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Total free energy of a spin-crossover molecular system
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The free energy of spin-crossover molecular systems studied so far deal with the inner degrees of freedom
of the spin-crossover molecules and a variety of interaction schemes between the molecules in the high spin
(HS) and low spin(LS) states. Different types of transition curves, gradual, abrupt, hysteresis, and also two
step transitions have been simulated or even satisfactorily fitted to experimental data. However, in the last
decade spin transition curves were measured, especially under pressure, which could not be explained within
these theoretical models. In this contribution the total free energy of an anharmonic lattice incorporating
spin-crossover molecules which have a certain misfit to the lattice and interact elastically by their change in
volume and shape has been constructed for a finite spherical crystal treated as a homogeneous isotropic elastic
medium. The simulations demonstrate that already the knowledge of average properties of the crystal, as elastic
constants and the anharmonicity of the potential of the lattice, and relative effective sizes of the molecules and
their misfit to lattice is sufficient to interpret spin transition behavior. Almost all known anomalous spin
transitions behaviors have been reproduced within reasonable limits of such parameters.
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I. INTRODUCTION Zus
YHs = . (1)
ZystZs

Several spin-crossover compounds show a dependency of

spin transition curves on applied pressure which has to bghe Boltzmann population of the vibronic states already
denoted as unusual as the theoretical models so far devekads to a transition, even though a very gradual one, by the
oped cannot simulate the different behaviors observed. Genact of the large difference of the energies of vibronic states
erally it is expected that transitions shift to higher temperain the two spin states. Many examples show a HS fraction
tures by the fact that the molecules in the low sfiiB) state  close to 1.0 already at room temperattitesuch that the
are stabilized under pressure by its smaller size as comparatindard methods such as optical, magnetic, and Méssbauer
to molecules in the high spifHS) state. The few molecular measurements fail to detect the small fraction of molecules
crystals studied in detail by x-ray crystallography supportin the LS ground state.

these qualitative consideration as to a high accuracy a linear Introducing the free energiesf,=-NksTInZ, («
increase of volume with increasing HS fraction has beerrHS,LS of N particles their difference\f, =fys—f g is
observed:® For spin transitions with hysteresis which is due obtained according to E@l) from the measurement of,g:

to the spin transition system and not accompanied by struc-

tural changes, beside the change of the volume and shape Yus(T) )

proportional to the HS fraction, not only a shift to higher 1-y4s(M /"

temperatures but also a decrease of the width of the hyster-

esis is expected from the model calculations. However, ther&he free energyF,_ ., (concentrationx of spin crossover
are observations which do not fit to these expectations. Witlmolecules—typical Feof the mixture of HS and LS mol-
increasing pressure the following behaviors have been reecules in a highly diluted mixed crystal systgm—0) is
ported: diverse increase of transition temperatfiréacreas-  then given by(f=F/N)

ing hysteresis widtB;? shift of the hysteresis at constant

width,'° decreasing to zero and again increasing widthift fro(T, Yus) = Afp - Yus = TSmix(Yus) » (3)

of the transition to lower temperatures, equivalent to a stabi-

lization of the HS staté! and stabilization of the HS state Where Syix=—Kg[ YusIN(yus) +(1-yugin(1-yug)] is the
over the whole temperature rang&. mixing entropy for a random mixture of HS and LS mol-
In order to give a brief description of the structure of theecules. The minimum of,_ (T, y4s) With respect toyys
models developed so far it is useful to start with isolated spirgives back Eq(1).

changing molecules in the lattice as present in highly diluted In several casé$'°the spin transition curves of the full
systemg? The fraction of molecules in the HS stajggis  mixed crystal series could be parametrized by only two fur-
obtained by the partition functiong,s andZ, g of the mol-  ther parameters, an energy shifand an interaction constant
ecules in the HS and the LS electronic/vibronic states, rel’, which may be considered as the expansion coefficients of
spectively: the linear and quadratic term g

Afp (T)=- NkBTIn( 2
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f(T, Yhs) = fro(T, Yus) + XA Yus — er’as- (4) known that the interaction of spherical defects is too small to
o . ] . explain the effective interaction constants observed. There-
Originally Drickameret al*® used for the interaction term fgre in a second step general elastic dipoles are introduced
the symmetric formyys(1-y4s) and spoke of an interaction  fo|iowing the scheme of the following sections.
between HS and LS molecules. With the same right we can

speak of an interaction only between LS molecules express- A. Spherical defects
g]o?ui?/;sle?tl ;?tz rLi: ;;?Sggﬂg’ﬁ;l"_nég f‘e“r nc}as:gwbﬁ;(;n;? s, N order to outline the different contributions of elastic
sure been introduced in E)? The observat.ion of a linear Interaction _accordlng to the p_rocedure n elast|C|_ty th_é%)ry
dependency of volume on thé HS fraction has suagested tht e interaction between spherical defects is described in more
P y 99 etail. The interaction scheme for spherical defects has the

termpAvyy yys: Avp is known from x-ray studies. This way o e property. The reason is that there is no interaction

satisfying agreement has been obtained for some monomg- . . . .
lecular crystald:1718 etween spherical defects embedded in an infinite medium

Equation(4), which represents a mean-field free energy,(no direct interactiopnconsequently no contribution depend-

has been extended and modified to go beyond the mean-fiei g on the distance be_tween the molecules. _Spherical point
approximation*-27In the approach of Kambai#2°modeled efects interact only via the surface by the image pressure

after cooperative Jahn-Teller theory the lattice strains of dif_belonglng to their strain field.

ferent symmetries are coupled to the ligand field Hamil- 1. Molecules approximated by spherical elastic dipoles
tonian of the spin-crossover molecule. The mean-field free

energy is minimized with respect to three strain parameters !N the following first Zt%p thehmolecufles Im a mixed cr;(/jstal
Ayg, Eg, and Ty, S0 that there is no direct connection be- SYStem are represented by spheres of volumgsv.s, an

tween the HS fraction and pressupe Nevertheless only UM for the spin changing molecule in the HS,LS state and the

similar behaviors as predicted by Ed) could be obtained. molecule containing the metal idv, re_speptively. The misfit
This approach is mathematically equivalent to the free en®f the hmolec_ules to the C%Stﬁl Iattllce IS (fa_xpresiedlv by
ergy from above if onlyA strain is considere®f As there is V0 wherea=LS,HS M, and the voluma, fits to the lat-

no experimental evidence of strong strain coupling to theiice site, i.e., the volume provided by the lattice for its mol-

5ng electronic state of the molecule in the HS sthtne ecules. In the case of an isotropic and homogeneous medium

generalized approach of Kambara cannot be expected ltl(;e elastic energy needed to extend or shrink the volugne

model the unusual pressure behaviors observed. to that ofv, is given by*

A first step in understanding the anomalous behavior un- 1 (v, — vo)? (v, —vo)?
der pressure, that is the increasing hysteresis width, has been e, = -K(yn-1| — ~ Yo . (%)
done recently. The consequences of the volume dependence 2 vo v

Yy q p

of the bulk modulus has been discussed for small pressures. Eshelby introduced the constanyy=3(1-0)/(1+0)
Analytical relationships between the interaction paramete(Eshelby constahthe meaning of which will be given later.
taken to be proportional to the bulk modulus, the energyThe volumeV is the volume of the crystal, so thetv, is of
separation and entropy change going from the LS to HS statghe order of Avogadro’s number. Both energy contributions
could be evaluated from the equation of state and regions ah Eq. (5) depend on the square of the misfit, so that the sign
parameters were given, where such an unusual behavior hag the misfit does not enter.
to be expected. The second term vanishing in an infinite medium corrects

