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The focus of the paper is to study the correlation between hardness and fracture toughness of brittle
materials. To this end, density functional theory(DFT) is used to calculate materials parameters such as the
surface energies, the unstable stacking fault energies, the Young’s modulus, the bulk modulus, the shear
moduli, and the Poisson’s ratio of crystalline B6O as well as the surface energies ofcBN and 3CuSiC. With
these calculated materials parameters as well as reported ones, the theoretical fracture toughness of diamond,
cBN, B6O, 3CuSiC, and Si are obtained and compared with experimental hardness. We find that the theo-
retical fracture toughness, proportional to the product of shear modulus and surface energy, can better charac-
terize hardness of diamond,cBN, B6O, 3CuSiC, Si, and possibly other brittle materials than shear modulus
alone [D. M. Teter, MRS Bull. 23, 22 (1998)]. This finding could be helpful in searching for new hard
materials.
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I. INTRODUCTION

Even though experimental methods to measure hardness
such as Vickers, Snoop, etc.1 have been used for decades, a
theory relating materials physics to hardness measurements
has not been well developed simply because the physical
process occurring in hardness measurements is very com-
plex, involving fracture and deformation under mixed load-
ing conditions(see Zhang and Subhas2). However, there do
exist several observations which attempt to establish correla-
tion between hardness and one single elastic property such as
bulk modulus3–5 or shear modulus.6,7 After comparing the
measured values of hardness in a set of hard materials with
their corresponding shear moduli, Teter6 discovered that
hardness increases approximately with increasing shear
moduli. Moreover, several other researchers7,8 were able to
find examples to support Teter’s finding.

In fact, it is known that hardness measurements on brittle
materials always accompany fracture:9,10 creation and propa-
gation of cracks. As a result, the resistance to fracture under
shear, hydrostatic compression, as well as unloading, could
be used to quantify the hardness. Next, we will try to identify
physical parameters that play key roles in hardness measure-
ments with the help of fracture mechanics and materials
physics.

For materials without cracks, the theoretical stress to cre-
ate a crack is given by the Orowan criterion11

smax= sEgs/a0d1/2, s1d

wheregs is the surface energy of the material,E is Young’s
modulus, anda0 is the inter-planar spacing in the unstressed
state of the planes perpendicular to the tensile axis.

For materials with a crack under mode I loading(the load-
ing is exerted normal to the cleavage plane), the theoretical
stress intensity factor to propagate a crack is given by Grif-
fith theory.12 It states that the elastic driving force on an
equilibrium crack is given by

G = s1 − ndKI
2/2G s2d

wheren is Poisson’s ratio,G shear modulus, andKI stress
intensity factor.

A crack propagates through breaking atomic bonds, and
consequently new surfaces are created. The surface tension
of the opening surfaces at the crack tip 2gs is the force to
balance this elastic driving force. Therefore, the critical value
of the stress intensity factor under mode I loading is given by

Kg = 2ÎgsG/s1 − nd. s3d

This equation is often called the Griffith relation. When
the stress intensity factor of a crack reachesKg, a crack
propagates, which was observed in computer simulations.13

Kg is the so-called theoretical fracture toughness,14 which is
applicable to the materials system without defects such as
dislocations and other cracks. Since defects such as cracks
and dislocations affect materials’ response to the elastic driv-
ing force on the crack tip, an experimentally measured frac-
ture toughnessKc can be considerably different fromKg in a
system with defects.14

As surface energy is involved in creation and propagation
of a crack, misfit energy is involved in creation and propa-
gation of a dislocation. Misfit energy is the energy barrier
encountered in the process of translating two rigid bodies
along the slip plane, which is referred to as theg surface.15

The lattice resistance to dislocation motion is called Peierls
stress. With theg surface, Schoeck16 calculated the Peierls
stress based on the Peierls-Nabarro model.17,18 It is generally
believed that a major factor in determining the intrinsic duc-
tile vs brittle behavior of materials is the ease of emission of
dislocations from a crack tip. If a dislocation emission is
sufficiently easy, then a crack will respond to an applied
stress by such an emission and concomitant plastic deforma-
tion, rather than by crack extension. In 1974, Rice and
Thomson19 developed a semiquantitative criterion for intrin-
sic ductile vs brittle behavior based on a balance of forces on
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the dislocation due to the applied stress and the image force.
The disadvantage of this criterion is that there is a need to
introduce an empirical dislocation core cutoff parameter. To
overcome the disadvantage, Rice20 used the maximum value
of misfit energy so-called unstable stacking fault energygus
to characterize the resistance to dislocation nucleation from a
crack. Under mode II loading(the loading is exerted in the
cleavage plane, along the crack-propagation direction), the
emission criterion is

KIIe = Î2gusG/s1 − nd. s4d

Zhou et al.21 performed a series of atomistic calculations
to establish criteria for dislocation emission from cracks and
found that the new surface created at the blunted crack after
dislocation emission must be added to the dislocation-
emission theories based on misfit energy.

