related to the
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anharmonicity of thermal lattice vibrations, are derived from
the Helmholtz free energyC of Eq. (11).

The specific heatsCV andCP at constant volume and con-
stant pressure, respectively, are given by

CV = 3NkBH x2

sinh2x
+

2u

K2FS2g2 +
g1

3
Dx3 cothx

sinh2x

+
g1

3
S1 +

x2

sinh2x
D − g2S x4

sinh4x
+ 2

x4 coth2 x

sinh2x
DG

− 2S2

3

ga1

K3 D1/2b

K
u − 6FS2

3

ga1

K3 D3/2

b +
2kg2

K6 b2Gu2J
s12ad

and

CP = CV +
9TVa2

xT
. s12bd

The isothermal and adiabatic compressibilities(inverse of
the bulk moduli) are derived from the free energy of Eq.(11)
as

xT = −
1

V0
S ]V

]P
D

T
= 2S a

a0
D2S c

c0
DYFP +

2Î3

c

1

3N
S ]2C

]a2 D
T
G ,

s13ad

xs =
CV

CPxT
, s13bd

whereP denotes the pressure, andsa,cd and sa0,c0d are the
lattice spacings of hcp crystal at temperatureT and those
values atT=0, respectively. On the other hand, the Grü-
neisen constantgg can be derived straightforwardly from the
volume dependence of the vibrational frequencyv.

III. RESULTS AND DISCUSSIONS

To describe the bcc to hcp transition, we consider Burg-
er’s distortions.23 Keeping the atomic volume at a constant,
the simplest paths of transition from a bcc lattice into the hcp
structure are through the base-centered orthorhombic(oS4 in
Pearson’s symbol; space group Cmcm) structure, as sche-
matically shown in Fig. 1. This includes a shear deformation
from bcc (110) plane to the hexagonal basal plane and an

alternate slide alongf11̄0g of the planes(T1N mode in bcc).
Intermediate oS4 structures are mapped on a two-

dimensional parameter space in terms ofl1 andl2: We take
l1 to represent the shear deformation andl2 the slide dis-
placement. The bcc and hcp structures are denoted by(0,0)
and (1,1), respectively. Taking bcc lattice constanta, the
orthorhombic lattice parameters are written as

a0sl1d = a/asl1d,

b0sl1d = asl1dÎ2a,

c0 = Î2a,

where

asl1d = 1 + hs3/2ds1/4d − 1jl1.

Here,a is the lattice constant anda is the parameter:a=0
for bcc anda=1 for hcp structures.

Furthermore, the primitive cell has one of the atoms at

t̄sl1 + l2d = F0,
3 + l2

12
b0sl1d,

1

4
c0G .

The detailed features in the energy surfaces, so-called Burg-
er’s surfaces(which will be presented in Fig. 2 for Ti crys-
tal), for the bcc→hcp phase transitions are of great impor-
tance in analyzing the phase transitions of titanium group of
elements.

A. Titanium crystal

In order to reduce the numerical inaccuracies in the cal-
culation of the free energies of the metallic systems, we em-
ploy the analytic form of embedded atom method(EAM)
type of potentials. In particular, the full-potential linear
muffin-tin orbital method(FP-LMTO)24,25 is used to derive
the EAM potential for Ti crystal. In the FP-LMTO, the core
energy shifts and Perdew and Wang type of generalized-
gradient approximation(GGA)26 are included. In the calcu-
lations, particular attention has also been paid to the total
energy convergence because of small energy differences be-
tween bcc and hcp structures. Very stable convergence is
attained by evaluating the total energy using the
Harris-Foulkes27,28 energy functional of the output and input
electron densities at each iteration.25 The ground state total
energies of bcc, hcp, andv phases of Ti crystal are calcu-
lated to be −0.477 43, −0.484 29, and −0.484 24 Ry/atom,
respectively. The bulk moduli of bcc, hcp, andv phases of Ti
crystals are 107, 112, and 112 GPa, respectively. The shear
elastic constantC8 of bcc phase is negative and −22.7 GPa.

FIG. 1. Schematic representation of the bcc→hcp transition,
with l1 andl2 distortion modes.
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(All the elastic moduli are calculated without including the
contributions of zero-point vibrations.) The calculated equi-
librium atomic volumeV of hcp crystal is 0.99V0, V0 being
the experimental value. Thus, the present FP-LMTO method
provides us the quite accurate cohesive energies, elastic
moduli, and Burger’s surfaces of Ti crystal from bcc to hcp
structures.

