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The free energy of spin-crossover molecular systems studied so far deal with the inner degrees of freedom
of the spin-crossover molecules and a variety of interaction schemes between the molecules in the high spin
(HS) and low spin(LS) states. Different types of transition curves, gradual, abrupt, hysteresis, and also two
step transitions have been simulated or even satisfactorily fitted to experimental data. However, in the last
decade spin transition curves were measured, especially under pressure, which could not be explained within
these theoretical models. In this contribution the total free energy of an anharmonic lattice incorporating
spin-crossover molecules which have a certain misfit to the lattice and interact elastically by their change in
volume and shape has been constructed for a finite spherical crystal treated as a homogeneous isotropic elastic
medium. The simulations demonstrate that already the knowledge of average properties of the crystal, as elastic
constants and the anharmonicity of the potential of the lattice, and relative effective sizes of the molecules and
their misfit to lattice is sufficient to interpret spin transition behavior. Almost all known anomalous spin
transitions behaviors have been reproduced within reasonable limits of such parameters.
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I. INTRODUCTION

Several spin-crossover compounds show a dependency of
spin transition curves on applied pressure which has to be
denoted as unusual as the theoretical models so far devel-
oped cannot simulate the different behaviors observed. Gen-
erally it is expected that transitions shift to higher tempera-
tures by the fact that the molecules in the low spin(LS) state
are stabilized under pressure by its smaller size as compared
to molecules in the high spin(HS) state. The few molecular
crystals studied in detail by x-ray crystallography support
these qualitative consideration as to a high accuracy a linear
increase of volume with increasing HS fraction has been
observed.1–5 For spin transitions with hysteresis which is due
to the spin transition system and not accompanied by struc-
tural changes, beside the change of the volume and shape
proportional to the HS fraction, not only a shift to higher
temperatures but also a decrease of the width of the hyster-
esis is expected from the model calculations. However, there
are observations which do not fit to these expectations. With
increasing pressure the following behaviors have been re-
ported: diverse increase of transition temperatures,6,7 increas-
ing hysteresis width,8,9 shift of the hysteresis at constant
width,10 decreasing to zero and again increasing width,6 shift
of the transition to lower temperatures, equivalent to a stabi-
lization of the HS state,11 and stabilization of the HS state
over the whole temperature range.7,12

In order to give a brief description of the structure of the
models developed so far it is useful to start with isolated spin
changing molecules in the lattice as present in highly diluted
systems.13 The fraction of molecules in the HS stategHS is
obtained by the partition functionsZHS andZLS of the mol-
ecules in the HS and the LS electronic/vibronic states, re-
spectively:

gHS =
ZHS

ZHS + ZLS
. s1d

The Boltzmann population of the vibronic states already
leads to a transition, even though a very gradual one, by the
fact of the large difference of the energies of vibronic states
in the two spin states. Many examples show a HS fraction
close to 1.0 already at room temperature,13 such that the
standard methods such as optical, magnetic, and Mössbauer
measurements fail to detect the small fraction of molecules
in the LS ground state.

Introducing the free energies fa=−NkBT ln Za sa
=HS,LSd of N particles their differenceDfHL = fHS− fLS is
obtained according to Eq.(1) from the measurement ofgHS:

DfHLsTd = − NkBT lnS gHSsTd
1 − gHSsTdD . s2d

The free energyFx→0 (concentrationx of spin crossover
molecules—typical Fe) of the mixture of HS and LS mol-
ecules in a highly diluted mixed crystal systemsx→0d is
then given bysf =F /Nd

fx→0sT,gHSd = DfHL · gHS − TsmixsgHSd, s3d

where smix=−kBfgHSlnsgHSd+s1−gHSdlns1−gHSdg is the
mixing entropy for a random mixture of HS and LS mol-
ecules. The minimum offx→0sT,gHSd with respect togHS

gives back Eq.(1).
In several cases13–15 the spin transition curves of the full

mixed crystal series could be parametrized by only two fur-
ther parameters, an energy shiftD and an interaction constant
G, which may be considered as the expansion coefficients of
the linear and quadratic term ingHS:
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fsT,gHSd = fx→0sT,gHSd + xDgHS − xGg HS
2 . s4d

Originally Drickameret al.16 used for the interaction term
the symmetric formgHSs1−gHSd and spoke of an interaction
between HS and LS molecules. With the same right we can
speak of an interaction only between LS molecules express-
ing gHS by the LS fractiongHS=1−gLS. All cases become
equivalent after readjusting the linear term. How has pres-
sure been introduced in Eq.(4)? The observation of a linear
dependency of volume on the HS fraction has suggested the
termpDvHLgHS. DvHL is known from x-ray studies. This way
satisfying agreement has been obtained for some monomo-
lecular crystals.1,17,18

Equation(4), which represents a mean-field free energy,
has been extended and modified to go beyond the mean-field
approximation.19–27In the approach of Kambara28,29modeled
after cooperative Jahn-Teller theory the lattice strains of dif-
ferent symmetries are coupled to the ligand field Hamil-
tonian of the spin-crossover molecule. The mean-field free
energy is minimized with respect to three strain parameters
A1g, Eg, and T2g, so that there is no direct connection be-
tween the HS fraction and pressurep. Nevertheless only
similar behaviors as predicted by Eq.(4) could be obtained.
This approach is mathematically equivalent to the free en-
ergy from above if onlyA1g strain is considered.30 As there is
no experimental evidence of strong strain coupling to the
5T2g electronic state of the molecule in the HS state31 the
generalized approach of Kambara cannot be expected to
model the unusual pressure behaviors observed.

A first step in understanding the anomalous behavior un-
der pressure, that is the increasing hysteresis width, has been
done recently. The consequences of the volume dependence
of the bulk modulus has been discussed for small pressures.
Analytical relationships between the interaction parameter
taken to be proportional to the bulk modulus, the energy
separation and entropy change going from the LS to HS state
could be evaluated from the equation of state and regions of
parameters were given, where such an unusual behavior has
to be expected.

Here we follow this idea setting up a complete free energy
of the whole system, such that the HS fraction as well as the
volume and anisotropic deformations are free variational pa-
rameters. Because of the lack of knowledge about the lattice
potential and phonon frequencies the simple Debye approxi-
mation for the phonons and Grüneisen behavior for the lat-
tice potential has been used in a self-consistent way.

II. SPIN CROSSOVER MOLECULES AS DEFECTS

The interpretation of the interaction constant based on
elasticity theory provides the difference in energy of the lat-
tice potential dependent on the fraction of molecules in the
HS state and the metal dilutionx. For these elastic energies
there are analytical expressions if the molecules are approxi-
mated by point defects and the crystal by a homogeneous
isotropic elastic medium of spherical shape with only two
elastic constants, the bulk modulusK and the Poisson ratio
0øsø

1
2. The lattice sum over all two center interaction is

performed applying mean-field approximation. It is well

known that the interaction of spherical defects is too small to
explain the effective interaction constants observed. There-
fore in a second step general elastic dipoles are introduced
following the scheme of the following sections.

A. Spherical defects

In order to outline the different contributions of elastic
interaction according to the procedure in elasticity theory32

the interaction between spherical defects is described in more
detail. The interaction scheme for spherical defects has the
mean-field property. The reason is that there is no interaction
between spherical defects embedded in an infinite medium
(no direct interaction) consequently no contribution depend-
ing on the distance between the molecules. Spherical point
defects interact only via the surface by the image pressure
belonging to their strain field.

