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A semiempirical model was developed in order to explain why the measured melting curves of molybdenum,
and the other bcc transition metals, have an unusually low slopesdT/dP,0d. The total binding energy of Mo
is written as the sum of the repulsive energy of the ions andsp electrons(modeled by an inverse sixth power
potential) and thed-band cohesive energy is described by the well known Friedel equation. Using literature
values for the Mo band width energy, the number ofd electrons and their volume dependence, we find that a
small broadening of the liquidd-band widths,1%d leads to an increase in the stability of the liquid relative
to the solid. This is sufficient to depress the melting temperature and lower the melting slope to a value in
agreement with the recent diamond-anvil cell measurements. Omission of thed-band physics results in an
Al-like melting curve with a much steeper melt slope. The model, when applied to thef electrons of the light
actinides(Th-Am), gives agreement with the observed fall and rise in the melting temperature with increasing
atomic number.

DOI: 10.1103/PhysRevB.70.184112 PACS number(s): 61.25.Mv, 64.70.Dv

I. INTRODUCTION

Recent advances in the application of laser-heated
diamond-anvil cells(DAC’s) to the study of melting now
enable simultaneous pressure-temperature measurements to
be made in the megabar pressure range to 3000 K to 4000.1–4

In the case of transition metals the advances have led to the
discovery of unusually low melting slopessdT/dP,0d for
the bcc metals, particularly in groups VA and VIA of the
Periodic Table.3,4 These results are at odds with conventional
wisdom that melting temperatures should rise continuously
with increasing pressure.5 However, new measurements for
Ta made at the Advanced Photon Source(APS),4 using x-ray
diffraction to detect melting, have confirmed the earlier
results.3 The purpose of this report is to offer a theoretical
explanation as to why the transition metal melting curves
have unusually low melting slopes. Mo was chosen as the
test case for transition metals because it has the smallest
measured melting slope of that group, and thus provides the
most severe test. Subsequently, it became apparent that the
same basic physics applies also to the light actinides.

In its organization, the paper first considers Al as the pro-
totypical nearly free electronsp metal and is modeled here
by employing the inverse-sixth power repulsive potential.
The equation of state forUrep is developed in Sec. II and
applied to Al in Sec. III. In Sec. IV we consider the conse-
quence of includingd electrons by building on the earlier
work of Ducastelle6 and Pettifor7 that the total binding en-
ergy of a transition metal may be written in the form
U=Urep+Ud band. Urep is the repulsive contribution of the
ions andsp electrons andUd band is the cohesive energy of
thed band.Ud bandis included in the total energy by using the
Friedel equation,8 and the model is applied to Mo. In Sec. V
the model is applied to the light actinides. The present results
and their implications for melting theory are discussed in
Sec. VI.

II. INVERSE-6 EQUATION OF STATE

The equations of state(EOS) for systems interacting via
purely repulsive inverse power potentials

fsrd = B/rn, s1d

have been studied extensively by computer simulations for
the hard spheresn=`d , n=12, 9, 6, 4 and the one component
plasmasn=1d.9–12 An important simplifying feature of this
potential is that the excess Helmholtz free energy, and all of
the thermodynamic properties can be expressed as a function
of a single parameter, the scaled inverse temperature

Gn = bB/sadn. s2d

b=1/NkT, a is the Wigner Seitz radius given by 4pn0a
3/3

=1, andn0 is the atom number density.
The inverse sixth power is of special interest here because

previous work has shown that potentials near this power best
represented theab initio liquid calculations of Al(Ref. 13)
and Fe(Ref. 14) and served as a reference system for calcu-
lating the excess free energy needed for high pressure melt-
ing studies.

