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To achieve quantitative interpretation of piezoresponse force microscopy(PFM), including resolution limits,
tip bias- and strain-induced phenomena and spectroscopy, analytical representations for tip-induced electro-
elastic fields inside the material are derived for the cases of weak and strong indentation. In the weak inden-
tation case, electrostatic field distribution is calculated using an image charge model. In the strong indentation
case, the solution of the coupled electroelastic problem for piezoelectric indentation is used to obtain the
electric field and strain distribution in the ferroelectric material. This establishes a complete continuum me-
chanics description of the PFM contact mechanics and imaging mechanism. The electroelastic field distribution
allows signal generation volume in PFM to be determined. These rigorous solutions are compared with the
electrostatic point-charge and sphere-plane models, and the applicability limits for asymptotic point-charge and
point-force models are established. The implications of these results for ferroelectric polarization switching
processes are analyzed.
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I. INTRODUCTION

Progress in oxide electronic devices including microelec-
tromechanical systems(MEMS), nonvolatile ferroelectric
memories(FeRAMs), and ferroelectric heterostructures re-
quires an understanding of local ferroelectric properties at
the nanometer level. This has motivated an increasing num-
ber of studies of ferroelectric materials with various scanning
probe microscopies(SPM).1–4 Among the techniques for lo-
cal ferroelectric imaging, the most widely used currently is
piezoresponse force microscopy(PFM), due to the ease of
implementation, high resolution, and its relative insensitivity
to topography. PFM is rapidly becoming one of the primary
characterization tools in the ferroelectric thin-film research
that routinely allows high-resolutions,3–10 nmd domain
imaging. Applications of PFM include imaging static domain
structures in thin film, single crystals, and polycrystalline
materials; selective poling of specified regions on ferroelec-
tric surface, studies of temporal and thermal evolution of
domain structures, and quantitative measurements of thermal
phenomena and local hysteresis measurements. For most of
these applications, qualitative interpretation of the PFM im-
age in terms of ferroelectric domain morphology is sufficient
and detailed knowledge of the PFM imaging mechanism is
not required.

In the last several years, significant attention was attracted
to quantitative studies of local ferroelectric behavior by
PFM. The early applications include PFM voltage spectros-
copy, i.e., local hysteresis loop measurements.5,6 PFM spec-
troscopy allows ferroelectric properties of the individual
grains to be addressed, including remanent response and co-
ercive bias, on the,50 nm level. Application of high

voltage to the tip allows local polarization switching, provid-
ing an approach to engineer and control domain structures at
the nanoscale. This approach can potentially be used for
high-density ferroelectric storage;7,8 alternatively,
polarization-dependent reactivity of the surface in the acid
etching9 or metal photodeposition processes10,11 can be used
to engineer nanoscale structures(ferroelectric lithography).
Independently, quantitative PFM measurements were used to
address the depth dependence of ferroelectric properties in
the beveled thin-film structures12 and ferroelectric size effect
in nanocrystals.13,14 Recently, it was shown that mechanical
strain produced by the tip can suppress local polarization15 or
induce local ferroelectroelastic polarization switching.16–18A
quantitative analysis of tip-induced potential and stress dis-
tribution in the material is required to characterize local
ferroelectric properties by SPM including hysteresis mea-
surements, stress effects in thin films,19 size dependence of
ferroelectric properties,20,21 bias- and stress-induced polar-
ization switching.

In order to achieve the quantitative understanding of PFM
nanoelectromechanics, we analyze tip-induced field distribu-
tions for the case ofc+, c− domains in tetragonal perovskite
ferroelectrics. For small indentation forces, the electroelastic
contribution to the electric field below the tip can be ne-
glected, since the contact area between the tip and the sur-
face is small. In this weak indentation limit, the electric field
in the material is calculated using the electrostatic sphere-
plane model. It is shown that, under typical PFM imaging
conditions, the capacitance of the contact area can be com-
parable or larger than that of the spherical part of the tip;
hence, field analysis even in the purely electrostatic case re-
quires the contact area contribution to be taken into account.
This is further corroborated by highs,3–10 nmd spatial
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resolution achievable in PFM which is significantly better
than typical radius of curvature for metal coated tip
s,50 nmd and is comparable to expected tip-surface contact
area (; several nanometers). The rigorous analysis of the
field distributions requires solution of the coupled electro-
elastic problem of the spherical indentation of a piezoelectric
that simultaneously takes into account electrostatic, elastic,
and electroelastic phenomena at the tip-surface junction. The
use of Fabrikant’s results in the potential theory,22,23coupled
with the recently established correspondence principle,24

yields exact solutions in terms of elementary functions for
the full field components inside the material. These solutions
are compared to the simplified models, and the applicability
limits for asymptotic point-charge behavior are established.
The implications of these solutions for ferroelectric polariza-
tion switching processes are analyzed.

II. PRINCIPLES OF PFM

PFM is based on the detection of bias-induced surface
deformation. The tip is brought into contact with the surface,
and the piezoelectric response of the surface is detected as
the first harmonic component,A1v, of the bias-induced tip
deflection, d=d0+A1v cossvt+wd, when the periodic bias,
Vtip=Vdc+Vac cossvtd, is applied to the tip. The phase of the
electroelastic response of the surface,w, yields information
on the polarization direction below the tip. Forc− domains
(polarization vector pointing downward) the application of a
positive tip bias results in the expansion of the sample and
surface oscillations are in phase with the tip voltage,w=0.
For c+ domains,w=180°. The piezoresponse amplitude,A
=A1v /Vac, defines the local electromechanical activity of the
surface. One of the major complications in PFM is that both
long-range electrostatic forces and the electroelastic response
of the surface contribute to the PFM signal so that the ex-
perimentally measured piezoresponse amplitude isA=Ael
+Apiezo+Anl, whereAel is the electrostatic contribution,Apiezo
is the electroelastic contribution, andAnl is the nonlocal con-

tribution due to capacitive cantilever-surface
interactions.25,26Quantitative PFM imaging requiresApiezo to
be maximized to achieve a predominantly electroelastic con-
trast. The cantilever size is usually significantly larger than
the domain size; therefore, a nonlocal cantilever contribution
is usually present in the form of an additive offset to the
PFM image.

Even under optimal conditions, the origins of the electro-
elastic contribution,Apiezo, and its relationship to materials
properties are not straightforward because of the complex
geometry of the tip-surface junction. Some progress in the
quantitative understanding of PFM was achieved
recently.27–30 Depending on the tip radius of curvature and
the indentation force, the PFM signal may correspond to the
electroelastic response of the surface induced by the contact
area(strong indentation limit) or be dominated by the elec-
troelastic response of the surface due to the field produced by
the spherical part of the tip(weak indentation limit) as illus-
trated in Figs. 1(a) and 1(b). In these cases, the magnitude of
surface and tip displacements is determined by the electro-
mechanical coupling in the material. Alternatively, the signal
can be dominated by the electrostatic tip-surface interactions
(electrostatic limit) that will result in indentation even for
nonpiezoelectric materials. Quantitative measurement of the
electroelastic properties of the surface is possible only in the
strong indentation limit corresponding to a large tip-surface
contact area. The measured piezoelectric response in this
case is directly related to the piezoelectric constant tensordij
of the material. However, despite the progress in the inter-
pretation of PFM, little is known about the potential and
stress distribution inside ferroelectric materials during imag-
ing. Understanding of these parameters is vital for the inter-
pretation of the PFM hysteresis loops, predicting the PFM
resolution limit, and the minimal size of domains and struc-
tures that can be patterned by PFM lithography, establishing
the relative importance of bias- vs stress-induced effects, and
estimating the degree of invasiveness of technique.

FIG. 1. Schematic representation of the PFM
experiment in the weak(a) and strong(b) inden-
tation regimes. In the weak indentation case, the
indentation force and contact area is small, and
the field inside the material can be determined
from the electrostatic sphere-plane model. In the
strong indentation regime, the capacitance of the
contact area dominates over the capacitance of
the spherical part of the tip and determines the
field inside the material. In this regime, the elastic
and electroelastic effects due to indentation force
are significant and should be taken into account.
(c) Equivalent circuit for tip-surface junction.
Shown are contributions from spherical part of
the tip and contact area with the quantum capaci-
tance limit taken into account.(d) Schematic il-
lustration of the contact, sphere, and nonlocal
contributions to the field.
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III. SIMPLIFIED MODELS

The potential distribution inside a ferroelectric thin film or
crystal was analyzed by a number of authors using a rigid
dielectric model that ignores electroelastic coupling in the
ferroelectric. Several groups have used point-charge or two
point-charge models, in which the tip is represented by a
point chargeq located at a distanceh from the surface. The
magnitude of the charge and charge-surface separation is se-
lected such that the radius of curvature of isopotential lines
and the potential at the surface coincide with the correspond-
ing characteristics of the tip. These models can be readily
extended to describe the electrostatics of thin films(as op-
posed to bulk ferroelectrics) using the set of image charges.28

An alternative approach for modeling capacitive tip-
surface interactions is based on approximation of the realistic
tip shape by suitably chosen simple geometrical shape. A
number of geometric models have been used to approximate
capacitive tip-surface interactions including a sphere,31 a
hyperboloid,32–34 a cone,35 or a cone with spherical apex36

that account for tip apex and conical part of the tip. In addi-
tion, cantilever contribution to the overall tip-surface capaci-
tance can be approximated using a tilted plane-plane capaci-
tor model.37

However, it is recognized that fields produced by conical
part of the tip and the cantilever are nonlocal and vary on the
length scales of several microns(cone) and tens of microns
(cantilever), which is significantly larger than typical resolu-
tion of ,10 nm observed in PFM or minimal domain radius
s,20 nmd (Ref. 8) that can be produced by local switching.
Thus, local electrostatic tip-surface interactions can be best
modeled using geometric models in which a conductive tip is
represented by a conducting sphere touching(tip-surface
separationd=0) or slightly abovesd.0d the ferroelectric
surface. In-depth analysis of field distribution and domain
switching processes using these models was given by Mo-
lotskii et al.,38,39 and independently by Abplanalp.40 To es-
tablish the validity of these electrostatic models, we now
analyze the applicability of the point-charge model compared
to the full electrostatic sphere-plane model and estimate the
contribution of the contact area to the capacitance of the
tip-surface system and hence to the electrostatic field inside
the material.