1. Molecules approximated by spherical elastic dipoles

In the following first step the molecules in a mixed crystal
system are represented by spheres of volumesvHS, vLS, and
vM for the spin changing molecule in the HS,LS state and the
molecule containing the metal ionM, respectively. The misfit
of the molecules to the crystal lattice is expressed byva

−v0, wherea=LS,HS,M, and the volumev0 fits to the lat-
tice site, i.e., the volume provided by the lattice for its mol-
ecules. In the case of an isotropic and homogeneous medium
the elastic energy needed to extend or shrink the volumev0
to that ofva is given by32

ea =
1

2
Ksg0 − 1dF sva − v0d2

v0
− g0

sva − v0d2

V
G . s5d

Eshelby introduced the constantg0=3s1−sd / s1+sd
(Eshelby constant) the meaning of which will be given later.
The volumeV is the volume of the crystal, so thatV/v0 is of
the order of Avogadro’s number. Both energy contributions
in Eq. (5) depend on the square of the misfit, so that the sign
of the misfit does not enter.

The second term vanishing in an infinite medium corrects
for the effect of a free surface of the crystal. It is interpreted
as the volume work according to the image pressure on the
surface of the crystal. The image pressure is the result of the
volume change of the crystalDva upon incorporation ofva

Dva = g0sva − v0d s6d

which is larger by the factor 1øg0ø3 (Ref. 32) than the
misfit volume va−v0. The additional volume changeDva

−sva−v0d=sg0−1dsva−v0d is formally attributed to a pres-
surepI =−Ksg0−1dsva−v0d /V. The second term is then the
integral ofpIg0dv, wheredv is the volume changing fromv0
to va inside the crystal andg0dv the change observed at the
surface of the crystal the image pressure is acting on:

E
v0

va

pIg0dv = − Kg0Usg0 − 1dS1

2
v2 − v0vDU

v0

va

=
1

2
pIDva.

s7d

For spherical symmetry, i.e., a spherical defect at the cen-
ter of a spherical crystal, the pressure is constant over the
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surface, as assumed for the integration of Eq.(7). Eshelby,
however, could show thatDva remains valid irrespective of
the shape ofV and the position of the defect, such that for a
homogeneous distribution of defects over a volumeV (a con-
stant density of defects) the pressure is again constant over
the surface. It is positive, when ions withva,v0 are incor-
porated, and negative for bigger volumesva.v0. This effect
is used to create positive or even negative pressures by re-
placing atoms by smaller or larger foreign atoms, respec-
tively. The term “chemical pressure” is therefore in use. Al-
though small for one defect, for one mole of defects(in spin
crossover compounds every metal lattice site is treated as a
defect) the pressure adds up to a finite entity which acts on
all defects. ForN sites in a crystal(defects randomly distrib-
uted in an isotropic homogeneous elastic medium) the total
elastic energy is not simply the sum ofea, but becomes14

E =
1

2
Ksg0 − 1do

i=1

N

svi − v0d2/v0

−
1

2
Kg0sg0 − 1dFo

i=1

N

svi − v0dG2YV. s8d

The second term, the energy correction due to the free
surface, does not sum the squares of the misfitsva−v0 but
squares the sum of the misfits. The first term represents the
self-energy in an infinite medium and the second term shall
be called surface energy. The simple proof by complete in-
duction which gives good insight into the mechanism of the
interaction is given in Ref. 18.

The sums in Eq.(8) are expressed by the concentrationx
of spin changing molecules and the fractiongHS sn=1,2d:

1

N
o
i=1

N

svi − v0dn = xfgHSsvHS − v0dn + s1 − gHSdsvLS − v0dng

+ s1 − xdsvM − v0dn. s9d

Comparing the phenomenological free energy of Eq.(4) with
the energy per spin changing moleculeE/Nx the terms pro-
portional toxgHS

2 andxgHS have to be interpreted as interac-
tion constantG and the energy shiftD:

G =
1

2
Kg0sg0 − 1dvHL

2 /vm,

D = Kg0sg0 − 1dvHLvML/vm. s10d

The differences are written asvHL =vHS−vLS,vLM =vLS
−vM such thatvML =−vLM. The volume per metal site of the
crystal is denoted byvm=V/N. The volumevm is typically
larger thanv0 because there are other molecules(anions,
solvent molecules, etc.) per spin-crossover molecule in the
crystal.

Note thatv0 is absent fromG and D since only volume
differences enter these equations of elastic energy differ-
ences. Thus all parameters can be experimentally deter-
mined.g0vHL is the volume increase on going from the LS to
the HS state, which is accessible by structure determination
at variable-temperatures or using the light-induced-excited-

spin-state-trapping effect at low temperature if there are no
structural changes.g0vML is obtained by comparison of the
unit cell volumes of the metal compound and the Fe com-
pound in the LS state at the same temperature.

As the external pressure couples to the volume the contri-
bution of the integral of Eq.(7) correcting for the free sur-
face has to be considered more closely. The integral is the
sum of two integrals which describe the energies involved in
the procedure of taking out a finite(spherical) volumeV out
of the infinite medium:

E
v0

va

pIg0dv =E
v0

va

pI dv +E
v0

va

pIsg0 − 1d dv. s11d

The negative of the first integral is the energy stored outside
V. The negative pressurepI at the surface ofV moves the
surface corresponding tosva−v0d outside storing energy by
the volume work inside the infinite volume. This energy has
to be subtracted(the integral added) for the elastic energy of
V. After removing the infinite part of the medium the remain-
ing V further extends bysg0−1dsva−v0d as the pressure −pI

from the infinite medium balancingpI is removed. Rewriting
the second integral by substitution of the variablev accord-
ing to v8−fV+g0sva−v0d=sg0−1dsv−v0dg the integral reads
(pI8sv8d=Khv8−fV+g0sva−v0dgj /V andpI8=−pI):

E
v0

va

pIsg0 − 1ddv = −E
V+g0sva−v0d

V+sva−v0d

pI8sv8ddv8. s12d

The pressurepI8sv8d=−pIsv8d is similar to the external
(positive) pressure at the surface which is zero at the final
volumev f8=V+g0sva−v0d of the sphere. So the integral ob-
viously represents the work compressing the volume to the
size vi8=V+sva−v0d it has in the infinite medium. By the
extension fromvi8 to v f8 the volume energy decreases by the
value of this integral.

Denoting the value of the integral(7) by esurf and the two
terms of the sum of Eq.(12) by appropriate superscripts
[infinite s`d and finite] the energy contributions are written
as

esurf
` = −

1

2
Kvmsg0 − 1dS v̄ − v0

vm
D2

,

esurf
fin = −

1

2
Kvmsg0 − 1d2S v̄ − v0

vm
D2

, s13d

wherev̄−v0=1/NSsvi −v0d of Eq. (9).

2. Volume dependence of the free energy of a lattice

Recently the thermodynamical properties of silver metal
have been successfully reproduced(Xie et al.33) calculating
usa−a0d, the lattice potential dependent on the lattice con-
stanta, by density functional perturbation theory(DFPT) and
adding the phonon free energy as obtained from inelastic
neutron scattering.

Here the phonon free energy is approximated by the De-
bye model with a Debye temperatureQ dependent on vol-
ume by the Grüneisen approximation
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dQ

Q
= − gG

dV

V
,

QsVd = Q0SV0

V
DgG

. s14d

The reference volumeV0 shall be the volume per molecule
vm at zero temperature. The Grüneisen constantgG describes
the change of the Debye frequency due to the anharmonicity
of the lattice. For spin-crossover compounds it has been es-
timated in two cases to be aroundgG=3.0.34,35 In the second
Eq. (14) the differential relationship is written in the inte-
grated form for convenience(dV/V is of the order of 10−2).