An exact analytic determination of the fcc and bcc free
energies, including the first order anharmonic term, has been
reported by Dubin and DeWitt10 for the casesn=1 to 12. The
expression for the excess solid free energy is

Fe
s

NkT
= MGn +

3

2
lnH2F 3

4p
Gn/3

GnJ + 1 −SH −
A1

Gn
. s3d

M , SH, andA1 are the Madelung term, excess entropy, and
first-order anharmonic constants, respectively. Values of
these parameters for the inverse power potential are
tabulated.10 MGn is the Madelung energy, or the energy of
the static lattice. While the termsSH andA1 are small, they
determine the relative stability of the two solid structures
near melting. The thermal internal energy, is related to the
excess free energy byUth/NkT=G] sFe/NkT/]Gd.
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The results of Monte Carlo simulations for the excess
liquid energysUed8 have also been fitted9 to analytic func-
tions of Gn:

Ue/NkT= MGn + Uth/NkT. s4d

Uth/NkT=bGn
1/4+c is the thermal energy. The excess Helm-

holtz free energy is

Fe
l /NkT= MGn + 4bGn

1/4 + c LnsGnd + d. s5d

In the case of the inverse sixth potential,b=0.9267 and
c=−0.584.d is a constant of integration which must be de-
termined for solid-liquid phase transitions.

The sixth power potential appears to be roughly the bor-
der separating the stability range of bcc and fcc phases at
melting. Hooveret al.,15 determined that forn=6, the fcc
lattice is the minimum energy structure, while the looser
packing of the bcc solid makes the entropy higher and favors
the stability of this phase at higher temperature and near the
melting. Laird and Haymet11 have found a smaller region of
bcc stability forn=6 than did Hooveret al.

More recently, Dubin and DeWitt12 have determined that
fcc, and not bcc, is the stable phase at melting for then=6
and stiffer potentials. However, despite these differences
there appears to be a general agreement that for values of
nø6, bcc is the stable crystal structure at melting and occu-
pies an increasingly larger portion of the phase space with
decreasing values ofn. In the case of the one-component
plasmasn=1d, bcc is the only stable phase below the melting
temperature. Dubin and DeWitt suggest that the apparent dis-
crepancies forn=6 follows from the neglect of higher-order
anharmonic corrections which become important near melt-
ing and allow that the fcc-bcc-liquid triple point is near
n=6.

It is now necessary to determine a set constants in the free
energy equations(3) and(5) that are in reasonable agreement
with the phase diagrams predicted by L-H and D-D. Since
D-D limited their calculations to the fcc-bcc phase transition,
while L-H also calculated the solid-liquid transition for both
structures, we used the L-H values ofGS and GL, the solid
and liquid parameters at melting and freezing respectively to
adjust two of the constants.

In the case of fcc melting L-H foundGs and GL to be
95.34 and 92.98, respectively. In order for our model to pre-
dict these values we used the liquid constantsb andc cited
above in Eq.(5) and setds=2.8405d to fit the L-H excess
liquid free energies. For the fcc free energy we used the
parameters of D-D,SHfcc=−1.6585 andA1fcc=0.416.

To fit the L-H bcc melting parameters 94.52 and 92.17,
we used the same liquid model as in fcc melting, but ad-
justed the value ofSHbcc in Eq. (3) given by D-D from
−1.6585 to −1.586. This step is reasonable since D-D, as
noted above, suggest discrepancies may have followed from
the neglect of higher-order anharmonic corrections.

Considering the closeness of the predicted bcc and fcc
melting parametersGS and GL, these adjustments in fact
played only a negligible role in the present study. However,
they provide some measure of satisfaction by allowing us to
treat Al as fcc and Mo as bcc.

III. APPLICATION TO ALUMINUM

In order to apply the inv-6 equation of state to the melting
of Al two approximations were made. First, we replaced the
Madelung energy in Eqs.(3)–(5) with the room-temperature
isotherm determined from diamond-anvil-cell measurements
and fitted to the Birch-Murgnahan(BM) equation,16 cor-
rected to their 0 K values. The excess free energy, total en-
ergy, and pressure for each phase may be expressed as

Fe = UBM + Fth-inv6, s6d

E = UBM + 1.5NkT+ Uth-inv6, s7d

and

P = PBM +
NkT

V
+

n

3

Uth-inv6

V
. s8d

The second approximation involves determining the value
of B in the potential(1). Vocadlo and Alfe calculated the
melting curve for fcc aluminum employing density func-
tional theory molecular dynamics and an inverse-6.7 power
potential reference system withB=247 eV cm6.7, which best
represented their liquid simulations.13 By using the value of
B=227 eV cm6 in Eq. (1) with n=6 we are able to calculate
a melting curve and Hugoniot that are in excellent agreement
with melting measurements made in a laser-heated DAC.2

