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Nanoelectromechanics of piezoresponse force microscopy
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To achieve quantitative interpretation of piezoresponse force microg&dl), including resolution limits,

tip bias- and strain-induced phenomena and spectroscopy, analytical representations for tip-induced electro-
elastic fields inside the material are derived for the cases of weak and strong indentation. In the weak inden-
tation case, electrostatic field distribution is calculated using an image charge model. In the strong indentation
case, the solution of the coupled electroelastic problem for piezoelectric indentation is used to obtain the
electric field and strain distribution in the ferroelectric material. This establishes a complete continuum me-
chanics description of the PFM contact mechanics and imaging mechanism. The electroelastic field distribution
allows signal generation volume in PFM to be determined. These rigorous solutions are compared with the
electrostatic point-charge and sphere-plane models, and the applicability limits for asymptotic point-charge and
point-force models are established. The implications of these results for ferroelectric polarization switching
processes are analyzed.
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[. INTRODUCTION voltage to the tip allows local polarization switching, provid-
voltag p local p hing, p
ing an approach to engineer and control domain structures at
Progress in oxide electronic devices including microelecthe nanoscale. This approach can potentially be used for
tromechanical systeméMEMS), nonvolatile ferroelectric high-density  ferroelectric ~ storadé;  alternatively,
memories(FeRAMS, and ferroelectric heterostructures re- Polarization-dependent reactivity of the surface in the acid
quires an understanding of local ferroelectric properties agtching or metal photodeposition proces¥es can be used
the nanometer level. This has motivated an increasing nun{® engineer nanosca_le §tructur(éerroelectr|c lithography
ber of studies of ferroelectric materials with various scanningndéPendently, quantitative PFM measurements were used to

probe microscopie€SPM).1-4 Among the techniques for lo- ddress the depth dependence of ferroelectric properties in

cal ferroelectric imaging, the most widely used currently iS_the beveled thin-film structur&sand ferroelectric size effect

. . 314 [ hat mechanical
piezoresponse force microscopyFM), due to the ease of in nanocrystals:"*Recently, it was shown that mechanica

! ; : ) . L . strain produced by the tip can suppress local polariz&tion
implementation, high resolution, and its relative insensitivity; \ 4 ice local ferroelectroelastic polarization switch#fgt3A

to topography. PFM is rapidly becoming one of the primary g antitative analysis of tip-induced potential and stress dis-
characterization tools in the ferroelectric thin-film researchyipytion in the material is required to characterize local
that routinely allows high-resolutio~3—-10 nm domain  ferroelectric properties by SPM including hysteresis mea-
imaging. Applications of PFM include imaging static domain surements, stress effects in thin fildissize dependence of
structures in thin film, single crystals, and polycrystallineferroelectric propertie®2! bias- and stress-induced polar-
materials; selective poling of specified regions on ferroelecization switching.
tric surface, studies of temporal and thermal evolution of In order to achieve the quantitative understanding of PFM
domain structures, and quantitative measurements of thermahnoelectromechanics, we analyze tip-induced field distribu-
phenomena and local hysteresis measurements. For mosttins for the case of*, ¢~ domains in tetragonal perovskite
these applications, qualitative interpretation of the PFM im-ferroelectrics. For small indentation forces, the electroelastic
age in terms of ferroelectric domain morphology is sufficientcontribution to the electric field below the tip can be ne-
and detailed knowledge of the PFM imaging mechanism igjlected, since the contact area between the tip and the sur-
not required. face is small. In this weak indentation limit, the electric field
In the last several years, significant attention was attracteh the material is calculated using the electrostatic sphere-
to quantitative studies of local ferroelectric behavior byplane model. It is shown that, under typical PFM imaging
PEM. The early applications include PFM voltage spectrosconditions, the capacitance of the contact area can be com-
copy, i.e., local hysteresis loop measuremé&$tBFM spec- parable or larger than that of the spherical part of the tip;
troscopy allows ferroelectric properties of the individual hence, field analysis even in the purely electrostatic case re-
grains to be addressed, including remanent response and apiires the contact area contribution to be taken into account.
ercive bias, on the~50 nm level. Application of high This is further corroborated by high~3—10 nn) spatial
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FIG. 1. Schematic representation of the PFM
experiment in the weala) and strongb) inden-
tation regimes. In the weak indentation case, the
indentation force and contact area is small, and
the field inside the material can be determined
from the electrostatic sphere-plane model. In the
strong indentation regime, the capacitance of the
contact area dominates over the capacitance of
() (b) the spherical part of the tip and determines the

Contact field inside the material. In this regime, the elastic
Vtip / Soh and electroelastic effects due to indentation force
Non-local phere are significant and should be taken into account.
4 / (c) Equivalent circuit for tip-surface junction.
. :Iz, V(x) l 0 LN s Shown are contributions from spherical part of
J— P S s PR S N —

L,

___________ the tip and contact area with the quantum capaci-

l 2a tance limit taken into accountd) Schematic il-
X lustration of the contact, sphere, and nonlocal
R contributions to the field.

(@

©

resolution achievable in PFM which is significantly better tribution due to capacitive cantilever-surface
than typical radius of curvature for metal coated tipinteractions®>2°Quantitative PFM imaging requiré$ie,oto
(~50 nm and is comparable to expected tip-surface contacbe maximized to achieve a predominantly electroelastic con-
area(~ several nanometexsThe rigorous analysis of the trast. The cantilever size is usually significantly larger than
field distributions requires solution of the coupled electro-the domain size; therefore, a nonlocal cantilever contribution
elastic problem of the spherical indentation of a piezoelectrigs usually present in the form of an additive offset to the
that simultaneously takes into account electrostatic, elastigoEm image.

and electroglastic phenomena at the tip-surface junction. The Even under optimal conditions, the origins of the electro-
use of Fabrikant's resuilts in the potential the#ts’coupled  gjastic contribution Aye,, and its relationship to materials

with the recently established correspondence prinéible, hoperties are not straightforward because of the complex
yields exact solutions in terms of elementary functions for

the full field s inside th terial. Th luti eometry of the tip-surface junction. Some progress in the
e fulf eld components inside the material. 1hese solu 'F).n%uantitative understanding of PFM was achieved
are compared to the simplified models, and the applicability

= . ; : : recently?’-3° Depending on the tip radius of curvature and
limits for asymptotic point-charge behavior are estabhshedthe indentation force. the PEM sianal mav correspond to the
The implications of these solutions for ferroelectric polariza- ’ g y P

tion switching processes are analyzed. electroelastlt_: response o_f t_he surface |_nduced by the contact

area(strong indentation limjtor be dominated by the elec-
troelastic response of the surface due to the field produced by
II. PRINCIPLES OF PFM the spherical part of the tiweak indentation limitas illus-

PFM is based on the detection of bias-induced surfac&ated in Figs. {a) and 1b). In these cases, the magnitude of
deformation. The tip is brought into contact with the surface surface and tip displacements is determined by the electro-
and the piezoelectric response of the surface is detected &echanical coupling in the material. Alternatively, the signal
the first harmonic componeng,,, of the bias-induced tip can be dominated by the electrostatic tip-surface interactions
deflection, d=dy+A;, codwt+¢), when the periodic bias, (electrostatic limif that will result in indentation even for
Viip=Vgct Vac COd wt), is applied to the tip. The phase of the nonpiezoelectric materials. Quantitative measurement of the
electroelastic response of the surfageyields information electroelastic properties of the surface is possible only in the
on the polarization direction below the tip. For domains  strong indentation limit corresponding to a large tip-surface
(polarization vector pointing downwarthe application of a contact area. The measured piezoelectric response in this
positive tip bias results in the expansion of the sample andase is directly related to the piezoelectric constant tesysor
surface oscillations are in phase with the tip voltage,0.  of the material. However, despite the progress in the inter-
For ¢ domains,=180°. The piezoresponse amplitude, pretation of PFM, little is known about the potential and
=A;,/Vae defines the local electromechanical activity of thestress distribution inside ferroelectric materials during imag-
surface. One of the major complications in PFM is that bothing. Understanding of these parameters is vital for the inter-
long-range electrostatic forces and the electroelastic respongeetation of the PFM hysteresis loops, predicting the PFM
of the surface contribute to the PFM signal so that the exfesolution limit, and the minimal size of domains and struc-
perimentally measured piezoresponse amplitudeA#sA,  tures that can be patterned by PFM lithography, establishing
+ Azt A WhereA is the electrostatic contributiody,e,,  the relative importance of bias- vs stress-induced effects, and
is the electroelastic contribution, ary; is the nonlocal con- estimating the degree of invasiveness of technique.
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. SIMPLIFIED MODELS imaging and polarization switching in the ferroelectric mate-
rials occurs predominantly in the strong indentation limit, in
crystal was analyzed by a number of authors using a rigi hich a substantial contact bet\_/v_een the tip anq thg surface is

. . . X Y stablished’ Under these conditions, the contribution of the
dielectric model that ignores electroelastic coupling in the

. . contact area to tip-surface capacitance can become compa-
ferroelectric. Several groups have used point-charge or th : .

point-charge models, in which the tip is represented by 30

The potential distribution inside a ferroelectric thin film or

) . contact area can be estimated as
magnitude of the charge and charge-surface separation is sé-

lected such that the radius of curvature of isopotential lines
and the potential at the surface coincide with the correspond-

ing characteristics of the tip. These models can be readi%h rea is radi f contact. In both sphere-plane and disk-
extended to describe the electrostatics of thin fils op- erea Is radius or contact. In both sphere-plane and dis

posed to bulk ferroelectrigising the set of image chargés, Plane model in Eqsl) and(2), the tip surface has uniform
An alternative approach for modeling capacitive tip- pptennal, whgreas correspondmg_ _mduced charge density is

surface interactions is based on approximation of the realistifighly nonuniform. The applicability of Eqc2) for small

tip shape by suitably chosen simple geometrical shape. 4gontact radii is limited by the quantum capacitance of the

number of geometric models have been used to approxima@HnCtion’g” VﬂhiCh r(]:"_"se the Th(()jmas-Fe_rmi Iength in metaIlI)if,
capacitive tip-surface interactions including a sphere, tP O Debye length in semiconducting tip can be comparable

hyperboloid®2-3* a cone® or a cone with spherical ap¥ to the contact radius, resulting in the significant potential
that account for tip apex and conical part of the tip. In addi-droP in the junction region and decreasing overall contact
tion, cantilever contribution to the overall tip-surface Capaci_capacnance. Corresponding quantum capacitance can be es-

. A ) : Ve
tance can be approximated using a tilted plane-plane capadimatéd asCq=rceoma‘/\, wherex. is the effective dielec-
tor model?’

tric constant of the contact material ands the thickness of
However, it is recognized that fields produced by conic

g[contact region. For ideal contaat,is of the order of magni-
part of the tip and the cantilever are nonlocal and vary on t