In the electrostatic sphere-plane model, the potential in-
side the ferroelectric is approximated using a point-charge
model with chargeCdV located at a distanceR from the
surface, whereV is the tip bias andCd is the conductive
sphere-dielectric plane capacitance41,42

Cdskdz=0 = 4p«0R
k + 1

k − 1
lnSk + 1

2
D , s1d

where R is the radius of curvature of the tip andk is the
dielectric constant. For an anisotropic dielectric material, the
effective dielectric constantk=Îk11k33, wherek11, k33 are
the principal values of the dielectric constant tensor. This
approximation, which neglects the contribution of the con-
tact area to the tip-surface capacitance and hence to the po-
tential inside the material, is appropriate in the weak inden-
tation limit. However, it has been shown that quantitative

imaging and polarization switching in the ferroelectric mate-
rials occurs predominantly in the strong indentation limit, in
which a substantial contact between the tip and the surface is
established.27 Under these conditions, the contribution of the
contact area to tip-surface capacitance can become compa-
rable to the sphere-plane capacitance; corresponding equiva-
lent circuit is illustrated in Fig. 1(c). The capacitance of the
contact area can be estimated as

Cca = 4k«0a, s2d

wherea is radius of contact. In both sphere-plane and disk-
plane model in Eqs.(1) and (2), the tip surface has uniform
potential, whereas corresponding induced charge density is
highly nonuniform. The applicability of Eq.(2) for small
contact radii is limited by the quantum capacitance of the
junction, in which case the Thomas-Fermi length in metallic
tip or Debye length in semiconducting tip can be comparable
to the contact radius, resulting in the significant potential
drop in the junction region and decreasing overall contact
capacitance. Corresponding quantum capacitance can be es-
timated asCq=kc«0pa2/l, wherekc is the effective dielec-
tric constant of the contact material andl is the thickness of
contact region. For ideal contact,l is of the order of magni-
tude of Thomas-Fermi length for metals0.5–1 Åd or char-
acteristic extrapolation length for ferroelectric. The tip-
surface contact capacitance[Eq. (2)] and quantum
capacitance are connected in series[Fig. 1(c)], suggesting
that the quantum correction to capacitance is significant
whenCq=Cca, corresponding toa=1.273lsk /kcd.

Depending on the ratio between the bulk dielectric con-
stant of ferroelectric and dielectric constant of the contact
layer, the quantum capacitance can limit overall contact ca-
pacitance for contact radii as large as several nanometers;
rigorous analysis of this behavior requires atomistic simula-
tion of electrostatic and dielectric properties of metal-
ferroelectric interface. However, in this regime contact ca-
pacitance is also expected to be dominated by sphere-plane
capacitance, as illustrated below. The total field distribution
produced by contact area and spherical and conical parts of
the tip and cantilever can be represented as shown in Fig.
1(d). Note that only contact area and spherical parts of the tip
provide field distributions localized enough to account for
observed PFM resolution, whereas fields from conical part of
the tip and cantilever will produce position-independent con-
stant offset to PFM signal.

As follows from Eqs.(1) and(2), capacitance scales loga-
rithmically with the dielectric constant of the substrate for
the spherical part of the tip and linearly for the contact area,
while both scale linearly with the corresponding radii. The
critical ratio hcrit =R/a of the tip radius,R, to the contact
radius, a, for which the corresponding capacitances are
equal,Cca=Cd, can be calculated as a function of dielectric
constant[Fig. 2(a)]. From these simple estimates, the effec-
tive tip radius for most ferroelectric materials must be at least
1–1.5 orders of magnitude larger than the contact radius for
the tip capacitance contribution to dominate. These estimates
can be further extended using the Hertzian contact model to
relate tip radius and contact diameter. The relationship be-
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tween the indentation depth,w0, tip radius of curvature,R,
and load,P, is43

w0 = S 3P

4E*
D2/3

R−1/3, s3d

whereE* is the effective Young’s modulus of the tip-surface
system defined as

1

E*
=

1 − n1
2

E1
+

1 − n2
2

E2
, s4d

E1, E2 andn1, n2 are respectively, Young’s moduli and Pois-
son ratios of tip and surface materials. For ferroelectric per-
ovskites, Young’s modulusE* is of the order of 100 GPa.
The elastic modulus of the tip can vary significantly depend-
ing on the material used. For hard conductive coatings such
as TiN, W2C, and doped diamond, Young’s modulus is of
order of 400–1000 GPa depending on deposition conditions;
therefore, tip deformation during the indentation process can
be neglected. For doped siliconsESi=107 GPad tips and par-
ticularly for tips coated by conductive metals such as Au or
Pt sEAu=78 GPa,EPt=168 GPad, the tip material contribu-
tion to effective Young’s modulus can be significant, particu-
larly for gold-coated cantilevers, resulting in effective in-
crease of contact area.

The contact radius,a, is related to the indentation depth as
a=Îw0R, or

a = S 3P

4E*
D1/3

R1/3. s5d

In PFM imaging, the load acting on the tipP=k d0 is
exerted by the cantilever having spring constantk at setpoint
deflectiond0. For typical imaging conditions, the setpoint
deflection is,100 nm, and the spring constant of the canti-
lever k varies from ,0.01 to ,100 N/m. Consequently,
imaging can be done under a range of loads spanning at least
4 orders of magnitude from 1 nN to 10mN. Note that the
contact area is only weakly dependent on effective Young’s
modulus, which changes by no more than,50% for differ-
ent tip-surface material pairs, thus resulting only in minor
deviations from rigid tip-elastic plane behavior analyzed be-
low. From Eq.(5), the ratioh of the tip radius to the contact
radius, as a function of tip radius for different loads, is
shown in Fig. 2(b). Shown for comparison are critical ratios
for k=100 andk=300. For small indentation forcess10 nNd,
the capacitive contribution from the spherical part of the tip

dominates for tip radiusR.10 nm. However, for large in-
dentation forces commonly used in PFM, for typical tip radii
of the order of 50–100 nm, the capacitive contribution from
the contact area dominates.

Furthermore, tip flattening due to wear(inevitable under
these conditions) and elastic deformation of the tip material
will further increase the contact radius. Thus, applicability of
the electrostatic sphere-plane model Eq.(1) to the descrip-
tion of the fields inside ferroelectric material to small inden-
tation forces and large tip radii is limited. In addition to the
theoretical arguments developed above, strong experimental
evidence towards the validity of the analysis above is that the
resolution in PFM experiments can be as high as,5 nm
using metal-coated probes with typical radius of curvature of
order of 50–70 nm, which clearly indicates dominant contri-
bution of contact area to the measured PFM signal.

Thus, for quantitative description of the fields in a ferro-
electric material required for the analysis of the PFM spec-
troscopy and domain patterning processes under realistic
conditions, contributions from both the spherical part of the
tip and the contact area must be taken into account depend-
ing on imaging conditions.

IV. FIELDS IN THE WEAK INDENTATION LIMIT

In the weak indentation limit, contact area contribution to
the tip surface interactions can be ignored[Cca!Cd in Fig.
1(c)], and the field distribution in the tip-surface junction and
inside the ferroelectric material can be analyzed using a
purely electrostatic sphere-plane model ignoring the me-
chanical effect of the tip and the electroelastic coupling in
the material. To estimate the electrostatic potential distribu-
tion inside anisotropic ferroelectric material in the rigid di-
electric limit, we use the image-charge method.44,45 The
image-charge distribution in the tip can be represented by the
set of image chargesQi located at distancesr i from the cen-
ter of the sphere such that

Qi+1 =
k − 1

k + 1

R

2sR+ dd − r i
Qi , s6ad

r i+1 =
R2

2sR+ dd − r i
, s6bd

where R is the tip radius,d is the tip-surface separation,
Q0=4p«0RV, r0=0, andV is the tip bias. The tip-surface

FIG. 2. (Color online) (a) Dielectric constant
dependence of critical ratio of tip radius to con-
tact radius for which capacitances of spherical
part of the tip and contact area are equal.(b) Ra-
tio of tip radius to contact radius in Hertzian
model for different indentation forces.
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capacitance isCdsd,kdV=oi=0
` Qi and for the conductive tip-

dielectric surface

Cd = 4p«0Rsinhb0o
n=1

` Sk − 1

k + 1
Dn−1

ssinhnb0d−1, s7d

where b0=arccoshssR+dd /Rd. In the limit of small tip-
surface separation,Cd converges to the universal “dielectric”
limit, Eq. (1).41,42 For conductive surfaces,k→`, capaci-
tance diverges logarithmically. Potential and field distribu-
tions inside the dielectric material can be found using a
modified image-charge model as described by Mele46

Visr,zd =
Qi

2p«0sk + 1d
1

Îr2 + sr i + z/g − d − Rd2
, s8d

whereg=Îk33/k11 andr is radial coordinate along the sur-
face. The total potential inside ferroelectric in the image-
charge model is

Vicsr,zd = o
i=0

`

Vi . s9d

Far from the contact area,r, z@R, the potential distribution
is similar to that generated by a point chargeQ=CdV on the
anisotropic dielectric surface

Vicsr,zd =
CdV

2p«0sk + 1d
1

Îr2 + sz/gd2
. s10d

A similar approximation was used in Ref. 38 to describe the
domain switching processes for the domain size larger than
the tip radius. For small separations from the contact area,
the point-charge approximation is no longer valid and a full
description using Eqs.(8) and (9) is required. A simplified
description of the fields inside the material far from the tip-
surface junction can still be obtained using an image-charge
model of chargeQ=CdV located at distanceh above the
surface, whereh is a suitably chosen parameter. Simple
analysis of Eqs.(6a) and (6b) indicates that the potential is
dominated by the image charges located close to the dielec-
tric surface. This behavior is illustrated in Fig. 3(a) demon-
strating the dielectric constant dependence of tip capacitance
and dimensionless charge surface separation,Sskd=h/R, de-
fined as the first moment of the image-charge distribution

Sskd = 1 −
1

RCd
o
i=0

`

Qiri . s11d

For large dielectric constants, the effective charge-surface
separation is much smaller than the tip radius of curvature,
reflecting the charge concentration near the tip-surface con-
tact. The potential distribution in the ferroelectric fork
=100 calculated for sphere-plane and point-charge models
for Q=CdV is illustrated in Fig. 3(b). It is clear that, forz
@R, the potential distribution follows Eq.(10); for small z
the exact form of Eq.(9) must be taken into account to
adequately represent the potential distribution directly below
the tip. The crossover from sphere-plane to asymptotic point-
charge behavior occurs at distances comparable to the tip
radius. Given the characteristic size of the tip of order of
10–200 nm, a rigorous description of the early stages of po-
larization switching phenomena in the weak indentation limit
necessitates the use of Eq.(9). This is particularly the case
for applications such as ultrahigh density ferroelectric re-
cording in thin films, in which minimum achievable domain
size sradius,20 nmd (Ref. 8) is comparable to tip radius of
curvature. Similar behavior is observed in the strong inden-
tation regime, as illustrated in Fig. 4, where the crossover
length is now determined by contact radius.

FIG. 3. (Color online) (a) Dielectric constant
dependence of tip-surface capacitance and effec-
tive charge-surface separation.(b) Potential dis-
tribution in the ferroelectric in the sphere-plane
and point-charge models for different charge-
surface separations. Note the differences in the
field distributions in the vicinity of the contact
despite identical asymptotic behavior.