The melting curves shown in Fig. 1 were calculated by
two methods. In the first we utilized the scaling properties of
the inverse-power potentials. By using Eq.(2), a set of melt-
ing temperatures and volumes could be chosen such that
GS=95.34 for the solid andGL=92.98 for liquid freezing.
The calculated pressures appear as the two parallel curves,
the lower curve being the solid melting curve. In a second

FIG. 1. Aluminum melting curve and Hugoniot. DAC measure-
ments (Ref. 2) (filled circles). Calculated melting curves(solid
curves). Calculated solid and liquid Hugoniots(dashed curves), be-
low and above 4700 K, respectively. Shock melting points(filled
boxes) at melting and freezing pressures determined from breaks in
the shock sound velocity. Temperatures at the shock melting points
were calculated using the Grüneisen model(Ref. 17).
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method the melting point was determined at a given tempera-
ture by calculating the difference in the solid and liquid
Helmholtz free energiesDF at a series of volumes and then
determining the volume at whichDF=0. The pressure of the
transition can be estimated by averaging the pressures of the
two coexisting phases at the volume whereDF=0. This
method is useful for those cases, such as metals, where the
volume change across the transition is very small, about
1.3% in the case of Al. The melting obtained using this sec-
ond method is not plotted, but lies, as expected, between the
solid melting and liquid freezing curves determined using the
first method.

The solid and liquid Hugoniots shown in Figs. 1 and 2
were calculated by satisfying the equation

E − E0 = 0.5sP + P0dsV0 − Vd, s9d

where the subscripted variables are initial conditions in the
solid at 298 K. The melting and freezing curves, shown in
Fig. 1, cross the calculated Hugoniot at 120 and 150 GPa,
respectively, in good agreement with the experimentally de-
termined values of 125 and 150 GPa. The experimental
shock melting pressures were determined from breaks in the
shock sound velocity, but the temperature, not measured, had
been estimated using the Grüneisen model.17(a)

IV. MOLYBDENUM

Molybdenum, which melts from the bcc phase at 2890 K,
is known to be stable in this structure at room temperature to
a pressure of at least 416 GPa.18 The stability of the bcc
phase, relative to close packed, is accounted for by a gap in
the electron density of states(DOS) near the Fermi
energy.19,20The driving force for a transition to hcp at higher
pressure is believed to be a pressure-induceds-p to d elec-
tron transfer.21,22

There is experimental and theoretical evidence which
shows that upon melting changes occur in the atomic order-

ing of liquid Mo, and other bcc transition metals, which in-
fluence the valence electronic structure.23–25 Since it is well
known that the bcc and fcc structures of transition metals
have electron density of states(DOS) which differ
significantly,21,22 then it should be expected that the melting
of the eightfold coordinated bcc structure to a more closely
packed liquid structure will lead to changes in the DOS.
Time resolved photoelectron spectroscopy measurements for
these metals show changes in the DOS in the solid and liquid
which reflect the changes in atomic ordering from bcc to a
close-packed-like ordering.23–25

Ab initio molecular dynamics simulations for open-shell
transition metals also predict changes from a bcc structured
DOS in the solid, with peaks and valleys, to a smoothed
DOS in the liquid.26–28In contrast to the open-shell transition
metals, the DOS of Cu, which has a filledd band changes
only slightly upon melting.28,29

In effect, experiment and theory tell us that upon melting,
both the atomic and the electron system in an open shell
transition metal undergo a structural rearrangement. The sig-
nificance of these results for melting is that, while the free
energy changes resulting from atomic reordering are treated
quite naturally by the statistical mechanical models, the dif-
fering contributions of the solid and liquidd-electron sys-
tems must also be included.