Here we follow this idea setting up a complete free energyfor the effect of a free surface of the crystal. It is interpreted
of the whole system, such that the HS fraction as well as thgs the volume work according to the image pressure on the
volume and anisotropic deformations are free variational pasurface of the crystal. The image pressure is the result of the
rameters. Because of the lack of knowledge about the latticolume change of the crystalv,, upon incorporation of,,
potential and phonon frequencies the simple Debye approxi-
mation for the phonons and Grineisen behavior for the lat- Av, = ¥o(ve = vo) (6)

tice potential has been used in a self-consistent way. which is larger by the factor % y,<3 (Ref. 32 than the
misfit volume v,—v,. The additional volume changév,
—(ve—v0)=(y0—D(v,~vg) is formally attributed to a pres-
surep,=-K(yy—1)(v,~vp)/V. The second term is then the
The interpretation of the interaction constant based orintegral ofp,y,dv, wheredv is the volume changing fromy,
elasticity theory provides the difference in energy of the lat-to v, inside the crystal ang,dv the change observed at the
tice potential dependent on the fraction of molecules in thesurface of the crystal the image pressure is acting on:
HS state and the metal dilution For these elastic energies v 1
there are analytical expressions if the molecules are approxi- | —_ D2
mated by point defects and the crystal by a homogeneous f Pryodv K%o (% 1)(2v va)
isotropic elastic medium of spherical shape with only two 7)
elastic constants, the bulk modulisand the Poisson ratio
O0<os< % The lattice sum over all two center interaction is  For spherical symmetry, i.e., a spherical defect at the cen-
performed applying mean-field approximation. It is well ter of a spherical crystal, the pressure is constant over the

II. SPIN CROSSOVER MOLECULES AS DEFECTS

Va

1
= EplAva'

vo Yo
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surface, as assumed for the integration of &). Eshelby, spin-state-trapping effect at low temperature if there are no
however, could show thatv, remains valid irrespective of structural changesyyvy, is obtained by comparison of the
the shape oV and the position of the defect, such that for aunit cell volumes of the metal compound and the Fe com-
homogeneous distribution of defects over a volwii@ con-  pound in the LS state at the same temperature.

stant density of defectghe pressure is again constant over As the external pressure couples to the volume the contri-
the surface. It is positive, when ions with,<v, are incor-  bution of the integral of Eq(7) correcting for the free sur-
porated, and negative for bigger volumes>uv,. This effect face has to be considered more closely. The integral is the
is used to create positive or even negative pressures by reum of two integrals which describe the energies involved in
placing atoms by smaller or larger foreign atoms, respecthe procedure of taking out a finitspherical volumeV out
tively. The term “chemical pressure” is therefore in use. Al-of the infinite medium:

though small for one defect, for one mole of defgatsspin o, o, o,
crossover compounds every metal_le_lttlce §|te is _treated as a f pyodu :f py dv +J pi(vo— 1) dv. (11)
defec) the pressure adds up to a finite entity which acts on

all defects. FoiN sites in a crystajdefects randomly distrib- ] o ) )
uted in an isotropic homogeneous elastic meditine total The negative of the first integral is the energy stored outside

elastic energy is not simply the sum ef, but becomé V. The negative pressung at the surface o moves the
surface corresponding t@,—v) outside storing energy by

N 5 the volume work inside the infinite volume. This energy has
E= EK('YO_ 1)2 (vi =vo)Tvo to be subtracteche integral addedfor the elastic energy of
=1 V. After removing the infinite part of the medium the remain-
1 N 2 ing V further extends byy,—1)(v,—vo) as the pressurepr
- EKVO(Yo = 1)| 2 (vi ~vo) V. (8)  from the infinite medium balancing, is removed. Rewriting
i=1 the second integral by substitution of the variablaccord-

The second term, the energy correction due to the fredd 0 v’ =[V+yo(v,—vo)=(%~1)(v-vo)] the integral reads
surface, does not sum the squares of the misfitsu, but (P (v")=K{v' ~[V+yy(v,—vo)]}/V and pj =—p):
squares the sum of the misfits. The first term represents the v, Vv ,-ug)
self-energy in an infinite medlum and the second term sh.aII f pi(yo— 1)dv = _f p/(v")dv’. (12)
be called surface energy. The simple proof by complete in- vo V550 4~0)
duction which gives good insight into the mechanism of the
interaction is given in Ref. 18.

The sums in Eq(8) are expressed by the concentration
of spin changing molecules and the fractiggs (v=1,2):

vo vo vo

The pressurep|(v')=-p|(v’) is similar to the external
(positive) pressure at the surface which is zero at the final
volumev;=V+y,(v,—vo) Of the sphere. So the integral ob-

viously represents the work compressing the volume to the
N

1 size v/ =V+(v,~vy) it has in the infinite medium. By the
NE (Vi =v0)" =X MsHs = v0)" + (1 = yug) (s —v0)"] extension fromy; to v} the volume energy decreases by the
=1 value of this integral.
+(1-X)(vy —vo)”. (9) Denoting the value of the integrél) by ey, ; and the two

i , i terms of the sum of Eq(12) by appropriate superscripts
Comparing the phenomenological free energy of @iwith  [infinite (<) and finitg the energy contributions are written
the energy per spin changing molec@éNx the terms pro- ;¢

portional toxy,z4S andXyyg have to be interpreted as interac-

tion constanfl” and the energy shifh: - 1 vV —vg 2
Csurf= ~ EKUm(')’O -1 )
1 ) Um
I'= EK'}’O(')’O = Dvi /om,
) 1 v-v0\?
egﬂrf: - EKUm(')’O - 1)2< v 0) ) (13
A =Kyo(yo = Dopom/vm. (10) m

The differences are written asy =vys—vis.viy=vis VM€V ~Uo=1/NZ(vi~vo) of Eq. (9.
—vy such thatvy, =-v . The volume per metal site of the

crystal is denoted by, =V/N. The volumev,, is typically 2. Volume dependence of the free energy of a lattice

larger thanv, because there are other molecul@sions, Recently the thermodynamical properties of silver metal
solvent molecules, efcper spin-crossover molecule in the have been successfully reprodua@de et al2®) calculating
crystal. u(a—ap), the lattice potential dependent on the lattice con-

Note thatvg is absent froml” and A since only volume stanta, by density functional perturbation theoi®FPT) and
differences enter these equations of elastic energy differadding the phonon free energy as obtained from inelastic
ences. Thus all parameters can be experimentally deteneutron scattering.
mined. yvy, is the volume increase on going from the LSto  Here the phonon free energy is approximated by the De-
the HS state, which is accessible by structure determinatiobye model with a Debye temperatu@ dependent on vol-
at variable-temperatures or using the light-induced-excitedume by the Griineisen approximation
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de dv — 1000 ]
0 e V' |E
S 800 .
V., \ 76 s
O\ = @)O(_O) _ (14) 5 600 ¢ )
Y )
-
S, 400 r .
The reference volum¥, shall be the volume per molecule
vy at zero temperature. The Griineisen consggnilescribes 200 | |
the change of the Debye frequency due to the anharmonicity
of the lattice. For spin-crossover compounds it has been es
timated in two cases to be aroung=3.03*3%In the second or 1

Eq. (14) the differential relationship is written in the inte- . : : - : . .
grated form for convenienc@V/V is of the order of 109). 440 460 480 500 520 540 560

The static potential energy has to be chosen consistently volume [A7]
with the Griineisen approximation. This is achieved by the rig 1. The potentiaf,(V) versus volume foryg=-2/3 (thick
thermodynamical relationship for the bulk modul@iee en-  cyrve and y5=3.0. At ys=-2/3 the potential is harmonic.
ergy f per volumeV)

d2f The total free energy(T,V) in the Debye approximation
Vel.® K(V) (15  per volumeV containing x vibrating masses is given by
T [Debye functionD(x)]
and the dependency of the bulk moduki©on V in the De- 0
bye approximatiod*36 K is proportional to f=fo(V) + /J'kBT|:3 In(1-e©T) - D<?)} (20)
kB 2 \Vi 2/3
K(V) e« ( P ) p(@) (16) The large intramolecular frequencies as compared to the low

frequencies of the lattice with the cut off at the Debye fre-

and to a function ofy,. Taking the Eshelby constant inde- duency fiwp (corresponding to abou®=50 K) justifies
pendent ofV the bulk modulus as a function of is ex- treating molecules as rigid units vibrating as a whole in the

pressed by its value aty=v, [0,=0 (V) ,Ko=K(Vo)]: lattice. This means that the intra and extra molecular vibra-
tions are assumed to be essentially decoupled. The number