Cea=4kena, (2

héude of Thomas-Fermi length for metéd.5—1 A or char-

length scales of several microfsong and tens of microns acteristic extrapolation length for ferroelectric. The tip-
(cantilevey, which is significantly larger than typical resolu- Surfaceé contact capacitancg¢eq. (2)] and quantum
tion of ~10 nm observed in PFM or minimal domain radius ¢@Pacitance are connected in serieg. 1(c)], suggesting
(~20 nm (Ref. 8 that can be produced by local switching. that the guantum correction to capacitance is significant
Thus, local electrostatic tip-surface interactions can be be¥1€NCq=Cea corresponding t@=1.273\(x/ rc). _
modeled using geometric models in which a conductive tipis D€Pending on the ratio between the bulk dielectric con-
represented by a conducting sphere touchitig-surface stant of ferroelectric and dielectric constant of the contact
separationd=0) or slightly above(d>0) the ferroelectric Iaye_r, the quantum capacitance can limit overall contact ca-
surface. In-depth analysis of field distribution and domainPacitance for contact radii as large as several nanometers;
switching processes using these models was given by mdigorous analysis of this behavior requires atomistic simula-
lotskii et al,33%° and independently by Abplanafp.To es- tion of electrostatic and dielectric properties of metal-
tablish the validity of these electrostatic models, we nowfeTOelectric interface. However, in this regime contact ca-
analyze the applicability of the point-charge model compared?citance is also expected to be dominated by sphere-plane
to the full electrostatic sphere-plane model and estimate thgPacitance, as illustrated below. The total field distribution
contribution of the contact area to the capacitance of th@roduced by contact area and spherical and conical parts of

tip-surface system and hence to the electrostatic field insidf!® P and cantilever can be represented as shown in Fig.
the material. 1(d). Note that only contact area and spherical parts of the tip

In the electrostatic sphere-plane model, the potential inProvide field distributions localized enough to account for

side the ferroelectric is approximated using a point-charg@Pserved PFM resolution, whereas fields from conical part of
model with chargeC4V located at a distanc® from the the tip and cantilever will produce position-independent con-

surface, where/ is the tip bias andCy is the conductive Stant offset to PFM signal. .
sphere-dielectric plane capacitafic® As follows from Eqgs(1) and(2), capacitance scales loga-
rithmically with the dielectric constant of the substrate for

k+1 [k+1 the spherical part of the tip and linearly for the contact area,
In 2 ) @ while both scale linearly with the corresponding radii. The
critical ratio 7.;;=R/a of the tip radius,R, to the contact
whereR is the radius of curvature of the tip andis the radius, a, for which the corresponding capacitances are
dielectric constant. For an anisotropic dielectric material, theequal,C.,=Cgy, can be calculated as a function of dielectric
effective dielectric constank=\kq1x33, Where xq;, k33 are  constanfFig. 2(@)]. From these simple estimates, the effec-
the principal values of the dielectric constant tensor. Thidive tip radius for most ferroelectric materials must be at least
approximation, which neglects the contribution of the con-1-1.5 orders of magnitude larger than the contact radius for
tact area to the tip-surface capacitance and hence to the pthe tip capacitance contribution to dominate. These estimates
tential inside the material, is appropriate in the weak inden€an be further extended using the Hertzian contact model to
tation limit. However, it has been shown that quantitativerelate tip radius and contact diameter. The relationship be-

Ca(K)z=0 = 4eoR
-
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60+
10%;
404 FIG. 2. (Color online (a) Dielectric constant
- 10’ dependence of critical ratio of tip radius to con-
= 3 o tact radius for which capacitances of spherical
20+ e ‘\/KP- b part of the tip and contact area are equh).Ra-
10°7 e : tio of tip radius to contact radius in Hertzian
. ’__,..f- \P= 10 uN model for different indentation forces.
0 200 400 600 800 1000 1 10 100
() Dielectric constant (b) Tip radius (nm)

tween the indentation depthy, tip radius of curvatureR, dominates for tip radiu®k>10 nm. However, for large in-

and load,P, is* dentation forces commonly used in PFM, for typical tip radii
3p \23 of the order of 50—100 nm, the capacitive contribution from
Wo= ( ) RT3, (3) the contact area dominates.
4E* Furthermore, tip flattening due to we@nevitable under

these conditionsand elastic deformation of the tip material
will further increase the contact radius. Thus, applicability of
the electrostatic sphere-plane model ED. to the descrip-
1 1- V% 1- v% tion of the fields inside ferroelectric material to small inden-
= = E—1 + E—2 (4) tation forces and large tip radii is limited. In addition to the
theoretical arguments developed above, strong experimental

E,, E; and vy, v, are respectively, Young’s moduli and Pois- evidence towards the validity of the analysis above is that the
son ratios of tip and surface materials. For ferroelectric perresolution in PFM experiments can be as high-~as nm
ovskites, Young’s modulu&* is of the order of 100 GPa. using metal-coated probes with typical radius of curvature of
The elastic modulus of the tip can vary significantly depend-order of 50—70 nm, which clearly indicates dominant contri-
ing on the material used. For hard conductive coatings suchution of contact area to the measured PFM signal.
as TiN, W,C, and doped diamond, Young's modulus is of  Thus, for quantitative description of the fields in a ferro-
order of 400—1000 GPa depending on deposition conditionglectric material required for the analysis of the PFM spec-
therefore, tip deformation during the indentation process catroscopy and domain patterning processes under realistic
be neglected. For doped silicoBg;=107 GPatips and par- conditions, contributions from both the spherical part of the
ticularly for tips coated by conductive metals such as Au ortip and the contact area must be taken into account depend-
Pt (Ep,=78 GPa,Ep=168 GP3, the tip material contribu- ing on imaging conditions.
tion to effective Young’s modulus can be significant, particu-
larly for gold-coated cantilevers, resulting in effective in-
crease of contact area. IV. FIELDS IN THE WEAK INDENTATION LIMIT

The contact radius, is related to the indentation depth as
a=\WgR, or

whereE* is the effective Young’s modulus of the tip-surface
system defined as

In the weak indentation limit, contact area contribution to
the tip surface interactions can be ignoi€j,<C, in Fig.
3p \1B 13 1(c)], and the field distribution in the tip-surface junction and
a= 4E* R (5) inside the ferroelectric material can be analyzed using a
purely electrostatic sphere-plane model ignoring the me-
In PFM imaging, the load acting on the tip=k dy is  chanical effect of the tip and the electroelastic coupling in
exerted by the cantilever having spring constaat setpoint  the material. To estimate the electrostatic potential distribu-
deflectiond,. For typical imaging conditions, the setpoint tion inside anisotropic ferroelectric material in the rigid di-
deflection is~100 nm, and the spring constant of the canti-electric limit, we use the image-charge meté& The
lever k varies from ~0.01 to ~100 N/m. Consequently, image-charge distribution in the tip can be represented by the
imaging can be done under a range of loads spanning at leasét of image charge®, located at distances from the cen-
4 orders of magnitude from 1 nN to 14N. Note that the ter of the sphere such that
contact area is only weakly dependent on effective Young’s

modulus, which changes by no more tha®0% for differ- Q1= k-1 R Q (6a)
ent tip-surface material pairs, thus resulting only in minor T 12(R+d)—-r; -

deviations from rigid tip-elastic plane behavior analyzed be-

low. From Eq.(5), the ratio» of the tip radius to the contact R2

radius, as a function of tip radius for different loads, is ri+1:2(R+—d)—ri’ (6b)

shown in Fig. 2b). Shown for comparison are critical ratios
for k=100 andk=300. For small indentation forc€%0 nN), where R is the tip radius,d is the tip-surface separation,
the capacitive contribution from the spherical part of the tipQy=4m¢gRYV, ry=0, andV is the tip bias. The tip-surface
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1.4 7 10 Point Charge at =0
3
1.2 6 \\/ i‘l‘f:fecﬁl?;f et FIG. 3. (Color onling (a) Dielectric constant
1.0 Z b5 % s 10°4 > : dependence of tip-surface capacitance and effec-
g 08]— [4 é s tive charge-surface separatiqin) Potential dis-
:% h o ] % tribution' in the ferroelectric in th_e sphere-plane
» zZ o and point-charge models for different charge-
0.4 2 3 surface separations. Note the differences in the
0.21 S field distributions in the vicinity of the contact
10° 10" 102 10° despite identical asymptotic behavior.
(a) Dielectric constant ®)
capacitance i€4(d, k) V=2,Q; and for the conductive tip- 1 =
dielectric surface Sk =1-==> Q. (1)

RGS

* —- 1 n-1
Cy=4megR sinh By, (K—> (sinhnBy)™t, (7 . . .
Kkt 1 For large dielectric constants, the effective charge-surface

separation is much smaller than the tip radius of curvature,
where By=arccosl(R+d)/R). In the limit of small tip- reflecting the charge concentration near the tip-surface con-
surface separatioiGy converges to the universal “dielectric’ tact. The potential distribution in the ferroelectric far
limit, Eq. (1).442 For conductive surfacess— =, capaci- =100 calculated for sphere-plane and point-charge models
tance diverges logarithmically. Potential and field distribu-for Q=C4V is illustrated in Fig. ). It is clear that, forz
tions inside the dielectric material can be found using & R, the potential distribution follows Eq10); for small z

modified image-charge model as described by Kfele the exact form of Eq(9) must be taken into account to
adequately represent the potential distribution directly below
Q 1 the tip. The crossover from sphere-plane to asymptotic point-
Vi(p,2) = (8)  charge behavior occurs at distances comparable to the tip

2., a2
2meo(k + D \pt+(ri+2y-d-R) radius. Given the characteristic size of the tip of order of

10-200 nm, a rigorous description of the early stages of po-
larization switching phenomena in the weak indentation limit
necessitates the use of H®). This is particularly the case
for applications such as ultrahigh density ferroelectric re-
" cording in thin films, in which minimum achievable domain
Vi(p.2) =SV, 9) size (radius~20 nm (Ref. 8 is comparable to tip radius of
P = curvature. Similar behavior is observed in the strong inden-
tation regime, as illustrated in Fig. 4, where the crossover
Far from the contact arep, >R, the potential distribution ~l€ngth is now determined by contact radius.
is similar to that generated by a point cha@eC,V on the

where y=\ka3/ k11 and p is radial coordinate along the sur-
face. The total potential inside ferroelectric in the image-
charge model is

anisotropic dielectric surface Sphere 3nm
10° g ~rpomsrarzremeeene
Y 1 * //, 30 nm
Vielp.2) = , . (10) 5
2meg(k+ 1) \p? + (2y) S .

N\

10" Mechanical
A similar approximation was used in Ref. 38 to describe the
domain switching processes for the domain size larger than
the tip radius. For small separations from the contact area, ;
the point-charge approximation is no longer valid and a full 7
description using Eq98) and (9) is required. A simplified
description of the fields inside the material far from the tip- A
surface junction can still be obtained using an image-charge 10" 160 161 162 10°
model of chargeQ=C,V located at distancé abovethe
surface, whereh is a suitably chosen parameter. Simple
analysis of Eqs(6a) and (6b) indicates that the potential is £, 4. (Color onling Potential distribution inside the material
dominated by the image charges located close to the dielegz|culated in the weak indentation regime using sphere-plane model
tric surface. This behavior is illustrated in Fig@gdemon-  for tip radiusR=50 nm and in the strong indentation regime for
strating the dielectric constant dependence of tip capacitancgveral contact diameters calculated using the exact model in Sec.
and dimensionless charge surface separaBon,=h/R, de- v for PZT6b. Also shown is the electroelastic contribution to po-
fined as the first moment of the image-charge distribution tential due to the indentation force.

