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Hardness and fracture toughness of brittle materials: A density functional theory study
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The focus of the paper is to study the correlation between hardness and fracture toughness of brittle
materials. To this end, density functional the@BFT) is used to calculate materials parameters such as the
surface energies, the unstable stacking fault energies, the Young’s modulus, the bulk modulus, the shear
moduli, and the Poisson’s ratio of crystalling® as well as the surface energiescBN and 3CG—SiC. With
these calculated materials parameters as well as reported ones, the theoretical fracture toughness of diamond,
cBN, BgO, 3C—SiC, and Si are obtained and compared with experimental hardness. We find that the theo-
retical fracture toughness, proportional to the product of shear modulus and surface energy, can better charac-
terize hardness of diamondBN, BgO, 3C—SiC, Si, and possibly other brittle materials than shear modulus
alone [D. M. Teter, MRS Bull. 23, 22 (1998]. This finding could be helpful in searching for new hard
materials.
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. INTRODUCTION I'=(1-v)K?22G (2

Even though experimental methods to measure hardnegghere v is Poisson’s ratioG shear modulus, anl, stress
such as Vickers, Snoop, €thave been used for decades, aintensity factor.
theory relating materials physics to hardness measurements A crack propagates through breaking atomic bonds, and
has not been well developed simply because the physicalonsequently new surfaces are created. The surface tension
process occurring in hardness measurements is very corgf the opening surfaces at the crack tips4s the force to
plex, involving fracture and deformation under mixed load-palance this elastic driving force. Therefore, the critical value

ing conditions(see Zhang and SubHasHowever, there do  of the stress intensity factor under mode | loading is given by
exist several observations which attempt to establish correla-

tion between hardness and one single elastic property such as Kg=2VyG/(1-v). €]
—5 7 i
bulk modulug™ or shear moduluS! After comparing the h This equation is often called the Giriffith relation. When

measured values of hardness in a set of hard materials Witthe stress intensity factor of a crack reac a crack
their corresponding shear moduli, Tétettiscovered that 1Sty . Iégs. ;
pagates, which was observed in computer simulafidns.

. . . . . (o]
hardness increases approximately with increasing She% : : o
. is the so-called theoretical fracture toughn&sshich is
g
frir;c()jdgl;(érl\r/]lglr ee: \{gréj;ggrrta#:tt:ﬁsr ;ii?ﬁ;ﬁérwere able to a_pplical:_ule to the materials system without defects such as
dislocations and other cracks. Since defects such as cracks

In fact, it is known that hardness measurements on brittle . . N A
and dislocations affect materials’ response to the elastic driv-

materials always accompany fractdré.creation and propa- ing force on the crack tip, an experimentally measured frac-

gation of cracks. As a result, the resistance to fracture und%r re touahnesk . can be considerably different froka. in a
shear, hydrostatic compression, as well as unloading, could g c y Ky

be used to quantify the hardness. Next, we will try to identifysyiirgu\’;g;edgne:r@ is involved in creation and propagation
physical parameters that play key roles in hardness measure; energy A ) ind propag
ments with the help of fracture mechanics and materials(,)f a crack, m_|sf|t energy 1s mvolved In creation and propa-
physics gation of a dislocation. Misfit energy is the energy barrier

For rﬁaterials without cracks, the theoretical stress to Cre(_ancounterec_i in the process of translating two rigid bodies
ate a crack is given by the Orowan critertn along the slip plane, which is referred to as theurfacet®