O(V)\3[ o\ of vibrating molecules is adjusted to reproduce the experi-

K(V) =Ko 0, v/ (17 mentally observed lattice expansion versus temperature. Fig-

ure 2 shows the free energy versus volume at temperatures in
The free energyfy at zero temperature is the sum of the the range fromT=40 to 310 K. The volume shift of the
potential energyu and the zero point vibrational energy minima of the free energy corresponds to what typically is
9/8kg0. The integration of Eq(15) with the condition of a  observed in spin crossover compounds.
minimum atV, and an arbitrary choice df(V)=0 gives(f

=2'YG_§)
cap Kool Ll Ve v
oV)= E+1| €L\, Vo These molecules will be replaced in a first step by incom-
pressible molecules of different volumegs, v, s, anduy.

From the expansion of, aroundV, as a function of the The infinite medium extends, such that the volumigper
relative volume change=(V-Vp)/Vy up to the first anhar-  molecule increases byo(X, ys)—v, Where (X, yue)

3. Contribution of spherical defects to the potential energy

So far we have the lattice free enerfyfV) per unit vol-
} (18) umeV, of an infinite lattice containing molecules of sizg

monic third order term =X Wusvust (1= mevisl+(1-X)vy is the average volume
1 1 5 of a concentratiorx of spin crossover moleculgbere F¢
fo(V) = KOVO{_,,Z_ ‘(VG + _>,,3+ } (19) being a fraction ofyyg in the HS state and a concentration
2 3 3 1-x of other metal molecules. This extension changes the

the dependency of this term on the Griineisen constant iBOtent'alfO(V) twofold, the minimum energy and the posi-

obtained. Obviouslyf, has an anharmonic behavior even attion of the minimum fromv, to v :V°+[U_.(X’7HS)_U(’]' In
¥e=0. At y5=-2/3 the anharmonic third order term van- order to modify the potential correspondingly, we make use

ishes. The fact that only a harmonic potential is left is i-Of two integration constanta, B of Eq. (15) for a constant
rectly seen from Eq(18). Another special case igg=1/3  €Nergy shiftA and a linear ternB(V-Vo)/ V.

which givesfy(v)=KoVo[—In(v+1)+v]. In Fig. 1 the poten-

tial curves are plotted. The thicker line is the harmonic po- eo(V) =fo(V) +B
tential atyg=-2/3. The potential curve foy;=3.0 gives an 0

impression of the anharmonicity introduced by the Griineisen The first derivativedg,/dV vanishes at the minimur’
constant. and determines the constdidependent o and ys. With

V_VO

+A. (21
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oo Tt represents a displaced oscillator, the energy and volume shift
is directly read off. As elastic energies are derived in the
harmonic approximatioby using elasticity theory for small
100 | _ deformationgthe linear term used locally in the anharmonic

\“ potential remains a valid approximation.

fAV]
(]
(@]
T
L

oL _ B. General point defects

\ The interaction constant derived from experiment could
be approximately reproduced by the theory when the aniso-
tropy of the deformation of the crystal accompanying the
change of the spin state of the molecdle$ has been in-
~2000 | 1 cluded. The situation, however, becomes much more compli-
cated although the crystal is still approximated by an isotro-
pic homogenous medium. While isotropic defects do not
interact directly(they “see” each other only by the surface
image pressupeanisotropic defects interact directialso
—4000 | with isotropic onegin addition to the interaction by an an-
isotropic image stress. The direct interaction energy depends
on the distancé~1/r3) and relative orientation of the de-
T S fects and can give rise to deviations from random distribu-

free energy [cm™]

-1000 |

-3000

500 540 580 tion (correlation$ of the spin states of the molecules. Here
volume [A®] we assume random distribution preserving mean-field ap-
proximation.

FIG. 2. The free energ§(T,V) of Eq.(20) is plotted for a series
of temperatures frorf=40 K (thick curve on the topup to 310 K 1. Infinite range interaction

;/ersus volume/. Jhetssfy/ft o]f ?k:ound 30 Ag:].the n?'n'm”m ofthe ~  The calculation of the elastic energies of the anisotropic
ree energy 1s about 6% of the voume. This VOUME eXpansion 13,y geformation accompanying the spin transition requires
typically observed in spin crossover compounds. Two scales a8 deformation tensor of the lattice. It is described by a Car-
used. The free energy curves are plotted with respect to the upp%Sian tensote with Components's-k. (i=x,y,2), which are

1K il il l

scale(0-200 cm?). The energy difference of the minima belong to . . ! .

the lower scale(0 through —4000 ciif). The typical parameters transformeq to a real irreducib{gvith resp_ect to the rotation

used are®=50 K andu=3. group basis. The trace of the Cartesiantensor e;= ¢,
+€yyt €, is the relative volume change of the lattice, such

the knowledge 0B(x, y4s) the constani\(x, yus) is obtained  that, e.g., e's_”‘ with the superscript HL is equal t&?L

from the energy differenceqy(v’) — ¢o(Vp) Which is just the  =y,(vus—vis)/vm:

self-energyesei(X, yus) in an infinite mediun gg(Vy) =0 was

chosen as reference enefgyObviously, the product of €= i_(ZE e )

B(X, y4o) With (V=Vy)/V, represents a coupling between the 07 Jg T xR

HS fraction and the volume of the crystal.

In a next step the energy correctiey,; of Eq. (13) re-

sulting from the free surfacécutting out a finite mediumn

has to be added. That is the energy stored in the infinite part

S/p dv of Eqg. (11) and the decrease in energy increasing the

volume by the image pressure. This part, however, cannot be

simply added since the volume is an independent parameter

of the free energy. The free energy has to be constructed in The tensor components are evaluated from the deforma-

such a way that in the harmonic case the correct volume aniion of the unit cell due to the spin transition. Several ex-

shift in energy as derived from elasticity thedBgs.(6) and ~ amples have been studiéd:**Taking these deformations to

(13)] are obtained. The energy dependence on the volime be uniform throughout the crystgapproximated by homo-

the product ofp,=—K(v-v)(y,—1)/V, times the volume geneous medium the origin of the deformation is traced

change(V-v') per molecule, added to the harmonic poten-back to a uniform distribution of elastic point dipole tensors

J’_ — J’_
€1c= V26, €5= Vzeyza

1 =
€2c = ,_E(Exx_ eyy)- €25 = VZExy- (23
\J

tial meet these requirements. The sum denoteg by P (related by translational symmejrywith components
2 — P, Py whereM=0,1c, 1s, 2c, 2s:38
_KVg(V-v’ _Kv—vo( (Vo
¢= 2 Vo Vo 7o~ 1 v) Ps=Kupes,
_}KV V= (Vo+ % -vg) \? 3
oY Vo Py =S Kum(vo~ Deu. (24)
. 2
- }KV (vo— 1)2(U - UO) (22) The tensor has the dimension of an energy. In the case of one
2 070 Vo defect per molecular volume,, the average valueB,, of

184106-5
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Eq. (24) represent the dipole strength of the defect. The selfThe energy correctionseﬂﬂi}fe are the displacements

energye.; of a defect stored in an infinite crystal outside the U(r=R,) multiplied by the image stress'e, in radial direc-

volumeuy is given by(i.e., Ref. 40 tion e, (Ref. 37
(7%0-1) (3% + 4¥0+5)
&= e | Pt a1z 2 Pu| (29 vi_ 3 Vi
27Kvg 5v%-D° N o (Rye =- K47TT€S + KE()/O— 1> ZWTeM
\NaTr o
The interaction energy per molecule between the molecules M
(=defect$ uniformly distributed over a sphere caused by the (29)
image pressure/stress at the free surface of the sphere is pro-
portional to the square of the deformation tensor componentand integrated over the surface of the sphere:
[compare Eq(8) (Ref. 38]:
-1 3 1
esurf=—Kvm(7° ) &+ —(2y+ D2 e |. (26) -3 f U'(o'e)RedQ
2% 10 M 2Jg
For a mixed crystal spin crossover system the self-ener- U T L P 2
gies just add up such th&, in Eq. (25) is replaced byPy, 2Kvm(6s) ZKU'"Z()/O 1)% (e (30

following the definition of Eq.(9). The deformation tensor
results from the sum of the contibutions of all molecules.
This sum is equivalent to the average tenggof the defor-
mation tensor for each species of molecules. In @6) €
is replaced byez,.