Potential (V)

Distance (nm)
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Provided the electrical potential distribution below the tip solutions in elementary functions, to distinguish the contri-
is known[e.g., Eq(9)], corresponding stress and strain fields butions of the bias- and stress effeciéle also note that their
can be reconstructed using isotropic Green'’s function as sudpoundary conditions contain an unclear statement that
gested by Feltert al,*” or calculated numerically using fi- =0 at the edge of the contact zofe=a): while correct for
nite element method$. These approaches provide approxi- the spherical and conical shapes, it is incorrect for the flat
mate description of electroelastic field structure in the weakpunch(moreover,p=a is actually a singularity point in this
indentation case, for which rigorous analytical solution tak-case, as seen from Table Il in Ref.)52
ing into account electromechanical coupling effects cannot Karapetiaret al?* have established the general correspon-
be obtained. Furthermore, the numerical analysis of the analence principle between the elastic and the piezoelectric so-
lytical solutions for the strong indentation case developedutions for transversely isotropic materials, and considered,
below illustrates the validity of these approximate ap-as an illustration, the problem of a circular flat rigid punch
proaches. on a piezoelectric half-space, under applied normal force and
titing moment. In the following section, this principle is
applied to obtain solutions in elementary functions for the
full fields inside the ferroelectric medium for the spherical
indentation. These solutions allow the contributions of the

Quantitative imaging of the electromechanical propertiedias- and stress effects to be differentiated. The asymptotic
of a ferroelectric surface requires good contact between theehavior of the fields far from the contact area is also deter-
tip and the surface so that the surface potential on the ferrgnined.
electric below the tip is equal to the tip potential, minimizing
the dielectric gap effect in the contact area. At the same time,
the contribution of the spherical part of the tip not in contact
with the surface to the capacitance can usually be neglected We now consider a transversely isotropic piezoelectric
[Cd<(Cg§+C(‘]1)‘1 in Fig. 1(c)], as discussed in Sec. Ill. In half-spacgwith the planes of isotropy parallel to the bound-
this strong indentation regime, the description of the fieldary) pressed upon by a spherical Hertzian indenter. Here, we
distribution below the tip requires both electrostatic and elecutilize the general elastic-piezoelectric correspondence prin-
troelastic coupling effects be taken into account to adCiple (Karapetianet al, 2002 (Ref. 24 that expresses full
equately describe the PFM imaging and polarization switchpiezoelectric fields in terms of the purely elastic ones for the
ing mechanisms. The importance of such coupling wagorresponding elasticity problem. The purely elastic result
demonstrated by Abplanalp for stress-induced high-ordefor the stated problem was given by Hangd992.>*
switching processé$.In this regime, description of the PFM  Boundary conditions in the considered piezoelectric prob-
contrast mechanism is similar to the one for the indentatioem are as follows. The vertical displacemant electric
of a piezoelectric material by a biased conductive indentorpotential ¢, shear stresses = o,,+io, normal stressr,,
Summarized below are the exact results for the full fieldand the normal component of the electric displacenigrin
distributions inside the transversely isotropic piezoelectridhe planez=0 are u,=w(p,$)=Wo—Bp* and ¢=4, for 0
half space subjected to spherical indentation. <p<a, 0,,~0, and D,=0 for p>a, and 7,=0 for O
< p< o, wherea is the radius of the contact zona is the
displacement of the rigid sphere, apde are polar coordi-
nates. The prescribed vertical displacement of the boundary
wW(p, @) is determined by the shape of the indenter. For

In the last decade, substantial progress, based on advancgsherical indentation3=1/2R, whereR is the radius of cur-
in potential theory??3 has been made in obtaining closed- vature of the tip. The electric potentig} is constant and is
form exact solutions in elementary functions for a number ofdetermined by the tip potential. From geometry of the con-
3D crack and contact problems in transversely isotropidiguration,wy=2a?8 so thatw(p, ¢)=(2a?-p?)/2R.
piezoelectric solid4®*° These results are relevant for those  Boundary conditions in Hanson’s solution are given in
contact problems that model the PFM imaging mechanism inerms of the prescribed force on the punch, rather than pre-
the strong indentation regime. The following works shouldscribed displacement. Therefore, we first obtain the piezo-
be mentioned in this connection. Chen and Dinlgave de-  electric solution corresponding to Hanson’s solution. Then,
rived electroelastic fields for the spherical punch problemwe find a solution to the piezoelectric boundary value prob-
however, their results are given in a form that does not extem formulated above by using the “stiffness relation” be-
plicitly identify the combinations of electroelastic constantstween the pairdisplacementn,, electric potential/,) and
in whose terms the fields are expresgtitbse combinations the pair(force, chargg
are identified in our analysis; see the text to foljow the In the correspondence principle, the piezoelectric analogs
work of Giannakopoulos and Sure¥hand a follow-up work  of the terms occurring in purely elastic solutions are identi-
of Giannakopoulo§? three punch geometries were consid- fied in the “Correspondence Tables” 1 and 2 of the work of
ered: spherical, conical, and circular flat. In these worksKarapetianet al?* In the context of the punch problem,
electroelastic fields in the plaze0 were given in the closed Table 2 is relevant.
form. For the full fields, integral representations were given Application of the correspondence principle yields the
(results in this form make it more difficult, as compared with following solution of the boundary value problem stated

V. POTENTIAL AND FIELD IN THE STRONG
INDENTATION LIMIT

B. Explicit solution of the problem of a spherical Hertzian
indenter on the piezoelectric half-space (full fields)

A. Existing results on the contact problem
for piezoelectric materials
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above. For convenience, we present it as a superposition ahargeQ (required to maintain prescribed displacemeam,
the two subproblemgiA) the subproblem with purely me- and potentialy, and obtained by integrating normal stress,

chanical boundary conditions o,, and electric displacemenD),, at z=0 over the contact
282 - 2 region to wy and ¢,. Integration of the stress components
u,=W(p, ) = P 0O<p<a (12) O'ZZ:—2C1£(7TZR)(a2—p2)1/2 in  subproblem (A) and
2R 0,=—Cs/ (1) (a2- p?)~Y2in subproblemB) over the con-
tact area yields
0,,=0, p>a (13 - . . .
4a°C, 2ayyC; 4daw,C,; 2ayCy
P= + = + . 21
7,=0, Osp<x (14) 37R T 37 (2Y)
and zero electric boundary conditions a8} the subprob-  Similar integration of the electric displacement components
lem with purely electrical boundary conditions D,=2C,/(7*R)(a®-p»*? in subproblem (A) and D,
U=t 0<p<a (15) =z/;OCZ((ﬂ2)(a2—p2)‘1’2 in subproblem(B) over the contact
area yields
D,=0, p>a (16) 4a°C, 2ay,C, 4aw,C, 2ayC,
. . Q= + = + . (22
and zero mechanical boundary conditions. 37R T 3w

The solutions for normal displacement and electric poten- . . .
tial of subproblen(A) are as follows: We further find from the results presented in Appendix A that

C,=-C, and therefore the electromechanics of the spherical

3 * . . - . . .
H* 2 m . . . . [ indentation is described by the following set of equations:
u,=-—, —(N/C +L Cz){(2a2+22j2—p2)arcsir<—l> . .
RIS v P oo 4a%C; , 23ueCs 23
312 — 222)(|2 — g2)112 ~ 3R T
+ ( 1j a )a( 2j a ) , (17)
4a°C;  2ay,C,
s Q=- 3—R3 + M, (24)
* I_(L * _k * K 2 222 2 r('_ll) m i
== - N + L 2 + P * * * .
v WRE_ Y, (NiC+L;C))| 287+ 27 -~ pr)arcsi p wherew,=a?/R and constant€;, C,, andC, are material-
5 T dependent coefficients defined in Appendix A.
| (813~ 2a0(13; — &) (18 Note that the stiffness relations E¢81) and(22) derived
a here have the same structure as the ones of Giannakopoulos

. . _ . and Suresh? but contain numerically different constants. We
where corresponding constants are defined in Appendix Angjieve that our relations are correct since they have been
The solutions of subprobleri) are as follows: verified (by rather lengthy calculationgo be in agreement

2yoH* iy s [ a with independ_ently _obtaineq reSl_JIts of C_he_zn and Dihg.
u,= ——2 —*L(Nj CstL C4)arc5|r<—>, (19 Moreover, a single indentation piezocoefficient relates the
T =17 12 indentation force and potential in E¢R3) and charge and
displacement in Eq24), similarly to the direct and inverse
|_<j_ e e s s [ a piezoelectric effect in the uniform field case.
#(N;C3+L;Cparcsin = |, (20) The structure of Eqs23) and (24) allows a straightfor-
Y 2 ward interpretation by considering physical meaning of the
where corresponding constants are defined in Appendix Aindividual terms. From Eq23), the relationship between the
Full solutions for other field components are presented irindentation depthv, and force for zero tip bias/,=0 can be
Appendix B. Similar solutions for the flat punch and conical found asw,=(37P/4C})%® R™¥3. This is equivalent to the
indenter corresponding to other limiting cases of tip geom<lassical Hertzian indentation, where the effective Young's
etry are published elsewhet. modulus corresponds to the materials constants for aniso-
tropic piezoelectric€€* - C;/w. Thus, constanC; can be
V1. STIFFNESS RELATIONS AND PIEZORESPONSE identified agndentation elastic stiffnes&or a large indentor
FORCE MICROSCOPY MECHANISM radius of curvatureR— = (flat contac}, the second term in
The theoretical approach outlined in Sec. V yields full Eq. (24) relates indenter charge to the contact areaQas
fields under the indenter, expressed in elementary functions:2a,C,/ . This can be compared with the capacitance of
In this section, we analyze stiffness relations for the sphericdhe disk on the dielectric substrat€,=4«eqa, providing
indentation and the relation to the PFM contact mechanic#he correspondence betweey and the effective dielectric

3*
2yH*
_l/foz

n =1

lp:

and imaging mechanism. constant, kef;, as keif = Cy/2m. Thus, constanC, can be
_ _ o identified asindentation dielectric constanEinally, the sec-
A. Stiffness relations for spherical indenter ond term in Eq.(23), P=2ay,Cy/ 7, and first term in Eq.

The solutions in Sec. V imply the following stiffness re- (24), Q:—4a3C;/(377R), describe the electroelastic coupling
lations that interrelate applied forcB and concentrated in the material and allow the electrical response to the me-
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FIG. 5. Sensitivity function of the coupling coefficients in stiffness relations E2@. and (24) in the (c;j,e;, ;) and (s;,d;j, &)
representations calculated for PZT6b.