The EAM potentials are composed of two terms, embed-
ding function and interactionw terms: E=w+ÎSh2srd. To
guarantee the transferability of EAM potentials for bcc and
hcp phases, the spatial dependences of the above two terms
are taken as

wsrd = A expF− pS r

r0
− 1DGexpHpF− S r

rc
Dnc

+ S r0

rc
DncGJ ,

s14ad

hsrd = B expF− qS r

r0
− 1DGexpHqF− S r

rc
Dnc

+ S r0

rc
DncGJ .

s14bd

The parameters of EAM potential of Ti crystal are chosen to
be q=2.8, p=12.6, rc=1.4r0, nc=7.5, A=0.177 621 eV, and
B=−2.020 161 eV, so as to reproduce the overall features of
the Burger’s; surfaces calculated by FP-LMTO method,
which are shown and compared in Fig. 2. In Fig. 2(a), we
present the Burger’s surfaces of Ti crystal calculated by FP-
LMTO method, together with its projection onto thesl1

−l2d basal plane in Fig. 2(b). The corresponding results ob-
tained by the EAM potential are shown in Figs. 2(c) and 2(d)
respectively. The topological features of the Burger’s sur-
faces of Figs. 2(c) and 2(d) by EAM potential are in good
agreement with those of Figs. 2(a) and 2(b) by FP-LMTO
method. One sees in Fig. 2 that there are considerable differ-
ences in the absolute values of Burger’s surface energies be-
tween the two calculations. In the thermodynamic phase sta-

bility calculations, however, the relative stabilities between
the hcp and bcc phases are of primary importance, and their
absolute values are of less importance.

We have also checked the thermal expansion coefficients
of Ti crystal calculated by the present SMM. From the defi-
nition of the linear thermal expansion coefficientsaT and the
Helmholtz energyC, aT is simply given byaT=skBxT/3d
3s]P/]udV, with P=−s]C /]VdT, where P is the pressure
and xT the isothermal compressibility. The calculated linear
thermal expansion coefficientaT for a-phase of Ti crystal is
aT=9.8310−6 sdeg−1d at room temperature, which compares
favorably with the experimental results 8.2–10.4
310−6 sdeg−1d.29,30 The specific heatsCV and CP given by
Eqs. (12a) and (12b), respectively, are also strongly influ-
enced by the anharmonicity of thermal lattice vibrations. In
Table I, we present the calculated specific heats ofa-Ti crys-
tal as a function of the temperature, in comparison with the
experimental results. In this calculation, the Lennard-Jones
(L-J) type of potential(8.5–4.5 type one only fitting to ex-
perimental bulk modulus) is also used for comparison. One
can see in Table I that the calculated temperature dependence
of the specific heats of hcp Ti crystal are in good agreement
with the experimental results. It is noticeable that the L-J
type of potential gives also excellent results on the thermo-
dynamic quantities ofa-Ti crystal (although it underesti-
mates the specific heats and it fails to predict the stability of
bcc structure at the high temperature region). These results
convince us to use the EAM potential for the energetics of
hcp→bcc phase transition of Ti crystal.

In Fig. 3 we show the temperature dependence of Helm-
holtz energies of Ti crystals for bcc, fcc, and hcp phases by
dot-dashed, dashed, and solid curves, respectively. One sees
in Fig. 3 that the Helmholtz energies of hcp and fcc phases
are almost identical for temperature region lower than
,500 K, and hcp phase becomes more stable than fcc phase
for higher temperature than,500 K. The reason for the al-
most identical Helmholtz energies for lower temperatures is
simply due to the fact that the EAM potential does not give

FIG. 2. Adiabatic potential
surface for Burger’s path with
contours of step 20 meV
s1.47 mRyd: (a) and (b) are from
FP-LMTO method with GGA cor-
rections, while(c) and (d) by the
EAM potential of Eq.(14).
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the differences in the ground state total energies between the
hcp and fcc structures and the same mathematical form is
used for the harmonic free energiesC0. The most striking
feature in Fig. 3 is that the Helmholtz energy of bcc phase
decreases very rapidly as increasing the temperature, which
cannot be expected from its initial slope(harmonic approxi-
mation) near the absolute zero temperature. This rapid de-
crease in the Helmholtz energy with temperature results from
the anharmonicity of thermal lattice vibrations. Here, it
should be noted that the anharmonicity effects of thermal
lattice vibrations are more pronounced for the bcc phase with
loser close packing structure(smaller lattice coordination
numbers) and also for hcp structure with lower crystal sym-
metry compared to those of the closed packed fcc(cubic)
structure, as can be seen in Fig. 3 by three free energy lines.

