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The Heisenberg model with competing exchanges together with the chiral term is studied using series
expansion about the dimer limit and by finite-size diagonalizations. The phase diagram is determined with
ground-state orderings and the lowest excitation characteristics. We find that the chiral term induces a gapless
line in frustrated spin-gapped phases. A critical chiral strength is also able to change the ground state from
spiral to Néel quasi-long-range-order phase.
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The ground-state and the low-energy excitations of the
quasi-one-dimensional quantum antiferromagnets have been
extensively studied in the last decades.1 The effect of a mag-
netic field on such systems is mostly described by the Pauli
term, wherein the field couples with thez component of the
total spin of the system. This term splits the finite magneti-
zation spin levels and, for an antiferromagnet with a non-
magnetic ground state, a stronger field can even produce a
high-spin state as the ground state. However, electrons have
both the charge as well as the spin degrees of freedom. The
quantum antiferromagnetic Heisenberg model is derived
from the fermionic Hubbard model in a second-order pertur-
bation theory, where the charge degrees of freedom are fro-
zen(in the large HubbardU limit ).2 With the magnetic field
term in the Hubbard model, the perturbation does not result
in any interesting terms for a bipartite lattice. However, for a
nonbipartite lattice, as has been shown, the magnetic field
can couple with the spin and produce a new term in the
perturbation apart from the usual Heisenberg-type spin
models.3 This new term is of the formSi ·Sj 3Sk, whereSi is
the spin at sitei, and its effect has not been explored thor-
oughly for frustrated magnetic chains.

In general, in an antiferromagnet, the ground state is a
singlet. Since the Pauli term does not couple to the nonmag-
netic state, it is not clearly understood whether the singlet
state would couple to the chiral term and, in that case,
whether the Pauli term would compete with the chiral term
in producing a magnetic ground state. Such a situation is
quite unlikely to occur, since the chiral term arises in the
third-order perturbation theory, the magnitude of which is
proportional tot3/U2, wheret is the hopping strength.4 De-
spite this, it has been speculated that in certain cases the
chiral term may have a larger effect on the ground state than
the Pauli coupling, thereby drastically affecting the ground-
state properties.3 One example is the case where the ground
state is doubly degenerate in zero field with opposite chirali-
ties. In that case, when an external magnetic field is applied,
the chiral degeneracy is broken by the chiral term. The Pauli
interaction term, however, has no effect on the ground state
for fields smaller than the lowest spin gap.4

On the other hand, the low-dimensional materials with
competing exchange interactions have generated a huge in-
terest because of their unique low-energy characteristics. The
Heisenberg model with nearest- and next-nearest-neighbor
interactions produce a rich phase diagram with gapless and

gapped phases as a function of the frustration. The next-
nearest-neighbor term, which causes frustration, spontane-
ously dimerizes the system after a certain critical value, and
the phase diagram has been quite well established.5

The Heisenberg model with competing exchanges, to-
gether with this chiral term, is integrable for certain param-
eters. It has been recently found that a finite chiral field term
can lift the degeneracy associated with the Majumdar-Ghosh
point with a nonzero chiral expectation value.6 For a unique
ground state, the Hamiltonian remains parity and time sym-
metric, leading to a vanishing chirality in the ground state.
On the other hand, a two-dimensional spin-1/2 Heisenberg
model on a square lattice, frustrated with a sufficiently strong
antiferromagnetic next-nearest-neighbor interaction, has
been proposed to have a chiral ground state.7 Subsequent
studies of this two-dimensional model have found an en-
hancement of the chiral order parameter, although compari-
son with other possible states suggests that the chiral spin
state is quite unstable.8 Different lattices, in particular the
triangular and Kagome systems, have also been studied,
however, no firm evidence of chiral spin state has been found
so far.6

Given that the strength of the chiral term is quite small
and that it is quite impossible to stabilize the singlet over the
magnetic state when a magnetic field is applied, it would be
quite interesting to ask whether the chiral term can give rise
to changes in the nature of the ground-state and low-energy
excitations of the low-dimensional frustrated systems. To un-
derstand its effect in reduced dimension, we analyze a quasi-
one-dimensional frustrated system, the exchange Hamil-
tonian for which can be written as(see Fig. 1)

H = J1o
i

Si ·Si+1 + J2o
i

Si ·Si+2, s1d

where J1 and J2 are the nearest- and second-neighbor ex-
change interactions, respectively. We defineJ=J2/J1, where

FIG. 1. Picture of the lattice considered in the Hamiltonian. The
directions of the chiral interaction are shown as curved arrows.
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J1 is fixed at 1. ForJ=0, the model is exactly soluble by the
Betheansatzmodel.9,10For JÞ0, the ground-state phase dia-
gram has been extensively studied both analytically and
numerically.11–14 These studies have revealed that whenJ
øJc, the system is in a gapless spin-fluid phase in which the
antiferromagnetic spin correlations decay algebraically. In
contrast, forJùJc, the system is in a completely different
phase, characterized by a finite excitation gap and exponen-
tial decay of the spin correlation functions. The value ofJc
has been accurately computed to be 0.2411±0.0001.5,15 In-
terestingly, this model can be solved exactly forJ=0.5. The
ground state is doubly degenerate with exact dimeric
forms.16