chanical indentation and mechanical response to indentehree coupling coefficients which are complex algebraic
bias to be estimated. The constaly is thus identified as functions of 9 of the 10 electroelastic constants for trans-
indentation piezocoefficient versely isotropic piezoelectric medium. Based on their struc-
Interestingly, electroelastic coupling in the spherical in-ture, the coupling coefficients can be interpreted as indenta-
dentation problem closely resembles that for the uniformtion elastic stiffness, indentation piezocoefficient, and
field. In both cases, the same electromechanical constant dedentation dielectric constant of the material. Additional in-
scribes the coupling between the charge and the force and tisgght into the mechanism of spherical indentation can be ob-
displacement and the potential. For the piezoelectric materidhined from analysis of relative contributions of different
in a uniform electric field, the deformation is related to theelectroelastic constants to the coupling coefficie(ifgs
potential ash=ds3¢; and charge is related to the force as Electroelastic properties of the solid can be described ei-
Q=dg3P with the same proportionality coefficiertts. Inthe  ther in terms of elastic complianceg [m?/N], piezoelectric
spherical indentation problem, for the weak electromechanieonstantsd; [C/N or m/V], and dielectric permittivities
cal coupling, the load can be related to the contact radius ane|; [F/m], or in terms of elastic stiffness constants
penetration depth a®=4aw,C,/(3m). The ele*ctroglastic cij [N/m?], piezoelectric constanty [C/m? or Vm/N], and
coupling term in Eq(23) then becomesvy=(3C5/2C))iy.  dielectric permittivitiess;; [F/m]. These sets of constants are
Similarly, the first term in Eq(24) becomesQ=-(C;/C,)P. interrelated through the following relationships in the Voigt
Thus, C5/C; is a single piezoelectric constant describing notation:dy;=e,s;, €=0nC;j, Sj=C;", andc;=s;™ In order
coupling between the force and the charge and the potenti&b clarify the relative contributions of different electroelastic
and displacement, similarly to théy; in the uniform field constants to coupling coefficients, a sensitivity function of
case. the coupling coefficientpf(, is defined as the logarithmic
To summarize, the stiffness relations for the spherical piderivative ofC*k with respect to selected electroelastic con-
ezoelectric indentation can be interpreted as a sum of elastistantf;;, S(f;;)=41In C’;/5In fi;. Numerically, the sensitivity
electroelastic, and electrostatic contributions. Using the anakunction is calculated as
ogy with purely elastic and rigid dielectric solutions, corre-
sponding coupling coefficients can be interpreted as the in- C*k(f” = 1_01in].) -C*k(fij = o_gqﬁ)
dentation elastic stiffnes@nalogous to Young’s modulus in Sdfij) = 0.02C(f; = ) ' (29
planar casg indentation piezocoefficieganalogous tals in RN
planar casg and indentation dielectric consta@nalogous where f;; is a selected electroelastic constant dfjdis a
to e3zin planar casgof the material. As in the uniform field | sference value for that constant. A positive valuesdf;)

case, the same coefficient desc_ribes the coupling between _tlﬂﬂplies that a higher constant value favors coupling, while
charge and the force and the displacement and the potentl%r negative values of(f;) the coupling coefficient de-

illustrating the similarity between the two geometries. At thecreases with the constarg(f;)) ~0 indicates that the cou-

?frzgteiggzeéfﬂ:ﬁecigﬂ'ng coefficierfiar seare now complex Pling coefficient is independent of that property. Sensitivity

plete set of electroelastic constants o . . * . .

the material. of coupling coefficientsC, for polycrystalllr_we PZ_T6b in the_
(cj, &j, &j) and (s, dj, ;) representations is shown in

Fig. 5. The indentation elastic stiﬁness’;, is dominated by

the elastic stiffnesses;;, the dominant contribution coming

The fields given in Sec. V depend on the material properfrom the cz3 and c,,. In the (s, d;j, sj) representationci
ties in a rather complex way. The stiffness relations that redecreases for high elastic compliances, the dominant contri-
late the indentation depth, load, charge and tip bias includéution coming froms;; andsy,. CZ only weakly depends on

B. Effect of materials properties on coupling coefficients
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piezoelectric and dielectric constants, in accordance with thbe arbitrarily small corresponding to zero electromechanical
analogy ofC; with the effective Young’s modulus for the coupling, for real material the maximum value gfis lim-
planar case. ited. Figure @a) illustrates that fory=1 (real material con-
The indentation piezocoefficierty, is determined prima-  tribution of piezoelectric coupling to overall elastic proper-
rily by the piezoelectric constants; ande;s and dielectric  ties is ~10% for BaTiQ and 6.5% for LiNbQ.
constantse;; and s, While it is virtually insensitive toe;,  Interestingly, both fory—0 and fory— o indentation elas-
and elastic stiffnesses;;. The indentation piezocoefficient tC stifiness adopts the finite value; however, this value is
increases withess, €5, andess and decreases withy,. This determined by different combination of elastic constants of

can be understood from the analysis of the field dlstr|but|onlterlals Similar analysis can be performed for indentation
below the indenter. For larges, the potential is concen- piezocoefficient and indentation dielectric constant, as illus-

trated below the tip along the axis, thus increasing the Uated in Figs. @) and Gc). As expected, the indentation
electromechanical coupling, while for large,, lateral piezocoefficient is almost linear if. At the same time, the

. X ) - indentation dielectric constant is virtually independentyon
spreadlng of the field reduces the coupling coefficient. In thefor y—0 and is determined solely by; in this limit. For
(sj, dij, &) representatlon the contributions of all electro-

vy—oo the indentation dielectric constant is determined pri-
elastic constants tg; are comparable.

marily by e; and diverges a§2~ ¥2. For y=1, the contri-
The indentation dielectric constan, is determined pri-  pytion of piezoelectric coupling to overall dielectric proper-
marily by dielectric constants;; and e33, with other elastic

ties is ~24.6% for BaTiQ and 11.4% for LiNbQ. This
and piezoelectric constants providing only minor contribu-scaling analysis allows the behavior of other characteristic
tions. This can be understood from the comparison with theyroperties to be predicted. For example, the maximal elec-
rigid dielectric problem, for which the effective dielectric trostatic potential in the material in mechanical problem is
constant for the point charge is the geometric average of thgnear in indentation piezocoefficient and inversely propor-
principal values of dielectric constant tenseg;=Ve11e3a tional to indentation dielectric constaniya~hCs/C,.

In order to obtain further insight into relative contribution From Figs. ), 6(b), 6(C), Ymax~ 7Y for y—0 and ¢iax
of elastic, dielectric, and piezoelectric constants of materiak- o1 for y— o, as illustrated in Fig. @)). This behavior is
to the coupling coefficients in Eq&3) and(24), the scaling  counterintuitive, since simple analysis predicts that potential
analysis of elastic, piezoelectric, and dielectric contributiongyenerated in the material will increase linearly with elecro-
was performed using formulas in Appendix A. To estimatemechanical coupling. Note that the maximum potential that
the contribution of piezoelectric constarggto the indenta-  develops inside the material during the indentation is limited,
tion elastic stiffnes<C}, that latter was calculated as a func- and “conventional” materials such as Bagi@nd LiNbG;
tion of parametery for material with a fictitious set of elec- correspond to nearly optimal values of coupling coefficients.
troelastic constant&c;;, y €;, &;;), where the original set of Similar analysis can be performed for indentation elastic
electroelastic constants;;, &;, &) corresponds to BaTi©  stiffness, indentation piezocoefficient, and indentation di-
and LiNbO;, as illustrated in Fig. @. Note that whiley can  electric constant by scaling elastiy c;, &;, &;;), and di-
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electric(cjj, &;j, v &j), properties, as illustrated in Figsay, tion of elastic, electrostatic, and electroelastic coupling terms
7(b), 7(c). As expected, indentation elastic stiffness scalego the tip potential and force.

linearly with elastic constants and is only weakly dependent The relative contributions of indentor potential and pen-
on dielectric constants. The indentation piezocoefficiengtration depth to force and charge can be determined from
adopts finite limiting values both foy—0 and fory—o.  the stiffness equations. From E@3) for small tip potential,
Finally, the indentation dielectric constant shows nontrivialthe force is primarily determined by the indentation depth
scaling asC,~ y* for y—0 andC,~ const fory— for ~ (elastic term dominatgswhile for large tip potentials, the
the mechanical case am~const fory—0 andC2~ v for electroelastic contribution to the force is Iarge*r. Th*e bound-
y— o for the dielectric case. The resulting behavior of maxi-ary between the two regimes is given y=2C,/(3C3)wp.
mum potential inside the material is illustrated in Figd7 ~ Similarly, from Eq.(24) for small tip potentials, the charge is
The scaling behavior for effective indentation properties isdominated by the electroelastic coupling, while for larger tip
summarized in Table I. potentials the charge is determined by the electrostatic prop-
erties of the tip-surface junctions. The boundary between the
two regimes isyjp=—2C,/(3C,)Wy. From the magnitudes of
the coupling coefficients for ferroelectric materiélable 1I)

The stiffness relations relating the indentation depth, incalculated using formulas in Appendix A, the ra@/Cy is
dentation force, electric charge, and indentor potential can biypically two orders of magnitude larger th&/C,, giving
immediately used for the description of the PFM imagingrise to the plot in Fig. @). In region | for small tip biases,
mechanism, and the determination of the relative contributhe force is dominated by the penetration deflastic cou-

C. Effective piezoresponse amplitude and dielectric constant

TABLE |. Scaling behavior of indentation electromechanical constants.

(YCij,&j,Eij), (Cijxye”'vsij)a (Cijﬁj,)’a‘ij),
Scaling parameter v—0 y— 0, v—0 y— 0. y—0 y— 0,
Indentation elastic stif'fnesS;*1 y y const const const const
Indentation piezocoelectric const const vy vy const const
constantC,
Indentation dielectric constant, vt const const Y const b%
Cy
Maximum potential max Y const Y y1 const y1
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bution of electrostatic, electroelastic, and elastic components
to the electrical and mechanical characteristics of the tip and

Material C;, 10" N/m? Cs, N/Vm C4, 10°C/mV electroelastic fields in the material in PFM.

_ The relationship between indentation depth and tip bias
BaTiOs 4.03 15.40 48.54 for a given indentation force required for the description of
LiNbO3 6.47 7.52 3.11 the PFM imaging mechanism can be found from the stiffness
LiTaO; 7.80 8.80 2.81 relation Eq.(23). This solutions for PZT6b for a tip radius of
PZT6B 3.60 25.60 23.63 curvatureR=50 nm and several indentation forces are illus-

trated in Figs. @a) and 9b). Equation(23) generally has one
solution for positive biases and one or three solutions for
pling), and the tip charge is determined by electroelastic counegative biases. In the latter case, two emerging solutions
pling. In this case, the elastic response of material can beorrespond to negative contact areas and are physically
controlled by the load applied by the cantilever; however, theneaningless. Note that for small indentation forces and large
electrical field(e.g., relevant to the polarization switching positive biases the penetration depth, contact area, and
processesis primarily determined by the forcgelectrome- charge become effectively zero, since the indenter is effec-
chanical couplinyg rather than tip bias. In region Il for mod- tively pushed out from the material because of the inverse
erate tip biases, the force is still dominated by the penetratiopiezoelectric effect. For large indentation forces and small
depth(elastig, but the tip charge is now determined prima- biases, the elastic contribution to the indentation depth domi-
rily by the electrostatic term. In this case, both elastic re-nates and the indentation depth is linear in the tip bias.
sponse of material and electrical field distribution can be For small modulation amplitudes, the PFM signal is
controlled independently by the applied load and bias. FiApiezc=dW/dip, where the functional dependencevaf on
nally, in region 1lI for large biases the penetration depth isthe bias is given by Eq23). Shown in Fig. ) is the bias
determined by the electroelastic term. In this case, the eleglependence of the piezoresponse amplitude for polycrystal-
trical field distribution can be controlled by applied tip bias; line PZT6b calculated for a tip raditl®=50 nm for different
however, the electroelastic contribution to the stress anthdentation forces. For small indentation forces, the response
strain field dominates and the latter cannot be controlled inamplitude is zero for large biases. This corresponds to the
dependently by applied load. zero indentatiomwg, in which case the electromechanical re-

The plot in Fig. §a) allows the dominant coupling mecha- sponse of the material effectively prevents the penetration of
nism to be related to the experimental conditions. Experithe tip. Note that in this case the description of PFM mecha-
mentally accessible are the indentation force and tip biagjism requires taking into account the electrical field pro-
rather than the indentation depth, and the correspondencticed by the spherical part of the tip not in contact with the
between regimes in Fig.(8 and experimental conditions surface (crossover to weak indentatipnas analyzed by
can be established using stiffness relations(28), as illus-  Feltenet al*” For large indentation forces, contact geometry
trated in Fig. 8b). In a realistic PFM experiment the contact is only weakly affected by the electromechanical response.
force is limited by the capacitive tip-surface interaction andin this case, where the dominant contribution to the load is
capillary force asP>Fqp+ F.=CV2+F,, limiting the range  mechanical(Ppec> Ppie,d, the indentation depth is related
of accessible bias-indentation phase spiddevertheless, to tip bias aswy(V) =wy—VCs/C,. Hence, the effective elec-
the plot in Figs. ) and &b) illustrates the relative contri- tromechanical response measured by PFMs,=C5/Cy,

Region 111

10" -
< >
- < 10
2 8
= 5
= 210" i
= =
L ! 10724 e :
e Region 1 L Region I
10° 2 A 0 1 10° -1 :’0’ 1 2 3 4
10° 107 10 10 10 10 10 10 10 10
() Indentation depth (nm) (b) Indentation force (nN)

FIG. 8. (a) Relative contributions of elastic, electroelastic, and electrostatic components to the total force and charge in stiffness relations
Egs. (23) and (24) for BaTiO; for spherical indenter witiR=50 nm. In region |, the indenter charge is dominated by the electroelastic
contribution and the force is determined by the elastic contribution. In region Il, indenter charge is dominated by the electrostatic contri-
bution and the force is determined by the elastic contribution. In region Ill, indenter charge is dominated by the electrostatic contribution and
the force is determined by the electroelastic contributibin Response diagram as function of indentation force and tip bias.