The M=s terms are the spherical contributions already
discussed. In order to obtain the linear term of the aniso- 1 s = — 1 3
tropic deformations leading to the energy contribution of the ¢ = EKVO(GS_ )2~ KVpel(es—€) + 2, EKUmE(Vo -1
expanding surface as has been done for the spherical part in M
Eqg. (22), the surface energy has to be split into the infinite — 3 _ .
and finite contribution. Before doing this E(R2) shall be X (e~ em)”~ Komo (70~ Dewlen ~ ). (31)
rewritten using e tensors. These are the variabég=(V
-V)/V,, the total deformatiores=yy(v—vo)/V,, the defor-
mation of the infinite mediume, =€/ y,, and the deforma-
tion by the image pressu@=(yo—1)/yo?s:

The linear terms to be added to a harmonic potential with the
property of the correct displacements and energy shifts are
readily constructed according to EQ.7):

For the value of the average deformation tensgr the

knowledge of the misfit of the molecules to the lattice is

required. The misfit has to be expressed by deformation ten-
1 2 — — sor components instead of the volume and shape of the de-

b= SKVoles— &)7 ~ KVoes(es — &) fect minus volume and shape provided by the lattice. With

the deformationey, of each speciee=HS,LS M, each rep-

resenting an unknown misfit to the lattice, the unknown val-

ues are reduced to one value for each compoivrit all

_ differences(e- = €1°— €1, etc) being experimentally acces-

In terms of & tensors the calculated energy shift by the re-gihje are inserted. In case of the spherical composeat

laxing surface is obtained at the minimugr (e;+€7) of the  he yolyme differencev, but the tensor component®

harmonic potential. For the corresponding expressions of the ., ;) . —y,)/V, has been taken as unknown misfit.

energy corrections of anisotropic deformations proportional "o energye”, ; stored outside the spherical volume in the

to ey the splitting into the contributioey, andey is needed.  jfinite medium (to be subtracted from the energy of the
Comparing the total displacemebt=U*+U' at the surface i finite medium

of a spherical mediungcrysta) of radius R, expressed by
spherical vector harmonicg;,, (see Ref. 3y

1 .1
= EKVO(ES— PALE EKVO(E;)Z. (27)

. _1 —2, 32%+1
4ar Y(l)o— Y%M— Csurt= “Kom(v-1) (55)2 + _—2 (E;\D/I)2 (32
UR) = - — R, 26+ 27R, >, ey, 2 237~ 1w

3 V4 M V37

1 . is the integral 4/,U*(0"g)R2dQ.

(R.) = _Am E%_]—Jr 2R Yom2%+1- The coupling of the deformation of the lattice to the HS
U'(Ry) a €T LTy — €M . >
3 Wam v M V3T 5% fraction determining the average values of the tensor compo-

(28) nents is established by two ways, the dependency of these
energies on the bulk moduld&(V) and new minima values
and U”(R,), the partial deformation tensors for the aniso-in the anharmonic potential which has the same shape as
tropic deformationse],=(2y,+1)/5y0em caused by the im-  fo(V) of Eq.(18). Replacinge, by €y and the prefactoK,V,
age stress field anej;=(3y,—1)/5y,€ey are also obtained. by 3/2KVy(y,—1) the contribution of modé is given by
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3 1 atoms sharing ligand entities. Such a contribution is not pro-
fom(em) = ZKoVolyo - Dm portional to the bulk moduluk and therefore not affected by
the anharmonicity of the crystal lattice. As this interaction is
also treated using mean field approximation a term propor-
tional to the square ofys, a linear one inyys, and a constant
o ) are obtained. The constant energy shift does not matter, the
The same Grineisen constant is taken for all modes of dgmnear term contributes to a constaiidependent of volume
formation. and temperatujeenergy separation between the HS and LS

state of the molecule. When simulating metal dilution series

2. Elastic interaction in an infinite medium the dependency of the constants on concentratiand es-

The elastic interaction energy between two dipdRds pecially the relative siz_e (_)f Fhe interaction constant as com-
and Pkl\)/I in an infinite medium separated by a distaien pared tp the energy shift is important. _ConS|der|ng only tvyo
the z axis of a coordinate syste(Shuey and Beyel&) con- center interactions a general expression for the mean field

X{;l((ewl)l‘f—l)w}. (33)

sists of two types of terms approximation has been written®as
11 1) 20yt 1 B _1, HL A oHL — y2pHL A ML HL A M
e = —E—{\'G(PS.PE+ PD.P?) + @Pg .P5 N2 2% YasP™ At + yps(— x2pHtApMt + xpH-ApM)
47 K’)/O Yo 1
2 L ML _ aLSTAT(1 — xypML _ LS
- (Pl Pl + Py PS9 — (P3. - P+ PgS-PgS)}. 5l -0p™ - pTIAlL -xp™ -p ] (36)

(34) The letterp stands for some tensor property of the molecule
such that the interaction between two molecllgscan be

The first is an interaction term between a spherical dé®gct | ritten aspAp; with a tensorA(i , j). If there are only three

and the componen¥ =0 of an anisotropic defed®,. All different molecules with propertigg's, pS, andp™ the lat-

other terms are of the second type, namely products betwegps sm over all sites, j is expressed by the average tensor
components describing the anisotropic part of the defects. —

The sum over all pairs of defects, that is the sum over alf=1/N’Zi All,j) and tensor differencep™-=p"S-p-s
molecular sitegthe position of the defect being inside the andp"-=p"'—p*S. _ o
moleculs, is treated in mean field approximation, such that The last term in Eq(36) is independent ofy,s. The
the averages dPy, are replaced by the strain tensor compo-meaning of the term proportional toy,s is an energy shift

nents?M(X, 7HS) Then we can define two types of interaction of each Spin CI’OSSOVEf. molecule in the HS state. ThIS shift
constants has been already mentioned above. The two energies propor-

tional to x? (these contributions decrease linearly for each
e =T~ 2 Tvien (35  spin crossover moleculgp"-Apt and pH-ApM- would be
M the same if the properties of the molecule with the metal ion
the size of which are determined by the relative positions an/! IS the same as the spin crossover molecule in the HS state.
orientation of the spin-crossover molecules in the crystalThis is approximately the case for Fe and Zn molecules
The first interaction term proportional i represents a cou- Where the difference of deformation tensors for the crystal in
pling between isotropic and anisotropic deformations so tha’® HS state and the Zn crystal are very small as compared to
the volume change accompanied by the spin transition wilthe crystal in the LS state. Denotidg=-Np™-Ap"t/2 and
depend on the anisotropy of the deformation. A=-pHApM- the direct interaction per metal atom is given
This direct interaction is proportional to &7, that means by
it has the property of long-range interactignot infin-
ite range as the interaction due to the free suptae far e =~ Teeeeo— >, Tuen + X¥Ayus— X s, (37)
it was calculated for three compoundgFepicoly- M
laming3](CIO4)2 - Sol(Sol=EtOH,MeOH (Ref. 38 and e that is not only determined by the HS propep® of

15 i
[Fe(propyltetrazolg;](BF,),.™ The absolute size amounts the molecules but by the differengg" although the square

30-60 % of the interaction parameter obtained from a fitof Yus looks similar to an interaction between HS molecules

to Eq._(4). In t_he monoclinic p_icolylamine compound the [caa comment on Eq4)]. The typical ratioA/T ~2 found
direct interaction adds to the interaction constant w_herea%om experiment of metal dilution series wiM=2n is used
in the axqal symmetnc propyltetrazole c_ompound It hasfor simulations because the energy shift vanisheer@t%
the opposite sign. T.he_refore the mteractlon_const_m;,m preserving the transition temperature with an increask. of
cannot be put into limits from general considerations.