The lattice resistance to dislocation motion is called Peierls
T = (Eydag) 2, (1)  stress. With they surface, SchoecR calculated the Peierls
stress based on the Peierls-Nabarro mét#lt is generally
where vy, is the surface energy of the materigljs Young's  believed that a major factor in determining the intrinsic duc-
modulus, andy is the inter-planar spacing in the unstressedtile vs brittle behavior of materials is the ease of emission of
state of the planes perpendicular to the tensile axis. dislocations from a crack tip. If a dislocation emission is
For materials with a crack under mode | loadiige load-  sufficiently easy, then a crack will respond to an applied
ing is exerted normal to the cleavage plartee theoretical stress by such an emission and concomitant plastic deforma-
stress intensity factor to propagate a crack is given by Griftion, rather than by crack extension. In 1974, Rice and
fith theory!? It states that the elastic driving force on an Thomsor® developed a semiquantitative criterion for intrin-
equilibrium crack is given by sic ductile vs brittle behavior based on a balance of forces on
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the dislocation due to the applied stress and the image force. TABLE I. Misfit energies of BO in the[100] direction.a is the
The disadvantage of this criterion is that there is a need ttattice spacing of the unit cell along tfi20Q] direction.
introduce an empirical dislocation core cutoff parameter. To
overcome the disadvantage, Ritased the_ maximum value displacemerts) 1/8 /8 3/8 4/8
of misfit energy so-called unstable stacking fault eneygy A-2

to characterize the resistance to dislocation nucleation from ZmisfJ A ™) 2.24 512 4.62 4.97
crack. Under mode Il loadin¢the loading is exerted in the
cleavage plane, along the crack-propagation diregtitre
emission criterion is

0.6213, and two boron position€®.1574, —0.1574, 0.6403
(0.2244, -0.2244, 0.7806
Kie= V2v,G/(1-v). (4) After considering the requirements of the method accu-

21 . - ___racy and computational resources, we use eithieEnzK, a
Zhou et al=* performed a series of atomistic calculations full-potential linearized augmented plane wave cétler
to establish criteria for dislocation emission from cracks andyr, , 5 pseudopotential plane wave cGaaviEN2K will be

found that the new surface created at the blunted crack aftg[seq to calculate bulk modulus Young’s modulus, and Pois-

dislocation emission must be added to the d|slocation-son,S ratio involving high crystalline symmetry am@T- +

emission theories based on misfit energy. , will be used to calculate surface energy, misfit energy, and
From the above analysis, it is evident that besides elastighoar modulus involving low crystalline symmetry.

parameters such as shear modulus and Poisson’s ratio, other|, \vien2k.  the generalized gradient approximation

nonelastic materials parameters such as surface energy a(@GA) of PW2 typé* is included to avoid any large inaccu-
unstable stacking fault energy are also needed for characterracy in total energy calculations. The muffin-tin radRig; is
izing fracture, deformation, and hardness. For brittle materi4 505 5 4. for oxygen and 1.575 a.u. for boron. The plan
als where cracks rather than dislocations and twins arga,e energy cutofRy K . is 7, whereRy is the smallest
mostly involved in hardness measurement, we believe thah tfintin radius, e.g., 1.205 a.u. in the present calculation.
theoretical fracture toughness could be an appropriate matgy, choose the number &fpoints for numerical integration at

rial parameter. to characterize hardness. We are goi.ng toc [ given energetic precision, we performed a series of calcu-
culate theoretical fracture toughness for several brittle matr;5ions with increasing thé& points. It is found that 15@

terials and to look at its relation with experimental hardnessints in the irreducible part of the Brillouin Zone can satisfy
Since diamond, cubic boron nitrideBN), boron subox-  q energy convergence requirement.
ide (normally B;O) are three known “superhard” materials | the calculation witroFT++, the Hamman type pseudo-
[i.e., Vickers hardneséH,) higher than 40 GRawe chose potentials of B, O, N, Si, and C ions are generated with the
them to investigate which parameters better characterizgggpp pseudopotential generation cotfeand the energy
hardness. In addition, two more brittle materials, cubic SiCeytoff is 24.0 Hartree. Although the cutoff is not large
(3C-SiQ and Si, are also selected for our study. To avoid thésnough to guarantee convergence in total en&rgye find
complexity due to grain boundaries, we will focus on single-that this value can produce convergent results in the calcula-
crystal behaviors of these five brittle materials. tions of surface energies, misfit energies, and shear moduli