From the above analysis, it is evident that besides elastic
parameters such as shear modulus and Poisson’s ratio, other
nonelastic materials parameters such as surface energy and
unstable stacking fault energy are also needed for character-
izing fracture, deformation, and hardness. For brittle materi-
als where cracks rather than dislocations and twins are
mostly involved in hardness measurement, we believe that
theoretical fracture toughness could be an appropriate mate-
rial parameter to characterize hardness. We are going to cal-
culate theoretical fracture toughness for several brittle mat-
terials and to look at its relation with experimental hardness.

Since diamond, cubic boron nitridescBNd, boron subox-
ide (normally B6O) are three known “superhard” materials
[i.e., Vickers hardnesssHvd higher than 40 GPa], we chose
them to investigate which parameters better characterize
hardness. In addition, two more brittle materials, cubic SiC
(3C-SiC) and Si, are also selected for our study. To avoid the
complexity due to grain boundaries, we will focus on single-
crystal behaviors of these five brittle materials.

Large grains of B6O crystal have been recently
synthesized22–26 after 40 years since B6O powder was made
in laboratories.27 He et al.26 have succeeded to develop B6O
single crystals large enough to perform Vickers hardness
measurements. Their measurements showed that the average
hardness of crystalline B6O is 45 GPa, close to the hardness
of cBN, about 49 GPa.

However the parameters for determining the fracture
toughness of B6O are not available. In addition, there is no
reported surface energy ofcBN and 3C-SiC which is re-
quired in calculating their fracture toughness. Since density
functional theory(DFT)28 has been shown to be a reliable
way of calculating material properties such as elastic
constants29 and material strength,30 we will employ DFT to-
tal energy calculations to obtain shear modulus, bulk modu-
lus, Young’s modulus, Poisson’s ratio, surface energies, and
misfit energies of crystalline B6O and the surface energy of
crystallinecBN and 3C-SiC.

B6O is of space groupR-3m with a hexagonal unit cell of
a=b=5.3974 Å andc=12.3173 Å.24 In this papera, b, andc
are used to index the B6O crystal planes and directions,31

though a four Miller-Bravias index is also used. The posi-
tions of 6 oxygens and 32 borons can be obtained by using
Wyckoff position operations on one oxygen position(0, 0,

0.6212), and two boron positions(0.1574, −0.1574, 0.6403),
(0.2244, −0.2244, 0.7806).

After considering the requirements of the method accu-
racy and computational resources, we use eitherWIEN2K, a
full-potential linearized augmented plane wave code,32 or
DFT11, a pseudopotential plane wave code.33 WIEN2K will be
used to calculate bulk modulus, Young’s modulus, and Pois-
son’s ratio involving high crystalline symmetry andDFT11

will be used to calculate surface energy, misfit energy, and
shear modulus involving low crystalline symmetry.

In WIEN2K, the generalized gradient approximation
(GGA) of PW2 type34 is included to avoid any large inaccu-
racy in total energy calculations. The muffin-tin radiusRMT is
1.205 a.u. for oxygen and 1.575 a.u. for boron. The plan
wave energy cutoffRMTKmax is 7, whereRMT is the smallest
muffin-tin radius, e.g., 1.205 a.u. in the present calculation.
To choose the number ofk points for numerical integration at
a given energetic precision, we performed a series of calcu-
lations with increasing thek points. It is found that 150k
points in the irreducible part of the Brillouin Zone can satisfy
the energy convergence requirement.

In the calculation withDFT11, the Hamman type pseudo-
potentials of B, O, N, Si, and C ions are generated with the
FHI98PP pseudopotential generation code,35 and the energy
cutoff is 24.0 Hartree. Although the cutoff is not large
enough to guarantee convergence in total energy,36 we find
that this value can produce convergent results in the calcula-
tions of surface energies, misfit energies, and shear moduli
where the difference in total energies rather than the absolute
value of total energy is involved.