To force the system into a chiral spin state, we add the
following term:

H8 = Ko
i

fS2i−1 · sS2i 3 S2i+1d + S2i · sS2i+2 3 S2i+1dg ,

s2d

whereK is the chiral interaction strength.
In the following, we present a systematic study of the

various regions of the phase diagram in theJ–K phase plane
using a dimer expansion17,18 and finite-size diagonalization
methods. In order to obtain an idea of the energy-level struc-
ture, we have carried out finite-size diagonalization for sys-
tem sizes,N=8–20spins with periodic boundary conditions.
The ground state is found to be a singlet all over the phase
diagram.

To understand the low-energy characteristics of the sys-
tem in theJ–K phase plane, we have kept theJ value fixed
and have varied the K value from 0 to 1. This has been done
for various values ofJ. We calculate the singlet-singlet gap,
Dss, and singlet-triplet gap,Dst, for all the system sizes in the
J–K phase space.Dst gives us an indication that as a function
of K, the system goes through a gapless point for every value
of J aboveJc. To determine these gapless points, we plot
both theDss andDst values for various values ofK, for every
J. Figure 2 shows the nature of these two gaps in the gapless
sJ=0.1d and in gappedsJ=0.6d phases for aN=20 sites ring.
For J below Jc, the spin gap, as well as the singlet-singlet
gap, increase as a function ofK, indicating that the chiral
term does not couple strongly with any of the low-energy
states. In fact, for largeKsK→1d, we find that the chiral term
couples with the lowest triplet state little stronger than the
ground state and in that limit the spin gap is quite large.
However, forJ.Jc, there is a finite spin gap to start with for
K=0, and interestingly, the spin gap decreases with the in-
crease inK value for smallK values. Nevertheless, above a
certain criticalK for everyJ.Jc, it increases again. Further-
more, we find that the chiral term couples quite strongly to
the lowest triplet state at smallK values, above which it
couples quite equally to both the ground state and magnetic
state.

We have carried out computations of these gap parameters
for various values ofJ for a number of system sizes. The
special point ofJ=0.5 is worth mentioning. AtK=0, the
ground state is the exact dimer states. But as we introduceK,
this exact dimer degeneracy is lifted, since the correlation

between the dimers becomes finite. The ground state in that
case cannot be expressed in product dimer forms, although
there remains a finite spin gap all over theK line except at
aroundK=0.4, where it is nondegenerate with gapless exci-
tations.

As discussed above, for every value ofJ.Jc, there exists
a criticalK point,KcsNd, corresponding to the crossing of the
Dss and Dst curves, for a given system size,N. To obtain
these criticalK points in the thermodynamic limit, we adopt
the method suggested by Okamoto and Nomura, where one
plots the finite-size critical points as a function of 1/N2. The
least-squares fitting of the equationKcsNd=Kc+const/N2

then gives the value of the critical pointssKcd in the thermo-
dynamic limit.15

Additionally, we have also carried out series expansion
calculations to obtain ground-state energy, structure factor,
and the singlet-triplet excitation spectrum for input param-
etersJ andK. This method has been previously described in
several articles,17–19and will not be repeated here. We would
just like to add that since our Hamiltonian is a complex
hermitian, we had to be diligent in computing its properties.

In the limit that the exchange coupling along the rungsJ1
andJ2 are much larger than the couplingsK, the Hamiltonian
can be written as

H = H0 + lV, s3d

where

H0 = o
i

S2i−1 ·S2i ,

V = o
i

S2i ·S2i+1 + Jo
i

Si ·Si+2 + Ko
i

fS2i−1 · sS2i 3 S2i+1d

+ S2i · sS2i+2 3 S2i+1dg . s4d

FIG. 2. Lowest singlet-singlet(Dss, circles) and singlet-triplet
(Dst, triangles) gaps for(a) J=0.1 and(b) J=0.6 from exact diago-
nalization studies of a 20 sites ring.
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We can obtain an expansion inl by treating the operator
H0 as the unperturbed Hamiltonian, and the operatorV as the
perturbation. This dimer expansions have been carried out up
to the orderl11 for the ground state and to thel10 order for
the excited states, with the graph size of 11 and 10 dimers,
respectively, for every parameter values. Our expansion code
with K=0 reproduces the results obtained for theJ1–J2–d
model.20

To characterize a phase transition, an order parameter has
to be introduced. We define the chiral order parameter as

x = 1/No
i=1

N

fS2i−1 · sS2i 3 S2i+1d + S2i · sS2i+2 3 S2i+1dg .

s5d

In Fig. 3, we plot the order parameters as a function of the
chiral interaction strength for four differentJ values. As can
be seen, forJ belowJc, the order parameter increases withK
with the same slope without any features. However, forJ
aboveJc, it shows the change in the slope around a particular
K point, which exactly supports the finite-size diagonaliza-
tion results. More specifically, forJ=0.3, the slope of the
order parameter changes aroundK=0.2. ForJ=0.4 and 0.5,
this occurs aroundK=0.3 and 0.4, respectively. At the spe-
cial point, atJ=0.5, along theK line, the results are quite
interesting. AtK=0.0, the values of all the correction terms
of the energy are zero as expected and the dimer energy is
−3J/4. However, the energy correction is finite as we switch
on theK, indicating that the chiral field lifts the ground-state
dimer degeneracy.