The static potential energy has to be chosen consistently
with the Grüneisen approximation. This is achieved by the
thermodynamical relationship for the bulk modulus(free en-
ergy f per volumeV)

VU d2f

dV2U
T

= KsVd s15d

and the dependency of the bulk modulusK on V in the De-
bye approximation.34,36 K is proportional to

KsVd ~ SkBQ

"
D2

rS V

18p2D2/3

s16d

and to a function ofg0. Taking the Eshelby constant inde-
pendent ofV the bulk modulus as a function ofV is ex-
pressed by its value atV0=vm fQ0=QsV0d ,K0=KsV0dg:

KsVd = K0SQsVd
Q0

D2SV0

V
D1/3

. s17d

The free energyf0 at zero temperature is the sum of the
potential energyu and the zero point vibrational energy
9/8kBQ. The integration of Eq.(15) with the condition of a
minimum atV0 and an arbitrary choice offsV0d=0 givessj
=2gG− 2

3
d

f0sVd =
K0V0

j + 1
H1

j
FS V

V0
D−j

− 1G +
V

V0
− 1J . s18d

From the expansion off0 aroundV0 as a function of the
relative volume changen=sV−V0d /V0 up to the first anhar-
monic third order term

f0sVd = K0V0F1

2
n2 −

1

3
SgG +

2

3
Dn3 + ¯G s19d

the dependency of this term on the Grüneisen constant is
obtained. Obviously,f0 has an anharmonic behavior even at
gG=0. At gG=−2/3 the anharmonic third order term van-
ishes. The fact that only a harmonic potential is left is di-
rectly seen from Eq.(18). Another special case isgG=1/3
which givesf0snd=K0V0f−lnsn+1d+ng. In Fig. 1 the poten-
tial curves are plotted. The thicker line is the harmonic po-
tential atgG=−2/3. The potential curve forgG=3.0 gives an
impression of the anharmonicity introduced by the Grüneisen
constant.

The total free energyfsT,Vd in the Debye approximation
per volumeV containing m vibrating masses is given by
[Debye functionDsxd]

f = f0sVd + mkBTF3 lns1 − e−Q/Td − DSQ

T
DG . s20d

The large intramolecular frequencies as compared to the low
frequencies of the lattice with the cut off at the Debye fre-
quency "vD (corresponding to aboutQ=50 K) justifies
treating molecules as rigid units vibrating as a whole in the
lattice. This means that the intra and extra molecular vibra-
tions are assumed to be essentially decoupled. The numberm
of vibrating molecules is adjusted to reproduce the experi-
mentally observed lattice expansion versus temperature. Fig-
ure 2 shows the free energy versus volume at temperatures in
the range fromT=40 to 310 K. The volume shift of the
minima of the free energy corresponds to what typically is
observed in spin crossover compounds.

3. Contribution of spherical defects to the potential energy

So far we have the lattice free energyf0sVd per unit vol-
umeV0 of an infinite lattice containing molecules of sizev0.
These molecules will be replaced in a first step by incom-
pressible molecules of different volumevHS, vLS, and vM.
The infinite medium extends, such that the volumeV0 per
molecule increases byv̄sx,gHSd−v0 where v̄sx,gHSd
=xfgHSvHS+s1−gHSdvLSg+s1−xdvM is the average volume
of a concentrationx of spin crossover molecules(here Fe)
being a fraction ofgHS in the HS state and a concentration
1−x of other metal molecules. This extension changes the
potential f0sVd twofold, the minimum energy and the posi-
tion of the minimum fromV0 to v8=V0+fv̄sx,gHSd−v0g. In
order to modify the potential correspondingly, we make use
of two integration constantsA,B of Eq. (15) for a constant
energy shiftA and a linear termBsV−V0d /V0.

w0sVd = f0sVd + B
V − V0

V0
+ A. s21d

The first derivativedw0/dV vanishes at the minimumv8
and determines the constantB dependent onx andgHS. With

FIG. 1. The potentialf0sVd versus volume forgG=−2/3 (thick
curve) andgG=3.0. At gG=−2/3 the potential is harmonic.
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the knowledge ofBsx,gHSd the constantAsx,gHSd is obtained
from the energy differencew0sv8d−w0sV0d which is just the
self-energyeselfsx,gHSd in an infinite medium[w0sV0d=0 was
chosen as reference energy]. Obviously, the product of
Bsx,gHSd with sV−V0d /V0 represents a coupling between the
HS fraction and the volume of the crystal.

In a next step the energy correctionesurf of Eq. (13) re-
sulting from the free surface(cutting out a finite medium)
has to be added. That is the energy stored in the infinite part
epI dv of Eq. (11) and the decrease in energy increasing the
volume by the image pressure. This part, however, cannot be
simply added since the volume is an independent parameter
of the free energy. The free energy has to be constructed in
such a way that in the harmonic case the correct volume and
shift in energy as derived from elasticity theory[Eqs.(6) and
(13)] are obtained. The energy dependence on the volumeV,
the product ofpI =−Ksv̄−v0dsg0−1d /V0 times the volume
changesV−v8d per molecule, added to the harmonic poten-
tial meet these requirements. The sum denoted byf

f =
KV0

2
SV − v8

V0
D2

− K
v̄ − v0

V0
sg0 − 1dsV − v8d

=
1

2
KV0SV − sV0 + g0sv̄ − v0d

V0
D2

−
1

2
KV0sg0 − 1d2S v̄ − v0

V0
D2

s22d

represents a displaced oscillator, the energy and volume shift
is directly read off. As elastic energies are derived in the
harmonic approximation(by using elasticity theory for small
deformations) the linear term used locally in the anharmonic
potential remains a valid approximation.

B. General point defects

The interaction constant derived from experiment could
be approximately reproduced by the theory when the aniso-
tropy of the deformation of the crystal accompanying the
change of the spin state of the molecules37,38 has been in-
cluded. The situation, however, becomes much more compli-
cated although the crystal is still approximated by an isotro-
pic homogenous medium. While isotropic defects do not
interact directly(they “see” each other only by the surface
image pressure) anisotropic defects interact directly(also
with isotropic ones) in addition to the interaction by an an-
isotropic image stress. The direct interaction energy depends
on the distances,1/r3d and relative orientation of the de-
fects and can give rise to deviations from random distribu-
tion (correlations) of the spin states of the molecules. Here
we assume random distribution preserving mean-field ap-
proximation.

1. Infinite range interaction

The calculation of the elastic energies of the anisotropic
lattice deformation accompanying the spin transition requires
a deformation tensor of the lattice. It is described by a Car-
tesian tensore with componentseik , si =x,y,zd, which are
transformed to a real irreducible(with respect to the rotation
group) basis. The trace of the Cartesiane tensor es=exx
+eyy+ezz is the relative volume change of the lattice, such
that, e.g., es

HL with the superscript HL is equal toes
HL

=g0svHS−vLSd /vm:

e0 =
1
Î6

s2ezz− exx − eyyd,

e1c = Î2exz, e1s = Î2eyz,

e2c =
1
Î2

sexx − eyyd, e2s = Î2exy. s23d

The tensor components are evaluated from the deforma-
tion of the unit cell due to the spin transition. Several ex-
amples have been studied.2–4,39Taking these deformations to
be uniform throughout the crystal(approximated by homo-
geneous medium), the origin of the deformation is traced
back to a uniform distribution of elastic point dipole tensors
P (related by translational symmetry) with components
Ps,PM whereM =0,1c,1s,2c,2s:38

Ps = Kvmes,

PM =
3

2
Kvmsg0 − 1deM . s24d

The tensor has the dimension of an energy. In the case of one
defect per molecular volumevm the average valuesPM of

FIG. 2. The free energyfsT,Vd of Eq. (20) is plotted for a series
of temperatures fromT=40 K (thick curve on the top) up to 310 K
versus volumeV. The shift of around 30 Å3 of the minimum of the
free energy is about 6% of the voume. This volume expansion is
typically observed in spin crossover compounds. Two scales are
used. The free energy curves are plotted with respect to the upper
scales0–200 cm−1d. The energy difference of the minima belong to
the lower scales0 through −4000 cm−1d. The typical parameters
used areQ=50 K andm=3.
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Eq. (24) represent the dipole strength of the defect. The self-
energyeself of a defect stored in an infinite crystal outside the
volumev0 is given by(i.e., Ref. 40)

eself =
sg0 − 1d
2g0

2Kv0
FPs

2 +
s3g0

2 + 4g0 + 5d
15sg0 − 1d2 o

M

PM
2 G . s25d

The interaction energy per molecule between the molecules
s=defectsd uniformly distributed over a sphere caused by the
image pressure/stress at the free surface of the sphere is pro-
portional to the square of the deformation tensor components
[compare Eq.(8) (Ref. 38)]:

esurf = − Kvm
sg0 − 1d

2g0
Fes

2 +
3

10
s2g0 + 1do

M

eM
2 G . s26d

For a mixed crystal spin crossover system the self-ener-
gies just add up such thatPM

2 in Eq. (25) is replaced byPM
2

following the definition of Eq.(9). The deformation tensor
results from the sum of the contibutions of all molecules.
This sum is equivalent to the average tensorēM of the defor-
mation tensor for each species of molecules. In Eq.(26) eM

2

is replaced byēM
2 .