In Sec. II, we describe the calculations of surface and
misfit energies. In Sec. III, bulk modulus, shear moduliGxy
and Gxz, Young’s modulus, and Poisson’s ratio of B6O are
calculated. In Sec. IV, we calculate the theoretical fracture
toughness of diamond,cBN, B6O, 3C-SiC, and Si and ana-
lyze the relationship between fracture toughness and hard-
ness. We summarize in Sec. V.

II. MISFIT AND SURFACE ENERGIES

Misfit energy is defined as half the energy difference be-
tween one supercell consisting of two contiguous crystal unit
cells sliding relative to each other and another supercell with
two crystal unit cells without sliding. Misfit energies are cal-
culated for the sliding displacementsa/8, 2a/8, 3a/8, and
4a/8 (Table I), wherea is the lattice spacing of the B6O
hexagonal unit cell along the[100] direction. It is found that
the so-called unstable stacking fault energy, the maximum
value of the misfit energy, occurs at 2a/8.

In order to calculate surface energies of a crystalline B6O,
an imaginary lattice, composed of infinite alternating slabs of
real lattice and vacuum both of one lattice constantc thick, is

TABLE I. Misfit energies of B6O in the[100] direction.a is the
lattice spacing of the unit cell along the[100] direction.

displacementsad 1/8 2/8 3/8 4/8

gmisfitsJ Å−2d 2.24 5.12 4.62 4.97
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used. The surface energy is defined as half the difference
between energies in one unit cell of the imaginary lattice and
one unit cell of the original lattice. Both(001) and (100)
surface energies are calculated and listed in Table II. The
significant difference between the two surface energies
shows that a crystalline B6O is highly anisotropic.

We also calculate the(001) surface energies ofcBN and
3C-SiC. The surface energies just calculated and the re-
ported surface energies for diamond and silicon are listed in
Table II.

III. ELASTIC PROPERTIES

To calculate the Young’s modulus, the B6O unit cell is
stretched along thecszd direction. The energetic gains of the
stretched lattice as a function of the square of the stretching
length along thez direction are fitted to a straight line(see
Fig. 1). The restoring force is given by the slope of the fitted
line. Thus we obtain the Young’s modulus 507 GPa, which is
about 7.8% larger than 470 GPa, the Young’s modulus of a
sintered compact B6O with zero porosity.39

To obtain the shear modulusGxz, shear strainsexz are
applied to the unit cell to calculate the energy change as a
function ofexz. The curve of calculated shear energy vs shear
angle is fitted to a parabola as shown in Fig. 2.

The shear modulus is defined asG=sF /Sd /u, whereF is
the force,S is the area of the base plane of the unit cell, and
u is the shear angle. The calculated shear modulusGxz is
508 GPa, much larger than 204 GPa, the shear modulus of a
polycrystalline B6O.6 Similarly, the shear modulusGxy is ob-
tained as 379 GPa. The considerable difference betweenGxy
andGxz indicates that the B6O is highly anisotropic as far as
the shear modulus is concerned.

In the calculation of the bulk modulus, we simulate the
hydrodynamic strain by fixing the ratio ofc/a. By fitting the
points of calculated total energies vs volumes to Mur-
naghan’s equation of state,44 we obtain the bulk modulus
238 GPa.

A number of calculated bulk moduli have been reported.
With a plane-wave pseudopotential DFT code, Leeet al.45

obtained the bulk modulus 228 GPa. UsingVASP, also a
plane-wave pseudopotential DFT code, Xieet al.46 obtained
the bulk modulus 220 GPa. Our calculated value 238 GPa is
higher than those reported values. It is likely due to the fact
that we use fixed ratio ofc/a which leads to the upper limit
of bulk modulus as pointed out by Mehlet al.47

Because the experimentally measured value of the bulk
modulus of a sintered B6O is 222 GPa,48 and a single crystal
is expected to have a larger bulk modulus than that of a
sintered one, we think that the value, 228 GPa, obtained by
Lee et al.,45 is a good representation of the bulk modulus of
a single crystal. Therefore we will use it to calculate the
Poisson’s ratio in the following paragraph.

To calculate the Possion’s ratio, a unit cell is stretched
along thec direction, and contracted in thea and b direc-
tions. In our calculation, we stretch thec axis of the unit cell
by 0.2155 Å. After adjusting the lengths ofa andb axes of
the unit cell simultaneously, we calculate total energies. Then
the change of thea andb axes at the minimum-energy con-
figuration is identified as 0.0141 Å and consequently the
contraction strain, 0.0026 is obtained. Finally the Poisson’s
ratio is found to be 0.14. Meanwhile, under the isotropic
assumption, the Poisson’s ratio is given byn=s3B
−Ed / s6Bd.49 With our calculated bulk and Young’s modulus,
we obtain the value of Poisson’s ratio 0.13 which is very
close to 0.14 calculated directly with DFT.