FIG. 4. (Color online) Potential distribution inside the material
calculated in the weak indentation regime using sphere-plane model
for tip radius R=50 nm and in the strong indentation regime for
several contact diameters calculated using the exact model in Sec.
V for PZT6b. Also shown is the electroelastic contribution to po-
tential due to the indentation force.
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Provided the electrical potential distribution below the tip
is known[e.g., Eq.(9)], corresponding stress and strain fields
can be reconstructed using isotropic Green’s function as sug-
gested by Feltenet al.,47 or calculated numerically using fi-
nite element methods.48 These approaches provide approxi-
mate description of electroelastic field structure in the weak
indentation case, for which rigorous analytical solution tak-
ing into account electromechanical coupling effects cannot
be obtained. Furthermore, the numerical analysis of the ana-
lytical solutions for the strong indentation case developed
below illustrates the validity of these approximate ap-
proaches.

V. POTENTIAL AND FIELD IN THE STRONG
INDENTATION LIMIT

Quantitative imaging of the electromechanical properties
of a ferroelectric surface requires good contact between the
tip and the surface so that the surface potential on the ferro-
electric below the tip is equal to the tip potential, minimizing
the dielectric gap effect in the contact area. At the same time,
the contribution of the spherical part of the tip not in contact
with the surface to the capacitance can usually be neglected
[Cd! sCca

−1+Cq
−1d−1 in Fig. 1(c)], as discussed in Sec. III. In

this strong indentation regime, the description of the field
distribution below the tip requires both electrostatic and elec-
troelastic coupling effects be taken into account to ad-
equately describe the PFM imaging and polarization switch-
ing mechanisms. The importance of such coupling was
demonstrated by Abplanalp for stress-induced high-order
switching processes.16 In this regime, description of the PFM
contrast mechanism is similar to the one for the indentation
of a piezoelectric material by a biased conductive indentor.
Summarized below are the exact results for the full field
distributions inside the transversely isotropic piezoelectric
half space subjected to spherical indentation.

A. Existing results on the contact problem
for piezoelectric materials

In the last decade, substantial progress, based on advances
in potential theory,22,23 has been made in obtaining closed-
form exact solutions in elementary functions for a number of
3D crack and contact problems in transversely isotropic
piezoelectric solids.49,50 These results are relevant for those
contact problems that model the PFM imaging mechanism in
the strong indentation regime. The following works should
be mentioned in this connection. Chen and Ding51 have de-
rived electroelastic fields for the spherical punch problem;
however, their results are given in a form that does not ex-
plicitly identify the combinations of electroelastic constants
in whose terms the fields are expressed(these combinations
are identified in our analysis; see the text to follow). In the
work of Giannakopoulos and Suresh,52 and a follow-up work
of Giannakopoulos,53 three punch geometries were consid-
ered: spherical, conical, and circular flat. In these works,
electroelastic fields in the planez=0 were given in the closed
form. For the full fields, integral representations were given
(results in this form make it more difficult, as compared with

solutions in elementary functions, to distinguish the contri-
butions of the bias- and stress effects). We also note that their
boundary conditions contain an unclear statement thatszz
=0 at the edge of the contact zonesr=ad: while correct for
the spherical and conical shapes, it is incorrect for the flat
punch(moreover,r=a is actually a singularity point in this
case, as seen from Table II in Ref. 52).

Karapetianet al.24 have established the general correspon-
dence principle between the elastic and the piezoelectric so-
lutions for transversely isotropic materials, and considered,
as an illustration, the problem of a circular flat rigid punch
on a piezoelectric half-space, under applied normal force and
tilting moment. In the following section, this principle is
applied to obtain solutions in elementary functions for the
full fields inside the ferroelectric medium for the spherical
indentation. These solutions allow the contributions of the
bias- and stress effects to be differentiated. The asymptotic
behavior of the fields far from the contact area is also deter-
mined.

B. Explicit solution of the problem of a spherical Hertzian
indenter on the piezoelectric half-space (full fields)

We now consider a transversely isotropic piezoelectric
half-space(with the planes of isotropy parallel to the bound-
ary) pressed upon by a spherical Hertzian indenter. Here, we
utilize the general elastic-piezoelectric correspondence prin-
ciple (Karapetianet al., 2002) (Ref. 24) that expresses full
piezoelectric fields in terms of the purely elastic ones for the
corresponding elasticity problem. The purely elastic result
for the stated problem was given by Hanson(1992).54

Boundary conditions in the considered piezoelectric prob-
lem are as follows. The vertical displacementuz, electric
potential c, shear stressestz;szx+ isyz, normal stressszz,
and the normal component of the electric displacementDz in
the planez=0 are uz=wsr ,fd=w0−br2 and c=c0 for 0
ør,a, szz=0, and Dz=0 for r.a, and tz=0 for 0
ør,`, wherea is the radius of the contact zone,w0 is the
displacement of the rigid sphere, andr ,f are polar coordi-
nates. The prescribed vertical displacement of the boundary
wsr ,fd is determined by the shape of the indenter. For
spherical indentation,b=1/2R, whereR is the radius of cur-
vature of the tip. The electric potentialc0 is constant and is
determined by the tip potential. From geometry of the con-
figuration,w0=2a2b so thatwsr ,fd=s2a2−r2d /2R.

Boundary conditions in Hanson’s solution are given in
terms of the prescribed force on the punch, rather than pre-
scribed displacement. Therefore, we first obtain the piezo-
electric solution corresponding to Hanson’s solution. Then,
we find a solution to the piezoelectric boundary value prob-
lem formulated above by using the “stiffness relation” be-
tween the pair(displacementw0, electric potentialc0) and
the pair(force, charge).

In the correspondence principle, the piezoelectric analogs
of the terms occurring in purely elastic solutions are identi-
fied in the “Correspondence Tables” 1 and 2 of the work of
Karapetianet al.24 In the context of the punch problem,
Table 2 is relevant.

Application of the correspondence principle yields the
following solution of the boundary value problem stated
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above. For convenience, we present it as a superposition of
the two subproblems:(A) the subproblem with purely me-
chanical boundary conditions

uz = wsr,fd =
2a2 − r2

2R
, 0 ø r , a s12d

szz= 0, r . a s13d

tz = 0, 0ø r , ` s14d

and zero electric boundary conditions and(B) the subprob-
lem with purely electrical boundary conditions

c = c0, 0 ø r , a s15d

Dz = 0, r . a s16d

and zero mechanical boundary conditions.
The solutions for normal displacement and electric poten-

tial of subproblem(A) are as follows:

uz = −
H*

pR
o
j=1

3
mj

*

g j
* sNj

*C1
* + Lj

*C2
*dFs2a2 + 2zj

2 − r2darcsinS l1j

r
D

+
s3l1j

2 − 2a2dsl2j
2 − a2d1/2

a
G , s17d

c = −
H*

pR
o
j=1

3
kj

*

g j
* sNj

*C1
* + Lj

*C2
*dFs2a2 + 2zj

2 − r2darcsinS l1j

r
D

+
s3l1j

2 − 2a2dsl2j
2 − a2d1/2

a
G s18d

where corresponding constants are defined in Appendix A.
The solutions of subproblem(B) are as follows:

uz = −
2c0H*

p
o
j=1

3
mj

*

g j
* sNj

*C3
* + Lj

*C4
*darcsinS a

l2j
D , s19d

c = −
2c0H*

p
o
j=1

3
kj

*

g j
* sNj

*C3
* + Lj

*C4
*darcsinS a

l2j
D , s20d

where corresponding constants are defined in Appendix A.
Full solutions for other field components are presented in
Appendix B. Similar solutions for the flat punch and conical
indenter corresponding to other limiting cases of tip geom-
etry are published elsewhere.55

VI. STIFFNESS RELATIONS AND PIEZORESPONSE
FORCE MICROSCOPY MECHANISM

The theoretical approach outlined in Sec. V yields full
fields under the indenter, expressed in elementary functions.
In this section, we analyze stiffness relations for the spherical
indentation and the relation to the PFM contact mechanics
and imaging mechanism.

A. Stiffness relations for spherical indenter

The solutions in Sec. V imply the following stiffness re-
lations that interrelate applied forceP and concentrated

chargeQ (required to maintain prescribed displacement,w0
and potential,c0, and obtained by integrating normal stress,
szz, and electric displacement,Dz, at z=0 over the contact
region) to w0 and c0. Integration of the stress components
szz=−2C1

* / sp2Rdsa2−r2d1/2 in subproblem (A) and
szz=−c0C3

* / sp2dsa2−r2d−1/2 in subproblem(B) over the con-
tact area yields

P =
4a3C1

*

3pR
+

2ac0C3
*

p
=

4aw0C1
*

3p
+

2ac0C3
*

p
. s21d

Similar integration of the electric displacement components
Dz=2C2

* / sp2Rdsa2−r2d1/2 in subproblem (A) and Dz

=c0C4
* / sp2dsa2−r2d−1/2 in subproblem(B) over the contact

area yields

Q =
4a3C2

*

3pR
+

2ac0C4
*

p
=

4aw0C2
*

3p
+

2ac0C4
*

p
. s22d

We further find from the results presented in Appendix A that
C2

* =−C3
* , and therefore the electromechanics of the spherical

indentation is described by the following set of equations:

P =
4a3C1

*

3pR
+

2ac0C3
*

p
, s23d

Q = −
4a3C3

*

3pR
+

2ac0C4
*

p
, s24d

wherew0=a2/R and constantsC1
* , C3

* , andC4
* are material-

dependent coefficients defined in Appendix A.
Note that the stiffness relations Eqs.(21) and(22) derived

here have the same structure as the ones of Giannakopoulos
and Suresh,52 but contain numerically different constants. We
believe that our relations are correct since they have been
verified (by rather lengthy calculations) to be in agreement
with independently obtained results of Chen and Ding.51

Moreover, a single indentation piezocoefficient relates the
indentation force and potential in Eq.(23) and charge and
displacement in Eq.(24), similarly to the direct and inverse
piezoelectric effect in the uniform field case.

The structure of Eqs.(23) and (24) allows a straightfor-
ward interpretation by considering physical meaning of the
individual terms. From Eq.(23), the relationship between the
indentation depthw0 and force for zero tip bias,c0=0 can be
found asw0=s3pP/4C1

*d2/3 R−1/3. This is equivalent to the
classical Hertzian indentation, where the effective Young’s
modulus corresponds to the materials constants for aniso-
tropic piezoelectricsE* ⇔C1

* /p. Thus, constantC1
* can be

identified asindentation elastic stiffness. For a large indentor
radius of curvature,R→` (flat contact), the second term in
Eq. (24) relates indenter charge to the contact area asQ
=2ac0C4

* /p. This can be compared with the capacitance of
the disk on the dielectric substrate,Cca=4k«0a, providing
the correspondence betweenC4

* and the effective dielectric
constant,kef f, as kef f⇔C4

* /2p. Thus, constantC4
* can be

identified asindentation dielectric constant. Finally, the sec-
ond term in Eq.(23), P=2ac0C3

* /p, and first term in Eq.
(24), Q=−4a3C3

* / s3pRd, describe the electroelastic coupling
in the material and allow the electrical response to the me-

NANOELECTROMECHANICS OF PIEZORESPONSE FORCE… PHYSICAL REVIEW B 70, 184101(2004)

184101-7



chanical indentation and mechanical response to indenter
bias to be estimated. The constantC3

* is thus identified as
indentation piezocoefficient.