A. Friedel model

We extend our Al model to Mo by writing the excess free
energy of the solid and liquid phases as the sum of contribu-
tions from the M static lattice, the inv-6 potential thermal
free energy, and add thed-band cohesive energy

Fe
s = UM + Fth-inv6

s + Ud-band
s s10d

and

Fe
l = UM + Fth-inv6

l + Ud-band
l . s11d

For thed-band cohesive energyUd-band we employ the well
known Friedel model8

Ud-band= −
W

20
nds10 −ndd. s12d

W is the bandwidth andnd is the effective number ofd elec-
trons per ion. Since we treatW as temperature independent
the thermal properties determined by the inv-6 EOS remain
unaffected.

The Friedel model has proven successful in describing the
variation of the cohesive energy of transition metals and their
alloys with the filling of thed band.30 The cohesion is a
maximum at the middle of a series(near Mo) when all five
bonding states are filled and the antibonding states are empty.
The contribution of the Friedel term to the pressure is then

Pd-band=
] W

] V
nds10 −ndd/20. s13d

The volume dependence ofW has been described by
W=W0sRWS

0 /RWSdn, where W0 and RWS
0 correspond to the

equilibrium band width and Wigner Seitz radius.n is a pa-

FIG. 2. Aluminum Hugoniot. Experimental data(filled circles)
(Refs. 17b,17c). Hugoniot calculations for solid(solid curve) and
liquid (dashed curve).
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rameter obtained from electron-band theory calculations.
Since the functionW increases with decreasing volume
Pd-banddecreases with increasing compression. Values forW0
and nd and n have been determined across the transition
series. For bcc Mo, Pettifor31 has calculated values of
W0=9.5 eV andn=4.3. We assume that the liquid phase can
also be treated using the Friedel model, but with slightly
different electronic properties.

Since the DAC solid isotherm, as represented by the BM
fit, already includes theUM and Ud-band terms we avoid
double counting and rewrite Eqs.(10) and (11) as

Fe
s = UBM + Fth-inv6

s , s14d

and

Fe
l = UBM + Fth-inv6

l + dUd-band
l−s , s15d

where dUd-band
l−s =sUd-band

l −Ud-band
s d is the change ind-band

cohesive energy going from the solid to liquid phase. The
dUd-band

l−s term, which is small, is essential in the case of melt-
ing.

B. Melting

Since there is little in the way of data forWo and nd
available for liquid transition metals we assume that the liq-
uid is effectively a close-packed fcc-like system. We rely on
Moriarty’s21 calculation for estimates ofnd for bcc and fcc
Mo calculated over a twofold range in density. Moriarty
found thatnd increased from about 4.2 electrons at normal
density to about 4.72 at twofold compression and that fcc
had annd higher by about 0.1 electrons. To the extent that the
liquid coordination number may be fcc-like we assume that
the fcc values approximate those of the liquid. Since the
parametern increases with increasingnd, then n must in-
crease upon melting. A trial value ofn=4.4, increased from
4.3 in the solid, was set for the liquid. A value forB, of
400 eV cm6, was obtained for the inverse-6 potential(1) by
requiring that the normal melting point for Mo approximate
the experimental value of 2890 K.

Melting points were obtained at a given temperature by
calculating the difference in the liquid and solid Helmholtz
free energies,

DF = sFth-inv6
l − Fth-inv6

s d + dUd-band
l−s s16d

at a series of volumes and then determining the volume at
which DF=0. The first term in parentheses, represents the
change in the ion free energy and the second term is the
contribution due to the change ind-band cohesive energy.
Figure 3 shows the DAC measurements, the melting curves
calculated by including, and omitting, thedUd-band

l−s term. Also
shown are calculated solid and liquid Hugoniots.