The M =s terms are the spherical contributions already
discussed. In order to obtain the linear term of the aniso-
tropic deformations leading to the energy contribution of the
expanding surface as has been done for the spherical part in
Eq. (22), the surface energy has to be split into the infinite
and finite contribution. Before doing this Eq.(22) shall be
rewritten using e tensors. These are the variablees=sV
−V0d /V0, the total deformationēs=g0sv̄−v0d /V0, the defor-
mation of the infinite mediumēs

`= ēs/g0, and the deforma-
tion by the image pressureēs

I =sg0−1d /g0ēs:

f =
1

2
KV0ses − ēs

`d2 − KV0ēs
Ises − ēs

`d

=
1

2
KV0ses − ēsd2 −

1

2
KV0sēs

Id2. s27d

In terms ofes tensors the calculated energy shift by the re-
laxing surface is obtained at the minimumēs=sēs

I + ēs
`d of the

harmonic potential. For the corresponding expressions of the
energy corrections of anisotropic deformations proportional
to ēM the splitting into the contributionēM

` andēM
I is needed.

Comparing the total displacementU=U`+UI at the surface
of a spherical medium(crystal) of radius Ra expressed by
spherical vector harmonicsYLM

J (see Ref. 37)

UsRad = −
4p

3
Ra

Y00
1

Î4p
ēs + 2pRao

M

Y2M
1

Î3p
ēM ,

UIsRad = −
4p

3
Ra

Y00
1

Î4p

g0 − 1

g0
ēs + 2pRao

M

Y2M
1

Î3p

2g0 + 1

5g0
ēM ,

s28d

and U`sRad, the partial deformation tensors for the aniso-
tropic deformationsēM

I =s2g0+1d /5g0ēM caused by the im-
age stress field andēM

` =s3g0−1d /5g0ēM are also obtained.

The energy correctionsesurf
finite are the displacements

Usr =Rad multiplied by the image stresssIer in radial direc-
tion er (Ref. 37)

sIsRader = − K4p
Y00

1

Î4p
ēs

I + K
3

2
sg0 − 1do

M

2p
Y2M

1

Î3p
ēM

I

s29d

and integrated over the surface of the sphere:

−
1

2
E

V

UIssIerdRa
2dV

= −
1

2
Kvmsēs

Id2 −
1

2
Kvm

3

2
sg0 − 1do

M

sēM
I d2. s30d

The linear terms to be added to a harmonic potential with the
property of the correct displacements and energy shifts are
readily constructed according to Eq.(27):

f =
1

2
KV0ses − ēs

`d2 − KV0ēs
Ises − ēs

`d + o
M

1

2
Kvm

3

2
sg0 − 1d

3seM − ēM
` d2 − Kvm

3

2
sg0 − 1dēM

I seM − ēM
` d. s31d

For the value of the average deformation tensorēM the
knowledge of the misfit of the molecules to the lattice is
required. The misfit has to be expressed by deformation ten-
sor components instead of the volume and shape of the de-
fect minus volume and shape provided by the lattice. With
the deformationeM

a of each speciesa=HS,LS,M, each rep-
resenting an unknown misfit to the lattice, the unknown val-
ues are reduced to one value for each componentM if all
differences(eM

HL =eM
HS−eM

LS, etc.) being experimentally acces-
sible are inserted. In case of the spherical components not
the volume differencevL0 but the tensor componentes

LS

=g0svLS−v0d /V0 has been taken as unknown misfit.
The energyesurf

` stored outside the spherical volume in the
infinite medium (to be subtracted from the energy of the
infinite medium)

esurf
` =

1

2
Kvmsg0 − 1dFsēs

`d2 +
3

2

2g0 + 1

3g0 − 1o
M

sēM
` d2G , s32d

is the integral +12eVU`ss`erdRa
2dV.

The coupling of the deformation of the lattice to the HS
fraction determining the average values of the tensor compo-
nents is established by two ways, the dependency of these
energies on the bulk modulusKsVd and new minima values
in the anharmonic potential which has the same shape as
f0sVd of Eq. (18). Replacinges by eM and the prefactorK0V0

by 3/2K0V0sg0−1d the contribution of modeM is given by
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f0MseMd =
3

2
K0V0sg0 − 1d

1

j + 1

3H 1

j − 1
„seM + 1d1−j − 1… + eMJ . s33d

The same Grüneisen constant is taken for all modes of de-
formation.

2. Elastic interaction in an infinite medium

The elastic interaction energy between two dipolesPM
a

andPM
b in an infinite medium separated by a distanceR on

thez axis of a coordinate system(Shuey and Beyeler40) con-
sists of two types of terms

eint
` =

1

4p

1

R3

1

Kg0
HÎ6sP0

a ·Ps
b + P0

b ·Ps
ad +

2sg0 + 1d
g0 − 1

P0
a ·P0

b

−
2

g0 − 1
sP1c

a ·P1c
b + P1s

a ·P1s
b d − sP2c

a ·P2c
b + P2s

a ·P2s
b dJ .

s34d

The first is an interaction term between a spherical defectPs
and the componentM =0 of an anisotropic defectP0. All
other terms are of the second type, namely products between
components describing the anisotropic part of the defects.

The sum over all pairs of defects, that is the sum over all
molecular sites(the position of the defect being inside the
molecule), is treated in mean field approximation, such that
the averages ofPM are replaced by the strain tensor compo-
nentsēMsx,gHSd. Then we can define two types of interaction
constants

eint
` = − Gsēsē0 − o

M

GMēM
2 s35d

the size of which are determined by the relative positions and
orientation of the spin-crossover molecules in the crystal.
The first interaction term proportional toGs represents a cou-
pling between isotropic and anisotropic deformations so that
the volume change accompanied by the spin transition will
depend on the anisotropy of the deformation.

This direct interaction is proportional to 1/R3, that means
it has the property of long-range interaction(not infin-
ite range as the interaction due to the free surface). So far
it was calculated for three compounds[Fe(picoly-
lamined3gsClO4d2·SolsSol=EtOH,MeOHd sRef. 38d and
fFespropyltetrazoled6gsBF4d2.

15 The absolute size amounts
30–60 % of the interaction parameter obtained from a fit
to Eq. s4d. In the monoclinic picolylamine compound the
direct interaction adds to the interaction constant whereas
in the axial symmetric propyltetrazole compound it has
the opposite sign. Therefore the interaction constantsGs,M
cannot be put into limits from general considerations.