Interestingly, electroelastic coupling in the spherical in-
dentation problem closely resembles that for the uniform
field. In both cases, the same electromechanical constant de-
scribes the coupling between the charge and the force and the
displacement and the potential. For the piezoelectric material
in a uniform electric field, the deformation is related to the
potential ash=d33c0 and charge is related to the force as
Q=d33P with the same proportionality coefficient,d33. In the
spherical indentation problem, for the weak electromechani-
cal coupling, the load can be related to the contact radius and
penetration depth asP=4aw0C1

* / s3pd. The electroelastic
coupling term in Eq.(23) then becomesw0=s3C3

* /2C1
*dc0.

Similarly, the first term in Eq.(24) becomesQ=−sC3
* /C1

*dP.
Thus, C3

* /C1
* is a single piezoelectric constant describing

coupling between the force and the charge and the potential
and displacement, similarly to thed33 in the uniform field
case.

To summarize, the stiffness relations for the spherical pi-
ezoelectric indentation can be interpreted as a sum of elastic,
electroelastic, and electrostatic contributions. Using the anal-
ogy with purely elastic and rigid dielectric solutions, corre-
sponding coupling coefficients can be interpreted as the in-
dentation elastic stiffness(analogous to Young’s modulus in
planar case), indentation piezocoefficient(analogous tod33 in
planar case), and indentation dielectric constant(analogous
to «33 in planar case) of the material. As in the uniform field
case, the same coefficient describes the coupling between the
charge and the force and the displacement and the potential,
illustrating the similarity between the two geometries. At the
same time, the coupling coefficientsper seare now complex
functions of the complete set of electroelastic constants of
the material.

B. Effect of materials properties on coupling coefficients

The fields given in Sec. V depend on the material proper-
ties in a rather complex way. The stiffness relations that re-
late the indentation depth, load, charge and tip bias include

three coupling coefficients which are complex algebraic
functions of 9 of the 10 electroelastic constants for trans-
versely isotropic piezoelectric medium. Based on their struc-
ture, the coupling coefficients can be interpreted as indenta-
tion elastic stiffness, indentation piezocoefficient, and
indentation dielectric constant of the material. Additional in-
sight into the mechanism of spherical indentation can be ob-
tained from analysis of relative contributions of different
electroelastic constants to the coupling coefficientsCk

* .
Electroelastic properties of the solid can be described ei-

ther in terms of elastic compliancessij fm2/Ng, piezoelectric
constantsdij [C/N or m/V], and dielectric permittivities
«i j fF/mg, or in terms of elastic stiffness constants
cij fN/m2g, piezoelectric constantseij [C/m2 or Vm/N], and
dielectric permittivities«i j fF/mg. These sets of constants are
interrelated through the following relationships in the Voigt
notation:dnj=enisij , enj=dnicij , sij =cij

−1, andcij =sij
−1. In order

to clarify the relative contributions of different electroelastic
constants to coupling coefficients, a sensitivity function of
the coupling coefficient,Ck

* , is defined as the logarithmic
derivative ofCk

* with respect to selected electroelastic con-
stant f ij , Sksf ijd=d ln Ck

* /d ln f ij . Numerically, the sensitivity
function is calculated as

Sksf ijd =
Ck

*sf ij = 1.01f ij
0d − Ck

*sf ij = 0.99f ij
0d

0.02Ck
*sf ij = f ij

0d
, s25d

where f ij is a selected electroelastic constant andf ij
0 is a

reference value for that constant. A positive value ofSksf ijd
implies that a higher constant value favors coupling, while
for negative values ofSksf ijd the coupling coefficient de-
creases with the constant.Sksf ijd<0 indicates that the cou-
pling coefficient is independent of that property. Sensitivity
of coupling coefficientsCk

* for polycrystalline PZT6b in the
scij , eij , «i jd and ssij , dij , «i jd representations is shown in
Fig. 5. The indentation elastic stiffness,C1

* , is dominated by
the elastic stiffnesses,cij , the dominant contribution coming
from the c33 and c44. In the ssij , dij , «i jd representation,C1

*

decreases for high elastic compliances, the dominant contri-
bution coming froms33 ands44. C1

* only weakly depends on

FIG. 5. Sensitivity function of the coupling coefficients in stiffness relations Eqs.(23) and (24) in the scij ,eij ,«i j d and ssij ,dij ,«i j d
representations calculated for PZT6b.
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piezoelectric and dielectric constants, in accordance with the
analogy ofC1

* with the effective Young’s modulus for the
planar case.

The indentation piezocoefficient,C3
* , is determined prima-

rily by the piezoelectric constantse33 ande15 and dielectric
constants«11 and «33, while it is virtually insensitive toe31
and elastic stiffnesses,cij . The indentation piezocoefficient
increases withe33, e15, and«33 and decreases with«11. This
can be understood from the analysis of the field distribution
below the indenter. For large«33, the potential is concen-
trated below the tip along thez axis, thus increasing the
electromechanical coupling, while for large«11 lateral
spreading of the field reduces the coupling coefficient. In the
ssij , dij , «i jd representation, the contributions of all electro-
elastic constants toC3

* are comparable.
The indentation dielectric constant,C4

* , is determined pri-
marily by dielectric constants«11 and«33, with other elastic
and piezoelectric constants providing only minor contribu-
tions. This can be understood from the comparison with the
rigid dielectric problem, for which the effective dielectric
constant for the point charge is the geometric average of the
principal values of dielectric constant tensor,«ef f=Î«11«33.

In order to obtain further insight into relative contribution
of elastic, dielectric, and piezoelectric constants of material
to the coupling coefficients in Eqs.(23) and(24), the scaling
analysis of elastic, piezoelectric, and dielectric contributions
was performed using formulas in Appendix A. To estimate
the contribution of piezoelectric constantseij to the indenta-
tion elastic stiffnessC1

* , that latter was calculated as a func-
tion of parameterg for material with a fictitious set of elec-
troelastic constantsscij , g eij , «i jd, where the original set of
electroelastic constantsscij , eij , «i jd corresponds to BaTiO3
and LiNbO3, as illustrated in Fig. 6(a). Note that whileg can

be arbitrarily small corresponding to zero electromechanical
coupling, for real material the maximum value ofg is lim-
ited. Figure 6(a) illustrates that forg=1 (real material) con-
tribution of piezoelectric coupling to overall elastic proper-
ties is ,10% for BaTiO3 and 6.5% for LiNbO3.
Interestingly, both forg→0 and forg→` indentation elas-
tic stiffness adopts the finite value; however, this value is
determined by different combination of elastic constants of
materials. Similar analysis can be performed for indentation
piezocoefficient and indentation dielectric constant, as illus-
trated in Figs. 6(b) and 6(c). As expected, the indentation
piezocoefficient is almost linear ing. At the same time, the
indentation dielectric constant is virtually independent ong
for g→0 and is determined solely by«i j in this limit. For
g→` the indentation dielectric constant is determined pri-
marily by eij and diverges asC4

* ,g2. For g=1, the contri-
bution of piezoelectric coupling to overall dielectric proper-
ties is ,24.6% for BaTiO3 and 11.4% for LiNbO3. This
scaling analysis allows the behavior of other characteristic
properties to be predicted. For example, the maximal elec-
trostatic potential in the material in mechanical problem is
linear in indentation piezocoefficient and inversely propor-
tional to indentation dielectric constant,cmax,hC3

* /C4
* .

From Figs. 6(a), 6(b), 6(c), cmax,g for g→0 and cmax
,g−1 for g→`, as illustrated in Fig. 6(d). This behavior is
counterintuitive, since simple analysis predicts that potential
generated in the material will increase linearly with elecro-
mechanical coupling. Note that the maximum potential that
develops inside the material during the indentation is limited,
and “conventional” materials such as BaTiO3 and LiNbO3
correspond to nearly optimal values of coupling coefficients.

Similar analysis can be performed for indentation elastic
stiffness, indentation piezocoefficient, and indentation di-
electric constant by scaling elasticsg cij , eij , «i jd, and di-

FIG. 6. Scaling behavior of in-
dentation elastic stiffness(a), in-
dentation piezocoefficient(b), in-
dentation dielectric constant(c),
and maximum induced potential
(d) for piezoelectric scaling.
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electricscij , eij , g «i jd, properties, as illustrated in Figs. 7(a),
7(b), 7(c). As expected, indentation elastic stiffness scales
linearly with elastic constants and is only weakly dependent
on dielectric constants. The indentation piezocoefficient
adopts finite limiting values both forg→0 and forg→`.
Finally, the indentation dielectric constant shows nontrivial
scaling asC4

* ,g−1 for g→0 andC4
* ,const forg→` for

the mechanical case andC4
* ,const forg→0 andC4

* ,g for
g→` for the dielectric case. The resulting behavior of maxi-
mum potential inside the material is illustrated in Fig. 7(d).
The scaling behavior for effective indentation properties is
summarized in Table I.

C. Effective piezoresponse amplitude and dielectric constant

The stiffness relations relating the indentation depth, in-
dentation force, electric charge, and indentor potential can be
immediately used for the description of the PFM imaging
mechanism, and the determination of the relative contribu-

tion of elastic, electrostatic, and electroelastic coupling terms
to the tip potential and force.

The relative contributions of indentor potential and pen-
etration depth to force and charge can be determined from
the stiffness equations. From Eq.(23) for small tip potential,
the force is primarily determined by the indentation depth
(elastic term dominates), while for large tip potentials, the
electroelastic contribution to the force is larger. The bound-
ary between the two regimes is given byc0=2C1

* / s3C3
*dw0.

Similarly, from Eq.(24) for small tip potentials, the charge is
dominated by the electroelastic coupling, while for larger tip
potentials the charge is determined by the electrostatic prop-
erties of the tip-surface junctions. The boundary between the
two regimes isc0=−2C3

* / s3C4
*dw0. From the magnitudes of

the coupling coefficients for ferroelectric materials(Table II)
calculated using formulas in Appendix A, the ratioC1

* /C3
* is

typically two orders of magnitude larger thanC3
* /C4

* , giving
rise to the plot in Fig. 8(a). In region I for small tip biases,
the force is dominated by the penetration depth(elastic cou-

TABLE I. Scaling behavior of indentation electromechanical constants.

Scaling parameter

sgcij ,eij ,«i j d, scij ,geij ,«i j d, scij ,eij ,g«i j d,

g→0 g→`. g→0 g→`. g→0 g→`.