Large grains of BO crystal have been recently \yhere the difference in total energies rather than the absolute
synthesizetf-*® after 40 years since §® powder was made yalue of total energy is involved.

in laboratories’ He et al?® have succeeded to develop@ In Sec. Il, we describe the calculations of surface and
single crystals large enough to perform Vickers hardnessisfit energies. In Sec. Iil, bulk modulus, shear modgj,
measurements. Their measurements showed that the averagey G, Young's modulus, and Poisson’s ratio of® are
hardness of crystallined® is 45 GPa, close to the hardness cajculated. In Sec. IV, we calculate the theoretical fracture
of cBN, about 49 GPa. toughness of diamon@BN, B;O, 3C-SiC, and Si and ana-

However the parameters for determining the fracturgyze the relationship between fracture toughness and hard-
toughness of BO are not available. In addition, there is no ness. \We summarize in Sec. V.

reported surface energy @BN and 3C-SiC which is re-

quired in calculating their fracture toughness. Since density

functional theory(DFT)?® has been shown to be a reliable Il MISFIT AND SURFACE ENERGIES

way of calculating material properties such as elastic Misfit energy is defined as half the energy difference be-

constant® and material strengt#,we will employ DFT to-  tween one supercell consisting of two contiguous crystal unit

tal energy calculations to obtain shear modulus, bulk modueells sliding relative to each other and another supercell with

lus, Young’s modulus, Poisson’s ratio, surface energies, antivo crystal unit cells without sliding. Misfit energies are cal-

misfit energies of crystalline ® and the surface energy of culated for the sliding displacemerag8, 2a/8, 3a/8, and

crystallinecBN and 3C-SiC. 4a/8 (Table I, wherea is the lattice spacing of the B
BgO is of space grouR-3m with a hexagonal unit cell of hexagonal unit cell along thHd.00] direction. It is found that

a=b=5.3974 A anct=12.3173 A%*In this papema, b, andc  the so-called unstable stacking fault energy, the maximum

are used to index the B crystal planes and directiods, value of the misfit energy, occurs a&a/B.

though a four Miller-Bravias index is also used. The posi- In order to calculate surface energies of a crystalligé B

tions of 6 oxygens and 32 borons can be obtained by usingn imaginary lattice, composed of infinite alternating slabs of

Wyckoff position operations on one oxygen positith 0, real lattice and vacuum both of one lattice constatfiick, is
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TABLE Il. Surface energie$Jni?) of BgO. -184.95 T T T T T T T T T
Surfaces c BO BN 3C_SiC Si 185 = O Fiagated ]
(100 5.7(Ref.3) 424 617  1.84  15¢Ref. 39  g-I8505F N
3 I
(001) 5.7(Ref.37 3.30 6.17 1.84  1.56Ref. 39 é-lss.l— i
8 -185.15 -

1°%

used. The surface energy is defined as half the differenceg
between energies in one unit cell of the imaginary lattice and™ -185.2 -
one unit cell of the original lattice. Botk001) and (100) [
surface energies are calculated and listed in Table Il. The |
significant difference between the two surface energies  gs3

-185.25

shows that a crystalline §® is highly anisotropic. 1 2 3 4 5

. Shear Angle (D
We also calculate th€d01) surface energies afBN and car Angle (Degrec)

3C-SiC. The surface energies just calculated and the re- g, 2. Total energy changes as a function of the shear angle for
ported surface energies for diamond and silicon are listed i gistorted BO unit cell under a shear straig,. Diamond denotes
Table 1. the calculated value, while the line is the parabola fit to those
points.
IIl. ELASTIC PROPERTIES