The melting curve calculated by including thedUd-band
l−s

term in Eq.(16) is in good agreement with the DAC mea-
surements which show a slow rise in the temperatures up to
40 GPa with a flattening of the melting slope todT/dP,0
above that pressure. But above 90 GPa the model predicts
that the temperatures begin to decrease and cross the solid
Hugoniot near 181 GPa and 2639 K. The predicted decrease

is possibly due to our limited knowledge of the Friedel
model parameters at high density and sufficient information,
now lacking, for properly modeling the free energy of liquid
transition metals. By lowering the value ofn slightly, from
4.4 to 4.39, the melting temperature near 220 GPa could be
raised from 2205 to 3011 K. On the matter of why changing
n from 4.4 to 4.39, has such a large effect, consider that the
values ofn originally used aren=4.3 for the solid and 4.4 for
the liquid, a difference of 0.10. Then, a decrease in the liquid
n, from 4.4 to 4.39, is in fact overall a −10% change. The
original prediction of a negative slope may in fact be correct
since the appearance of negative melting slopes ind-electron
systems is well known and is reviewed here in Sec. VI.

By omitting the dUd-band
l−s term, the predicted melting

curves are in agreement with the steep curves calculated by
Moriarty,21 using pair potentials, and by Burakovskyet al.32

using a dislocation model with Lindemann-like scaling.
These melting curves are all aluminumlike. For example,
shock melting was observed in Al near 125 GPa and 4700 K
(Fig. 1) that matches well to the “d bands omitted” curves in
Fig. 3.

The importance of including the partially filledd-band
free energy is demonstrated numerically in Fig. 4 where the
calculated values are plotted forsFth-inv6

l −Fth-inv6
s d and

dUd-band
l−s at a series of temperatures at 75 GPa. Melting oc-

curs atDF=0. The contribution ofdUd-band
l at this pressure is

0.128 eV/atom, which is about 1% ofW. This reduction in
the liquid free energy, even while numerically small, leads to
a decrease in the melting temperature from 4942 K(on thed
bands omitted curve in Fig. 3) to 3170 K (on the DAC ex-
perimental curve). The associated pressure drop due to the
dUd-band

l−s term is small, −5 GPa, but not negligible.

FIG. 3. Molybdenum melting curve and Hugoniot. DAC melt-
ing measurements(Ref. 3) (filled circles). Melting curves calculated
with and withoutd bands as denoted(solid curves). Melting curve
with modified liquid d-band parameter described in text(large
dashed curve). Melting calculations of Moriarty(Ref. 21) (dotted
curve) and Burakovsky(Ref. 32) (small dashed curve). Calculated
Hugoniots: solid(solid curve) and liquid (dashed curves).
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C. Electron density of states (DOS)

While the use of quantum molecular dynamics(QMD)
simulations to carry out the accurate free energy calculations
needed for the melting of transition metals remains a future
goal, the method can now be useful for evaluating the quality
of specific modeling approximations. QMD calculations
were performed for 54-atom Mo systems in the solid(at
3459 K) and liquid (at 4960 K) states in a periodic box,
respectively. A plane-wave pseudopotential method was used
for the electronic structure calculation while the ionic trajec-
tories were proceeded by the classical equation of motion. At
each time step, the ionic positions were determined using the
Hellman-Feynman forces obtained from electronic structures
calculation in which the Bohn-Oppenheimer approximation
is applied. The initial configurations for the 54-atom solid
and liquid states were generated based on interatomic poten-
tials derived from the modeled generated pseudopotential
theory (MGPT).21,26 The systems were equilibrated for 15
picoseconds using MGPT potentials and then passed on to
the first-principles MD calculations where the systems were
further equilibrated for 0.5 ps and then ran for 3–4 picosec-
onds to gather statistics.

Figure 5 shows the calculated electron density of states
(DOS) for liquid and solid Mo made at temperatures of 4956
and 3459 K, respectively. While the plots may have only a
semiquantitative significance they do indicate that the DOS
in the liquid is smoother and broader than in the solid, lead-
ing to a larger value ofW larger by about 0.3 eV/atom.
These results are consistent with those of Moriarty that
showed the melting of the solid led to about a 0.3 eV/atom
lowering of the Fermi energy.26

D. Comparison with transitions reported in shock experiments

Returning to Fig. 3, an extrapolation of the experimental
melting measurements shows that it crosses the Hugoniot

near 210 GPa and 3200 K. This is in excellent agreement
with the pressure at which the break in the shock sound
velocity was observed by Hixsonet al.,33 that had been at-
tributed to a bcc-fcc transition. In addition to the transition at
210 GPa, Hixsonet al.33 observed a second break in the
shock sound velocity near 390 GPa, at a calculated tempera-
ture near 10 000 K, which they attributed to melting of the
bcc solid.