It is well known that there are spin crossover transitions
Wi_th_ very Ia_lrg_e interaction qonstarﬁ%lnterqction of elastic Ill. TOTAL FREE ENERGY
origin are limited by the typicaK values being less than 10
Gpa and the size of the observed deformation tensor compo- We are now in the position to set up the total free energy
nents. Larger values are attributed to short range interactiof(eg, ey, T, yus). For each modév the potential of the infi-
between molecular units interacting bybonding or metal nite crystal is constructed in the same way as for the spheri-
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cal modes. For clarity the function®\(x, yns) andB(X, y4s) . oot
get a subscrips andM. The sum oveM practically will be
restricted to one or utmost twd modes:

—_
o
T
I

f="fos(€s) + Bses+ Ag+ 2 fom(V) + Byey + Ay + eIOI(‘:lt
M

HS—fraction
o
fo)

0.6 8
o0 —™ a
— eyl X Yhs K(eg)] - K(es)vma(fs_ €5) + PUmeEs b
3 — 0.4 F .
- K(fs)UmE(‘}/o_ 1)2?M(6M —€ew) + fDebyJTyG)(Es)]
M
+X - Fo(T, Yhg)- (39 021 |
The first two lines of the free energgnthalpy describe
the potential energy of an infinite medium/crystal. The next or—/—— . . ]
three lines correct for the surface and include the external 20 100 180 260
pressurep where the constant energy,, of pV=pvnyes T [K]

+pv, has been omitted. The free energy of the lattice ) . _ _
phonons and the spin crossover molecules introduce the tem- F/G- 3- The spin transitiotBoltzmann populationof noninter-
perature dependence. The minimum of the free energy Witﬁctlng molecules_ as obta_lned from the highly diluted mixed crystal
respect to all variables;, €, andyys determine these vari- (&) of [F&Zn (picolylamings]Cl,- EIOH [x=0.003(Ref. 42] ac-

- ! . ~cording to the free energy of Eq. anl) of the same partition
;ballezqg:ﬁbﬂfn:rac“on and especially the voluegein ther functions of the HS and LS states but an increased energy separa-

tion between HS and LS state Afj.c,=120 cnt in order to shift

of the transition temperatufg;,, to 120 K.

_ af
T J €&

T dem

al =0. (39
9 Vs T same way, the indeM is used excluding th1=0 compo-
Several contributions to the free energy are coupled by th@ent for simplicity which has a product with tis€omponent
bulk modulus because all elastic energies are proportional t6 the interaction energy. The direct elastic interaction con-
K, these aré\s, Ay, T's, Ty, ande’, . TherebyK is defined ~ Stantl'y of this component, which for a given crystal struc-
by Eq.(15), the second derivative df which function as an ture can be calculated carrying out a lattice sdrfand the
extra condition and reads in terms @finstead ofV:

2
Kom=(1+¢y) ;2

S

TABLE I. Theory parameters used for the calculation of the spin
transition curves of all the figures. The image interaclipand the
. effective direct interactiod’y of the mode of deformatiotM are
Tém derived from the calculated transition curve. The parameter
I'm/KgVy is a dimensionless number.

In a numerical solution this condition is simultaneously
reached within the iteration procedure to the minimunf.of

Figure vis—vg v I'm/KoVo Ageax T T Ly

[em ]
IV. SIMULATIONS 4 0 3 05 130 0 456 559
We want to explore in this study general properties of the 4 0 3 05 200 0 716 349
free energy of the spin-crossover system in order to recog- 5 0 —§ 0.9 65 0 47 123
nize some of the unusual behavior found experimentally. The 5 0 3 1.25 106 0o 71 91
transition curves have been called unusual as the theoretical g - 3 075 255 0 57 108
approaches so far discussed could not reproduce such transi-7 1, 2 155 0 -50 50 209
tions although the theories going beyond the mean-field ap- 27HL 3 '
: : 7 L 1.0 1.55 -15 10 62 152
proach provide a lot of parameters to be adjusted. The 2 HL . .
present mean-field theory introduces one new type of param- 7 gome 1.8 155 -20 35 62 131
eter, the space in the lattice provided for the molecule ex- 7 %UHL 25 155 -28 50 58 113
pressed by the misfit of one species, ik, for each com- 8 som. 17 155 -20 5 66 128
ponentM=s,0,1s,1c,2s,2c. So far these misfits are not g VL 22 1.0 90 74 71 83
fon ourves is not known and hi will bs one subject to pe ° U 25 20 25 20 70 10
studied I 9 g 1.2 1.9 —425 10 67 138
' 11 2o, 1.9 18 0 230 50 145

In order to reduce the parameters to play with only bhe
component in addition to the sphericatomponent is used aTransition is calculated without Debye free energy.
and the misfits for these components are related to each othe this special casel;’ has been increased by 1# and the ratio
by a fixed ratioes>/ ey;=1. Since allM components, but the of the volume per molecule divided by the molecular volurpév,

one with M=0, contribute to the interaction energy in the has been decreased from 2.0 to 1.73.
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short range interaction constalitare chosen such that hys- 10F ]
teresis widths of around 10 K at zero pressure are obtained. '
I'y is increased close to the critical value for a hysteresis and
with a small value ofl" the width of 10 K is adjusted. The
volume differencevy =10 A3, the crystal volume per mol-
ecule v,=500 A°, the Eshelby constany,=1.5 and bulk
modulus K=0.6X10'°N m™2 are fixed as typical values
found in spin crossover compounds. In the case of the com-
pound[Fe(pt2)g](BF.), the elastic constants and y, were
measured by Brillouin scatterirfg.The difference of aniso- 05 ﬁ
tropic deformationeli- in the HS and LS state of the crystal =T i
is fixed to the same value of 0.03 as the isotropic deforma-
tion yguy /vy, Similar values were found by x-ray structure
determinatiort>38 The absolute value afy is needed for the
calculation of the self-energgs.. It determines the relative
size of the self-energy and the other elastic energy contribu-
tions. In the present simulationg is fixed to 1/2,. Further
parameters of the total free energy will be fixed throughout
the simulations. There is, as shown in Fig. 3 curve a, the
Boltzmann population of noninteracting spin-crossover mol- 0r; . . ‘ 1 .
ecules. This transition curve was measured on the highly 40 120 200
diluted mixed crystal[FeZn,_,(picolylamings]Cl,- EtOH
[x=0.003(Ref. 42)]. T [K]
In this compound a Debye temperature of about 50 K was FIG. 4. Comparison of spin transitions calculated withcurve)

fou_nd. The numbeg. of vibrating masses is fl)fed to 3 giving .and without(thin B curve lattice phonons. In order to have the
typical temperature dependence of the lattice as shown in

. . same transition temperature for the transition curve with lattice
Fig. 2. An energy differencé ., between the HS and LS P

! 2 L. . honons as without lattice phonons the energy separati is
state of electronic and elastic origin, given by the energ)}ﬁncreased by 70 ci. The t5vo curves almost%rlnaté)h gsg%”es the

eigenvalues of the free molecule and constant elastic ener-". .
. : . - : region of large HS fractions.

gies possibly introduced by short range interacti@ee

above, is used to adjust the spin transition temperaflyg . . _ _ .

to 120 K in order to simulate comparable spin transitiontained separately by putting the direct interaction to zero.

curves. In Fig. 3, curve b at a transition temperature of 120 KThe short-range interaction turns out to be simply additive

is obtained by adding g ec=120 cnm? to the energy separa- does not depend on the bulk modulu$his fact has been

HS—fraction

tion between the HS and LS state. used to simulate curves without a hysteresis in order to ob-
The anharmonicity parameteg, will be varied up toyg  tain a well-defined slope. The sum of the coluninsT’,
=3 for the strong anharmonic situation. The valgg= +I'y is the total interaction.