Indentation elastic stiffness,C1
* g g const const const const

Indentation piezocoelectric
constant,C2

*
const const g g const const

Indentation dielectric constant,
C4

*
g−1 const const g2 const g

Maximum potential,cmax g const g g−1 const g−1

FIG. 7. Scaling behavior of in-
dentation elastic stiffness(a), in-
dentation piezocoefficient(b), in-
dentation dielectric constant(c),
and maximum induced potential
(d) for elastic and dielectric
scaling.
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pling), and the tip charge is determined by electroelastic cou-
pling. In this case, the elastic response of material can be
controlled by the load applied by the cantilever; however, the
electrical field (e.g., relevant to the polarization switching
processes) is primarily determined by the force(electrome-
chanical coupling), rather than tip bias. In region II for mod-
erate tip biases, the force is still dominated by the penetration
depth(elastic), but the tip charge is now determined prima-
rily by the electrostatic term. In this case, both elastic re-
sponse of material and electrical field distribution can be
controlled independently by the applied load and bias. Fi-
nally, in region III for large biases the penetration depth is
determined by the electroelastic term. In this case, the elec-
trical field distribution can be controlled by applied tip bias;
however, the electroelastic contribution to the stress and
strain field dominates and the latter cannot be controlled in-
dependently by applied load.

The plot in Fig. 6(a) allows the dominant coupling mecha-
nism to be related to the experimental conditions. Experi-
mentally accessible are the indentation force and tip bias,
rather than the indentation depth, and the correspondence
between regimes in Fig. 8(a) and experimental conditions
can be established using stiffness relations Eq.(23), as illus-
trated in Fig. 8(b). In a realistic PFM experiment the contact
force is limited by the capacitive tip-surface interaction and
capillary force asP.Fcap+Fc=CV2+Fc, limiting the range
of accessible bias-indentation phase space.56 Nevertheless,
the plot in Figs. 8(a) and 8(b) illustrates the relative contri-

bution of electrostatic, electroelastic, and elastic components
to the electrical and mechanical characteristics of the tip and
electroelastic fields in the material in PFM.

The relationship between indentation depth and tip bias
for a given indentation force required for the description of
the PFM imaging mechanism can be found from the stiffness
relation Eq.(23). This solutions for PZT6b for a tip radius of
curvatureR=50 nm and several indentation forces are illus-
trated in Figs. 9(a) and 9(b). Equation(23) generally has one
solution for positive biases and one or three solutions for
negative biases. In the latter case, two emerging solutions
correspond to negative contact areas and are physically
meaningless. Note that for small indentation forces and large
positive biases the penetration depth, contact area, and
charge become effectively zero, since the indenter is effec-
tively pushed out from the material because of the inverse
piezoelectric effect. For large indentation forces and small
biases, the elastic contribution to the indentation depth domi-
nates and the indentation depth is linear in the tip bias.

For small modulation amplitudes, the PFM signal is
Apiezo=dw0/dc0, where the functional dependence ofw0 on
the bias is given by Eq.(23). Shown in Fig. 9(c) is the bias
dependence of the piezoresponse amplitude for polycrystal-
line PZT6b calculated for a tip radiusR=50 nm for different
indentation forces. For small indentation forces, the response
amplitude is zero for large biases. This corresponds to the
zero indentationw0, in which case the electromechanical re-
sponse of the material effectively prevents the penetration of
the tip. Note that in this case the description of PFM mecha-
nism requires taking into account the electrical field pro-
duced by the spherical part of the tip not in contact with the
surface (crossover to weak indentation), as analyzed by
Feltenet al.47 For large indentation forces, contact geometry
is only weakly affected by the electromechanical response.
In this case, where the dominant contribution to the load is
mechanicalsPmech. Ppiezod, the indentation depth is related
to tip bias asw0sVd<w0−VC3/C1. Hence, the effective elec-
tromechanical response measured by PFM isApiezo=C3/C1,

TABLE II. Coupling constants for different materials.

Material C1, 1011 N/m2 C3, N/Vm C4, 10−9 C/mV

BaTiO3 4.03 15.40 48.54

LiNbO3 6.47 7.52 3.11

LiTaO3 7.80 8.80 2.81

PZT6B 3.60 25.60 23.63

FIG. 8. (a) Relative contributions of elastic, electroelastic, and electrostatic components to the total force and charge in stiffness relations
Eqs. (23) and (24) for BaTiO3 for spherical indenter withR=50 nm. In region I, the indenter charge is dominated by the electroelastic
contribution and the force is determined by the elastic contribution. In region II, indenter charge is dominated by the electrostatic contri-
bution and the force is determined by the elastic contribution. In region III, indenter charge is dominated by the electrostatic contribution and
the force is determined by the electroelastic contribution.(b) Response diagram as function of indentation force and tip bias.
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in agreement with phenomenological arguments developed
in Sec. VI A. A similar analysis can be performed for the
effective dielectric constant defined askef f=Q/ s4a«0d, where
a is the contact radius. Bias dependence of the effective di-
electric constant is illustrated in Fig. 9(d). The indentation
dielectric constant in this case is bias dependent due to the
change in contact radius and relative contribution of electro-

mechanical coupling to dielectric properties. Noteworthy, the
bias dependencies ofApiezoandkef f are functionally identical,
stemming from the structure of the stiffness relations.

To determine the contribution of different electroelastic
constants to the piezoresponse amplitude, the sensitivity
function for piezoresponse amplitude,Apiezo, was calculated
as shown in Fig. 10. In thescij ,eij ,«i jd representationApiezois

FIG. 9. (a) Bias dependence of
indentation depth;(b) contact ra-
dius; (c) piezoresponse amplitude;
and (d) effective dielectric con-
stant for the PZT6b and tip radius
R=50 nm for indentation force
10 nN (solid), 100 nN (dash),
1 mN (dash dot), and 10mN
(short dash).

FIG. 10. Sensitivity function of the piezoresponse amplitudeApiezo in the scij ,eij ,«i j d representation(a) and ssij ,dij ,«i j d representations
(b) calculated for PZT6b. Normal component of electric field is related to the vertical strain component by piezoelectric constantd33 (c). In
the spherical indentation geometry, an additional contribution to response amplitude originates from the lateral component of electric fields
related to the vertical strain component by piezoelectric constantd15 (d). The ratio between the lateral and vertical field components is
determined by«11/«33, thus rationalizing the dominant contributions of these constants to the sensitivity function forApiezo.
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dominated by the elastic stiffnessesc33 andc44, piezoelectric
constantse33, e15, and dielectric constants«11 and«33. Piezo-
response decreases with elastic stiffnesses and increases with
piezoelectric constants, as expected. In thessij ,dij ,«i jd repre-
sentation, piezoresponse is clearly dominated by the piezo-
electric constantsd33 and d15 and only weakly depends on
elastic compliances. Similarly to the indentation piezocoeffi-
cient,C3

* , the piezoresponse amplitude increases with«33 and
decreases with«11. This behavior can be readily understood
from the schematics in Fig. 10. Normal component of elec-
tric field is related to the vertical strain component by piezo-
electric constantd33, as shown in Fig. 10(c). In the spherical
indentation geometry, an additional contribution to response
amplitude originates from the lateral component of electric
fields related to the vertical strain component by piezoelec-
tric constantd15 as shown in Fig. 10(d). The ratio between
the lateral and vertical field components is determined by
«11/«33, thus rationalizing the dominant contributions of
these constants to the sensitivity function forApiezo.

To establish the correlation between the measured piezo-
response andd33 of the material, the calculated piezore-
sponse coefficient is compared with the piezoelectric con-
stant for a set of polycrystalline lead zirconate-titanate(PZT)
materials and several single-crystal ferroelectric materials as
shown in Fig. 11(a). The numerical values for the corre-
sponding electroelastic constants are obtained from Refs.
57–59. Note that for the polycrystalline PZT materials effec-
tive piezoresponse is almost a linear function ofd33, Apiezo
<d33. At the same time, for single-crystal materials such as
BaTiO3, LiNbO3, and LiTaO3 the piezoresponse amplitude
significantly differs fromd33. This can be readily understood
from the fact that the sensitivity function forApiezoshown in
Fig. 10 is strongly affected byd15 and dielectric constants.
For the single-crystalline ferroelectrics, strong anisotropy of
piezoelectric and dielectric tensors results in a nontrivial re-
lationship betweenApiezo and d33. In comparison, in poly-
crystalline materials the dielectric and piezoelectric tensors
are more symmetric due to the averaging between the grains
with different crystallographic orientation, resulting in good
correlation between piezoelectric responses in the spherical
and planar geometries. It must be noted that while a linear
relationship betweend33 andApiezo for polycrystalline mate-
rials applies for the macroscopic indentation, in which the
contact radius is larger than the average grain size, in the
typical PFM experiment the small contact area implies that

the indentation is performed within a single-crystalline grain.
Therefore, in general, a quantitative description of the PFM
imaging mechanism requires the effective piezoresponse am-
plitude for spherical indentation to be calculated using the
exact formulas in Sec. V.

A similar analysis can be performed for the electrostatic
field distribution below the indenter and is required for the
description of bias-induced phenomena in ferroelectric mate-
rials. As can be expected from the geometry of the problem,
for large separations from the contact area, the potential dis-
tribution is reduced to that produced by a point charge. For
weak electromechanical coupling(regions II and III in Fig.
8), the indenter charge is determined by the capacitance of
the contact area, i.e., coefficientC4

* in the stiffness relations
Eq. (24). Moreover, it can be expected that even for the
deviations of the contact geometry from spherical,C4

* will
describe the capacitive contribution to the effective tip
charge provided that the contact area is known.60 From the
sensitivity function in Fig. 5, the indentation dielectric con-
stant,C4

* , is determined primarily by dielectric constants«11
and«33. This is in agreement with the expected behavior in
the rigid electrostatic problem, in which the dielectric re-
sponse to the point charge is described by the effective di-
electric constant«=Î«11«33, the sensitivity function for
which, S«11

sÎ«11«33d=1/2, isconsistent with Fig. 5.
Illustrated in Fig. 11(b) is the correlation betweenC4

* and
Î«11«33. Note that both for polycrystalline and single-crystal
materials the dielectric properties are described by a linear
relationship C4

* /2p=s1.203±0.02dÎ«11«33. This analysis,
combined with the scaling analysis in Sec. VI B, illustrates
that the contribution of electromechanical constants to the
dielectric properties of the system is of order of 10%–20%,
thus providing an estimate of the relative error in the analy-
ses of PFM contrast using Green’s functions and FEA meth-
ods coupled with rigid dielectric solution for electrostatic
field in the material.47,48

VII. STRUCTURES OF THE FIELD

The solutions for the piezoelectric indentation problem
given in Sec. V provide explicit expressions for elastic and
electrical fields inside the material. Because of the linearity
of the solution, relative contributions of the mechanical and
electrical indentation can be considered, allowing separating
force- and bias-induced phenomena in PFM. Analysis of the

FIG. 11. (Color online) (a)
Correlation betweenApiezoandd33

and (b) correlation between effec-
tive dielectric constant and
Î«11«33 for several polycrystalline
(j) and single crystal(m) ferro-
electric materials.
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tip-induced switching phenomena in PFM requires knowl-
edge of the field distributions both below the tip and at the
large separation from the contact zone. From the geometry of
the problem, it can be expected that for large separations
from the contact area asymptotic field behavior can be re-
duced to the point-charge model, and the relevant parameters
and applicability limits are determined. At the same time,
description of the early stages of the domain nucleation pro-
cess in which domain size is smaller than the contact radius
requires field distributions directly below the tip, since the
use of the point-charge approximation in this case will result
in the physically meaningless singularities in the field distri-
bution.

