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Effect of chiral interactions in frustrated magnetic chains
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The Heisenberg model with competing exchanges together with the chiral term is studied using series
expansion about the dimer limit and by finite-size diagonalizations. The phase diagram is determined with
ground-state orderings and the lowest excitation characteristics. We find that the chiral term induces a gapless
line in frustrated spin-gapped phases. A critical chiral strength is also able to change the ground state from
spiral to Néel quasi-long-range-order phase.
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The ground-state and the low-energy excitations of thegapped phases as a function of the frustration. The next-
quasi-one-dimensional quantum antiferromagnets have beemarest-neighbor term, which causes frustration, spontane-
extensively studied in the last decadéihe effect of a mag- ously dimerizes the system after a certain critical value, and
netic field on such systems is mostly described by the Pauthe phase diagram has been quite well establi8hed.
term, wherein the field couples with tlzecomponent of the The Heisenberg model with competing exchanges, to-
total spin of the system. This term splits the finite magneti-gether with this chiral term, is integrable for certain param-
zation spin levels and, for an antiferromagnet with a non-eters. It has been recently found that a finite chiral field term
magnetic ground state, a stronger field can even produce @an lift the degeneracy associated with the Majumdar-Ghosh
high-spin state as the ground state. However, electrons hamint with a nonzero chiral expectation vaki€or a unique
both the charge as well as the spin degrees of freedom. Thground state, the Hamiltonian remains parity and time sym-
quantum antiferromagnetic Heisenberg model is derivednetric, leading to a vanishing chirality in the ground state.
from the fermionic Hubbard model in a second-order pertur-On the other hand, a two-dimensional spin-1/2 Heisenberg
bation theory, where the charge degrees of freedom are franodel on a square lattice, frustrated with a sufficiently strong
zen(in the large Hubbard) limit).2 With the magnetic field antiferromagnetic next-nearest-neighbor interaction, has
term in the Hubbard model, the perturbation does not resulbeen proposed to have a chiral ground staBubsequent
in any interesting terms for a bipartite lattice. However, for astudies of this two-dimensional model have found an en-
nonbipartite lattice, as has been shown, the magnetic fieldancement of the chiral order parameter, although compari-
can couple with the spin and produce a new term in theson with other possible states suggests that the chiral spin
perturbation apart from the usual Heisenberg-type spirstate is quite unstabfeDifferent lattices, in particular the
models? This new term is of the forn§ ‘§X§, whereS is  triangular and Kagome systems, have also been studied,
the spin at sité, and its effect has not been explored thor- however, no firm evidence of chiral spin state has been found
oughly for frustrated magnetic chains. so far®

In general, in an antiferromagnet, the ground state is a Given that the strength of the chiral term is quite small
singlet. Since the Pauli term does not couple to the nonmagand that it is quite impossible to stabilize the singlet over the
netic state, it is not clearly understood whether the singletagnetic state when a magnetic field is applied, it would be
state would couple to the chiral term and, in that caseduite interesting to ask whether the chiral term can give rise
whether the Pauli term would compete with the chiral termt® changes in the nature of the ground-state and low-energy
in producing a magnetic ground state. Such a situation i§xcitations of the low-dimensional frustrated systems. To un-
quite unlikely to occur, since the chiral term arises in thederstand its effect in reduced dimension, we analyze a quasi-
third-order perturbation theory, the magnitude of which ison€-dimensional frustrated system, the exchange Hamil-
proportional tot3/U2, wheret is the hopping strengthDe-  tonian for which can be written asee Fig. 1
spite this, it has been speculated that in certain cases the - ) )
chiral term may have a larger effect on the ground state than H Jé;‘ S Sat Jzzi S-S @
the Pauli coupling, thereby drastically affecting the ground- .
state propertie3 One example is the case where the groundvhere J; and J, are the nearest- and second-neighbor ex-
state is doubly degenerate in zero field with opposite chirali€hange interactions, respectively. We defiwel,/J;, where
ties. In that case, when an external magnetic field is applied I, s
the chiral degeneracy is broken by the chiral term. The Pauli
interaction term, however, has no effect on the ground state
for fields smaller than the lowest spin gap. I,