184101-11



S. V. KALININ, E. KARAPETIAN, AND M. KACHANOV PHYSICAL REVIEW B 70, 184101(2004

P 15T —
S -~ T —e
O g
5 e
59 2
5 £
.2 -
g 21 g
font S [=)
5} el o
T 1R Tl Q
= SSse. 0 Tereeel_ FIG. 9. (a) Bias dependence of
. = ST - indentation depth(b) contact ra-
-10 -5 0 5 10 b dius; (c) piezoresponse amplitude;
@ Tip bias (V) (b) Tip bias (V) and (d) effective dielectric con-

stant for the PZT6b and tip radius

1204 R=50 nm for indentation force
1004 10 nN (solid), 100 nN (dasb,
—_ 1 uN (dash dot, and 10uN
2 804 (short dash
g
- 604
2
g 401
]
& 20
0-
(© -10 -5 0 5 10 (d) -10 -5 0 5 10

Bias (V) Bias &%)

in agreement with phenomenological arguments developethechanical coupling to dielectric properties. Noteworthy, the
in Sec. VIA. A similar analysis can be performed for the bias dependencies 84,.,,and . are functionally identical,
effective dielectric constant defined ag:=Q/(4aey), where  stemming from the structure of the stiffness relations.

a is the contact radius. Bias dependence of the effective di- To determine the contribution of different electroelastic
electric constant is illustrated in Fig(d. The indentation constants to the piezoresponse amplitude, the sensitivity
dielectric constant in this case is bias dependent due to tHenction for piezoresponse amplitudg,;.,, was calculated
change in contact radius and relative contribution of electroas shown in Fig. 10. In theg;; , €, €j;) representatior;e,,is

0.8 0.8-
0.4 0.4
2
z 2
£ 0.0 .z 0.0
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A 5
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FIG. 10. Sensitivity function of the piezoresponse amplitdgg,,in the (c;j, ;&) representatioria) and(s;,d;, s;j) representations
(b) calculated for PZT6b. Normal component of electric field is related to the vertical strain component by piezoelectric dgn&tarin
the spherical indentation geometry, an additional contribution to response amplitude originates from the lateral component of electric fields
related to the vertical strain component by piezoelectric constangd). The ratio between the lateral and vertical field components is
determined bye,41/e33, thus rationalizing the dominant contributions of these constants to the sensitivity functidgegr
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dominated by the elastic stiffnesses andc,,, piezoelectric  the indentation is performed within a single-crystalline grain.
constant®ss, €;5 and dielectric constants; andess. Piezo-  Therefore, in general, a quantitative description of the PFM
response decreases with elastic stiffnesses and increases withaging mechanism requires the effective piezoresponse am-
piezoelectric constants, as expected. In(#ed;;, ;;) repre-  plitude for spherical indentation to be calculated using the
sentation, piezoresponse is clearly dominated by the piez@xact formulas in Sec. V.
electric constantsl;; and d;5 and only weakly depends on A similar analysis can be performed for the electrostatic
elastic compliances. Similarly to the indentation piezocoeffi-field distribution below the indenter and is required for the
cient, C,, the piezoresponse amplitude increases witftand  description of bias-induced phenomena in ferroelectric mate-
decreases witla;;. This behavior can be readily understood rials. As can be expected from the geometry of the problem,
from the schematics in Fig. 10. Normal component of elecfor large separations from the contact area, the potential dis-
tric field is related to the vertical strain component by piezo-tribution is reduced to that produced by a point charge. For
electric constantlys, as shown in Fig. 1@). In the spherical weak electromechanical couplirigegions Il and Il in Fig.
indentation geometry, an additional contribution to respons®), the indenter charge is determined by the capacitance of
amplitude originates from the lateral component of electricthe contact area, i.e., coefficie@j, in the stiffness relations
fields related to the vertical strain component by piezoelecEq. (24). Moreover, it can be expected that even for the
tric constantd,s as shown in Fig. 1@). The ratio between deviations of the contact geometry from spheric@], will
the lateral and vertical field components is determined bylescribe the capacitive contribution to the effective tip
e11/€35 thus rationalizing the dominant contributions of charge provided that the contact area is knd%Rrom the
these constants to the sensitivity function &y, sensitivity function in Fig. 5, the indentation dielectric con-
To establish the correlation between the measured piezstant,C,, is determined primarily by dielectric constartsg
response andl;; of the material, the calculated piezore- andess This is in agreement with the expected behavior in
sponse coefficient is compared with the piezoelectric conthe rigid electrostatic problem, in which the dielectric re-
stant for a set of polycrystalline lead zirconate-titar®2T)  sponse to the point charge is described by the effective di-
materials and several single-crystal ferroelectric materials aslectric constante=\eq1e33, the sensitivity function for
shown in Fig. 11a). The numerical values for the corre- which,Ssll(\s’slleg,g):l/Z, isconsistent with Fig. 5.
sponding electroelastic constants are obtained from Refs. |llustrated in Fig. 11b) is the correlation betwee@fl and
57-59. Note that for the polycrystalline PZT materials effec-y¢,,e4,. Note that both for polycrystalline and single-crystal
tive piezoresponse is almost a linear functiondgf, Aye,o  materials the dielectric properties are described by a linear
zdg_g. At t_he same time_, for single-crystal materials such aselationship CZ/ZW:(1.20310.02\5'811833. This analysis,
BaTiO;, LiNbOg, and LiTaQ the piezoresponse amplitude combined with the scaling analysis in Sec. VI B, illustrates
significantly differs fromdss. This can be readily understood that the contribution of electromechanical constants to the
from the fact that the sensitivity function fé¥,e,oShown in  dielectric properties of the system is of order of 10%-20%,
Fig. 10 is strongly affected bys and dielectric constants. thys providing an estimate of the relative error in the analy-
For the single-crystalline ferroelectrics, strong anisotropy ofses of PFM contrast using Green’s functions and FEA meth-

piezoelectric and dielectric tensors results in a nontrivial repds coupled with rigid dielectric solution for electrostatic
lationship betweeme,, and dss. In comparison, in poly-  field in the materiaf’48

crystalline materials the dielectric and piezoelectric tensors

are more symmetric due to Fhe averaging betwgen Fhe grains VIl. STRUCTURES OF THE FIELD

with different crystallographic orientation, resulting in good

correlation between piezoelectric responses in the spherical The solutions for the piezoelectric indentation problem

and planar geometries. It must be noted that while a lineagiven in Sec. V provide explicit expressions for elastic and

relationship betweed;; and A, for polycrystalline mate-  electrical fields inside the material. Because of the linearity
rials applies for the macroscopic indentation, in which theof the solution, relative contributions of the mechanical and

contact radius is larger than the average grain size, in thelectrical indentation can be considered, allowing separating
typical PFM experiment the small contact area implies thaforce- and bias-induced phenomena in PFM. Analysis of the
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FIG. 12. Two-dimensional spatial distribution of the electrostatic pote@@jab), normal displacemerit),(d), normal stresse),(f), and
electric displacemen(g),(h) in the electricala),(c),(e),(g) and mechanicalb),(d),(f),(h) subproblems for contact radias=3 nm, tip radius
of curvatureR=50 nm, and tip potentiaVy=1 V for BaTiO;. These conditions correspond to indentation fdPee92.44 nN.

tip-induced switching phenomena in PFM requires knowl- Displacement and potential distributions below the tip for
edge of the field distributions both below the tip and at thetip radius R=50 nm, contact area=3 nm, and tip bias/,
large separation from the contact zone. From the geometry af1 V (corresponding to indentation force 6f100 nN, de-

the problem, it can be expected that for large separationgending on materials systenfor BaTiO; and LiNbO; are
from the contact area asymptotic field behavior can be reHlustrated in Figs. 12 and 13. Note that for the subproblem
duced to the point-charge model, and the relevant paramete¢B) with purely electrical boundary conditions, the potential
and applicability limits are determined. At the same time,attains maximum value immediately below the tip and
description of the early stages of the domain nucleation proslowly decays for large tip-surface separation. The shape of
cess in which domain size is smaller than the contact radiuthe potential distribution is determined primarily by the an-
requires field distributions directly below the tip, since theisotropy of the dielectric constant tensor, as can be clearly
use of the point-charge approximation in this case will resulseen from the comparison of the potential distributions for
in the physically meaningless singularities in the field distri-BaTiO; and LINbG;. In comparison, the potential in the sub-
bution. problem(A) with purely mechanical boundary conditions is

F max

(c) an.\- =3 pm (C) Fma\' =0.5 GPa (g) qux =0.1 C/nlz F/m’n

Frwx =02 nm (D Fuax=10GPa fh)  Fpnu=0.1C/m’

FIG. 13. Two-dimensional spatial distribution of the electrostatic pote(djdab), normal displacemerit),(d), normal stresge),(f) and
electric displacemen),(h) in the electricala),(c), (e),(g) and mechanicalb),(d),(f),(h) subproblems for contact radias=3 nm, tip radius
of curvatureR=50 nm, and tip potentiaV’,=1 V for LiNbO;. These conditions correspond to indentation foPeel48.3 nN.
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zero directly below the tip and attains maximum value at gplacement distribution in subproble(®) is zero at the sur-

certain depth. The maximum potential value in this case igace due to the choice of boundary conditions and attains
determined by the strength of the electromechanical couplinghaximum value in the material. Note that close similarity
in the material, as discussed in Sec. VI B. Displacement disexists between the shapes of displacement distribution in
tribution below the tip in subproblerfd) is maximum for  subproblem(B) and of potential distribution in subproblem
p=0 andz=0 and decreases with radial and normal dis-(A).