In order to see more clearly the contributions of vibra-
tional entropy to the hcp→bcc transition, we also plot the
differences in the vibrational free energiesDCvib (=Cvib

bcc

−Cvib
hcp, as defined in Ref. 12) between hcp and bcc phases as

a function of temperature in Fig. 4. The solid curve in Fig. 4
shows the difference in the vibration free energyDCvib by
the present SMM including the anharmonicity of thermal
lattice vibrations, while the dashed one by Moroniet al.12 in
the quasiharmonic approximation. We also show in Fig. 4, by
dot-dashed curve, theDCvib calculated in the harmonic ap-
proximation of the present method, without including the
anharmonic contributions. It is noted that the harmonic ap-
proximation of the present SMM and quasiharmonic theory
by Moroni et al.12 give the positiveDCvib, which indicates
that hcp phase becomes more stable than bcc phase upon
increasing the temperature. Therefore, it has been claimed by
Moroni et al.12 that the electronic entropy plays an important
role in the hcp→bcc phase transition of Ti crystal, andTc
<2050 K has been calculated by them including the thermal
electronic contributions. Here, it is remarkable that drastic
changes occur in theDCvib behavior of Ti crystal, when one
takes into account the anharmonicity effects of thermal lat-
tice vibrations; theDCvib value becomes negative aroundT

TABLE I. Calculated specific heatsCV andCP of a-Ti.

Potential TsKd 300 400 500 600 700 800 900

asÅd 2.9583 2.9622 2.9661 2.9698 2.9733 2.9768 2.9801

EAM CV (cal/mol K) 5.74 5.90 5.98 6.05 6.10 6.15 6.19

EAM CP (cal/mol K) 5.92 6.14 6.29 6.43 6.52 6.60 6.71

L-J CV (cal/mol K) 5.67 5.83 6.92 5.97 6.02 6.05 6.08

L-J CP (cal/mol K) 5.80 6.00 6.12 6.21 6.29 6.36 6.42

CP
exp (cal/mol K) 5.97 6.26 6.51 6.76 7.01 7.27 ¯

FIG. 3. Temperature depen-
dences of Helmholtz free energies
of Ti crystal for bcc, fcc, and hcp
phases.
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<1150 K from positive value and bcc phase is stabilized
strongly for higher temperatures in contrast to the harmonic
DCvib (always positive) calculations.

The contribution of electronic entropy on the hcp-bcc
transition is estimated from the standard entropy formula and
electronic densities of states.25 The thermal electronic en-
tropy contribution obtained by the present FP-LMTO method
is very close to that of Craievichet al.,14 but it decreases the
transition temperatureTc of Ti crystal only by,10 K in the
present calculations. The calculated critical temperatureTc of
hcp→bcc transition including the electronic entropy contri-
bution is shown in Table II, together with the transition tem-
peratures of other calculations. In Table II, the hcp→bcc
transition temperatureTc of Ti crystal by the present SMM
are referred to as cal-1s1308 Kd and cal-2s1295 Kd, which
are calculated without and with the thermal electronic con-
tributions, respectively. The presentTc value of 1295 K is
still higher than the experimental values of 1155–
,1156 K, but we can expect that theTc value of 1295 K can
be decreased for more refined calculations, e.g., by including
the higher order power moments than fourth order in the

SMM and more direct use of the first-principles theory for
the energetics. The transition temperaturesTc of hcp→bcc
transformation of Ti crystal have been calculated by a num-
ber of authors.12,14,25Moroni et al.12 calculated theTc of Ti
crystal using the quasiharmonic approximation, and found
that Tc<2050 K. On the other hand, Craievichet al.14 cal-
culatedTc<3350 K of Ti crystal, taking into account the
thermal electronic contribution CbandsTd=EbandsTd
−TSbandsTd, without including the contributions of thermal
lattice vibrations. The similarTc value of 3300 K has also
been obtained by Nishitaniet al.25 including only the thermal
electronic contributions. The theoretical estimate of 3350 K
by Craievichet al.14 is significantly higher than that found
s2050 Kd by Moroni et al.12 This difference, however, can be
simply attributed to the hcp→bcc (“internal”) energy differ-
ence used in theTc calculations (99 meV/atom versus
62 meV/atom, which can be understandable by simply scal-
ing the temperatures by the hcp→bcc energy differences).
The discrepancy between the calculations most likely results
from Moroni et al.’s use of the atomic-sphere
approximation.12

B. Zirconium crystal

Here, we also discuss the hcp→bcc phase transformation
occurring in zirconium in terms of the anharmonicity of ther-
mal lattice vibrations. For comparison with the previous re-
lated theoretical calculations, we use the EAM potential of
Zr derived recently by Pinsook and Ackland.9 The calculated

FIG. 4. The differences of the
vibrational free energiesDCvib

between the bcc and hcp phases
in the Ti crystals, by the present
SMM and quasiharmonic approxi-
mations by Moroni et al.
(Ref. 12).