At 210 GPa and 3200 K, the pressure and temperature at
which the Friedel model solid melting curve crosses the
Hugoniot has the value ofG,200. This high value is a con-
sequence of the large depression in the melting temperature
caused by thed electrons and suggests that the melt is highly
viscous. If the second break in the experimental shock data is
real, we speculate that it may represent the transition from
the viscous fluid to a normal liquid, but at a temperature
much below 9000 K.

Some evidence for the presence of a highly viscous state
in transition metal melts has been reported by Brazhkin and
Lypkin.34 The authors carried out quenching experiments on
transition metal melts for which an inspection of the grain
size suggested strongly that the melts are very viscous and
that the viscosity grows considerably along the melting
curve. Brazhkin and Lypkin note that this appears to be the
case in Fe, providing some basis to the theory that the liquid
in the Earth’s core is highly viscous.

V. MELTING OF THE ACTINIDE METALS

The chemical bonding in transition metals, and light ac-
tinides Th to Pu, are known to have strong similarities in that
transition metal bonding is due to delocalizedd electrons and
light actinide bonding by delocalizedf electrons. Bonding in
the heavy actinides(Am and beyond) are characterized by
more localizedf orbitals. Pu is located at the border of the
light and heavy actinides. The unusual room temperature low

FIG. 4. Contributions to the excess free energy at a series
of temperatures near 75 GPa.sFth-inv6

l −Fth-inv6
s d is the change in the

ion free energy(solid curve). dUd-band
l−s is the change ind-band co-

hesive energy(small dashed curve). Melting occurs atDFtotal=0
along the dash-dotted curve.

FIG. 5. Calculated DOS for liquid(solid curve) and solid Mo
(dashed curve) made at temperatures of 4956 and 3459 K, respec-
tively. The Fermi energysEFd is at energy=0.
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coordinated structures of the light actinides are believed due
to the f-electron character.35

Two related properties of the light actinides are particu-
larly noteworthy. The equilibrium room temperature volumes
decrease from Th to a mininum at Pu then rise to Am and
Cm.36 The ambient melting temperatures of the light ac-
tinides are anomalously low and decrease starting from Th,
also reaching a minimum near Np and Pu, then rise for the
heavier actinides.37 See Fig. 6. Using a model, similar to ours
and included the Friedel expression to calculate thef-band
energy, Johansson and Skriver,38 explained the trend in the
volume as being directly related to the increase inf-electron
bonding. To explain the anomalously low melting points
Kmetko and Hill39 suggested that the angular dependence of
f-electron wave functions favored bonding in the liquid
rather than the bcc phase. In a general sense, this is consis-
tent with the view of transition metal melting that we have
developed in this report.

Rather than calculate the ambient melting temperatures
specifically for each of the light actinides, we constructed a
“hypothetical light actinide” series by simply addingf elec-
trons to thorium which, as with all of the light actinides,
melts from the bcc structure. Th is often considered as a
transition metal with smallf character and a rather broad
band of unoccupied 5f states above the Fermi level. By in-
creasing thef electron occupancy systematically we are able
to simulate roughly the change in melting temperature across
the light actinide series.

The theoretical model is the same as used in Sec. IV,
except the Friedel term is written forf bands,

Uf-band= −
Wf

28
nfs14 −nfd, s17d

with the remaining expressions for the pressure and free en-
ergy unchanged. ForWf, the f-band width, we use the simple

formula and parameters employed by Johannson and
Skriver,39 Wf =Wf

0sV0/Vd2, whereW0 and V0 correspond to
the equilibrium band width and volume, respectively.nf 9 is
f-electron occupation number.W0=3.6 eV.