To investigate the relationship among hardness and elastic
parameters, we list bulk modulus, shear modulus, Young’s
modulus, and Poisson’s ratio in Table III. In addition, we list
in Table III the averaged shear modulus with the definition of
Gave=0.5fC44+0.5sC11−C12dg.

TABLE II. Surface energiessJm−2d of B6O.

Surfaces C B6O cBN 3CuSiC Si

(100) 5.7 (Ref. 37) 4.24 6.17 1.84 1.56(Ref. 38)

(001) 5.7 (Ref. 37) 3.30 6.17 1.84 1.56(Ref. 38)

FIG. 1. The calculated energy gains as a function of the square
of the stretching length of a B6O unit cell. Diamonds are the cal-
culated values, while the line is the linear fit to the energy gains.

FIG. 2. Total energy changes as a function of the shear angle for
a distorted B6O unit cell under a shear strainexz. Diamond denotes
the calculated value, while the line is the parabola fit to those
points.
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IV. FRACTURE TOUGHNESS AND HARDNESS

With newly calculated surface energies, shear moduli, and
Poisson’s ratio of B6O, we calculate its theoretical fracture
stresssmax with Eq. (1) and theoretical fracture toughnessKg
with Eq. (3). smax is about 35 GPam−1 for the (001) fracture
plane.Kg is about 2.7 MPam1/2 for the (001) as well as for
the (100) fracture plane.

To investigate the relationship among hardness, shear
modulus, theoretical fracture stress, and fracture toughness in
brittle materials, we also calculatedKg and smax for dia-
mond,cBN, 3C-SiC, and Si. Their values along with B6O’s
are listed in Table IV.

For the five materials we are studying(Si, 3C-SiC, B6O,
3C-SiC,cBN, and diamond), we plotKg (see Table IV) for
the (001) fracture plane andGave (see Table III) against the
experimental value of Vickers hardness(see Table IV) in
Figs. 3 and 4, respectively. The Vickers hardnessHv is cho-
sen as the vertical axis in both figures. The ascending trend
of hardness for Si, 3C-SiC, B6O, cBN, and diamond is cor-
rectly correlated with the theoretical fracture toughness(see
Fig. 3) but not with the average shear modulus(see Fig. 4).
That is, the correlation betweenKg andHv is better than that
betweenGave and Hv. Thus our conjecture that theoretical
fracture toughness can be a better material parameter to char-
acterize hardness of brittle materials is supported by data.

The experimental value of fracture toughness for a single
crystalKc is 5 MPam1/2 for diamond,50 2.8 forcBN,51 4.5 for
B6O,26 0.78 for 3C-SiC,52 and 0.75 for silicon.52 Experimen-
tally measured fracture toughness can be quite different from
the theoretical fracture toughnessKg due to loading condi-
tions, orientations of cracks, preexisting defects, etc., in ex-
perimental specimens. In particular, the values of fracture
toughness derived from indentation experiments could scat-
ter considerably due to uncertainty of measured crack
lengths.53 The experimental value of hardness is not unique

either. For example, Zhaoet al.54 reported that the hardness
appears to increase with the decrease in load in BC2N and
cBN samples. Lately Zhaoet al.55 have further investigated
this issue in hard and brittle materials and suggested that the
hardness and fracture toughness should be taken after the
visible propagation of macrocracks, i.e., pass the bend in the
curve ofHv vs loading force, when hardness approaches its
asymptotic value.(The most recent measurement on single-
crystal Moissantite-6H SiC clearly shows that the hardness
approaches its asymptotic value as the loading goes beyond
100N.53) They believe that this behavior of hardness as a
function of loading force is likely behind a wide disparity in
the reported experimental values of hardness and fracture
toughness.

V. DISCUSSION AND SUMMARY

By using DFT total energy calculations implemented with
pseudopotential plane waves as well as full potential linear-
ized augmented plane waves, we obtained bulk, Young’s and
shear elastic moduli, Poisson’s ratio, surface energies, and
unstable stacking fault energy of crystalline B6O. In addition,
we calculated the(001) surface energies of 3C-SiC and
cBN. The calculated values of elastic moduli agree reason-
ably well with experimental ones of polycrystalline B6O.
With those newly calculated and reported materials param-
eters, we were able to obtain theoretical fracture toughness
and theoretical fracture stress.