To calculate the Young's modulus, the;® unit cell is In the calculation of the bulk modulus, we simulate the
stretched along the(z) direction. The energetic gains of the hydrodynamic strain by fixing the ratio efa. By fitting the
stretched lattice as a function of the square of the stretchingoints of calculated total energies vs volumes to Mur-
length along thez direction are fitted to a straight lingsee

Fig. 1). The restoring force is given by the slope of the fittedggghégz equation of staté,we obtain the bulk modulus

line. Thus we obtain the Young’s modulus 507 GPa, which is .
, ' A number of calculated bulk moduli have been reported.
about 7.8% larger than 470 GPa, the Young’'s modulus of ith a plane-wave pseudopotential DFT code me;l)lﬁ

sintered compact g with zero porosity?® . .
To obtain the shear moduluS,,, shear strains,, are Ogﬁ??&\}g%gﬂg;g&gﬁg [2”2:2_3'_ Sg)d% ;g?ipébﬁgeg
applied to the unit cell to calculate the energy change as ) ’ ’ .
PP oy 9 Ewe bulk modulus 220 GPa. Our calculated value 238 GPa is
i

function of ¢,,. The curve of calculated shear energy vs sheaf . S
angle is fitted to a parabola as shown in Fig. 2. gher than those reported values. It is likely due to the fact

The shear modulus is defined Gs:(F/S)/ 6, whereF is that we use fixed ratio af/a which leads to the upper limit

i a7
the force,Sis the area of the base plane of the unit cell, and” f Elé"garﬂsglﬂ]u; :j g?ilmsgtglrt tr)rilel\aﬂseuﬁtegl.value of the bulk
0 is the shear angle. The calculated shear mod@ysis P y

508 GPa, much larger than 204 GPa, the shear modulus ofrgodulus otja sinr':ered d@l s 222bGlié,8 ar&dla sinhgle cLystaIf

L - : : iS expected to have a larger bulk modulus than that of a
pqucrystallme BO.° Similarly, _the shear .mOdUILGXV s ob- sinterrt)ed one, we think thatgthe value, 228 GPa, obtained by
tained as 379 GPa. The considerable difference betwggn ' ' '

45 i
andG,, indicates that the ED is highly anisotropic as far as Ia_leseir?t Iilqcr Iztglgc')rol']derr:frc))rrissvneta\t:/ci)lln S;éhi? ?(;j”éarr:;%?:tlgstr?;
the shear modulus is concerned. 9 ystal.

Poisson’s ratio in the following paragraph.
To calculate the Possion’s ratio, a unit cell is stretched

) [ ' ' i along thec direction, and contracted in the and b direc-
0.0086 tions. In our calculation, we stretch tleeaxis of the unit cell
T 00088 - ] by 0.2;55 A..After adjusting the lengths afandb axes of
£ the unit cell simultaneously, we calculate total energies. Then
ﬁ the change of tha andb axes at the minimum-energy con-
£ -0.009F ] figuration is identified as 0.0141 A and consequently the
& contraction strain, 0.0026 is obtained. Finally the Poisson’s
8 -0.0092 | 1 ratio is found to be 0.14. Meanwhile, under the isotropic
;=; assumption, the Poisson’s ratio is given hy=(3B
-0.0094 - . —-E)/(6B).*° With our calculated bulk and Young’s modulus,
T we obtain the value of Poisson’s ratio 0.13 which is very
1

5 : 0005 : 05T : 0015 close to 0.14 calculated directly with DFT.
To investigate the relationship among hardness and elastic
parameters, we list bulk modulus, shear modulus, Young'’s
FIG. 1. The calculated energy gains as a function of the squarmodlﬂus, and Poisson’s ratio in Table Ill. In addition, we list
of the stretching length of ad® unit cell. Diamonds are the cal- in Table Il the averaged shear modulus with the definition of
culated values, while the line is the linear fit to the energy gains. G,,e=0.9Csu+0.5C;;-Cyo)].