tances, as expected for the spherical indenter geometry. Dis- The normal stressr,, distribution below the indenter for
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subproblem(B) has a well-known square-root singularity at spatial extent of the electromechanical fields inside the ma-
the perimeter of the contact area. A similar singularity existderial is the contact radius, related to the tip radius of curva-
for the normal component of the electric displacement vecture and indentation force through stiffness relation 4).
tor, D,. At the same time, in subproblei@®) there is no The field behavior as a function of radial coordinate for
singularity at the circumference and both stress and electriseveral ferroelectric materials is illustrated in Figs. 16 and
displacement attain maximum value below the(p-0 and  17. Shown in Fig. 1@) is the potential distribution in the
z=0) and decay rapidly with separation from contact area. electrical problem. Note that this distribution is material in-
The field behavior as a function of depth for several ferro-dependent, in agreement with that presented in Table IV.
electric materials is illustrated in Figs. 14 and 15. This be-Shown in Fig. 16b) is lateral displacement which adopts
havior is consistent with the 2D plots illustrated in Figs. 12maximum value at the edge of contact area. By definition,
and 13. Note that the potential below the tip decays muclthe normal displacement is zero. Both normal stress and
faster for BaTiQ than for other more uniform ferroelectrics, electric displacement have square-root singularities at the
resulting in the smaller probing depth in the PFM experimentdge of contact area, as shown in Figs(cléand 16d).
[Fig. 14@)]. At the same time, the displacement distribution Corresponding behavior for subproblé®) is illustrated in
below the tip is relatively insensitive to the materials systemFig. 17. Note that, similarly to the potential in subproblem
since it is determined primarily by the anisotropy of the elas{B), normal displacement in subproblegi) is material in-
tic stiffness tensork;; [Fig. 14b)]. Note that the solutions dependen{Fig. 17a)]. Corresponding behavior for lateral
presented in Figs. 14 and 15 correspond to the defined straifisplacement is illustrated in Fig. @. Both normal stress
boundary conditions, and the difference in materials properand electric displacement are continuous at the edge of con-
ties will be reflected in the difference in the indentation forcetact area and identically zero outside the contact area, as
required to achieve this level of indentation. Potential distri-illustrated in Figs. 1{) and 17d).
bution in subproblem(A) and displacement distribution in A prominent feature of the field distributions in Figs. 14
subproblem(B) are shown in Figs. X4) and 14d). For the  and 15 is that nontrivial behavior persists on a length scale
chosen experimental conditions, the electromechanical fieldsomparable to the contact radius. For distances larger than
below the tip are dominated by the direct contributions fromthe contact radiug> a, the field distribution quickly adopts
the tip bias and load, the terms due to the electromechanictihe corresponding asymptotic power law behavior.
coupling being significantly smallefregion 1l in Fig. 8.  Asymptotic behavior of relevant field quantities in radial and
However, electromechanical coupling effects are linear in thewormal directions and its dependence on indentation param-
tip bias and indentation depth. Therefore, relatively smalleters is summarized in Tables Il and IV. Note that for both
changes in the experimental conditiqparticularly tip biag  subproblem(A) and subproblengB) displacement and po-
can change the field distributions so that coupling terms wiltential decay as %/ similar to the point-charge case. The
dominate the direct contributiorgstrong coupling It should  magnitude of the charge due to the mechanical contribution
also be noted that the relevant length scale that determinés cubic in the contact radius. For the weak electromechani-
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cal coupling, it implies that it is a linear function of inden- force and charge magnitudes including elastic, electric, and
tation force and tip radius. In comparison, charge magnitudelectroelastic coupling effects can be determined using stiff-
due to the tip potential is a linear function of bias and contachess relations Eq$23) and(24). This behavior is illustrated
radius, making it a much weakgt function of the load and  in Fig. 18a) representing a 2D plot of the ratio of the poten-
tip radius. This simplified analysis clearly predicts the domi-tial distribution below the indenter for BaTiOcalculated
nant trends in the PFM experiment for varying experimentalusing the exact solution E¢R0) and rigid dielectric solution
conditions such as load and indenter bias. Eq. (8), with the point-charge magnitude calculated from the
Interestingly, the crossover to the power law behavior carstiffness relation Eq(24). Potential distributions below the
occur at distances much smaller than the indentation radiusip differ by less than 50% for separations from the tip-
For example, the electric potential due to tip bias adopts surface junction smaller than the contact area. Similar behav-
1/z distance dependence at separations as smalla8a.  ior for the ratio of displacement field,, calculated from the
This implies that for separations from the indentation zoneexact Eq.(17) and from the Green’s function for the point
exceeding the contact radius, the indenter can be modelddrce for transversely isotropic mateféis illustrated in Fig.
with a very good accuracy as a point charge or point forcel8(b). As for the electrostatic field, the ratio between the
considerably simplifying the description of the bias- andpoint force and exact solution approaches a value close to
stress-induced phenomena. Relevant parameters such gty for very small separations from contact. Note that in

TABLE Ill. Asymptotic field behavior for subproblerd).

Function p=0,z— z=0, p—, ¢=0

u 0 2H* / mR2a%/3p3 %, (NjC)+L;C))
u, —2H* / 7RE, my /9 (N]C +L;C)) 283/ 3z 1/ wR4a3%/3p

W —2H* /7RSS, K /9 (N]C +LC)) 2a%/ 3z 0

o1 8H* / mR3%(Cog- o /72N C) 0

+L,Cya%/3z

oy 0 8CeeH* /3mR2a/ p?=7 (N, C1+L;C))
T2 4H* / 7REY o (N C +L Cpa/ 32 0

75 0 0

D, 4H* / 7RSY B (N[C)+L[Cya®/ 32 0

D 0 2H* / 7R2a%/3p?% 1 B / 7, (N;C +L;C)
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TABLE IV. Asymptotic behavior for subprobler(B).

Function p=0,z—x z=0, p—», =0
u 0 ~2yoH* / ma/ p=i, (N[ C3+L;Cy)
u; ~2ugH* /T3y /5 (NiCa+LiCPa/7 0
4 _2¢0H*/772j3:1kj/71 (N;Cs+L Cya/z 2y/ma/p
e agoh* [ w32 (Coo=al / 2 )IN Co+Li Cha/ 2 0 -
oy 0 8H* Ceetho/ ma/ p?Z;_1(N;C5+L;Cy)
oy 2yoH* / 3310 (N;C3+L Cya/Z 0
T, 0 0
D, 2yoH* /7L B (N;Ci+L Cpa/Z 0
D 0 2yoH* / ma/ p?SY, B / v, (N;C5+L;Cy)

both cases the exact asymptotic value of the ratio betweeglectric material are given in Sec. V. The full fields under the
point charge/force and exact solutions differs from unity andndenter are linear superposition of solutions for subproblem
depends on direction, reflecting the difference in the aniso¢A) and subprobleniB). As applied to PFM, this allows the
tropy of material properties in purely elastic, rigid electro- relative contribution of bias and indentation force induced
static, and coupled electroelastic models. Despite this faCbﬂ‘ects on |mag|ng and p0|arization Switching to be sepa-
point-charge solutions clearly provide a very good approxiryated. It is shown that field distributions have the asymptotic
mation for the description of field structure_for separationspo\,\,er law form for relatively small separations from the
from the contact larger than the contact radius. contact area, which in many cases is significantly smaller
This behavior §|gn|f|cantly simplifies the description of {4n the contact radiuser se

the PFM mechamsm_ for more cpmplex systems. For ex-yyq poyy briefly discuss the applicability of obtained solu-
ample, a good approximation for field structure below the UPtions for the electroelastic field structure for the description

in the thin film, as opposed to bulk, ferroelectrics can beof signal generation volume in PFM and its implications for

achieved using mdependept |mage—ch§1rgt_e and |mage-for(iﬁe polarization switching behavior in ferroelectrics.
models for the electrostatic and elastic field components,

provided that the film thickness is larger than the contact
radius. The parameters of the corresponding image charge
and image forces are then determined by the electrostatic and The field structure calculated in Sec. V allows the signal
electric properties of the substrate. However, despite the fageneration volume, and hence the resolution, to be deter-
that point-charge/force approximation provides a good apmined. For low modulation frequencies when the tip inertial
proximation for field structure even for the small separationsffects are minimal, the signal generation volume in PFM is
from contact, in certain cases adequate description of thgiven by the fieldju,/ 9y for P=const. Note that the normal
PFM phenomena requires exact structure of the fields takedisplacement in subproblerfB), which can intuitively be
into account, as illustrated for the examples of PFM signakxpected to provide the generation volume in PFM, is iden-
generation volume and ferroelectric, ferroelastic, and hightically zero at the surface. At the same time, the displacement

A. Signal generation volume

order ferroic switching below. field in the mechanical problem is tip-bias independent.
Thus, the signal generation volume is given by a nontrivial
Vill. DISCUSSION combination of electroelastic fields shown in Figs. 12 and 13.

Exact closed-form results in elementary functions for the To calculate the generation volume, the total displacement
full fields in the problem of spherical indentation of piezo- field below the tip can be represented as=u,,(a)

FIG. 18. (@) The ratio of the
potential distributions calculated
for the point-charge model and
rigorous solution for BaTiQ (b)
The ratio of the normal displace-
ment distributions calculated for
the point-force model and rigor-
ous solution for BaTi@. Note that
the difference between rigorous
and point-charge/force solutions
does not exceed 50% for distances
as small as~0.3 a, justifying use
of the point-charge approximation
for certain bias-induced phenom-
(b) ena in ferroelectric materials.
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FIII{L\‘

FIG. 19. Signal generation
volume in PFM for(a) BaTiOs
and (b) LINbO5 for R=50 nm, a
=3 nm, and¥,=0 V.

I Foax =40 pm/V
p (a) (b)

+yu,¢(a), where the strain field distributions in subproblem field is required to analyze the switching dynamics. The
(A) and subprobleniB) depend on the contact radis,and  knowledge of all components of the electroelastic field dis-
the indenter potentialyy. During imaging, the indentation tribution under the tip derived in Sec. V allows direct calcu-
force P=const and from stiffness relation E@23) the lation of the free energy for the switching process. The free-
change in tip potentialy= ¢+ 8y, results in the change of energy density contains contributions from several coupling

contact areaa=a,+ da, as termg6:40
* -1 _ 1 1
Sa= 5¢(2i0c—} + ﬂo) . (26) Agbulk‘ - APiEi - AXMXM - EASU Ei Ej - EASMVXMXV
RC; a - AdEX,, (28)
The signal generation volume is given by the change inyhere the individual terms describe ferroelectric, ferroelas-
the strain field distribution as tic, ferrobielectric, ferrobielastic, and ferroelastoelectric

_au, Uj(ag + 8a, thy + S1) — Un(@g, thy) switching, respectivelyP; is polarization E; is electric field,

SvV= = (27 X, is strain,X,, is stressj, j=1,2,3, andu, v=1,...,6. The
oY 4 free energy of the nucleating domain is
Thus, the signal generation volume in PFM is determined by AG = AGyyi+ AGyay + AGgep, (29)

the combination of the normal displacement fields in the sub-
problems with electrical and mechanical boundary condiwhere the first term is the volume change in free energy, the
tions. Signal generation volumes for Bagiénd LiINbQ; for ~ second term is the domain wall energy, and the third term is
R=50 nm, a=3 nm, and,=0 V are illustrated in Figs. the depolarization field energy. Using the Landauer model,
19a) and 19b). In agreement with theoretical expectations, the domain shape is represented as half ellipsoid with the
the response is maximal directly below the tip and decaysmall and large axis equal 1 and lg, correspondingl§*
rapidly outside the contact area. The domain wall contribution to the free energy in this ge-
The effective size of the signal generation volume andpmetry iSAG,,=brgly, Whereb=o,,,72/2 anda, is the
thus, the spatial resolution, are controlled by the contact raidirection-independeptiomain wall energy. The depolariza-
dius, a, which is the only relevant parameter in the indenta-tion energy contribution depends on the electrostatic condi-
tion problem. This suggests that the optimal resolution intions on the top surface, and for the ferroelectric surface with
PFM can be obtained for small contact areas and moderaté1screened polarization charge can be calculatedGg,,
indentation forces necessary to prevent tip flattening duringcrg/lq, where
imaging. At the same time, the ultimate limit on the PFM