TABLE II. Transition temperaturesTc of hcp→bcc transition of
Ti.

Present SMM
Cal-1

Present SMM
Cal-2

Moroni et al.
(Ref. 12)

Craievichet al.
(Ref. 14) Exp.

1308 1295 2050 3350 1155
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free energy differencesDC between bcc and hcp phases of
Zr crystals by the present SMM scheme, both harmonic and
anharmonic calculations, are presented in Fig. 5, by dot-
dashed and solid lines, respectively. One can see in Fig. 5
that high temperature bcc phase of zirconium is stabilized
within the harmonic approximation(even without the elec-
tronic entropy contributions), although the transition tem-
peratures are estimated to be much higher than the experi-
mental values. The anharmonic calculations give the
reasonable transition temperature of zirconium. This ten-
dency is consistent with the previous theoretical studies,7–9,31

but qualitatively different from the hcp→bcc phase transi-
tion of titanium as discussed in the previous subsection. In
general, the stabilities of high temperature bcc phase of Ti
and Zr crystals can be attributed to the characteristic nonlin-
ear dependence(decrease) of the anharmonicity parameters
g1 andg2 with respect to the increase of bcc lattice spacings.
The strong anharmonicity effects of thermal lattice vibrations
in bcc Ti and Zr crystals have also been demonstrated in the
recent study of neutron-scattering spectra by Mayet al.32

C. Mechanical instability

We now briefly comment on the phonon and/or mechani-
cal instabilities of bcc phases of group IV-B elements. It is
well known that at zero pressure and high temperature, all
the group IV-B elements transform from the hcp to the bcc
structure. This hcp to bcc phase transition occurs, in “phonon
language,” due to the anomalies ofN-point phonon of theT1
branch along thefj j 0g direction. Accordingly, at zero tem-
perature and zero pressure, the shear elastic moduliC8 [de-
fined by C8=1/2sC11−C12d, whereC11 and C12 are elastic
constants] become negative and bcc crystal structures of
group IV-B elements are mechanically unstable. The insta-
bility of bcc structure is observed experimentally at high
temperature in all three metals.

As we have seen in the previous sections that the bcc
structure is stabilized due to the thermal lattice vibration ef-
fects at high temperature. Therefore, one can expect that the
high temperature bcc structure for these three elements
shows anomalous properties. An example of this is the ex-
perimental observation that within the bcc phase these three
metals become increasingly stiff with increasing tempera-
ture, a most unusual behavior.10 Furthermore, it has been
observed that IV-B elements(Zr and Hf) exhibit a crystal
structure sequence hcp→v→bcc, with increasing
pressure.10 In conjunction with the “mechanical instability”
of the group IV-B elements, we have calculated the shear
elastic constantsC8 of bcc Ti crystal as a function of the
temperature as well as the function of atomic volumes(in
other words, the hydrostatic pressure).

In Fig. 6(a), we present the calculated shear elastic con-
stantsC8 of bcc Ti crystal at absolute zero temperature as a
function of the relative atomic volumessV/V0d, where V0

denotes the atomic volume at zero pressure. The present re-
sults marked by symbolss are calculated by using the EAM
potential of Eq.(14) fitted to the first-principles calculations,
and they are compared with those of the previous theoretical
calculations of Ahujaet al.,10 by symbolsn, obtained di-
rectly using the first-principles total energy calculations. One
can see in Fig. 6(a) that the present calculations of theC8
values are in good agreement with those by Ahujaet al.,10

especially for the small volume relaxation region ofsV/V0d
ù0.85. However, there are large discrepancies between the
two results for smaller values ofsV/V0dø0.85. The reason
for the large discrepancy in theC8 value between the two
calculations is due to the fact that our EAM potential is com-
posed of monotonous mathematical functions.