Square of Stretching Length (Angstrom2 )
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TABLE lll. Elastic properties: bulk modulus, average shear moduli3,,=0.5Cys+0.5C11-Cy9)],
shear modulus G of a defined surface, Young’'s mod&uand Poisson’s rati@.

Direction C(Ref. 40 cBN (Ref.4) BgO 3C—SIiC(Ref.42 Si(Ref. 43

B(GPa 442 400 228 223 98
G.dGPa 528 398 443 217 66
G(00)(GPa 478 315 508 147 51
G(100(GPa 379
E(GPa [007] 1050 748 507 362 130
v [001] 0.10 0.18 0.14 0.23 0.28
IV. FRACTURE TOUGHNESS AND HARDNESS either. For example, Zhaet al>* reported that the hardness

With newly calculated surface energies, shear moduli, anPP€&rs to increase with the célsecrease in load ipNB&Nd
Poisson’s ratio of BO, we calculate its theoretical fracture CBN samples. Lately Zhaet al>> have further investigated
stressoay With Eq. (1) and theoretical fracture toughnesg this issue in hard and brittle materials and suggested that the
with Eq. (3). 0ais about 35 GPant for the (001) fracture hardness and fracture toughness should be taken after the

plane.K, is about 2.7 MPaif for the (001) as well as for visible propagation of macrocracks, i.e., pass the bend in the
the (10()? fracture plane. curve ofH, vs loading force, when hardness approaches its

To investigate the relationship among hardness, shegsymptotic value(The most recent measurement on single-

modulus, theoretical fracture stress, and fracture toughness fiyStal Moissantite-6H SiC clearly shows that the hardness
brittle materials, we also calculatel, and gyay for dia- approaches its asymptotic value as the loading goes beyond

mond,cBN, 3C-SiC, and Si. Their values along with®@'s 100N.'53) They pelieve th.at .this behqvior Of. hardnes; as a
are listed in Table IV. function of loading f_orce is likely behind a wide disparity in
For the five materials we are studyig8i, 3C-SiC, BO, the reported experimental values of hardness and fracture

3C-SiC,cBN, and diamonyl we plotK, (see Table IV for toughness.

the (001 fracture plane ané,, (see Table Ilj against the

e>_(perimental value of_ Vickers hardne@e Table_ 1Y in V. DISCUSSION AND SUMMARY

Figs. 3 and 4, respectively. The Vickers hardnésss cho-

sen as the vertical axis in both figures. The ascending trend By using DFT total energy calculations implemented with
of hardness for Si, 3C-SiC,#®, cBN, and diamond is cor- pseudopotential plane waves as well as full potential linear-
rectly correlated with the theoretical fracture toughnese ized augmented plane waves, we obtained bulk, Young's and
Fig. 3) but not with the average shear modulsse Fig. 4  shear elastic moduli, Poisson’s ratio, surface energies, and
That is, the correlation betwedty andH, is better than that unstable stacking fault energy of crystalling@® In addition,
betweenG,, and H,. Thus our conjecture that theoretical we calculated thg001) surface energies of 3C-SiC and
fracture toughness can be a better material parameter to ch&@BN. The calculated values of elastic moduli agree reason-
acterize hardness of brittle materials is supported by data. ably well with experimental ones of polycrystalling;®.

The experimental value of fracture toughness for a singldVith those newly calculated and reported materials param-
crystalK. is 5 MPant/? for diamond© 2.8 forcBN,>1 4.5 for ~ eters, we were able to obtain theoretical fracture toughness
B0,260.78 for 3C-SiC5%? and 0.75 for silicort? Experimen-  and theoretical fracture stress.
tally measured fracture toughness can be quite different from Theoretical fracture stress characterizes the barrier for
the theoretical fracture toughnek§ due to loading condi- creating a crack in a crystal without defects, while theoretical
tions, orientations of cracks, preexisting defects, etc., in exfracture toughness describes the barrier for an existing crack
perimental specimens. In particular, the values of fracturdo propagate. As shown in Egd) and(3), both parameters
toughness derived from indentation experiments could scagre proportional tdy.G)*2 Because of the narrow range of
ter considerably due to uncertainty of measured craclkPoisson’s ratio, its role in determining fracture toughness is
lengths>® The experimental value of hardness is not uniqguemuch smaller than shear modulus and surface energy. Since