The Birch-Murgnahan fit to the lattice pressure and en-
ergy came from the work of Bellussiet al.40 We retained the
use of the inverse sixth power potential with a value for
B=1050 eV cm6 and fit the melting point of thorium ap-
proximately by using annf occupation number of 0.4. Wills
and Eriksson41 calculated that for Pa and U the fcc lattice has
an f-electron occupancy about 1.5 to 5% higher than for bcc.
In the melting calculations described we chose an intermedi-
ate value, that thenf in a close-packed liquid was higher by
1.025(or 2.5%) than in the bcc solid.

Melting points were determined, as in earlier sections, by
calculating the difference in the solid and liquid Helmholtz
free energies, at a series of volumes, at a given temperature
and then determining the volume at whichDF=0. Figure 6
shows the ambient melting temperatures plotted as a function
of f-electron occupancy. Thef-electron occupancy for each
of the elements was taken from the theoretical values re-
ported by Söderlindet al.42 Calculations were made at inte-
gral values.

The predicted melting temperatures of our “hypothetical
light actinide” are in good qualitative agreement with experi-
ment. The model predicts a decrease in the melting tempera-
ture with increasingf electrons, with a minimum near 3–4f
electrons compared to the experimental 4–5f electrons. The
divergence of the two curves above 6f electrons is likely a
consequence of an increasing level of localized bonding.

VI. DISCUSSION

The association of low melting slopes withd-electron
character is widespread and not limited to transition metals.
It is well known that in the case of the alkali and alkaline-
earth metals the pressure induced increase of thed-electron
occupation number causes a flattening of the potassium melt-
ing curve above 4 GPa and the appearance of complex struc-
tures in Ba, Sr, and Ca.43 In the case of Rb and Cs, negative
melting slopessdT/dP,0d lead to a temperature minima
and maxima below 10 GPa.44 In effect, pressure transforms
the heavy alkali and alkaline metals to early transition met-
als. The low melting slopes of the bcc transition metals, with
high binding energies, represent the limiting cases of this
trend.

The influence ofd electrons on melting at high pressure is
nicely provided by a comparison of Al(Ref. 2) and Mo(Ref.
3) with Mg.43 At room temperature, Mg transforms from hcp
to bcc at 50 GPa(Ref. 45) while Al remains fcc up to 220
GPa, the highest pressure for which measurements were
made.16 The melting curves of all three metals were mea-
sured at Mainz using the same experimental setup. The melt-
ing curve of Mg which, similar to Al, is a nearly free electron
polyvalent metal, follows that of Al up to the hcp-bcc tran-
sition pressure of 50 GPa. Above 50 GPa the melting slope
of Mg decreases and bends parallel to the melting curve of
Mo while the Al melting curve continues to rise. Theoretical
calculations have shown that the increase ind character is

FIG. 6. Calculated ambient melting temperatures of the “hypo-
thetical light actinides series”(solid curve). The f-electron occu-
pancy for each of the elements was taken from the theoretical val-
ues reported by Söderlindet al. (Ref. 42).
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responsible for the transition.46 This suggests that the melting
slope of Al will also show a decrease upon approaching its
fcc-bcc transition pressure(see Fig. 7).

It is well known that an accurate prediction of the bcc-hcp
transition in a metal requires a detailed calculation of the
electron density of states of both structures.19,20Clearly then,
an accurate prediction of the bcc-liquid transition must also
require a detailed calculation of the electron density of states

of both phases. These difficulties may be compounded by the
directional bonding ofd and f electrons which introduce the
likelihood of localized ordering.39,47,48 Consequently, one
cannot employ an effective interatomic potential determined
from a fit to solid state properties and expect to obtain a
reliable melting curve for an open valence shell metal. While
such an approximation may be adequate for calculating
equations of state, phase diagrams are much more sensitive
to relatively small details in the free energy. In this regard
open shell metals differ profoundly from those of rare gases
and nearly free electron metals, such as Ar, Al, and even Cu,
where the electronic structure, hence the effective inter-
atomic forces, remain relatively unchanged upon melting.

Since a rigorous prediction of melting temperature re-
quires a phase matching of free energy and pressure at con-
stant temperature, improvements in the melting theory of
metals need first be directed toward obtaining a more de-
tailed understanding of the density dependent electronic
properties of the liquid employing a systematic approach
similar to that which has been done for the solid.19,20,31
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