To understand the excitation characteristics in theK line
for various values ofJ, we compute the excitation energy
using series expansion. The spin gap is generally defined as
the minimum energy point in theesqd vs q plot, whereesqd is
energy gap to the triplet state at a wave vectorq.21 For J,Jc,
we find that increase inK increases the singlet-triplet gap,
while for J aboveJc, the gap reduces withK up to a certain

K, where the gap vanishes. Theesqd vs q is shown in Fig. 4,
for J=0.3 and 0.5, for a number ofK values. ForJ=0.3, the
gap is very small up to the criticalK=0.2, above which it
starts increasing. ForJ=0.5, this excitation is gapless atK
=0.4, while there is a finite gap for otherK values. It is
interesting to note that all theJ=0.5esqd curves cross at two
particular q values and they are symmetric aboutq=p /2.
The q values at those points are, however, incommensurate
(q<0.12p and 0.41p). Moreover, theesqd curve for K=0
also crosses at thoseq values, suggesting the possibility of a
common exact eigenstate for the Majumdar-Ghosh model
with and without the chiral term. Note that the minimum in
esqd is always found atq=0 or p and it is symmetric around
q=p /2.

Next, we calculate the magnetic structure factor to further
understand the nature of the ground-state ordering in gapless
and gapped phases. In theJ line with K=0, the classical spin
limit sS→`d predicts a Néel ordering forJ,0.25 and a
coplanar or spiral order forJ above 0.25. In other words,
Ssqd has a peak atqmax=p for J,0.25 and at qmax

=cos−1s1/4Jd for J.0.25. However, the quantum model has
no long-range order(LRO), rather, it has a quasi-LRO of the
order of the system size for the spin-1/2 case. ForS=1/2, the
Néel quasi-LRO exists up toJø0.5, above which the sys-
tems goes into a spiral phase. The spiral phase in this case is
characterized by the peak in theSsqd at someqmax value
betweenp andp /2.

At K=0, the series expansionSsqd reproduces the known
results. ForJø0.5, theSsqd peaks atqmax=p, while it is at
qmax,p for J.0.5. With the introduction ofK, the qmax
value remains the samesqmax=pd for Jø0.5, for all K val-
ues. However, aboveJ=0.5, to start with, forK=0, theqmax
is less thanp, and after introduction ofK, the Ssqd remains
peaked at the incommensurate values up to theK value
where the excitation gap vanishes. Interestingly, the chiral
term above a certain critical strength restores back the Néel
quasi-LRO phasesqmax=pd from the incommensurate phase.

FIG. 3. Order parameter as a function ofK from series expan-
sion, forJ values(a) 0.1, (b) 0.3, (c) 0.4, and(d) 0.5.

FIG. 4. The triplet dispersion curve,esqd vsq, for various values
of K at (a) J=0.3 and(b) J=0.5.
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In Fig. 5, we plot theSsqd as a function ofq at J=0.6, for a
number ofK values. As can be seen, theqmaxvalue is incom-
mensurate up toK=0.4, above which theqmax restores back
to p.

Finally, we present the phase diagram of the above model
in the J–K phase plane in Fig. 6. Putting together all the
above results for the finite sized systems with scaling and the
series expansion, it is clear that there exist a gapless line in
J–K plane aboveJ.Jc. All over the phase diagram, the
system is in a Néel quasi-LRO phase except in the shaded
region, where it is in spiral phase. While the gap increases
with the increase inK values in phase A, in the case of phase
B, the gap reduces with an increase in chiral strength up to
the critical chiral values, above which it increases again with
the increase inK. For K=0, asJ increases aboveJc, the spin
gap increases, however, up to a certainJ, above which it
again decreases. The full phase diagram is shown in Fig. 6.

The arrows indicate the increase of the spin gap towards the
direction of the arrow. SinceK=0 has been well studied for
even largeJ, we present results up toJ,0.7.

To conclude, we have shown that although the strength of
the chiral interaction is quite small, it can give rise to exotic
phases specifically when the system becomes spontaneously
dimerized due to frustrations. It can even change the ground-
state ordering. We also found an existence of a gapless line
in the J–K phase plane.
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FIG. 5. Structure factor,Ssqd vs q for various values ofK at J
=0.6.

FIG. 6. Phase diagram in theJ–K phase plane. WhileA andB
have the Néel quasi-long-range order, the shaded region has spiral
order. The dashed line correspond to the gapless line, with open
circles from finite-size scaling of the finite-size diagonalizations
data and the filled squares with error bars from series expansion.
The arrows indicate the behavior of the spin gap; the gap increases
in the arrow directions.
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