TABLE IV. Theoretical fracture toughneds,, theoretical fracture stressm,,, and Vickers hardness

H,.
C cBN BcO BsO 3C—sSicC Si
surfaces (001 (001 (003 (100 (001 (001
Kg(MPam"?) 3.4 2.9 2.7 2.7 1.0 0.6
Tmad GPan?) 168 95 35 41 19
H,(GPa 90 (Ref. 26 48 (Ref. 26 45(Ref. 26 45(Ref. 26 28 (Ref. 6 10 (Ref. 6
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FIG. 3. Vickers hardness as a function of calculated theoretical FIG- 4. Vickers hardness as a function of averaged shear modu-
fracture toughness. The Vickers hardness increases in the order bfS- As in Fig. 3, the Vickers hardness increases in the order of Si,
Si, 3C-SiC, BO, cBN, and diamond. Diamond denotes the calcu- 3C-SiC, BO, ¢BN, and diamond. Circle denotes the calculated
lated value and the dashed line is for visualization. value and the dotted line is for visualization.

Becuase of the role of surface energy in the theoretical frac-

in a brittle crystal, creation and propagation of cracks, ratheg,e toughness, surface specified hardness should have better
than dislocations and twins, are mostly involved in the ex--grrelation with fracture toughness.

perimental measurement of hardness, a physical parameter, |t ig interesting to note that Gaet al5¢ have recently
surface energy, to describe creation of new surfaces due {&oposed a semiempirical method for evaluating hardness of
cracks, a nonelastic process, has to be included in charactefovalent crystals based on electronic structure. They found
izing hardness. Therefore, we believe that the theoreticahat bond density or electronic density, bond length, and de-
fracture toughness which is proportional (tgG)"/? should  gree of covalent bonding are three determinative factors for
be used for characterizing the hardness of brittle materialthe hardness of a polar covalent crystal. Their method is
rather than elastic parameters alone, such as bulk or shehased on the fact that atomic bonds are broken in the process
modulus. The analysis of diamoneBN, BgO, 3C-SiC, and  of indentation, which certainly cannot be fully characterized
Si supports such an argumeisee Table IV, Figs. 3 and)4  with elastic parameters alone, such as shear modulus. In our
In his empirical relationship between shear modulus andtudy, surface energy is used to characterize the breaking
hardness, TetBiseems to use an averaged shear modulus tevent of atomic bonds.

characterize Vickers hardness, which is defined as the aver- Our study is established on the physics and mechanics of
age of the tetragonal and rhombohedral shear motQli,  fracture that basically deal with the energetic balance be-
-Cy)/2 and C,, respectivel) Other similar definitions tween elastic driving force at a crack tip and material re-
such as the \oigt averaged shear modul@s,(3C,,+C;;  sponse. Therefore, it covers both elastic and nonelastic as-
-C,,)/5, may serve the same purpdséhe average of our pects of indentation creation in hardness measurements. The
calculated G,, [=(C;,-C;5)/2] and Gy, (=C4y) of BgO, key quantity is found to béy.G)'2. Because surface energy
443 GPa is larger than the average shear modulusBbr, and shear modulus are both theoretically calculable and ex-
398 GPa. If we use Teter’s empirical relationship betweerperimentally measurable, we believe that characterizing
average shear modulus and hardnessHthef B¢O is likely ~ hardness in hard and brittle materials in terms(fG)*?
larger than that o€EBN. But the experimental value &f, of ~ provides a direct guidance to materials synthesis.

BeO is about 45 GPa, smaller than that @8N, 49 GPa.
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