Displacement and potential distributions below the tip for
tip radiusR=50 nm, contact areaa=3 nm, and tip biasc0
=1 V (corresponding to indentation force of,100 nN, de-
pending on materials system) for BaTiO3 and LiNbO3 are
illustrated in Figs. 12 and 13. Note that for the subproblem
(B) with purely electrical boundary conditions, the potential
attains maximum value immediately below the tip and
slowly decays for large tip-surface separation. The shape of
the potential distribution is determined primarily by the an-
isotropy of the dielectric constant tensor, as can be clearly
seen from the comparison of the potential distributions for
BaTiO3 and LiNbO3. In comparison, the potential in the sub-
problem(A) with purely mechanical boundary conditions is

FIG. 12. Two-dimensional spatial distribution of the electrostatic potential(a),(b), normal displacement(c),(d), normal stress(e),(f), and
electric displacement(g),(h) in the electrical(a),(c),(e),(g) and mechanical(b),(d),(f),(h) subproblems for contact radiusa=3 nm, tip radius
of curvatureR=50 nm, and tip potentialC0=1 V for BaTiO3. These conditions correspond to indentation forceP=92.44 nN.

FIG. 13. Two-dimensional spatial distribution of the electrostatic potential(a),(b), normal displacement(c),(d), normal stress(e),(f) and
electric displacement(g),(h) in the electrical(a),(c), (e),(g) and mechanical(b),(d),(f),(h) subproblems for contact radiusa=3 nm, tip radius
of curvatureR=50 nm, and tip potentialC0=1 V for LiNbO3. These conditions correspond to indentation forceP=148.3 nN.
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zero directly below the tip and attains maximum value at a
certain depth. The maximum potential value in this case is
determined by the strength of the electromechanical coupling
in the material, as discussed in Sec. VI B. Displacement dis-
tribution below the tip in subproblem(A) is maximum for
r=0 and z=0 and decreases with radial and normal dis-
tances, as expected for the spherical indenter geometry. Dis-

placement distribution in subproblem(B) is zero at the sur-
face due to the choice of boundary conditions and attains
maximum value in the material. Note that close similarity
exists between the shapes of displacement distribution in
subproblem(B) and of potential distribution in subproblem
(A).

The normal stress,szz, distribution below the indenter for

FIG. 14. (Color online) Nor-
mal distance dependence of poten-
tial (a),(d) and normal displace-
ment (b),(c) for the electrical
(a),(c) and mechanical (b),(d)
problems calculated for R
=50 nm, a=3 nm, and C0=1 V
for LiNbO3 (solid line), BaTiO3

(dash), LiTaO3 (dash dot), and
PZT6b (dotted line).

FIG. 15. (Color online) Nor-
mal distance dependence of nor-
mal stressszz (a),(b) and normal
component of the displacement
vectorDz (c),(d) for the electrical
(a),(c) and mechanical (b),(d)
problems calculated for R
=50 nm, a=3 nm, and C0=1 V
for LiNbO3 (solid line), BaTiO3

(dash), LiTaO3 (dash dot), and
PZT6b (dotted line).
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subproblem(B) has a well-known square-root singularity at
the perimeter of the contact area. A similar singularity exists
for the normal component of the electric displacement vec-
tor, Dz. At the same time, in subproblem(A) there is no
singularity at the circumference and both stress and electric
displacement attain maximum value below the tip(r=0 and
z=0) and decay rapidly with separation from contact area.

The field behavior as a function of depth for several ferro-
electric materials is illustrated in Figs. 14 and 15. This be-
havior is consistent with the 2D plots illustrated in Figs. 12
and 13. Note that the potential below the tip decays much
faster for BaTiO3 than for other more uniform ferroelectrics,
resulting in the smaller probing depth in the PFM experiment
[Fig. 14(a)]. At the same time, the displacement distribution
below the tip is relatively insensitive to the materials system,
since it is determined primarily by the anisotropy of the elas-
tic stiffness tensorcij [Fig. 14(b)]. Note that the solutions
presented in Figs. 14 and 15 correspond to the defined strain
boundary conditions, and the difference in materials proper-
ties will be reflected in the difference in the indentation force
required to achieve this level of indentation. Potential distri-
bution in subproblem(A) and displacement distribution in
subproblem(B) are shown in Figs. 14(c) and 14(d). For the
chosen experimental conditions, the electromechanical fields
below the tip are dominated by the direct contributions from
the tip bias and load, the terms due to the electromechanical
coupling being significantly smaller(region II in Fig. 8).
However, electromechanical coupling effects are linear in the
tip bias and indentation depth. Therefore, relatively small
changes in the experimental conditions(particularly tip bias)
can change the field distributions so that coupling terms will
dominate the direct contributions(strong coupling). It should
also be noted that the relevant length scale that determines

spatial extent of the electromechanical fields inside the ma-
terial is the contact radius, related to the tip radius of curva-
ture and indentation force through stiffness relation Eq.(21).

The field behavior as a function of radial coordinate for
several ferroelectric materials is illustrated in Figs. 16 and
17. Shown in Fig. 16(a) is the potential distribution in the
electrical problem. Note that this distribution is material in-
dependent, in agreement with that presented in Table IV.
Shown in Fig. 16(b) is lateral displacement which adopts
maximum value at the edge of contact area. By definition,
the normal displacement is zero. Both normal stress and
electric displacement have square-root singularities at the
edge of contact area, as shown in Figs. 16(c) and 16(d).
Corresponding behavior for subproblem(A) is illustrated in
Fig. 17. Note that, similarly to the potential in subproblem
(B), normal displacement in subproblem(A) is material in-
dependent[Fig. 17(a)]. Corresponding behavior for lateral
displacement is illustrated in Fig. 17(b). Both normal stress
and electric displacement are continuous at the edge of con-
tact area and identically zero outside the contact area, as
illustrated in Figs. 17(c) and 17(d).

A prominent feature of the field distributions in Figs. 14
and 15 is that nontrivial behavior persists on a length scale
comparable to the contact radius. For distances larger than
the contact radius,z.a, the field distribution quickly adopts
the corresponding asymptotic power law behavior.
Asymptotic behavior of relevant field quantities in radial and
normal directions and its dependence on indentation param-
eters is summarized in Tables III and IV. Note that for both
subproblem(A) and subproblem(B) displacement and po-
tential decay as 1/z, similar to the point-charge case. The
magnitude of the charge due to the mechanical contribution
is cubic in the contact radius. For the weak electromechani-

FIG. 16. (Color online) Radial
dependence of(a) potential; (b)
lateral displacement;(c) normal
stress; and(d) electric displace-
ment for the electrical problem
calculated forR=50 nm,a=3 nm,
and C0=1 V for LiNbO3 (solid
line), BaTiO3 (dash), LiTaO3

(dash dot), and PZT6b (dotted
line).
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cal coupling, it implies that it is a linear function of inden-
tation force and tip radius. In comparison, charge magnitude
due to the tip potential is a linear function of bias and contact
radius, making it a much weakerx1/3 function of the load and
tip radius. This simplified analysis clearly predicts the domi-
nant trends in the PFM experiment for varying experimental
conditions such as load and indenter bias.

Interestingly, the crossover to the power law behavior can
occur at distances much smaller than the indentation radius.
For example, the electric potential due to tip bias adopts a
1/z distance dependence at separations as small as,0.3 a.
This implies that for separations from the indentation zone
exceeding the contact radius, the indenter can be modeled
with a very good accuracy as a point charge or point force,
considerably simplifying the description of the bias- and
stress-induced phenomena. Relevant parameters such as

force and charge magnitudes including elastic, electric, and
electroelastic coupling effects can be determined using stiff-
ness relations Eqs.(23) and(24). This behavior is illustrated
in Fig. 18(a) representing a 2D plot of the ratio of the poten-
tial distribution below the indenter for BaTiO3 calculated
using the exact solution Eq.(20) and rigid dielectric solution
Eq. (8), with the point-charge magnitude calculated from the
stiffness relation Eq.(24). Potential distributions below the
tip differ by less than 50% for separations from the tip-
surface junction smaller than the contact area. Similar behav-
ior for the ratio of displacement field,uz, calculated from the
exact Eq.(17) and from the Green’s function for the point
force for transversely isotropic material22 is illustrated in Fig.
18(b). As for the electrostatic field, the ratio between the
point force and exact solution approaches a value close to
unity for very small separations from contact. Note that in

TABLE III. Asymptotic field behavior for subproblem(A).

Function r=0, z→` z=0, r→`, f=0

u 0 2H* /pR2a3/3ro j=1
3 sNj

*C1
* +Lj

*C2
*d

uz −2H* /pRo j=1
3 mj

* /g j
* sNj

*C1
* +Lj

*C2
*d2a3/3zj 1/pR4a3/3r

c −2H* /pRo j=1
3 kj

* /g j
* sNj

*C1
* +Lj

*C2
*d2a3/3zj 0

s1 8H* /pRo j=1
3 sC66− a j

* /g j
*2 dsNj

*C1
*

+Lj
*C2

*da3/3zj
2

0

s2 0 8C66H* /3pR2a3/ r2o j=1
3 sNj

*C1
* +Lj

*C2
*d

szz 4H* /pRo j=1
3 a j

*sNj
*C1

* +Lj
*C2

*da3/3zj
2 0

tz 0 0

Dz 4H* /pRo j=1
3 b j

*sNj
*C1

* +Lj
*C2

*da3/3zj
2 0

D 0 2H* /pR2a3/3r2o j=1
3 b j

* /g j
* sNj

*C1
* +Lj

*C2
*d

FIG. 17. (Color online) Radial
dependence of(a) normal dis-
placement; (b) lateral displace-
ment; (c) normal stress; and(d)
electric displacement for the me-
chanical problem calculated for
R=50 nm,a=3 nm, andC0=1 V
for LiNbO3 (solid line), BaTiO3

(dash), LiTaO3 (dash dot), and
PZT6b (dotted line).
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both cases the exact asymptotic value of the ratio between
point charge/force and exact solutions differs from unity and
depends on direction, reflecting the difference in the aniso-
tropy of material properties in purely elastic, rigid electro-
static, and coupled electroelastic models. Despite this fact,
point-charge solutions clearly provide a very good approxi-
mation for the description of field structure for separations
from the contact larger than the contact radius.