2
resolution is imposed by the electrostatic field contribution c= 477Ps{|n(% \ /8_11> _ 1} (30)
from the spherical part of the tip that, in the case of small 3eq; rq Y ess

contact area, will dominate the contact contribution, resulting

in loss of resolutiorjFig. 1(d)] due to crossover to the weak only v_veakly depends on th_e domain geometry' In the ur_1i-
indentation regime analyzed by Feltehal®” form field, the bulk contribution to the domain free energy is

AGpy=2P4Eral4 and minimization of Eq(29) with respect

to ry and |y allows the critical domain size and activation

energy for nucleation to be estimated. It was recognized by
Although a rigorous analysis of switching phenomena isAbplanalp (Ref. 40 and later by Molotskiiet al. (Refs. 38

an independent problem beyond the scope of this work, wand 39 that the field distribution below the PFM tip is

discuss here the applicability of point-charge approximatiorstrongly nonuniform, and the bulk contribution to domain

and delineate the cases in which the exact structure of thieee energy is

B. Implications for PFM polarization switching
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lg @ any high-order ferroelectric switching phenomena including
_ _ ferrobielectric, ferrobielastic, and ferroelastoelectric are de-
AGb“'k_ngb”'k(r)dV_zwf dzf Ageul(r,Z)r dr, scribed by the field distributions for whichk=2 and the
v 0 0 integral Eq.(29) does not converge if the asymptotic form of

(31) the field is used. This implies that the rigorous description of
the high-order ferroelectric switching phenomena requires
wherer (2)=rq\V1- 22/Id is the domain radius at the distance use of the complete solutions developed in Sec. V, or suitably
z from the surface. The bulk contribution to the free energychosen extrapolation formulas that adequately represent field
for ferroelectric switching was calculated by Molotsktial.  distributions at small and large separations from the indenta-
using a phenomenological point-charge model, in which thdion point, while use of the point-charge approximation leads
tip is represented by point Char@—CupV located at dis- to physically unreasonable divergence of the corresponding
tance s from the surface, wher€,,, is the capacitance be- free energy. For ferroelectric and ferroelastic switching, the
tween the conductive sphere and anisotropic dielectric halfeontribution of the volume in the close vicinity of the tip to
space defined in Eql). This corresponds to the weak the free energy can be neglectedq#a and the domain size
indentation regime in which the sphere-surface capacitancand activation energy for nucleation become independent of
dominates over the capacitance of the contact area. the contact area and are determined solely by the tip charge.
It was found that, for domain sizg> &, the critical do-  This allows arbitrarily large domains to be created for high
main size and the activation energy for nucleation are indetip biases. On the contrary, in the higher order ferroelasto-
pendent of the effective charge-surface separafiamd are  electric, ferrobielectric, and ferrobielastic switching pro-
determined by the material properties and effective tipcesses, contact contribution to the domain free energy domi-
charge. This agrees with results of the present work, since, &ates due to the much higher decay rate of the relevant fields.
large separations from the contact area, the potential distrifhus, analyses of the early stages of ferroelectric switching
bution produced by the tip can be represented by the poirghenomena, as well as higher order ferroic switching, require
charge located on the surfaté=0). Therefore, the analysis exact structure of the field to be taken into account and will
presented by MolotskiiRef. 3§ becomes rigorous if the tip be reported elsewhefé.
charge is approximated by the charge at the contact area
calculated from the stiffness relations Eg83). It should be
noted that, for sufficiently high tip bias, switching can be
induced by the spherical part of the tip as well, but in this  To achieve quantitative interpretation of PFM, including
case, rigorous description of the switching processlfor resolution limits, tip bias- and strain-induced phenomena and
rq<R requires calculations of the complete image chargespectroscopy, analytical representations for tip-induced elec-
due to large uncertainties related to choice of the effectivarical and mechanical fields inside the material are derived.
charge-surface separatig8ec. IV). The electrostatic potential distribution inside the ferroelectric
A similar analysis can be extended to an arbitrary switchin the weak indentation limit is obtained using the image-
ing mechanism using E@31) to estimate the corresponding charge method. It is shown that, in the general case, this
free energy. For domain sizeg>a the tip can be modeled electrostatic solution cannot be reduced to the single point-
as a point charge or point force provided that the singularitycharge approximation, and a complete set of image charges
in the origin is weak enough to ensure the convergence of thig required to describe switching phenomena. This weak in-
integral in Eq.(31). As summarized in Tables lll and IV, the dentation solution implicitly ignores contribution of the tip-
asymptotic behavior for potential and strain can be generallgurface contact area to the field distributions. At the same
represented in the forrhi=(p?+(z/y)?) 2, where powera  time, direct comparison between the sphere-plane capaci-
determines the decay rate of the corresponding quantity wittance and contact area capacitance estimated using the Hert-
the separation from indentation region, apds the propor-  zian indentation model illustrates that for the typical PFM
tionality coefficient reflecting the anisotropy of materials imaging conditions the contact area contribution to the local
properties. In the rigid dielectric modej=ve,/e,, While in  part of the tip-surface capacitance dominates.
the exact solution in Sec. V¥, i=1,2,3, are theoots of the These estimates show that rigorous description of the tip-
determinant equation E@A5) in Appendix A. Correspond- induced phenomena requires solution of the coupled electro-
ing fields are given by the derivatives with respect to the elastic problem for spherical indentation of a piezoelectric.
coordinatedf/dz It can be shown that the bulk contribution Analytical solution of this problem is obtained for the trans-
to the domain free energy fdg> yry can be calculated as versely isotropic piezoelectric material using the recently es-
AGbu|k~r§‘“ for a<2. For bias-induced ferroelectric tablished elastic-piezoelectric correspondence principle.
switching, =1 and AGy~rg4, in agreement with the These solutions are used to obtain the electric field and strain
analysis in Refs. 38 and 39. distribution inside the ferroelectric material, providing a
Similar analysis can be performed for ferroelastic switch-complete continuum mechanical description of the PFM im-
ing, even though in this case the symmetry of the problenaging mechanism for a spherical tip. The relationship be-
requires formation of nontrivial domain structures, for ex-tween the indentation depth, load, contact area, and indenter
ample nucleation of four 90° domains forming the vortex-bias are given through the stiffness relations that prove to be
type structure required to prevent the formation of energetithe extension of Hertzian contact mechanics for a trans-
cally unfavorable charged domain waifsAt the same time,  versely isotropic piezoelectric. The individual coupling coef-

IX. SUMMARY

184101-20



NANOELECTROMECHANICS OF PIEZORESPONSE FORCE PHYSICAL REVIEW B 70, 184101(2004)

ficients in the stifiness relations can be interpreted as the (Cm,;Z —Caq)(€33— 7;2615) - y}‘z(cl3+ Caa)(€15+ €39
indentation elastic stiffness, indentation dielectric constant, k; = 2 2 ,
and indentation piezocoefficient, similar to effective Young's (€33~ 7j"€15) 15+ €31) + (Cr3+ Cag) (833~ 7) €10)
modulus, dielectric constant, and piezoelectric constant in (A4)
the uniform case. Notably, the same piezoelectric coefficient " _ _
describes charge-force and displacement-bias coupling, dertherey;”=\; are roots of the cubic equation
onstrating the similarity between piezoelectric behavior in 3 2 _
the spherical and planar geometries. The contributions of dif- AN =BAj+C =D =0, (A5)
ferent electroelastic constants of the material to the couplingyith coefficients
coefficients were investigated.

These rigorous analytical solutions are compared with ap- A=cy1(Cage1n + efS), (AB)
proximations based on the asymptotic point-charge/point-
force models, and itis shown that crossover to the power 1avB = ¢, [ ¢, 1653+ (€15 + €31)°] + £11[C11Ca3 + 0314— (Cr3+ Cg0)?]
behavior occurs at relatively small separations from the con- )
tact area. It is also shown that the relevant parameters, in- * 2€18C11€33~ (C13+ Cas)(€15+ €3] + Casls, (A7)
cluding force and charge magnitudes, must be obtained from
the stiffness relations. Expressions for potential and field inC = czd C4qs11 + (€15 + €31)] + £34 C11C33+ Ca4— (C13+ C40)%]
the ferroelectric were used to derive signal generation vol-

- 2
ume in PFM. The implications for polarization switching + 2639 44815~ (C13+ Cas) (15 + €3) ] + C11€55, (A8)
phenomena are also analyzed. It is shown that adequate de- )
scription of late stages of first-order ferroelectric and fer- D =Cy4(Ca3e33+ €59). (A9)

roelastic switching processes can be achieved using the

asymptotic representation of the fields; the domain size i fo
this case is determined by the tip charge or force only. At th

same time, description of early stages of ferroelectric switch-
ing and higher-order switching processes requires detaile
description of field distribution below the tip.

Constantsn andk; can be expressed in terms of roats
rmula(2.6) in Ref. 64. Of the six roots fory that corre-
pond to three roots fox, obtained from Eq(A5), the roots

1 » 3 that have positive real parts must be chosen to ensure
at displacements are real.

The following combinations of the piezoelectric constants

are used:
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N = 2oPz_ @aBs (A11)
APPENDIX A: COUPLING CONSTANTS Y3 Y2
The following notations and complex combinations are e daal
used for displacements, stresses, the electric potential, and L= S (A12)
the electric displacement components: 73 Y2
U= U +iuy, U, i, D=D,+iDy, D,, (A1) ay = 7[(1+my)ks = (1 +my)k;]. (A13)

Values for other constants], L;, a; are obtained by cy-
1= 0Oy ¥ Oy, 0= Oy — Oy + 20y, 0,5 T,=0x*i0y, clic permutation of indices as-%2—3— 1. The following
(A2) geometric parametef$=1,2,3 are used:

— J/ 2 — _ 2
where ¢; denote transversely isotropic elastic stiffnesses, 2@ =\@+p?+z-\@-p’+z, (Al4)

&;—piezoelectric constantsg;—dielectric permeabilities,

and a; =Caq1 +mj*)*+e:15kj*, B =es(1+m) — 14K 2l5(2) = V(a+p)?+ Z+\(a-p?+Z, (Al5)
(j=1,2,3. Constantsn;, k (j=1,2,3 in the text to follow
are obtained to be as follows: z =12y, (A16)
(0117;2 —Caa)(E33— 7}*2811) + 7}*2(e15+ €31) The constants in Eq$17)—(20) are defined as
m' = * * y *
' (eg3— %€ (€15 + €51) + (Cia+ Caa) (233~ ¥ 810) R 12k,

Ci=-— > =L, (A17)