On the other hand, the low-dimensional materials with
competing exchange interactions have generated a huge ir
terest because of their unique low-energy characteristics. The
Heisenberg model with nearest- and next-nearest-neighbor FIG. 1. Picture of the lattice considered in the Hamiltonian. The
interactions produce a rich phase diagram with gapless andirections of the chiral interaction are shown as curved arrows.
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J, is fixed at 1. Fold=0, the model is exactly soluble by the
Betheansatzmodel?1°For J+# 0, the ground-state phase dia-
gram has been extensively studied both analytically and
numerically!'~14 These studies have revealed that whkn
<J,, the system is in a gapless spin-fluid phase in which the

0.8

antiferromagnetic spin correlations decay algebraically. In§ o4}

contrast, forJ=J., the system is in a completely different
phase, characterized by a finite excitation gap and exponen
tial decay of the spin correlation functions. The valuelpf
has been accurately computed to be 0.2411+0.6801n-
terestingly, this model can be solved exactly 36r0.5. The
ground state is doubly degenerate with exact dimeric
forms16

[
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To force the system into a chiral spin state, we add the&
following term:

H' =K [So-1- (S X Sie) + S - (S X S . . .
i 04 0.6 0.8
(2
FIG. 2. Lowest singlet-singletAgs circles and singlet-triplet
whereK is the chiral interaction strength. (Ag, triangles gaps for(a) J=0.1 and(b) J=0.6 from exact diago-
In the following, we present a systematic study of thenalization studies of a 20 sites ring.

various regions of the phase diagram in ke phase plane

using a dimer expansiéh'® and finite-size diagonalization petween the dimers becomes finite. The ground state in that
methods. In order to obtain an idea of the energy-level strucgase cannot be expressed in product dimer forms, although
ture, we have carried out finite-size diagonalization for systhere remains a finite spin gap all over tdine except at
tem sizesN=8-20spins with periodic boundary conditions. aroundk =0.4, where it is nondegenerate with gapless exci-
The ground state is found to be a singlet all over the phasgtions.
diagram. o As discussed above, for every valuelot J., there exists

To understand the low-energy characteristics of the sysy criticalK point, K.(N), corresponding to the crossing of the
tem in theJ—K phase plane, we have kept thevalue fixed A __and A, curves, for a given system sizbl, To obtain
and have varied the K value from 0 to 1. This has been dongese criticak points in the thermodynamic limit, we adopt
for various values of. We calculate the singlet-singlet gap, the method suggested by Okamoto and Nomura, where one
Ass and singlet-triplet gap)s; for all the system sizes in the jots the finite-size critical points as a function ofNE/ The
J-K phase spacé\s gives us an indication that as a function |east-squares fitting of the equatid.(N)=K +constN?
of K, the system goes through a gapless point for every valug o, gives the value of the critical poirfis,) in the thermo-
of J aboveJ.. To determine these gapless points, we pIOtdynamic limit15 ¢

both theAssandAg values for various values &, for every Additionally, we have also carried out series expansion

J. Figure 2 shows the nature of these two gaps in the gaple%%\lculations fo obtain
- . - > ; . ground-state energy, structure factor,
(J=0.1) and in gappedJ=0.6) phases for &=20 sites ring. and the singlet-triplet excitation spectrum for input param-

For J below J;, the spin gap, as well as the singlet-singletgiers3 andK. This method has been previously described in
gap, increase as a function K indicating that the chiral g\ erg| articled’19and will not be repeated here. We would

term does not couple strongly with any of the low-energy; st |ike to add that since our Hamiltonian is a complex
states. In fact, for largk(K — 1), we find that the chiral term e itian we had to be diligent in computing its properties.
couples with the lowest triplet state little stronger than the |, the limit that the exchange coupling along the rudgs

ground state and in that limit the spin gap is quite largeqnqgj, are much larger than the couplingsthe Hamiltonian
However, forJ>J, there is a finite spin gap to start with for -5 pe written as