This behavior significantly simplifies the description of
the PFM mechanism for more complex systems. For ex-
ample, a good approximation for field structure below the tip
in the thin film, as opposed to bulk, ferroelectrics can be
achieved using independent image-charge and image-force
models for the electrostatic and elastic field components,
provided that the film thickness is larger than the contact
radius. The parameters of the corresponding image charge
and image forces are then determined by the electrostatic and
electric properties of the substrate. However, despite the fact
that point-charge/force approximation provides a good ap-
proximation for field structure even for the small separations
from contact, in certain cases adequate description of the
PFM phenomena requires exact structure of the fields taken
into account, as illustrated for the examples of PFM signal
generation volume and ferroelectric, ferroelastic, and high-
order ferroic switching below.

VIII. DISCUSSION

Exact closed-form results in elementary functions for the
full fields in the problem of spherical indentation of piezo-

electric material are given in Sec. V. The full fields under the
indenter are linear superposition of solutions for subproblem
(A) and subproblem(B). As applied to PFM, this allows the
relative contribution of bias and indentation force induced
effects on imaging and polarization switching to be sepa-
rated. It is shown that field distributions have the asymptotic
power law form for relatively small separations from the
contact area, which in many cases is significantly smaller
than the contact radiusper se.

We now briefly discuss the applicability of obtained solu-
tions for the electroelastic field structure for the description
of signal generation volume in PFM and its implications for
the polarization switching behavior in ferroelectrics.

A. Signal generation volume

The field structure calculated in Sec. V allows the signal
generation volume, and hence the resolution, to be deter-
mined. For low modulation frequencies when the tip inertial
effects are minimal, the signal generation volume in PFM is
given by the field]uz/]c for P=const. Note that the normal
displacement in subproblem(B), which can intuitively be
expected to provide the generation volume in PFM, is iden-
tically zero at the surface. At the same time, the displacement
field in the mechanical problem is tip-bias independent.
Thus, the signal generation volume is given by a nontrivial
combination of electroelastic fields shown in Figs. 12 and 13.

To calculate the generation volume, the total displacement
field below the tip can be represented asuz=uz,msad

TABLE IV. Asymptotic behavior for subproblem(B).

Function r=0, z→` z=0, r→`, f=0

u 0 −2c0H* /p a/ ro j=1
3 sNj

*C3
* +Lj

*C4
*d

uz −2c0H* /po j=1
3 mj

* /g j
* sNj

*C3
* +Lj

*C4
*da/ zj 0

c −2c0H* /po j=1
3 kj

* /g j
* sNj

*C3
* +Lj

*C4
*da/ zj 2c0/p a/ r

s1 4c0H* /po j=1
3 sC66− a j

* /g j
*2 dsNj

*C3
* +Lj

*C4
*da/ zj

2 0

s2 0 8H* C66c0/p a/ r2o j=1
3 sNj

*C3
* +Lj

*C4
*d

szz 2c0H* /po j=1
3 a j

*sNj
*C3

* +Lj
*C4

*da/ zj
2 0

tz 0 0

Dz 2c0H* /po j=1
3 b j

*sNj
*C3

* +Lj
*C4

*da/ zj
2 0

D 0 2c0H* /p a/ r2o j=1
3 b j

* /g j
* sNj

*C3
* +Lj

*C4
*d

FIG. 18. (a) The ratio of the
potential distributions calculated
for the point-charge model and
rigorous solution for BaTiO3. (b)
The ratio of the normal displace-
ment distributions calculated for
the point-force model and rigor-
ous solution for BaTiO3. Note that
the difference between rigorous
and point-charge/force solutions
does not exceed 50% for distances
as small as,0.3 a, justifying use
of the point-charge approximation
for certain bias-induced phenom-
ena in ferroelectric materials.
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+cuz,esad, where the strain field distributions in subproblem
(A) and subproblem(B) depend on the contact radius,a, and
the indenter potential,c. During imaging, the indentation
force P=const and from stiffness relation Eq.(23) the
change in tip potential,c=c0+dc, results in the change of
contact area,a=a0+da, as

da = dcS2a0

R

C1
*

C3
* +

c0

a0
D−1

. s26d

The signal generation volume is given by the change in
the strain field distribution as

SV=
duz

dc
=

uzsa0 + da,c0 + dcd − uzsa0,c0d
dc

. s27d

Thus, the signal generation volume in PFM is determined by
the combination of the normal displacement fields in the sub-
problems with electrical and mechanical boundary condi-
tions. Signal generation volumes for BaTiO3 and LiNbO3 for
R=50 nm, a=3 nm, andc0=0 V are illustrated in Figs.
19(a) and 19(b). In agreement with theoretical expectations,
the response is maximal directly below the tip and decays
rapidly outside the contact area.

The effective size of the signal generation volume and,
thus, the spatial resolution, are controlled by the contact ra-
dius,a, which is the only relevant parameter in the indenta-
tion problem. This suggests that the optimal resolution in
PFM can be obtained for small contact areas and moderate
indentation forces necessary to prevent tip flattening during
imaging. At the same time, the ultimate limit on the PFM
resolution is imposed by the electrostatic field contribution
from the spherical part of the tip that, in the case of small
contact area, will dominate the contact contribution, resulting
in loss of resolution[Fig. 1(d)] due to crossover to the weak
indentation regime analyzed by Feltenet al.47

B. Implications for PFM polarization switching

Although a rigorous analysis of switching phenomena is
an independent problem beyond the scope of this work, we
discuss here the applicability of point-charge approximation
and delineate the cases in which the exact structure of the

field is required to analyze the switching dynamics. The
knowledge of all components of the electroelastic field dis-
tribution under the tip derived in Sec. V allows direct calcu-
lation of the free energy for the switching process. The free-
energy density contains contributions from several coupling
terms16,40

Dgbulk = − DPiEi − DxmXm − 1
2D«i jEiEj − 1

2DsmnXmXn

− DdimEiXm, s28d

where the individual terms describe ferroelectric, ferroelas-
tic, ferrobielectric, ferrobielastic, and ferroelastoelectric
switching, respectively,Pi is polarization,Ei is electric field,
xm is strain,Xm is stress,i, j =1,2,3, andm, v=1, . . . ,6. The
free energy of the nucleating domain is

DG = DGbulk + DGwall + DGdep, s29d

where the first term is the volume change in free energy, the
second term is the domain wall energy, and the third term is
the depolarization field energy. Using the Landauer model,
the domain shape is represented as half ellipsoid with the
small and large axis equal tord and ld, correspondingly.61

The domain wall contribution to the free energy in this ge-
ometry isDGwall=brdld, whereb=swallp

2/2 andswall is the
(direction-independent) domain wall energy. The depolariza-
tion energy contribution depends on the electrostatic condi-
tions on the top surface, and for the ferroelectric surface with
unscreened polarization charge can be calculated asDGdep
=crd

4/ ld, where

c =
4pPs

2

3«11
FlnS2ld

rd

Î«11

«33
D − 1G s30d

only weakly depends on the domain geometry. In the uni-
form field, the bulk contribution to the domain free energy is
DGbulk=2PsErd

2ld and minimization of Eq.(29) with respect
to rd and ld allows the critical domain size and activation
energy for nucleation to be estimated. It was recognized by
Abplanalp(Ref. 40) and later by Molotskiiet al. (Refs. 38
and 39) that the field distribution below the PFM tip is
strongly nonuniform, and the bulk contribution to domain
free energy is

FIG. 19. Signal generation
volume in PFM for (a) BaTiO3

and (b) LiNbO3 for R=50 nm, a
=3 nm, andC0=0 V.
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DGbulk =E
V

Dgbulksr ddV= 2pE
0

ld

dzE
0

rmszd

Dgbulksr,zdr dr ,

s31d

wherermszd=rd
Î1−z2/ ld

2 is the domain radius at the distance
z from the surface. The bulk contribution to the free energy
for ferroelectric switching was calculated by Molotskiiet al.
using a phenomenological point-charge model, in which the
tip is represented by point chargeQ=CtipV located at dis-
tanced from the surface, whereCtip is the capacitance be-
tween the conductive sphere and anisotropic dielectric half-
space defined in Eq.(1). This corresponds to the weak
indentation regime in which the sphere-surface capacitance
dominates over the capacitance of the contact area.

It was found that, for domain sizerd@d, the critical do-
main size and the activation energy for nucleation are inde-
pendent of the effective charge-surface separationd and are
determined by the material properties and effective tip
charge. This agrees with results of the present work, since, at
large separations from the contact area, the potential distri-
bution produced by the tip can be represented by the point
charge located on the surfacesd=0d. Therefore, the analysis
presented by Molotskii(Ref. 38) becomes rigorous if the tip
charge is approximated by the charge at the contact area
calculated from the stiffness relations Eq.(23). It should be
noted that, for sufficiently high tip bias, switching can be
induced by the spherical part of the tip as well, but in this
case, rigorous description of the switching process forld,
rd,R requires calculations of the complete image charge,
due to large uncertainties related to choice of the effective
charge-surface separation(Sec. IV).

A similar analysis can be extended to an arbitrary switch-
ing mechanism using Eq.(31) to estimate the corresponding
free energy. For domain sizesrd@a the tip can be modeled
as a point charge or point force provided that the singularity
in the origin is weak enough to ensure the convergence of the
integral in Eq.(31). As summarized in Tables III and IV, the
asymptotic behavior for potential and strain can be generally
represented in the formf =sr2+sz/gd2d−a/2, where powera
determines the decay rate of the corresponding quantity with
the separation from indentation region, andg is the propor-
tionality coefficient reflecting the anisotropy of materials
properties. In the rigid dielectric model,g=Î«z/«x, while in
the exact solution in Sec. Vgi, i =1,2,3, are theroots of the
determinant equation Eq.(A5) in Appendix A. Correspond-
ing fields are given by the derivatives with respect to thez
coordinate,df /dz. It can be shown that the bulk contribution
to the domain free energy forld@grd can be calculated as
DGbulk, rd

2−a for a,2. For bias-induced ferroelectric
switching, a=1 and DGbulk, rd, in agreement with the
analysis in Refs. 38 and 39.