-2/3 at which the potential is exact harmonic is used to
show the transition curves obtained by the standard mean-

field free energy4) for comparison.
Table | collects all parameter sets used. Metal dilution The lattice phonon contribution to the interaction between

effects have not been simulatéd=1 andx=0 for reference spin crossover molecules was first discussed by Zimmer-
M=2Zn compounyl The parameters of the first two columns, mann and Konig® From the difference of the Debye tem-
the misfit and Grineisen constant, have been set, of the negeratures of the crystal in the HS and LS state they estimated
two, additional energy splitting between HS and LS state of considerable contribution of around 20% of the interaction
the molecule and a direct interaction of made have been constant. Later on this size was questioht®hese estima-
varied to obtain a steep transition close to the hysteresis loofons can now be replaced by a comparison of simulations of
at 120 K, and the short range interactibrto obtain a hys-  transition curves with and without lattice phonons. The result
teresis width of about 10 K. The interactidry between s shown in Fig. 4.
spherical and anisotropic elastic dipoles has been set to zero. The main effect of the lattice phonons is a shift of the
The next two columns list effective interactions which haveyansition (thin B curve to lower temperaturathick line
been derived from the simulated transition curves. The& e o) which is due to the lattice expansion of the anhar-
curves have been used as input for a determination of thgonic jattice and the coupling of the spin transition to the
interaction parameter of the phenomenological free energy Qfglume. In Fig. 4 there is also plotted the transition with
Eq. (4). The equilibrium conditionyf/dyys=0 of EqQ.(4) is  |attice phonongthick line curve 8) at the same transition
written as(Ie=T) temperature by increasing the electronic energy separation
1= yus(T between HS and LS states. The thick line and thin line tran-
T (40) sition curves a!most match. On!y at HS fra_ct|0ns Iarge.r than
YHs 0.75 the thick line curvécalculation with lattice phononss
such that the effective interaction is half of the slope of theabove the curve without phonons. This relative increase of
right-hand side of the equation. The image interaction is obthe HS fraction represents a small contribution of the lattice

A. Phonon contribution

A = 2l yns = AfuL(T) = ksT “'I[
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FIG. 6. The difference of the volumes per molecule of the crys-
tal containing Fe spin crossover molecules &hdZn molecules
0, 2, 4 kbar (assumed to be equal to Fe molecules in the HS)gpéttted versus
the HS fraction. Although the difference of the volumes of the mol-
eculesyyy in the HS and LS state is fixed to 10 A the change of the
crystal volumeVg.—Vz, depends on the misfit of the molecules to
the space provided by the crystal. The three cases correspond to the
cases in Fig. 5. In the harmonic cagg=-2/3 the volume change
is linear and the difference between HS and LS states is equal to
yovr =15 A. In case ofv; s=v, the volume difference decreases
considerably with increasing pressure.

80 120 160 200 =40 sen in order to obtain very similar shapes close to a
T [K] hysteresis transitio(see text belonging to the figyrand the
) N ] same transition temperature. Ag=-2/3, the harmonic po-

FIG. 5. Pressure dependence of spin transitions in an anhagia| there is no dependence on the misfit. The free energy
monic lattice with a Grunelsep constant gf=3 for two dlffe_rent reduces to the phenomenological free energy of(&g.This
sizes of molecular volumes with respect to t.h.e .VOIwB@rOY'ded . series shows the largest changeTgf, with pressurep. The
by the crystal for a molecule and in the artificial harmonic Iattlced.

o L -~ different responses tp are expected from the dependence of
Ye=—3. At zero pressure the transition curves are very 5|m|larthe volume on the HS fraction. In Fig. 6 the difference
which is shown by the thinner curves &,=120 K. The thinner Ve~V is plotted th HS.f fi '
curve atv, g=vy is that of the harmonic lattice andgts=v, that of Fe~ Vzn IS plotted VErsus the racliopys. .
the transition curve ab s=v,. Although the transition curves at Here th_e Zn molecule is taken to be identical Wlt.h _the Fe
zero pressure are hardly to be differentiated their pressure dtapem(’lecu'(:",In the HS state, that means the same misfit to the
dence shows large differences. crystal with the same Debye temperature. The temperature
dependence of the Zn crystal serves as a reference as done in
experimental work:* A linear dependence is obtained for the
Rarmonic crystal with a difference ofv, =15 A between
the crystal in the HS and LS state. The anharmonic crystal
show larger volume change if the HS molecule fits to the

lattice and smaller volume change with a pronounced pres-

The pressure dependence of the transition temperaturesire dependence if the LS state fits. The shifts of the transi-
T,/» observed so fércould be hardly commented on becausetion temperatures are almost proportional to the volume dif-
of the lack of temperature-dependent x-ray diffraction datderences neglecting the change of around 10% with pressure
from which the volume change accompanying the spin tranin thev, s=v, case. However, this proportionality is not at all
sition could have been derived. The very different dependenfulfiled comparing the three cases. Such a discrepancy has
cies observed concerning the slope and the change of slofpeen first reported for the iron pic=picolylamine compounds
of dT,/,/dp did not offer any correlation with any other prop- in 19907 In this compound the hydrogen bridges between
erties of the transition curve. The three series of simulatedhe spin crossover molecules were deuterated resulting in a
transition curves at 0, 2, and 4 kbar in Fig. 5 demonstrate thishift of the transition temperature by 15 K. From the point of
situation. view of the elastic properties of the compound the lower

The essential parameters are the misfig of the mol-  vibrational amplitudes of the deuterium will shrink the space
ecules and the Griineisen constagt The anisotropic inter- in the lattice provided for its molecules which is in line with
actionI'y, and the electronic energy differentge.,are cho-  the smaller volume change by more than 10%.

phonons to the interaction. The total interaction constants
listed in Table | are different by about 5 ¢fn

B. Shift of Ty, versus pressure
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C. Pressure dependence of hysteresis transitions 1.0 F ' ' ' ' ' ' ' ! ]

1. Increase of hysteresis width

. . . =2.5
The first observation of an anomalous increase of the hys- 05 b Ve 4

teresis width with increasing pressure was published by
Konig et al® and discussed in the frame of Landau
theory developed by Das and GhdéhThe compound 0
[Fe(phy),](BF,), (phy=1,10-phenanthroline-2-carbaldehyde
phenylhydrazonewas later remeasured up to 5.8 kbar con-
firming the old data up to 2.5 kb&r.The anomalous behav- -
ior was now interpreted in the frame of the standard free 7:=1.8
energy of Eq.(4) allowing for a volume dependence of the 0.5 r
bulk modulusK as a prefactor of the interaction constant and
the energy separation between the HS and LS state. The au-
thors already pointed out that the equations are not complete
since the free energy of the lattice itself was not considered
such that volume and HS fraction are both variational param-
eters. Over the years the Mainz group published several pres-
sure data and found new anomalies from the point of view of
standard spin crossover free energy equation. Most of them
could be now reproduced as will be demonstrated by the
following figures. In Fig. 7 we start with hysteresis in the 0or 1
harmonic case and increase the Griineisen parameter up to 4 0, 2, 4 kbar

v6=2.5. The misfit is fixed t@ s=vg+vy /2 and the direct '

elastic interaction td’y,/KyVo=1.55. To preserve the hyster- I __ 2

esis width andT,,, at p=0 the energy separatia,.; and 05 - Ye=73 i
the short-range interactidnare adjustedsee Table)l. In the

harmonic potential the hysteresis already vanish at 2 kbar. r 1
The width at 2 and 4 kbar increase with increasipg Fur-