It is well known that there are spin crossover transitions
with very large interaction constants.24 Interaction of elastic
origin are limited by the typicalK values being less than 10
Gpa and the size of the observed deformation tensor compo-
nents. Larger values are attributed to short range interaction
between molecular units interacting byp bonding or metal

atoms sharing ligand entities. Such a contribution is not pro-
portional to the bulk modulusK and therefore not affected by
the anharmonicity of the crystal lattice. As this interaction is
also treated using mean field approximation a term propor-
tional to the square ofgHS, a linear one ingHS, and a constant
are obtained. The constant energy shift does not matter, the
linear term contributes to a constant(independent of volume
and temperature) energy separation between the HS and LS
state of the molecule. When simulating metal dilution series
the dependency of the constants on concentrationx and es-
pecially the relative size of the interaction constant as com-
pared to the energy shift is important. Considering only two
center interactions a general expression for the mean field
approximation has been written as39

Eint

N2 =
1

2
x2gHS

2 pHLĀpHL + gHSs− x2pHLĀpML + xpHLĀpMd

+
1

2
fs1 − xdpML − pLSgĀfs1 − xdpML − pLSg. s36d

The letterp stands for some tensor property of the molecule
such that the interaction between two moleculesi , j can be
written aspiApj with a tensorAsi , jd. If there are only three
different molecules with propertiespHS, pLS, andpM the lat-
tice sum over all sitesi , j is expressed by the average tensor

Ā=1/N2oiÞ j Asi , jd and tensor differencespHL =pHS−pLS

andpML =pM −pLS.
The last term in Eq.(36) is independent ofgHS. The

meaning of the term proportional toxgHS is an energy shift
of each spin crossover molecule in the HS state. This shift
has been already mentioned above. The two energies propor-
tional to x2 (these contributions decrease linearly for each

spin crossover molecule) pHLĀpHL and pHLĀpML would be
the same if the properties of the molecule with the metal ion
M is the same as the spin crossover molecule in the HS state.
This is approximately the case for Fe and Zn molecules
where the difference of deformation tensors for the crystal in
the HS state and the Zn crystal are very small as compared to

the crystal in the LS state. DenotingG=−NpHLĀpHL /2 and

D=−pHLĀpML the direct interaction per metal atom is given
by

eint
` = − Gsēsē0 − o

M

GMēM
2 + x2DgHS − x2GgHS

2 . s37d

Note thatG is not only determined by the HS propertypHS of
the molecules but by the differencepHL although the square
of gHS looks similar to an interaction between HS molecules
[see comment on Eq.(4)]. The typical ratioD /G,2 found
from experiment of metal dilution series withM =Zn is used
for simulations because the energy shift vanishes atgHS= 1

2
preserving the transition temperature with an increase ofG.

III. TOTAL FREE ENERGY

We are now in the position to set up the total free energy
fses,eM ,T,gHSd. For each modeM the potential of the infi-
nite crystal is constructed in the same way as for the spheri-
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cal modes. For clarity the functionsAsx,gHSd andBsx,gHSd
get a subscripts andM. The sum overM practically will be
restricted to one or utmost twoM modes:

f = f0ssesd + Bses + As + o
M

f0MsVd + BMeM + AM + eint
`

− esurf
` fx,gHS,Ksesdg − Ksesdvmēs

Ises − ēs
`d + pvmes

− Ksesdvm
3

2
sg0 − 1do

M

ēM
I seM − ēM

` d + fDebyefT,Qsesdg

+ x · fx→0sT,gHSd. s38d

The first two lines of the free energy(enthalpy) describe
the potential energy of an infinite medium/crystal. The next
three lines correct for the surface and include the external
pressurep where the constant energypvm of pV=pvmes
+pvm has been omitted. The free energy of the lattice
phonons and the spin crossover molecules introduce the tem-
perature dependence. The minimum of the free energy with
respect to all variableses, eM, andgHS determine these vari-
ables, the HS fraction and especially the volumees, in ther-
mal equilibrium:

U ] f

] gHS
U

T

= 0, U ] f

] es
U

T

= 0, U ] f

] eM
U

T

= 0. s39d

Several contributions to the free energy are coupled by the
bulk modulus because all elastic energies are proportional to
K, these areAs, AM , Gs, GM, andesurf

` . TherebyK is defined
by Eq. (15), the second derivative off, which function as an
extra condition and reads in terms ofes instead ofV:

Kvm = s1 + esdU ]2f

] es
2U

T,eM

.

In a numerical solution this condition is simultaneously
reached within the iteration procedure to the minimum off.

IV. SIMULATIONS

We want to explore in this study general properties of the
free energy of the spin-crossover system in order to recog-
nize some of the unusual behavior found experimentally. The
transition curves have been called unusual as the theoretical
approaches so far discussed could not reproduce such transi-
tions although the theories going beyond the mean-field ap-
proach provide a lot of parameters to be adjusted. The
present mean-field theory introduces one new type of param-
eter, the space in the lattice provided for the molecule ex-
pressed by the misfit of one species, i.e.,eM

LS for each com-
ponent M =s,0 ,1s,1c,2s,2c. So far these misfits are not
experimentally accessible. Their influence on the spin transi-
tion curves is not known and this will be one subject to be
studied.

In order to reduce the parameters to play with only oneM
component in addition to the sphericals component is used
and the misfits for these components are related to each other
by a fixed ratioes

LS/eM
LS=1. Since allM components, but the

one with M =0, contribute to the interaction energy in the

same way, the indexM is used excluding theM =0 compo-
nent for simplicity which has a product with thes component
in the interaction energy. The direct elastic interaction con-
stantGM of this component, which for a given crystal struc-
ture can be calculated carrying out a lattice sum,15,38 and the

TABLE I. Theory parameters used for the calculation of the spin
transition curves of all the figures. The image interactionGI and the
effective direct interactionGd of the mode of deformationM are
derived from the calculated transition curve. The parameter
GM /K0V0 is a dimensionless number.

Figure vLS−v0 gG GM /K0V0 Delect G GI Gd

fcm−1g

4a 0 3 0.5 130 0 45.6 55.9

4 0 3 0.5 200 0 71.6 34.9

5 0 −2
3 0.9 65 0 47 123

5 0 3 1.25 106 0 71 91

5 −vHL 3 0.75 255 0 57 108

7 1
2vHL −2

3 1.55 0 −50 50 209

7 1
2vHL 1.0 1.55 −15 10 62 152

7 1
2vHL 1.8 1.55 −20 35 62 131

7 1
2vHL 2.5 1.55 −28 50 58 113

8 1
2vHL 1.7 1.55 −20 5 66 128

8 vHL 2.2 1.0 −90 74 71 83

9 vHL 2.5 2.0 −225 20 70 130

9 2vHL 1.2 1.9 −425 10 67 138

11b 2vHL 1.9 1.8 0 230 50 145

aTransition is calculated without Debye free energy.
bIn this special caseeM

LS has been increased by 1/2eM
HL and the ratio

of the volume per molecule divided by the molecular volumevm/v0

has been decreased from 2.0 to 1.73.

FIG. 3. The spin transition(Boltzmann population) of noninter-
acting molecules as obtained from the highly diluted mixed crystal
(a) of fFexZn1−xspicolylamined3gCl2·EtOH [x=0.003(Ref. 42)] ac-
cording to the free energy of Eq. and(b) of the same partition
functions of the HS and LS states but an increased energy separa-
tion between HS and LS state ofDelectr=120 cm−1 in order to shift
the transition temperatureT1/2 to 120 K.
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short range interaction constantG are chosen such that hys-
teresis widths of around 10 K at zero pressure are obtained.
GM is increased close to the critical value for a hysteresis and
with a small value ofG the width of 10 K is adjusted. The
volume differencevHL =10 Å3, the crystal volume per mol-
ecule vm=500 Å3, the Eshelby constantg0=1.5 and bulk
modulus K=0.631010 N m−2 are fixed as typical values
found in spin crossover compounds. In the case of the com-
poundfFesptzd6gsBF4d2 the elastic constantsK and g0 were
measured by Brillouin scattering.41 The difference of aniso-
tropic deformationeM

HL in the HS and LS state of the crystal
is fixed to the same value of 0.03 as the isotropic deforma-
tion g0vHL /vm. Similar values were found by x-ray structure
determination.15,38The absolute value ofv0 is needed for the
calculation of the self-energyeself. It determines the relative
size of the self-energy and the other elastic energy contribu-
tions. In the present simulationsv0 is fixed to 1/2vm. Further
parameters of the total free energy will be fixed throughout
the simulations. There is, as shown in Fig. 3 curve a, the
Boltzmann population of noninteracting spin-crossover mol-
ecules. This transition curve was measured on the highly
diluted mixed crystal fFexZn1−xspicolylamined3gCl2·EtOH
[x=0.003(Ref. 42)].