Theoretical fracture stress characterizes the barrier for
creating a crack in a crystal without defects, while theoretical
fracture toughness describes the barrier for an existing crack
to propagate. As shown in Eqs.(1) and (3), both parameters
are proportional tosgsGd1/2. Because of the narrow range of
Poisson’s ratio, its role in determining fracture toughness is
much smaller than shear modulus and surface energy. Since

TABLE III. Elastic properties: bulk modulusB, average shear modulusGave=0.5fC44+0.5sC11−C12dg,
shear modulus G of a defined surface, Young’s modulusE, and Poisson’s ration.

Direction C (Ref. 40) cBN (Ref. 41) B6O 3CuSiC (Ref. 42) Si (Ref. 43)

BsGPad 442 400 228 223 98

GavesGPad 528 398 443 217 66

Gs001dsGPad 478 315 508 147 51

Gs100dsGPad 379

EsGPad [001] 1050 748 507 362 130

n [001] 0.10 0.18 0.14 0.23 0.28

TABLE IV. Theoretical fracture toughnessKg, theoretical fracture stresssmax, and Vickers hardness
Hv.

C cBN B6O B6O 3CuSiC Si

surfaces (001) (001) (001) (100) (001) (001)

KgsMPam1/2d 3.4 2.9 2.7 2.7 1.0 0.6

smaxsGPam−1d 168 95 35 41 19

HvsGPad 90 (Ref. 26) 48 (Ref. 26) 45 (Ref. 26) 45 (Ref. 26) 28 (Ref. 6) 10 (Ref. 6)
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in a brittle crystal, creation and propagation of cracks, rather
than dislocations and twins, are mostly involved in the ex-
perimental measurement of hardness, a physical parameter,
surface energy, to describe creation of new surfaces due to
cracks, a nonelastic process, has to be included in character-
izing hardness. Therefore, we believe that the theoretical
fracture toughness which is proportional tosgsGd1/2 should
be used for characterizing the hardness of brittle materials
rather than elastic parameters alone, such as bulk or shear
modulus. The analysis of diamond,cBN, B6O, 3C-SiC, and
Si supports such an argument(see Table IV, Figs. 3 and 4).
In his empirical relationship between shear modulus and
hardness, Teter6 seems to use an averaged shear modulus to
characterize Vickers hardness, which is defined as the aver-
age of the tetragonal and rhombohedral shear moduli,sC11

−C12d /2 and C44, respectively.8 Other similar definitions
such as the Voigt averaged shear modulus,G=s3C44+C11

−C12d /5, may serve the same purpose.7 The average of our
calculated Gxy f=sC11−C12d /2g and Gxz s=C44d of B6O,
443 GPa is larger than the average shear modulus ofcBN,
398 GPa. If we use Teter’s empirical relationship between
average shear modulus and hardness, theHv of B6O is likely
larger than that ofcBN. But the experimental value ofHv of
B6O is about 45 GPa, smaller than that ofcBN, 49 GPa.
HoweverKg gives a correct order. Apparently, a systematic
investigation of relationship between hardness and theoreti-
cal fracture toughness in a wider range of brittle materials
would be very helpful for further validating our conjecture.

Becuase of the role of surface energy in the theoretical frac-
ture toughness, surface specified hardness should have better
correlation with fracture toughness.

It is interesting to note that Gaoet al.56 have recently
proposed a semiempirical method for evaluating hardness of
covalent crystals based on electronic structure. They found
that bond density or electronic density, bond length, and de-
gree of covalent bonding are three determinative factors for
the hardness of a polar covalent crystal. Their method is
based on the fact that atomic bonds are broken in the process
of indentation, which certainly cannot be fully characterized
with elastic parameters alone, such as shear modulus. In our
study, surface energy is used to characterize the breaking
event of atomic bonds.

Our study is established on the physics and mechanics of
fracture that basically deal with the energetic balance be-
tween elastic driving force at a crack tip and material re-
sponse. Therefore, it covers both elastic and nonelastic as-
pects of indentation creation in hardness measurements. The
key quantity is found to besgsGd1/2. Because surface energy
and shear modulus are both theoretically calculable and ex-
perimentally measurable, we believe that characterizing
hardness in hard and brittle materials in terms ofsgsGd1/2

provides a direct guidance to materials synthesis.
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