HS—fraction
(@]

El

Ye=1

thermore the width increase wigh such that aty;=1.8 the 0 — !

widths are almost the same for 2 and 4 kbar anggt2.5 80 120 160 200 240

the above cited situation of an increasing hysteresis width T [K]

with increasingp is simulated. At the same time the shift of

T/, decreases monotonously. FIG. 7. Four spin transitions with a hysteresis width of 10 K at

a transition temperature of;,,=120 K and their behavior under
pressure up to 4 kbar are simulated. The misfit of the spin crossover
molecule to the lattice i8 g=vg+vy /2 in all cases. With increas-

A narrow hysteresis was observed under pressure whicing anharmonicity{ yg from harmonic(-2/3) to 2.5 pressure fa-
shifts at constant width to higher transition temperatd?es. vors the hysteresis behavior. Ag=1.8 the width of the hysteresis
Starting with the parameter of the transition of constant hysis aimost independent of pressure and at the higher anharmonicity
teresis width shown in the preceding Figa decrease of the ©Of ¥6=2.5 the figure shows and increasing width with increasing
interaction by adding a short range interactlon—20 cnit ~ Pressure.

and a small decrease of the Griineisen constant from 1.8 to ) ] ]
ys=1.7 give the transition curves at 0, 2, and 4 kbar in Fig.the hysteresis curves shift as whole to loweshift of the

8. The case of a vanishing small hysteresis which reappeaf€nter of gravity, however, the shift was irreversible at least

at higher pressufeould be also almost reproduced as shownfor P=1.6 kbar indicating a phase transition to a more stable
in the upper part of Fig. 8. state which is very likely driven by reducing the stress en-

ergy introduced by a large misfit.

The second observation is the complete transition to the
HS state at 4 kbar. Experimentally observed is a hysteresis

At the large misfit ofu s=vo+vy used for the transition shifting to higher temperatures at 0.8 and 3 kbar as usual but
of the previous figure and a Grineisen constany@t2.5  at p=6 kbar 50% of the molecules switch to the HS state
two new situations are met. First the branch of the hysteresigown to 4 K12 This fraction increases to almost 80% at 10.5
curve of decreasing temperature at 1 kbar shifts to Iolver kbar. The fact that there is not a complete transition to the
The general accepted argument that pressure favors th4S state can have reasons such as nonequivalent lattice sites
smaller LS molecules obviously is not valid for all propertieswith different HS/LS energy separations or imperfections of
of the crystal. Since such a case has indeed been obskrvethe crystal. As for the example above there are irreversible
we take as a working hypothesis that this parameter set stithanges. Releasing the pressure about 30% remain in the HS
catches real properties of a crystal. In the experiment of Ksestate at low temperatures. In the upper part of Fig. 9 this
nofontov et al!! on the compound FEM-PEA,(NCS),  behavior could be partially modeled. At an even higher misfit

2. Narrow hysteresis width

3. Stabilization of the HS fraction
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1'0 L T T T T I_ lAO _I T T T T |_
8 kbar
a
59 8
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g 05 | ’e i g 05 i
5 08 [ vis=votv ‘.l‘_-: Lkbar o v +2vy,
§ Z 7 =1.2
|
n ot i
= 0 1.0 - 1
0 4 5 6 8 kbar
4 kbar
0.5 4
1 {10 | kbar _
Vis=VotVy
Ye =2.5
0 _# 1 1 1 I_
40 80 120 160 200 240
T [K]

80 120 160 200 240

T K] FIG. 9. The interesting case of a transition from LS to the HS

state under pressure is reproduced. At large anharmonjigiy3 a

FIG. 8. Two behaviors of small hysteresis width of around 5 K Misfit of v, s=vo+vy_ is sufficient in order to obtain a transition to

as observed experimentally are simulated. A shift at constant widtf€ HS state over the whole temperature range at 2 kbar. At 1 kbar
has been obtained starting from the parameter of Fi g=v, the anomalous behavior is already indicated by shift of center of

+vy./2) and a slightly lower Griineisen constantgf=1.7. Atthe ~ 9gravity of the hy_st_eresis to lower temperature. Ata I_arger misfit but
larger misfit of v, s=vo+vy, the situation of a small hysteresis small anharmonicityys=1.2 the hysteresis shifts to higher tempera-

width is obtained which almost vanishes at 4 kbar and recovers at Bires as usual but at 8 kbar the system stays again in the HS state.

kbar to an even larger width than at zero pressure. . ] ]
All elastic energies are proportional to the bulk moduus

of v_s=vo+2vy, but only a comparably small anharmonicity which depends on the vzolume expressedeppccording to
of ys=1.2 the hysteresis shifts to higher temperatures at £0-(19) asK~1-2ys+3)e; This means that a linear term
kbar and jumps to the HS state over the whole temperaturl® s is introduced which leads to a shift of the equilibrium
range(there is a small fraction of LS molecules around 80 K I
at 8 kbar. It is worthwhile to look at the volume difference
versus the HS fraction for these extreme cases. In Fig. 10 i
three cases are shown with an increasing misfit. 4 kbar /_\

The first plot with the volume dependence for 0 and 4 0r 1
kbar belongs to the increasing hysteresis width of Fig. 7. The ﬂ;
volume dependence is reduced by about a factoé a@fs i
compared to the harmonic case, but does not show the 4| j
anomalies of the two other plots belonging to Fig. 9. Here
under pressure the crystal in the LS state has a larger volume
than the crystal in the HS state. According to Clausius-
Clapeyrondp/dT=AS,, /AVy, a negative shift inl requires
a negative ratio of the difference in entropf,, and crystal ve=2.5
volume AV, between the crystal in the HS and LS state. e
The entropy difference of the systems is positive and mainly 0 1 0 1 0 1
determined by the higher intra molecular frequencies in the
LS state as compared to the HS state. The entropy difference Vs
is the driving force for the spin transition. This fact became g 10. The difference of the volumes per molecule of the
evident by specific heat measuremefit&; measuring pho-  ¢rystal containing Fe spin crossover molecules ahdzn mol-
non spectra by nuclear inelastic scatterihgnd also theo-  ecules plotted versus the HS fracticsee Fig. 6. All three cases
retical calculation$? Experimental observations of negative showing pressure dependence belong to the increasing hysteresis
temperature shifts, therefore, require a negative volumeidth in Fig. 7 and the two cases of Fig. 9 of induced HS state by
change of the crystal going from an HS to LS state. external pressure, respectively. In the latter two cases the volume

The basic mechanism for the dependenc@¥df, on the difference changes sigfinally under pressujewhich gives rise to
misfit can be easily isolated from the free energy equationthe stabilization of the HS state.