In this compound a Debye temperature of about 50 K was
found. The numberm of vibrating masses is fixed to 3 giving
typical temperature dependence of the lattice as shown in
Fig. 2. An energy differenceDelectr between the HS and LS
state of electronic and elastic origin, given by the energy
eigenvalues of the free molecule and constant elastic ener-
gies possibly introduced by short range interaction(see
above), is used to adjust the spin transition temperatureT1/2
to 120 K in order to simulate comparable spin transition
curves. In Fig. 3, curve b at a transition temperature of 120 K
is obtained by addingDelectr=120 cm−1 to the energy separa-
tion between the HS and LS state.

The anharmonicity parametergG will be varied up togG
=3 for the strong anharmonic situation. The valuegG=
−2/3 at which the potential is exact harmonic is used to
show the transition curves obtained by the standard mean-
field free energy(4) for comparison.

Table I collects all parameter sets used. Metal dilution
effects have not been simulated(x=1 andx=0 for reference
M =Zn compound). The parameters of the first two columns,
the misfit and Grüneisen constant, have been set, of the next
two, additional energy splitting between HS and LS state of
the molecule and a direct interaction of modeM, have been
varied to obtain a steep transition close to the hysteresis loop
at 120 K, and the short range interactionG to obtain a hys-
teresis width of about 10 K. The interactionGs between
spherical and anisotropic elastic dipoles has been set to zero.
The next two columns list effective interactions which have
been derived from the simulated transition curves. The
curves have been used as input for a determination of the
interaction parameter of the phenomenological free energy of
Eq. (4). The equilibrium condition]f /]gHS=0 of Eq. (4) is
written assGeff=Gd

D − 2GeffgHS = DfHLsTd − kBT lnF1 − gHSsTd
gHSsTd G s40d

such that the effective interaction is half of the slope of the
right-hand side of the equation. The image interaction is ob-

tained separately by putting the direct interaction to zero.
The short-range interaction turns out to be simply additive(it
does not depend on the bulk modulus). This fact has been
used to simulate curves without a hysteresis in order to ob-
tain a well-defined slope. The sum of the columnsG+GI
+Gd is the total interaction.

A. Phonon contribution

The lattice phonon contribution to the interaction between
spin crossover molecules was first discussed by Zimmer-
mann and König.43 From the difference of the Debye tem-
peratures of the crystal in the HS and LS state they estimated
a considerable contribution of around 20% of the interaction
constant. Later on this size was questioned.13 These estima-
tions can now be replaced by a comparison of simulations of
transition curves with and without lattice phonons. The result
is shown in Fig. 4.

The main effect of the lattice phonons is a shift of the
transition (thin b curve) to lower temperature(thick line
curvea) which is due to the lattice expansion of the anhar-
monic lattice and the coupling of the spin transition to the
volume. In Fig. 4 there is also plotted the transition with
lattice phonons(thick line curveb) at the same transition
temperature by increasing the electronic energy separation
between HS and LS states. The thick line and thin line tran-
sition curves almost match. Only at HS fractions larger than
0.75 the thick line curve(calculation with lattice phonons) is
above the curve without phonons. This relative increase of
the HS fraction represents a small contribution of the lattice

FIG. 4. Comparison of spin transitions calculated with(a curve)
and without (thin b curve) lattice phonons. In order to have the
same transition temperature for the transition curve with lattice
phonons as without lattice phonons the energy separationDelectr is
increased by 70 cm−1. The two curves almost match besides the
region of large HS fractions.
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phonons to the interaction. The total interaction constants as
listed in Table I are different by about 5 cm−1.

B. Shift of T1/2 versus pressure

The pressure dependence of the transition temperatures
T1/2 observed so far7 could be hardly commented on because
of the lack of temperature-dependent x-ray diffraction data
from which the volume change accompanying the spin tran-
sition could have been derived. The very different dependen-
cies observed concerning the slope and the change of slope
of dT1/2/dp did not offer any correlation with any other prop-
erties of the transition curve. The three series of simulated
transition curves at 0, 2, and 4 kbar in Fig. 5 demonstrate this
situation.

The essential parameters are the misfitvLS of the mol-
ecules and the Grüneisen constantgG. The anisotropic inter-
actionGM and the electronic energy differenceDelectrare cho-

sen in order to obtain very similar shapes close to a
hysteresis transition(see text belonging to the figure) and the
same transition temperature. AtgG=−2/3, the harmonic po-
tential, there is no dependence on the misfit. The free energy
reduces to the phenomenological free energy of Eq.(4). This
series shows the largest change ofT1/2 with pressurep. The
different responses top are expected from the dependence of
the volume on the HS fraction. In Fig. 6 the difference
VFe−VZn is plotted versus the HS fractiongHS.

Here the Zn molecule is taken to be identical with the Fe
molecule in the HS state, that means the same misfit to the
crystal with the same Debye temperature. The temperature
dependence of the Zn crystal serves as a reference as done in
experimental work.3,4A linear dependence is obtained for the
harmonic crystal with a difference ofg0vHL =15 Å between
the crystal in the HS and LS state. The anharmonic crystal
show larger volume change if the HS molecule fits to the
lattice and smaller volume change with a pronounced pres-
sure dependence if the LS state fits. The shifts of the transi-
tion temperatures are almost proportional to the volume dif-
ferences neglecting the change of around 10% with pressure
in thevLS=v0 case. However, this proportionality is not at all
fulfilled comparing the three cases. Such a discrepancy has
been first reported for the iron pic=picolylamine compounds
in 1990.17 In this compound the hydrogen bridges between
the spin crossover molecules were deuterated resulting in a
shift of the transition temperature by 15 K. From the point of
view of the elastic properties of the compound the lower
vibrational amplitudes of the deuterium will shrink the space
in the lattice provided for its molecules which is in line with
the smaller volume change by more than 10%.

FIG. 5. Pressure dependence of spin transitions in an anhar-
monic lattice with a Grüneisen constant ofgG=3 for two different
sizes of molecular volumes with respect to the volumev0 provided
by the crystal for a molecule and in the artificial harmonic lattice
gG=−2

3. At zero pressure the transition curves are very similar
which is shown by the thinner curves atT1/2=120 K. The thinner
curve atvLS=v0 is that of the harmonic lattice and atvHS=v0 that of
the transition curve atvLS=v0. Although the transition curves at
zero pressure are hardly to be differentiated their pressure depen-
dence shows large differences.