(A3) B* 51 v,
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% 1 3 k]( « 2H* . 3 0(*'( * % * _* . |1'
Co=—7> =N, (A18) 7,==——pd?> —L(NC} +L[C))| - arcsi
B =1 %] R i=1 ] p
a(|§ _ 2)1/2
12 m ) (9
C= S (A19) ’
i=1 % % 3 I
* * * * * . lJ
D,=- > ,Bj(NJ- Ci+lLy C)| 7 arcsn‘(—)
3 _x R o p
. 1 m
C“__EE N (A20) o
717 —(@2-13)2], (B6)
3 .+ 3 3 5 3 F 3
m- * i * 1l * kl * 2H* H B * * * * Il
B*=H*| X INY <L - =L > =N |. D=-—p€¢> —(N/C;+LC)) —arcsir(—J>
=LY =1 Y =1 Y =N mR j=1 7 p
(A21) a(@j - @212 .
Remark Parameter$t*, N/, L;, that will enter the solu- 2 ' ®7)
tion, are explicitly expressed in terms of the piezoelectric _ )
constants—in contrast with the solution of Ch@ef. 5],  The solution of subprobler(B) is as follows:
where the dependence of the solution on the piezoelectric 20H* S ad? (a2_|§j)1/2
constants is not explicit. u=-— N INC,+LCH)—| 1-———
e It B a '
=1 P
APPENDIX B: SOLUTION OF SUBPROBLEMS (B8)
The solution of subproblerfd) is as follows: AifH* 2 o\ L L L @1
01= 2 Co6~ 2 (NjC3+LjC4) 12 _2
* 3 I, T =1 i 2j 11
u=-— —Rpei¢2 (N;C1+LC)| -7 arcsir(—') (B9)
i¢p 3 2_|2\112
|2_ + 2a2 2a3 4igH * C66e2| % . % (a 1])
+(a2_|§_)1/2 1- 1 +— |, (Bl) 0'2:_—2 (N]C3+LJC4) W
! 3p? 3p? 77 j=1 21
2a (a?-15)"?
. . -=l1-———| ¢, (B10)
8H* A\ ek |y a
oy == ——=2> | ces= =5 |(N;C +L;C))| z arcsir| —
"R i b P 2H* 3 (@®-15)"?
0 * * _x * 1j
0py= 2 a(N c:3+ch:4)—|2 . (B11)
- @ -1, (B2) T 2
2pH* €23 af | 1y(5-a)"?
3 T2= ET(N1C3+LjC4) > 2.
8CeeH e2'¢2 NIC’ + L Cy)[2a3 - (12 + 2a2)(a2 Toomy (1 )
= h + L, =5+
2=3R 2 ,-:1( iCitLjCyl2a - (If; + 2a) (& (B12)
- Iij)llz]! (BB) Z(ﬂoH* 3 « - . % a2 - Ii] 2
D,= 2 B(N;C+LC)——>5—, (B13)
T ja 12 =13
4H* 3 * * _x * _ x . |l]
0= wR%aj(NjCl+ L;C))| z arcsi " 20H* €02 B 113 -ad)?
i= =——> S (NCi+L[C)—5——.
T =1 7] |2j(|2j - Ilj)
-@-15)", (B4) (B14)

184101-22



NANOELECTROMECHANICS OF PIEZORESPONSE FORCE PHYSICAL REVIEW B 70, 184101(2004)

*E-mail address: sergei2@ornl.gov Wittenberg, Halle, 2001.

TE-mail address: karap@comcast.net 29C. Ganpule, Ph.D. thesis, University of Maryland, College Park,

*E-mail address: mark.kachanov@tufts.edu 2001.

'A. Gruverman, O. Auciello, and H. Tokumoto, Annu. Rev. Mater. 305 v/ Kalinin, Ph.D. thesis, University of Pennsylvania, Philadel-
Sci. 28, 101(1998. phia, 2002.

2L.M. Eng, S. Grafstrom, Ch. Loppacher, F. Schlaphof, S. Tro-3;

gisch, A. Roelofs, and R. Waser, Adv. Solid State Phyk. 287 B.D. Terris, J.E. Stern, D. Rugar, and H.J. Mamin, Phys. Rev.

Lett. 63, 2669(1989.

(200D. .

3Nanoscale Characterization of Ferroelectric Materiaéslited by #2N.M. M_'S_kOVSky' P.H. Cutler, and T.E. Feuchtwang, Int. J. Infra-
M. Alexe and A. GruvermariSpringer, New York, 2004 red Millim. Waves 2, 739 (1981).

“Nanoscale Phenomena in Ferroelectric Thin Fijreslited by S.  *°L.-H. Pan, T.E. Sullivan, V.J. Peridier, P.H. Cutler, and N.M.
Hong (Kluwer, Dordrecht, 200¢ Miskovsky, Appl. Phys. Lett.65, 2151(1994).

5M. Alexe, A. Gruverman, C. Harnagea, N.D. Zakharov, A. Pigno-24J. He, P.H. Cutler, N.M. Miskovsky, and T.E. Feuchtwang, Surf.
let, D. Hesse, and J.F. Scott, Appl. Phys. L&th, 1158(1999. Sci. 246, 348(199)).

6A. Roelofs, U. Boettger, R. Waser, F. Schlaphof, S. Trogisch, and5p_ Yokoyama, T. Inoue, and J. Itoh, Appl. Phys. Le85, 3143
L.M. Eng, Appl. Phys. Lett.77, 3444(2000. (1994).

"H. Shin, S. Hong, J. Moon, and J.U. Jeon, Ultramicrosc@ly  s6g_Hydlet, M. SaintJean, C. Guthmann, and J. Berger, Eur. Phys.
103 (2002. J.B 2, 5(1998.

8T. Tybell, P. Paruch, T. Giamarchi, and J.-M. Triscone, Phys. Revsy
Lett. 89, 097601(2002.

9K. Terabe, M. Nakamura, S. Takekawa, K. Kitamura, S. Higuchi
Y. Gotoh, and Y. Cho, Appl. Phys. LetB2, 433(2003.

105V, Kalinin, D.A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J.H. Ferris,
Q. Zhang, and S. Dunn, Nano Lef, 589 (2002.

S. Tiedke and T. Schmitz, ilNanoscale Characterization of
Ferroelectric Materials(Ref. 3.
"38M. Molotskii, J. Appl. Phys.93, 6234(2003.
39M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosen-
man, and Y. Rosenwaks, Phys. Rev. L&0, 107601(2003.
115V, Kalinin, D.A. Bonnell, T. Alvarez, X. Lei, Z. Hu, and J.H. 40M. Abplanalp, Dr. Nat. Sci. thesis, Swiss Federal Institute of

Ferris, Adv. Mater(Weinheim, Gey. 16, 795 (2004). Technology, Zurich, 2001. _ N _
12X M. Lu, F. Schlaphof, S. Grafstroem, C. Loppacher, L.M. Eng 4IW.R. Smythe, Static and Dynamic ElectricityMcGraw-Hill,

G. Suchaneck, and G. Gerlach, Appl. Phys. L&, 3215 New York, 1968.
(2002. 42N.N. Lebedev, I.P. Skal'skaya, and Ya.S. Uflyamtpblems in
13A. Roelofs, T. Schneller, K. Szot, and R. Waser, Appl. Phys. Lett. Mathematical PhysicgPergamon, New York, 1966
81, 5231(2002,. 43S, Timoshenko and J.N. Goodidteory of ElasticityMcGraw-
1A, Roelofs, Ph.D. thesis, RTWH Aachen, Germany, 2004. Hill, New York, 1951).
I5A.L. Kholkin, V.V. Shvartsman, A.Yu. Emelyanov, R. Poyato, “4J.D. Jackson,Classical ElectrodynamicgWiley, New York,
M.L. Calzada, and L. Pardo, Appl. Phys. Le82, 2127(2002. 1998.
16M. Abplanalp, J. Fousek, and P. Gunter, Phys. Rev. L86.  “°M. Cohen(private communication
5799 (2001). 46E J. Mele, Am. J. Phys69, 557 (2001).
7M. Labardi, C. Polop, V. Likodimos, L. Pardi, M. Allegrini, E. 4’F. Felten, J. Munoz Saldana, G. Schneider, and S.V. Kalinin, J.
Vasco, and C. Zaldo, Appl. Phys. Le®3, 2028(2003. Appl. Phys.(to be publishey
18A L. Gruverman(private communication 483, Scrymgeor and V. Gopalgnnpublishegl
9A.L. Roytburd, S.P. Alpay, V. Nagarajan, C.S. Ganpule, S. Ag-*°T.Y. Zhang, R. Fu, M.H. Zhao, and P. Tong, Key Eng. Mater.
garwal, E.D. Williams, and R. Ramesh, Phys. Rev. L88, 190 183 695(2000.
(2000. S0E, Karapetian, I. Sevostianov, and M. Kachanov, Arch. Appl.

20C.S. Ganpule, A. Stanishevsky, S. Aggarwal, J. Melngailis, E. Mech. 70, 201(2000.

Williams, R. Ramesh, V. Joshi, and C. Paz de Araujo, Appl.5?W. Chen and H. Ding, Acta Mech. Sirl2, 114(1999.

Phys. Lett. 75, 3874(1999. 52AE. Giannakopoulos and S. Suresh, Acta Matéi, 2153
2IM. Alexe, C. Harnagea, D. Hesse, and U. Gosele, Appl. Phys. (1999.

Lett. 75, 1793(1999. 53 E. Giannakopoulos, J. Appl. Mecl&7, 409(2000.
22y/|. Fabrikant, Application of Potential Theory in Mechanics %M. Hanson, J. Tribol.114, 606 (1992.

(Kluwer Academic, Dordrecht, The Netherlands, 1989 55E. Karapetian, M. Kachanov, and S.V. Kalinin, Philos. Még.
23y/I. Fabrikant, Mixed Boundary Value Problems of Potential  be published

Theory and Their Applications in Mechanigéluwer Academic,  5®Smaller indentation forces can be achieved using negative set-

Dordrecht, The Netherlands, 1991 point deflection; however, imaging in this case is unstable and

24E. Karapetian, M. Kachanov, and I. Sevostianov, Arch. Appl.  the tip can lose the contact during scanning, limiting these mea-
Mech. 72, 564 (2002. surements to spectroscopic modes.

25K. Franke, H. Huelz, and M. Weihnacht, Surf. Set15 178  >’Landolt-Bornstein New Seriesdited by K.-H. Hellwege and
(1998 A.M. Hellwege (Springer, Berlin, 198 Vol. 16a.

26S. Hong, J. Woo, H. Shin, J.U. Jeon, Y.E. Park, E.L. Colla, N.%8D. Berlincourt, in Ultrasonic Transducer Materialsedited by
Setter, E. Kim, and K. No, J. Appl. Phy89, 1377(2002). O.E. Mattiat(Plenum, New York, 1997

27s.V. Kalinin and D.A. Bonnell, Phys. Rev. B5, 125408(2002.  °°Y. Xu, Ferroelectric Materials and Their ApplicationéNorth-
28C. Harnagea, Dr. Rer. Nat. thesis, Martin-Luther-Universitat Halle  Holland, Amsterdam, 1991

184101-23



S. V. KALININ, E. KARAPETIAN, AND M. KACHANOV PHYSICAL REVIEW B 70, 184101(2004

603.V. Kalinin, E. Karapetian, and M. Kachan@mnpublishegl 633.V. Kalinin, A.L. Gruverman, A.P. Baddorf, J.S. Shin, E. Kara-

61R. Landauer, J. Appl. Phy8, 227 (1957%. petian, and M. Kachanogunpublishegl

62| Chen, J. Ouyang, C.S. Ganpule, V. Nagarajan, R. Ramesh, arfdE. Karapetian, |. Sevostianov, and M. Kachanov, Philos. Mag. B
A.L. Roytburd, Appl. Phys. Lett84, 254 (2004). 80, 331(2000.

184101-24