8 kbar

4_| 1

VFe_VZn [A3 ]

1
-8r Vis=Votz Vi, Vis=VotVin Vis=VoT 2V ]

Yo =R.5 Yo =1.2
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FIG. 11. A shift of the hysteresis under pressure to lower tem-

perature as a wholgot only the center of gravijyhas been simu- FIG. 12. The volume difference versus the HS fraciisee Fig.
lated at a transition temperature of 240 K and a large misfit. In orden0) for the anomalous hysteresis shift of Fig. 11 is already positive
to obtain the arouth 5 K shift of theTﬁ,2 temperatures the misfit of at zero pressure.

the anisotropic deformation has an extra increaseAlby=0.015

and the ratian/vo is 1.73 instead of 2. Fe(PM—-PEA),(NCS), either?® The x-ray data show the vol-

o ) o ume difference between the HS and LS state to be 2.4% of
position in the potential energyo(V). Considering the he volume and positive so that a negative shift seems to be
spherical part of the self energy(v,—vo)” the linear termis  in contradiction to the law of Clausius Clapeyron. The way
proportional to fva—vo)2(76+§)€s- The difference(say 6)  out is revealed by the present simulations. We have to con-
between thex=Zn compound and the LS state is then givensider the situation here more closely. The spin transition is
by (vzn=vns) accompanied by a structural phase change fRay/c (HS)

to the higher symmetric space grofzcnin the LS state
)fs and the authors observed a rearrangement of the topology of

2
5~—[(UHS‘UO)Z—(ULS‘UO)Z]<)’G+_ _ €
the network interactions and also of the shape of the mol-

3
2 ecule. This means that there are further inner degrees of free-
== (vpstuvis— Zvo)vHL(Ye*' 5)65- (41) dom of the molecule allowing also to adjust to the misfit to
its environment. So it is not unlikely that the stress field of
As a negative term shifts to a larger equilibrium valee the strain caused by a large misfit in the HS phase relaxes by
(larger volume the larger volume differenc/g.—Vy,| with  the phase transition. Experimentally a positive valuadf,
Fe in the LS state obtained for the misfits=v, as com- in the HS phase at least under pressure cannot be excluded.
pared tov, s=v, becomes obvious from this E¢41) and is  Let us focus on the stabilization of the HS phase in the high-
in agreement with Fig. 10. One has to keep in mind, howtemperature structure following the branch of the hysteresis
ever, that different elastic energies contribute and the resufturve of decreasing temperature. A pressure dependence of a
of the iteration procedure to the minimum of the free energyhysteresis curve taking place in the high-temperature struc-
cannot be easily estimated. The dependency of the volumigire as simulated in Fig. 9 at 1 kbar with a misfit @fs
change on pressure, which may cause even a change of sigmy+vy. andys=2.5 explains the negative temperature shift
(at 8 kbar in Fig. 10 is not easy to rationalize. of the low-temperature branch.

The last simulated hysteresis transition curve at 1 kbar The branch of the hysteresis curve of increasing tempera-
shown in Fig. 11 is shifted to lower temperature, not only theture takes place in another structure which is even different
branch of decreasing but also the branch of increasiig ~ from that at ambient pressure and, therefore, cannot be re-
This situation, as already mentioned, seemed to be founkhted to the negative temperature shift in the original struc-
experimentally? In the first instance a simulation of it was ture of the crystal in the HS state. This is the way out of the
not successful. Sticking to the idea that the free energgontradiction to the relation of Clausius Clapeyron.
catches essential properties, the temperature has been
changed froniT=120 K to that of the experiment in order to .. CONCLUSION
keep the relative sizes of energies also with respect to the .
thermal energy. The effect could be a little increased by test- The total free energy of a spin crossover system has been
ing all parametergsee Table )l The corresponding volume constructed. Startl_ng vylth an |nf|n|te_ crystal descrlbeq Wlthln
difference plotted in Fig. 12 is about +8AAlthough the the De_l.Jyel approximation gnd aIIovx./ln.g_ for anharmonicity by
experimeni? cannot be interpreted by such a data set, pethe Grun<_a|sen approximation the flc_tltlous _molecules of this
cause of the structural changese below it guided to this crystal with volumev, and some anisotropic shape are re-

interesting situation of Fig. 11. placed by spin crossover molecules and/or other metal mol-
ecules having a misfit with respect to the volume and the
4. The Fe(PM-PEA),(NCS), compound shape described by tensor component§ and ey,

We have to state here, that positie/,, values have (a=LS,HS M), respectively. The potential energy of the in-
not been observed vyet, not for the compoundfinite system is derived straightforwardly including the con-
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tributions of elastic energies of the molecular defects treatethttice, it is embedded, plays a crucial role for the relative
as elastic dipoles their strength being proportional to theisize of elastic energies suited to obtain the extreme cases of
misfit to the space of the fictitious molecules. The step to atabilized HS state and negative temperature shift of the tran-
crystal of finite size having a free surface introduces furthesition under pressure.

contributions to the potential energy by elastic energies due The |arge number of parameters of the free energy expres-
to the displacement of the surface when the balance of forcegion should not lead to the impression that sufficient flexibil-
at the surface is removed by removing the infinite part of thety js provided to account for any experimental observation
crystal. The latter contributions are typically not included ing,ch that predictive power is very limited. We stress that the
potential energies obtained from first principals calculationgqq energy is well defined by the Debye and Griineisen ap-
of the cry;tal potential sir)ce pgrjodical boundary .Conditionsproximation and elasticity theory. The parameters of the De-
areT\l/Jv?)egilsrt]ocr)triij/grr%ooggéawase]clglézglijrﬂ?ﬁeﬁ %a;ﬁeblgfe-sen ye solid can be measured, that are the Griineisen and elastic
tion, which has not been specified but is different from the If- ing the el t' : . f the f
axial component,. These modes lead to two contribution to sell-energy comparing the €lectronic energies ot the lree

. : ) - molecul he molecule dissolved in a noninteracting lig-
the interaction between the spin crossover molecules, the infroecu &(say the molecule dissolved in a noninteracting liq

age interactiol’; being of “infinite” range and a direct long- ;g(rj(): eV\SIIt(?u;h?ot ?getzzfrgr?:g%ﬁ S;S;(;lsvt?g rl]negi]&nzol}ggi-:ee
range interactio’y between the spin-crossover molecules in

different spin states. A short-range interaction, which can b&'€ balanced by the molecule the electronic energy levels of

of ferroelastic or antiferroelastic type, is added to adjust the" h'.Ch are apprqprlately changed. The self energy provides
indirect information about the absolute value of volume and

width of the hysteresis curves at zero pressure. The total freS ape provided by the lattice. Onlv two parameters. the mis-
energy has three variational parameters, the HS fraction aqf{' Pe P yt : ywop '
it of the molecule in one of the spin states and the short-

the two distortion modes, which minimize the free energy . : . o
ange interaction, are left to reproduce the spin transition

under the constrain of the thermodynamic equation of the((:urve and its pressure dependence. The transition curves of a
bulk modulusk. The proportionality of all elastic energies to P b :

K requires a self-consistent iteration procedure. metal dilution series can already be predicted by the theory.

The essential result of this work is the importance of thesgr;?{]:ge dreeggynigiigﬁr; rrr:seéer(i?g’: Ifhgosnsi:]a?rfﬁs[i{(?(?gigfnr?-
misfit for the behavior of the spin transition under pressure!3 ’ . ; ’ P .
The volume chang@V,, of the crystal accompanying the pounds under discussion have not been determined. The

spin transitions so far studied is positive as expected fronpr€Sent theory may stimulate the spin crossover community
to collect the required data.

the larger bond length of the molecules in the HS state. Con- We are covinced that the conseauences of the misfit of a
sequently the crystal with its molecules in the LS state ! . 1Seq - !
should be favored under pressure. The observation of stabriTJOIeCUIe W'.th respect to its lattice and .Of the finite size O.f
lizing the HS state under pressure, switching to the HS sta%:qoiscrﬁt; 'Smn(;)légur}z Icr?ps?[;tlavr\]/th;?(ra Srjr?(;?;[ﬁzzoc\f;ntrzn;;e
over the whole temperature range or just shifting a transitio ' y y 9

to lower temperatures, could not be rationalized. We conside nd shape of the order of 0.01 as a result of their inner

the finding that a decreased or even negative volume chang?v%?gﬁe;mogeﬁgf ?r?emort(?eer g?gtgtiuggn;aof ir?flliset;i:eenﬁgzs
AV, <0 is compatible with an increase of the molecular X y P

volume (v, >0) as the main aspect of the present Work.transmons _o_f the system. Candidates are cooperative Jahn
: . . o Teller transitions and charge transfer transitions in molecular
This unexpected behavior has been simulated within th

scope of the elastic continuum theory of a finite crystal. The rystals.

elastic energies of the apharmon!c lattice are of such a size as ACKNOWLEDGMENT
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