FIG. 6. The difference of the volumes per molecule of the crys-
tal containing Fe spin crossover molecules andM =Zn molecules
(assumed to be equal to Fe molecules in the HS state) plotted versus
the HS fraction. Although the difference of the volumes of the mol-
eculesvHL in the HS and LS state is fixed to 10 Å the change of the
crystal volumeVFe−VZn depends on the misfit of the molecules to
the space provided by the crystal. The three cases correspond to the
cases in Fig. 5. In the harmonic casegG=−2/3 the volume change
is linear and the difference between HS and LS states is equal to
g0vHL =15 Å. In case ofvLS=v0 the volume difference decreases
considerably with increasing pressure.
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C. Pressure dependence of hysteresis transitions

1. Increase of hysteresis width

The first observation of an anomalous increase of the hys-
teresis width with increasing pressure was published by
König et al.8 and discussed in the frame of Landau
theory developed by Das and Ghosh.44 The compound
fFesphyd2gsBF4d2 (phy=1,10-phenanthroline-2-carbaldehyde
phenylhydrazone) was later remeasured up to 5.8 kbar con-
firming the old data up to 2.5 kbar.11 The anomalous behav-
ior was now interpreted in the frame of the standard free
energy of Eq.(4) allowing for a volume dependence of the
bulk modulusK as a prefactor of the interaction constant and
the energy separation between the HS and LS state. The au-
thors already pointed out that the equations are not complete
since the free energy of the lattice itself was not considered
such that volume and HS fraction are both variational param-
eters. Over the years the Mainz group published several pres-
sure data and found new anomalies from the point of view of
standard spin crossover free energy equation. Most of them
could be now reproduced as will be demonstrated by the
following figures. In Fig. 7 we start with hysteresis in the
harmonic case and increase the Grüneisen parameter up to
gG=2.5. The misfit is fixed tovLS=v0+vHL /2 and the direct
elastic interaction toGM /K0V0=1.55. To preserve the hyster-
esis width andT1/2 at p=0 the energy separationDelect and
the short-range interactionG are adjusted(see Table I). In the
harmonic potential the hysteresis already vanish at 2 kbar.
The width at 2 and 4 kbar increase with increasinggG. Fur-
thermore the width increase withp such that atgG=1.8 the
widths are almost the same for 2 and 4 kbar and atgG=2.5
the above cited situation of an increasing hysteresis width
with increasingp is simulated. At the same time the shift of
T1/2 decreases monotonously.

2. Narrow hysteresis width

A narrow hysteresis was observed under pressure which
shifts at constant width to higher transition temperatures.10

Starting with the parameter of the transition of constant hys-
teresis width shown in the preceding Fig. 7 a decrease of the
interaction by adding a short range interactionG=−20 cm−1

and a small decrease of the Grüneisen constant from 1.8 to
gG=1.7 give the transition curves at 0, 2, and 4 kbar in Fig.
8. The case of a vanishing small hysteresis which reappears
at higher pressure6 could be also almost reproduced as shown
in the upper part of Fig. 8.

3. Stabilization of the HS fraction

At the large misfit ofvLS=v0+vHL used for the transition
of the previous figure and a Grüneisen constant ofgG=2.5
two new situations are met. First the branch of the hysteresis
curve of decreasing temperature at 1 kbar shifts to lowerT.
The general accepted argument that pressure favors the
smaller LS molecules obviously is not valid for all properties
of the crystal. Since such a case has indeed been observed11

we take as a working hypothesis that this parameter set still
catches real properties of a crystal. In the experiment of Kse-
nofontov et al.11 on the compound FesPM−PEAd2sNCSd2

the hysteresis curves shift as whole to lowerT (shift of the
center of gravity), however, the shift was irreversible at least
for pù1.6 kbar indicating a phase transition to a more stable
state which is very likely driven by reducing the stress en-
ergy introduced by a large misfit.

The second observation is the complete transition to the
HS state at 4 kbar. Experimentally observed is a hysteresis
shifting to higher temperatures at 0.8 and 3 kbar as usual but
at p=6 kbar 50% of the molecules switch to the HS state
down to 4 K.12 This fraction increases to almost 80% at 10.5
kbar. The fact that there is not a complete transition to the
HS state can have reasons such as nonequivalent lattice sites
with different HS/LS energy separations or imperfections of
the crystal. As for the example above there are irreversible
changes. Releasing the pressure about 30% remain in the HS
state at low temperatures. In the upper part of Fig. 9 this
behavior could be partially modeled. At an even higher misfit

FIG. 7. Four spin transitions with a hysteresis width of 10 K at
a transition temperature ofT1/2=120 K and their behavior under
pressure up to 4 kbar are simulated. The misfit of the spin crossover
molecule to the lattice isvLS=v0+vHL /2 in all cases. With increas-
ing anharmonicity[gG from harmonics−2/3d to 2.5] pressure fa-
vors the hysteresis behavior. AtgG=1.8 the width of the hysteresis
is almost independent of pressure and at the higher anharmonicity
of gG=2.5 the figure shows and increasing width with increasing
pressure.
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of vLS=v0+2vHL but only a comparably small anharmonicity
of gG=1.2 the hysteresis shifts to higher temperatures at 1
kbar and jumps to the HS state over the whole temperature
range(there is a small fraction of LS molecules around 80 K)
at 8 kbar. It is worthwhile to look at the volume difference
versus the HS fraction for these extreme cases. In Fig. 10
three cases are shown with an increasing misfit.

The first plot with the volume dependence for 0 and 4
kbar belongs to the increasing hysteresis width of Fig. 7. The
volume dependence is reduced by about a factor of1

2 as
compared to the harmonic case, but does not show the
anomalies of the two other plots belonging to Fig. 9. Here
under pressure the crystal in the LS state has a larger volume
than the crystal in the HS state. According to Clausius-
Clapeyrondp/dT=DSHL /DVHL a negative shift inT requires
a negative ratio of the difference in entropyDSHL and crystal
volume DVHL between the crystal in the HS and LS state.
The entropy difference of the systems is positive and mainly
determined by the higher intra molecular frequencies in the
LS state as compared to the HS state. The entropy difference
is the driving force for the spin transition. This fact became
evident by specific heat measurements,45,46 measuring pho-
non spectra by nuclear inelastic scattering,47 and also theo-
retical calculations.48 Experimental observations of negative
temperature shifts, therefore, require a negative volume
change of the crystal going from an HS to LS state.

The basic mechanism for the dependence ofDVHL on the
misfit can be easily isolated from the free energy equation.

All elastic energies are proportional to the bulk modulusK
which depends on the volume expressed byes according to
Eq. (19) asK,1−2sgG+ 2

3
des. This means that a linear term

in es is introduced which leads to a shift of the equilibrium

FIG. 8. Two behaviors of small hysteresis width of around 5 K
as observed experimentally are simulated. A shift at constant width
has been obtained starting from the parameter of Fig. 7svLS=v0

+vHL /2d and a slightly lower Grüneisen constant ofgG=1.7. At the
larger misfit of vLS=v0+vHL the situation of a small hysteresis
width is obtained which almost vanishes at 4 kbar and recovers at 8
kbar to an even larger width than at zero pressure.

FIG. 9. The interesting case of a transition from LS to the HS
state under pressure is reproduced. At large anharmonicitygG=3 a
misfit of vLS=v0+vHL is sufficient in order to obtain a transition to
the HS state over the whole temperature range at 2 kbar. At 1 kbar
the anomalous behavior is already indicated by shift of center of
gravity of the hysteresis to lower temperature. At a larger misfit but
small anharmonicitygG=1.2 the hysteresis shifts to higher tempera-
tures as usual but at 8 kbar the system stays again in the HS state.

FIG. 10. The difference of the volumes per molecule of the
crystal containing Fe spin crossover molecules andM =Zn mol-
ecules plotted versus the HS fraction(see Fig. 6). All three cases
showing pressure dependence belong to the increasing hysteresis
width in Fig. 7 and the two cases of Fig. 9 of induced HS state by
external pressure, respectively. In the latter two cases the volume
difference changes sign(finally under pressure) which gives rise to
the stabilization of the HS state.

SPIERINGet al. PHYSICAL REVIEW B 70, 184106(2004)

184106-12



position in the potential energyf0sVd. Considering the
spherical part of the self energy,sva−v0d2 the linear term is
proportional to −sva−v0d2sgG+ 2

3
des. The difference(say d)

between thea=Zn compound and the LS state is then given
by svZn=vHSd

d , − fsvHS − v0d2 − svLS − v0d2gSgG +
2

3
Des

= − svHS + vLS − 2v0dvHLSgG +
2

3
Des. s41d

As a negative term shifts to a larger equilibrium valuees
(larger volume) the larger volume differenceuVFe−VZnu with
Fe in the LS state obtained for the misfitvHS=v0 as com-
pared tovLS=v0 becomes obvious from this Eq.(41) and is
in agreement with Fig. 10. One has to keep in mind, how-
ever, that different elastic energies contribute and the result
of the iteration procedure to the minimum of the free energy
cannot be easily estimated. The dependency of the volume
change on pressure, which may cause even a change of sign
(at 8 kbar in Fig. 10), is not easy to rationalize.