Also shown in Fig. 6(b) is the temperature dependence of
shear elastic constantsC8 of bcc Ti crystal. In Fig. 6(b), the
solid curve(cal-1) is calculated by fully taking into account
the effects of thermal lattice vibrations, while the dashed
curve(cal-2) without including the thermal lattice vibrations,
but only taking into account the thermal lattice expansion of
the bcc lattice. The most striking feature of our results are the
dramatic changes of the shear elastic constantC8, from nega-
tive to positive signs, upon increasing the temperatureT. One
can then expect that the stiffness of IV-B elements increases
anomalously upon increasing the temperature, when C44
shows relatively the weak temperature dependence(this is
the case of the present calculation).

IV. CONCLUSIONS

In conclusion, we have shown that bcc phase of Ti crystal
becomes more stable than hcp phase for temperature region
higher than the transition temperatureTc due to the anharmo-
nicity effects of thermal lattice vibrations using the analytic
calculations based on the statistical moment method. The
predicted transition temperatureTc<1295 K of Ti crystal is
close to the experimental valuess1155–,1156 Kd, and
much lower than the previously reported theoretical value
,3350 K. It has been found that in the harmonic approxi-
mation and without including the thermal electronic contri-
bution, hcp phase is always stable and hcp→bcc phase tran-

FIG. 5. Calculated values of the free energy differenceDC
s=Cbcc−Chcpd of Zr crystals as a function of temperature.
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sition never occurs in Ti crystal. The electronic entropy is an
only minor contribution in determining the transition tem-
peratureTc. For the hcp→bcc structural phase transforma-
tion of Zr, we have also obtained results consistent with the
previous theoretical calculations.7–9,31
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APPENDIX: SIMILARITY BETWEEN SMM
AND “POTENTIAL SWITCH” MC METHOD

In this appendix, we will make a brief comment on the
similarity between the present statistical moment method
and the so-called “potential switch” Monte Carlo
simulations,22,33,34 originally developed by Frenkel and
Ladd.22 Following the potential switch MC(PSMC) method,
for treating solid phase “harmonic solid” or “Einstein crys-
tal” is taken as the reference system, for which the exact free
energy expression is well known. For treating liquid phases,
the ideal gas state is taken as a reference system. The basic
idea is to construct a reversible path between the solid under
consideration and an Einstein crystal with the same structure.

FIG. 6. The calculated shear elastic constants
C8 as a function of the relative atomic volume
(a), and temperature dependence(b) of C8 values
in the bccsbd Ti crystal.
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The Hamiltonian and the resulting free energyCsld of
the system are, in a similar manner as in Eqs.(1) and (2),
given by the following equations:

Hsld = H0 + lV, sA1d

Csld = C0 +E
0

l

kVll8dl8, sA2d

where C0 denotes the free energy of the system with the
unperturbed(harmonic Einstein) Hamiltonian H0. Firstly,
one can transform a given solid to an ideal Einstein crystal
by adding a potential term of harmonic spring constants
lV=loi=1

N sr i −r i
0d2. For this case, we have the relation

]C /]l=kVll. For treating the general case, the original ref-
erence stateCsl=0d can be reached from the real solid by
slowly switching on the spring constants while switching off
the interatomic interactions:

Csl = 0d = Csld −E
0

l K ]Hsl8d
]l8

Ldl8. sA3d

The free energy difference between the ideal Einstein crystal
and the interacting Einstein crystal can be found numerically
by performing a Monte Carlo simulation on the ideal Ein-
stein crystal, in contrast to the analytic integrationsI1, I2, and
I3 of the present SMM formalism.

This type of PSMC method is of great significance since it
is capable of computing the absolute free energy of arbitrary
solid phases. The simulation cells are accompanied by the
so-called Einstein Crystal, as shown in Fig. 7, and MC simu-
lation calculations can be done without any difficulties. One
can then obtain the thermodynamic quantities of arbitrary
solid phases, e.g., both hcp and bcc phases of Ti and Zr
crystals.

The efficiency of the original PSMC method has been
improved by Watanabe and Reinhart33 by introducing the
appropriate time-dependent switching functionslstd. The in-
termediate HamiltonianHsld is now given byHsld=lH1

+s1−ldH0. The PSMC method has been further generalized
by Sugino and Car,34 by coupling with the first-principles
density-functional theory. For treating theab initio Hamil-
tonian Hab initio, second reference systemHmodel is intro-
duced, which is treated within the efficient empirical model
potentials as

DC =E
0

1

kHmodel− Hrefll8dl8 +E
0

1

kHab initio − Hmodelll9dl9.

sA4d

The first application of this scheme was reported for the
melting of silicon crystal.34 It is also straightforward to gen-
eralize the present SMM to couple with the first-principles
theory by simply evaluating the harmonic and anharmonic
coupling parametersk andb, g1 andg2.