Similar analysis can be performed for ferroelastic switch-
ing, even though in this case the symmetry of the problem
requires formation of nontrivial domain structures, for ex-
ample nucleation of four 90° domains forming the vortex-
type structure required to prevent the formation of energeti-
cally unfavorable charged domain walls.62 At the same time,

any high-order ferroelectric switching phenomena including
ferrobielectric, ferrobielastic, and ferroelastoelectric are de-
scribed by the field distributions for whichaù2 and the
integral Eq.(29) does not converge if the asymptotic form of
the field is used. This implies that the rigorous description of
the high-order ferroelectric switching phenomena requires
use of the complete solutions developed in Sec. V, or suitably
chosen extrapolation formulas that adequately represent field
distributions at small and large separations from the indenta-
tion point, while use of the point-charge approximation leads
to physically unreasonable divergence of the corresponding
free energy. For ferroelectric and ferroelastic switching, the
contribution of the volume in the close vicinity of the tip to
the free energy can be neglected ifrd@a and the domain size
and activation energy for nucleation become independent of
the contact area and are determined solely by the tip charge.
This allows arbitrarily large domains to be created for high
tip biases. On the contrary, in the higher order ferroelasto-
electric, ferrobielectric, and ferrobielastic switching pro-
cesses, contact contribution to the domain free energy domi-
nates due to the much higher decay rate of the relevant fields.
Thus, analyses of the early stages of ferroelectric switching
phenomena, as well as higher order ferroic switching, require
exact structure of the field to be taken into account and will
be reported elsewhere.63

IX. SUMMARY

To achieve quantitative interpretation of PFM, including
resolution limits, tip bias- and strain-induced phenomena and
spectroscopy, analytical representations for tip-induced elec-
trical and mechanical fields inside the material are derived.
The electrostatic potential distribution inside the ferroelectric
in the weak indentation limit is obtained using the image-
charge method. It is shown that, in the general case, this
electrostatic solution cannot be reduced to the single point-
charge approximation, and a complete set of image charges
is required to describe switching phenomena. This weak in-
dentation solution implicitly ignores contribution of the tip-
surface contact area to the field distributions. At the same
time, direct comparison between the sphere-plane capaci-
tance and contact area capacitance estimated using the Hert-
zian indentation model illustrates that for the typical PFM
imaging conditions the contact area contribution to the local
part of the tip-surface capacitance dominates.

These estimates show that rigorous description of the tip-
induced phenomena requires solution of the coupled electro-
elastic problem for spherical indentation of a piezoelectric.
Analytical solution of this problem is obtained for the trans-
versely isotropic piezoelectric material using the recently es-
tablished elastic-piezoelectric correspondence principle.
These solutions are used to obtain the electric field and strain
distribution inside the ferroelectric material, providing a
complete continuum mechanical description of the PFM im-
aging mechanism for a spherical tip. The relationship be-
tween the indentation depth, load, contact area, and indenter
bias are given through the stiffness relations that prove to be
the extension of Hertzian contact mechanics for a trans-
versely isotropic piezoelectric. The individual coupling coef-
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ficients in the stiffness relations can be interpreted as the
indentation elastic stiffness, indentation dielectric constant,
and indentation piezocoefficient, similar to effective Young’s
modulus, dielectric constant, and piezoelectric constant in
the uniform case. Notably, the same piezoelectric coefficient
describes charge-force and displacement-bias coupling, dem-
onstrating the similarity between piezoelectric behavior in
the spherical and planar geometries. The contributions of dif-
ferent electroelastic constants of the material to the coupling
coefficients were investigated.

These rigorous analytical solutions are compared with ap-
proximations based on the asymptotic point-charge/point-
force models, and it is shown that crossover to the power law
behavior occurs at relatively small separations from the con-
tact area. It is also shown that the relevant parameters, in-
cluding force and charge magnitudes, must be obtained from
the stiffness relations. Expressions for potential and field in
the ferroelectric were used to derive signal generation vol-
ume in PFM. The implications for polarization switching
phenomena are also analyzed. It is shown that adequate de-
scription of late stages of first-order ferroelectric and fer-
roelastic switching processes can be achieved using the
asymptotic representation of the fields; the domain size in
this case is determined by the tip charge or force only. At the
same time, description of early stages of ferroelectric switch-
ing and higher-order switching processes requires detailed
description of field distribution below the tip.
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APPENDIX A: COUPLING CONSTANTS

The following notations and complex combinations are
used for displacements, stresses, the electric potential, and
the electric displacement components:

u ; ux + iuy, uz, c, D ; Dx + iDy, Dz, sA1d

s1 ; sxx + syy, s2 ; sxx − syy + 2isxy, szz, tz ; szx+ isyz

sA2d

where cij denote transversely isotropic elastic stiffnesses,
eij—piezoelectric constants,«i j—dielectric permeabilities,
and a j

* =c44s1+mj
*d+e15kj

* , b j
* =e15s1+mj

*d−«11kj
*

s j =1,2,3d. Constantsmj
* , kj

* s j =1,2,3d in the text to follow
are obtained to be as follows:

mj =
sc11g j

*2 − c44ds«33 − g j
*2«11d + g j

*2se15 + e31d2

se33 − g j
*2e15dse15 + e31d + sc13 + c44ds«33 − g j

*2«11d
,

sA3d

kj =
sc11g j

*2 − c44dse33 − g j
*2e15d − g j

*2sc13 + c44dse15 + e31d

se33 − g j
*2e15dse15 + e31d + sc13 + c44ds«33 − g j

*2«11d
,

sA4d

whereg j
*2 =l j are roots of the cubic equation

Al j
3 − Bl j

2 + Cl j − D = 0, sA5d

with coefficients

A = c11sc44«11 + e15
2 d, sA6d

B = c44fc11«33 + se15 + e31d2g + «11fc11c33 + c44
2 − sc13 + c44d2g

+ 2e15fc11e33 − sc13 + c44dse15 + e31dg + c44e15
2 , sA7d

C = c33fc44«11 + se15 + e31d2g + «33fc11c33 + c44
2 − sc13 + c44d2g

+ 2e33fc44e15 − sc13 + c44dse15 + e31dg + c11e33
2 , sA8d

D = c44sc33«33 + e33
2 d. sA9d

Constantsmj
* andkj

* can be expressed in terms of rootsl j
[formula (2.6) in Ref. 64]. Of the six roots forg that corre-
spond to three roots forl, obtained from Eq.(A5), the roots
g1,2,3

* that have positive real parts must be chosen to ensure
that displacements are real.

The following combinations of the piezoelectric constants
are used:

H * =
1

2pse15
2 + c44«11do

j=1

3 a j
*aj

*

g j
*2

= −
1

2po
j=1

3

a j
*Nj

*

,

sA10d

N1
* =

a3
*b2

*

g3
* −

a2
*b3

*

g2
* , sA11d

L1
* =

a3
*a2

*

g3
* −

a2
*a3

*

g2
* , sA12d

a1
* = g1

*fs1 + m2
*dk3

* − s1 + m3
*dk2

*g. sA13d

Values for other constantsNj
* , Lj

* , aj
* are obtained by cy-

clic permutation of indices as 1→2→3→1. The following
geometric parameterss j =1,2,3d are used:

2l1jszd = Îsa + rd2 + zj
2 − Îsa − rd2 + zj

2, sA14d

2l2jszd = Îsa + rd2 + zj
2 + Îsa − rd2 + zj

2, sA15d

zj = z/g j . sA16d

The constants in Eqs.(17)–(20) are defined as

C1
* = −

1

B* o
j=1

3 kj
*

g j
* Lj

* , sA17d
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C2
* =

1

B* o
j=1

3 kj
*

g j
* Nj

* , sA18d

C3
* =

1

B* o
j=1

3 mj
*

g j
* Lj

* , sA19d

C4
* = −

1

B* o
j=1

3 mj
*

g j
* Nj

* sA20d

B * = H * Fo
j=1

3 mj
*

g j
* Nj

*o
i=1

3 ki
*

gi
* Li

* − o
j=1

3 mj
*

g j
* Lj

*o
i=1

3 ki
*

gi
* Ni

*G .

sA21d

Remark. ParametersH*, Ni
* , Li

* , that will enter the solu-
tion, are explicitly expressed in terms of the piezoelectric
constants—in contrast with the solution of Chen(Ref. 51),
where the dependence of the solution on the piezoelectric
constants is not explicit.

APPENDIX B: SOLUTION OF SUBPROBLEMS

The solution of subproblem(A) is as follows:

u = −
2H*

pR
reifo

j=1

3

sNj
*C1

* + Lj
*C2

*dF− zj arcsinS l1j

r
D

+ sa2 − l1j
2 d1/2S1 −

l1j
2 + 2a2

3r2 D +
2a3

3r2G , sB1d

s1 = −
8H*

pR
o
j=1

3 Sc66 −
a j

*

g j
*2DsNj

*C1
* + Lj

*C2
*dFzj arcsinS l1j

r
D

− sa2 − l1j
2 d1/2G , sB2d

s2 =
8c66H*

3pR

e2if

r2 o
j=1

3

sNj
*C1

* + Lj
*C2

*df2a3 − sl1j
2 + 2a2dsa2

− l1j
2 d1/2g, sB3d

szz= −
4H*

pR
o
j=1

3

a j
*sNj

*C1
* + Lj

*C2
*dFzj arcsinS l1j

r
D

− sa2 − l1j
2 d1/2G , sB4d

tz = −
2H*

pR
reifo

j=1

3
a j

*

g j
* sNj

*C1
* + Lj

*C2
*dF− arcsinS l1j

r
D

+
asl2j

2 − a2d1/2

l2j
2 G , sB5d

Dz = −
4H*

pR
o
j=1

3

b j
*sNj

*C1
* + Lj

*C2
*dFzj arcsinS l1j

r
D

− sa2 − l1j
2 d1/2G , sB6d

D = −
2H*

pR
reifo

j=1

3 b j
*

g j
* sNj

*C1
* + Lj

*C2
*dF− arcsinS l1j

r
D

+
asl2j

2 − a2d1/2

l2j
2 G . sB7d

The solution of subproblem(B) is as follows:

u = −
2c0H*

p
o
j=1

3

sNj
*C3

* + Lj
*C4

*d
aeif

r
F1 −

sa2 − l1j
2 d1/2

a G ,

sB8d

s1 =
4c0H*

p
o
j=1

3 Sc66 −
a j

*

g j
*2DsNj

*C3
* + Lj

*C4
*d

sa2 − l1j
2 d1/2

l2j
2 − l1j

2 ,

sB9d

s2 = −
4c0H * c66e

2if

p
o
j=1

3

sNj
*C3

* + Lj
*C4

*dH sa2 − l1j
2 d1/2

l2j
2 − l1j

2

−
2a

r2F1 −
sa2 − l1j

2 d1/2

a GJ , sB10d

szz=
2c0H*

p
o
j=1

3

a j
*sNj

*C3
* + Lj

*C4
*d

sa2 − l1j
2 d1/2

l2j
2 − l1j

2 , sB11d

tz =
2c0H * eif

p
o
j=1

3 a j
*

g j
* sNj

*C3
* + Lj

*C4
*d

l1jsl2j
2 − a2d1/2

l2jsl2j
2 − l1j

2 d
,

sB12d

Dz =
2c0H*

p
o
j=1

3

b j
*sNj

*C3
* + Lj

*C4
*d

sa2 − l1j
2 d1/2

l2j
2 − l1j

2 , sB13d

D =
2c0H * eif

p
o
j=1

3 b j
*

g j
* sNj

*C3
* + Lj

*C4
*d

l1jsl2j
2 − a2d1/2

l2jsl2j
2 − l1j

2 d
.

sB14d
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