The last simulated hysteresis transition curve at 1 kbar
shown in Fig. 11 is shifted to lower temperature, not only the
branch of decreasingT but also the branch of increasingT.
This situation, as already mentioned, seemed to be found
experimentally.12 In the first instance a simulation of it was
not successful. Sticking to the idea that the free energy
catches essential properties, the temperature has been
changed fromT=120 K to that of the experiment in order to
keep the relative sizes of energies also with respect to the
thermal energy. The effect could be a little increased by test-
ing all parameters(see Table I). The corresponding volume
difference plotted in Fig. 12 is about +8 Å3. Although the
experiment12 cannot be interpreted by such a data set, be-
cause of the structural changes(see below), it guided to this
interesting situation of Fig. 11.

4. The Fe(PM−PEA)2(NCS)2 compound

We have to state here, that positiveDVHL values have
not been observed yet, not for the compound

FesPM−PEAd2sNCSd2 either.49 The x-ray data show the vol-
ume difference between the HS and LS state to be 2.4% of
the volume and positive so that a negative shift seems to be
in contradiction to the law of Clausius Clapeyron. The way
out is revealed by the present simulations. We have to con-
sider the situation here more closely. The spin transition is
accompanied by a structural phase change fromP21/c (HS)
to the higher symmetric space groupPccn in the LS state
and the authors observed a rearrangement of the topology of
the network interactions and also of the shape of the mol-
ecule. This means that there are further inner degrees of free-
dom of the molecule allowing also to adjust to the misfit to
its environment. So it is not unlikely that the stress field of
the strain caused by a large misfit in the HS phase relaxes by
the phase transition. Experimentally a positive value ofDVHL
in the HS phase at least under pressure cannot be excluded.
Let us focus on the stabilization of the HS phase in the high-
temperature structure following the branch of the hysteresis
curve of decreasing temperature. A pressure dependence of a
hysteresis curve taking place in the high-temperature struc-
ture as simulated in Fig. 9 at 1 kbar with a misfit ofvLS
=v0+vHL andgG=2.5 explains the negative temperature shift
of the low-temperature branch.

The branch of the hysteresis curve of increasing tempera-
ture takes place in another structure which is even different
from that at ambient pressure and, therefore, cannot be re-
lated to the negative temperature shift in the original struc-
ture of the crystal in the HS state. This is the way out of the
contradiction to the relation of Clausius Clapeyron.

V. CONCLUSION

The total free energy of a spin crossover system has been
constructed. Starting with an infinite crystal described within
the Debye approximation and allowing for anharmonicity by
the Grüneisen approximation the fictitious molecules of this
crystal with volumev0 and some anisotropic shape are re-
placed by spin crossover molecules and/or other metal mol-
ecules having a misfit with respect to the volume and the
shape described by tensor componentses

a and eM
a

sa=LS,HS,Md, respectively. The potential energy of the in-
finite system is derived straightforwardly including the con-

FIG. 11. A shift of the hysteresis under pressure to lower tem-
perature as a whole(not only the center of gravity) has been simu-
lated at a transition temperature of 240 K and a large misfit. In order
to obtain the around 5 K shift of theT1/2

↓ temperatures the misfit of
the anisotropic deformation has an extra increase byDeM =0.015
and the ratiovm/v0 is 1.73 instead of 2.

FIG. 12. The volume difference versus the HS fraction(see Fig.
10) for the anomalous hysteresis shift of Fig. 11 is already positive
at zero pressure.
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tributions of elastic energies of the molecular defects treated
as elastic dipoles their strength being proportional to their
misfit to the space of the fictitious molecules. The step to a
crystal of finite size having a free surface introduces further
contributions to the potential energy by elastic energies due
to the displacement of the surface when the balance of forces
at the surface is removed by removing the infinite part of the
crystal. The latter contributions are typically not included in
potential energies obtained from first principals calculations
of the crystal potential since periodical boundary conditions
are used in order to obtain a finite number of variables.

Two distortive modes have been included in the present
calculation, the volume change and one anisotropic distor-
tion, which has not been specified but is different from the
axial componente0. These modes lead to two contribution to
the interaction between the spin crossover molecules, the im-
age interactionGI being of “infinite” range and a direct long-
range interactionGd between the spin-crossover molecules in
different spin states. A short-range interaction, which can be
of ferroelastic or antiferroelastic type, is added to adjust the
width of the hysteresis curves at zero pressure. The total free
energy has three variational parameters, the HS fraction and
the two distortion modes, which minimize the free energy
under the constrain of the thermodynamic equation of the
bulk modulusK. The proportionality of all elastic energies to
K requires a self-consistent iteration procedure.

The essential result of this work is the importance of the
misfit for the behavior of the spin transition under pressure.
The volume changeDVHL of the crystal accompanying the
spin transitions so far studied is positive as expected from
the larger bond length of the molecules in the HS state. Con-
sequently the crystal with its molecules in the LS state
should be favored under pressure. The observation of stabi-
lizing the HS state under pressure, switching to the HS state
over the whole temperature range or just shifting a transition
to lower temperatures, could not be rationalized. We consider
the finding that a decreased or even negative volume change
DVHL ,0 is compatible with an increase of the molecular
volume svHL .0d as the main aspect of the present work.
This unexpected behavior has been simulated within the
scope of the elastic continuum theory of a finite crystal. The
elastic energies of the anharmonic lattice are of such a size as
compared to the potential energies and the thermal energies
that with parameters within the limits of accessible experi-
mental values the main features of anomalous transition
curves could be simulated. The misfit of the molecule to the

lattice, it is embedded, plays a crucial role for the relative
size of elastic energies suited to obtain the extreme cases of
stabilized HS state and negative temperature shift of the tran-
sition under pressure.

The large number of parameters of the free energy expres-
sion should not lead to the impression that sufficient flexibil-
ity is provided to account for any experimental observation
such that predictive power is very limited. We stress that the
free energy is well defined by the Debye and Grüneisen ap-
proximation and elasticity theory. The parameters of the De-
bye solid can be measured, that are the Grüneisen and elastic
constants. From temperature-dependent x-ray structure the
deformation tensors are obtained. There is also access to the
self-energy comparing the electronic energies of the free
molecule(say the molecule dissolved in a noninteracting liq-
uid) with that of the molecule dissolved in the solid.13 The
forces due to the deformation of elastic medium(the lattice)
are balanced by the molecule the electronic energy levels of
which are appropriately changed. The self energy provides
indirect information about the absolute value of volume and
shape provided by the lattice. Only two parameters, the mis-
fit of the molecule in one of the spin states and the short-
range interaction, are left to reproduce the spin transition
curve and its pressure dependence. The transition curves of a
metal dilution series can already be predicted by the theory.
So far the relevant parameters(elastic constants, Debye tem-
perature, deformation tensor, etc.) of the spin transition com-
pounds under discussion have not been determined. The
present theory may stimulate the spin crossover community
to collect the required data.

We are covinced that the consequences of the misfit of a
molecule with respect to its lattice and of the finite size of
the crystal is not only important for spin-crossover transi-
tions. In any molecular crystal where molecules change size
and shape of the order of 0.01 as a result of their inner
degrees of freedom the contributions of elastic energies
which will be of the order of 0.01 eV may influence phase
transitions of the system. Candidates are cooperative Jahn
Teller transitions and charge transfer transitions in molecular
crystals.
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