1C. Zener, Phys. Rev.71, 846 (1947).
2R. Hultgren, R. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelly,

and D. D. Wagman,Selected Values of the Thermodynamic
Properties of the Elements(Am. Society for Metals, Metals
Park, Ohio, 1973).

3Z. Nishiyama, Martensitic Transformations(Academic, New
York, 1978).

4J. Friedel, J. Phys.(France) 35, L59 (1974).
5W. Petry, A. Heiming, J. Trampenau, M. Alba, C. Herzig, H. R.

Schober, and G. Vogl, Phys. Rev. B43, 10933 (1991); 43,
10948(1991); 43, 10963(1991).

6Y. Chen, C.-L. Fu, K.-M. Ho, and B. N. Harmon, Phys. Rev. B
31, 6775(1985).

7F. Willaime and C. Massobrio, Phys. Rev. B43, 11653(1991).
8E. Salomons, Phys. Rev. B43, 6167(1991).
9U. Pinsook and G. J. Ackland, Phys. Rev. B59, 13642(1999);

58, 11252(1998); U. Pinsook,ibid. 66, 024109(2002).
10R. Ahuja, J. M. Wills, B. Johansson, and O. Eriksson, Phys. Rev.

B 48, 16269(1993).
11G. Jomard, L. Maguad, and A. Pasturel, Philos. Mag. B77, 67

(1998).
12E. G. Moroni, G. Grimvall, and T. Jarlborg, Phys. Rev. Lett.76,

2758 (1996).
13O. Eriksson, J. M. Wills, and D. Wallace, Phys. Rev. B46, 5221

(1992).
14P. J. Craievich, J. M. Sanchez, R. E. Watson, and M. Weinert,

Phys. Rev. B55, 787 (1997).
15J. C. Boettger and D. C. Wallace, Phys. Rev. B55, 2840(1997).
16T. Jarlborg, E. G. Moroni, and G. Grimvall, Phys. Rev. B55,

1288 (1997).
17Y. Wang, Phys. Rev. B61, R11863(2000).
18D. P. Landau and K. Binder,A Guide to Monte Carlo Simulations

in Statistical Physics(Cambridge University Press, New York,
2000).

19K. Persson, M. Ekman, and V. Ozoliņš, Phys. Rev. B61, 11221
(2000).

20Vu Van Hung and K. Masuda-Jindo, J. Phys. Soc. Jpn.69, 2067
(2000).

21K. Masuda-Jindo, V. V. Hung, and P. D. Tam, Phys. Rev. B67,
094301(2003).

FIG. 7. Boundary conditions used in the PSMC simulations.

hcp-bcc STRUCTURAL PHASE TRANSFORMATION OF… PHYSICAL REVIEW B 70, 184122(2004)

184122-9



22D. Frenkel and A. J. C. Ladd, J. Chem. Phys.81, 3118(1984).
23W. G. Burgers, Physica(Amsterdam) 1, 561 (1934).
24A. T. Paxton, M. Methfessel, and H. M. Polotoglou, Phys. Rev. B

41, 8127(1990).
25S. R. Nishitani, H. Kawabe, and M. Aoki, Mater. Sci. Eng., A

312, 77 (2001).
26J. Perdew and Y. Wang, Phys. Rev. B45, 13244(1992).
27J. Harris, Phys. Rev. B31, 1770(1985).
28W. M. C. Foulkes and R. Haydock, Phys. Rev. B39, 12520

(1989).

29R. J. Wasilewski, Trans. Metall. Soc. AIME221, 1231(1961).
30R. R. Pawar and V. T. Deshpande, Acta Crystallogr., Sect. A:

Cryst. Phys., Diffr., Theor. Gen. Crystallogr.24, 316 (1968).
31S. A. Ostanin and V. Yu. Trubitsin, Phys. Rev. B57, 13485

(1998).
32T. May, W. Müller, and D. Strauch, Phys. Rev. B57, 5758

(1998).
33M. Watanabe and W. P. Reinhart, Phys. Rev. Lett.65, 3301

(1990).
34O. Sugino and R. Car, Phys. Rev. Lett.74, 1823(1995).

MASUDA-JINDO, NISHITANI, AND VAN HUNG PHYSICAL REVIEW B 70, 184122(2004)

184122-10