K=0, and interestingly, the spin gap decreases with the in-

crease irK value for smallk values. Nevertheless, above a H=Hy+\V, (3)
certain criticalk for everyJ>J,, it increases again. Further-
more, we find that the chiral term couples quite strongly towhere
the lowest triplet state at smal values, above which it
couples quite equally to both the ground state and magnetic HO:E St S,
I

state.
We have carried out computations of these gap parameters
for various values of] for a number of system sizes. The
special point 0fJ=0.5 is worth mentioning. AK=0, the V:E_ S Spisg
ground state is the exact dimer states. But as we introlyce '
this exact dimer degeneracy is lifted, since the correlation +S) - (Shis2 X Shisn) |

2SSt K2 [Sit - (Sy X Susn)
(4)

180403-2



EFFECT OF CHIRAL INTERACTIONS IN FRUSTRATED.

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 70, 180403R) (2004

K K
04 0.8 0.4 0.8
03 | 103
. - —_
e - .// g
= o - 3
V4
01 | J 01
(a) (b)
’
© P (d) " 0.8
03} r,./” _e— {03
e~ ’// - oo k=0.0
= 7’ A s k=0.1
® 04 »v k=0.2
= k=0.3
0.1 401 *+ k=0.4
/
// /
/ / 0 L 1 1 L
0 04 08 04 0.8 0 0.2 0.4 0.6 0.8 1
K K q(in @)

FIG. 3. Order parameter as a functionkffrom series expan-

) FIG. 4. The triplet dispersion curve(q) vsq, for various values
sion, forJ values(a) 0.1, (b) 0.3, (c) 0.4, and(d) 0.5.

of K at (a) J=0.3 and(b) J=0.5.

We can obtain an expansion inby treating the operator K, where the gap vanishes. The) vs g is shown in Fig. 4,
H, as the unperturbed Hamiltonian, and the operstas the  for J=0.3 and 0.5, for a number & values. ForJ=0.3, the
perturbation. This dimer expansions have been carried out ugap is very small up to the criticd{=0.2, above which it
to the orden!? for the ground state and to thé® order for ~ starts increasing. Fai=0.5, this excitation is gapless &t
the excited states, with the graph size of 11 and 10 dimers; 0.4, while there is a finite gap for othé¢ values. It is
respectively, for every parameter values. Our expansion codateresting to note that all the=0.5€(q) curves cross at two
with K=0 reproduces the results obtained for theJ,—§  particularq values and they are symmetric abays /2.
mode|?° The g values at those points are, however, incommensurate
To characterize a phase transition, an order parameter h&g~0.127 and 0.4%r). Moreover, thee(q) curve for K=0
to be introduced. We define the chiral order parameter as also crosses at thospvalues, suggesting the possibility of a
common exact eigenstate for the Majumdar-Ghosh model
with and without the chiral term. Note that the minimum in
e(q) is always found ag=0 or 7 and it is symmetric around
q=m/2.
©) Next, we calculate the magnetic structure factor to further
In Fig. 3, we plot the order parameters as a function of thé/nderstand the nature of the gr(_)und-state orderin.g in ge_lpless
chiral interaction strength for four differedtvalues. As can @nd gapped phases. In th¢ine with K=0, the classical spin
be seen, fod belowJ,, the order parameter increases with  limit (S—) predicts a Néel ordering fod<0.25 and a
with the same slope without any features. However, Jor coplanar or spiral order fod above 0.25. In other words,
abovel,, it shows the change in the slope around a particula§(Q) has a peak atfn,=m for J<0.25 and at(nax
K point, which exactly supports the finite-size diagonaliza-=cos™(1/4J) for J>0.25. However, the quantum model has
tion results. More specifically, fod=0.3, the slope of the no long-range orde(LRO), rather, it has a quasi-LRO of the
order parameter changes aroufd0.2. ForJ=0.4 and 0.5, order of the system size for the spin-1/2 case. ot /2, the
this occurs around&=0.3 and 0.4, respectively. At the spe- Néel quasi-LRO exists up td=<0.5, above which the sys-
cial point, atJ=0.5, along theK line, the results are quite tems goes into a spiral phase. The spiral phase in this case is
interesting. AtK=0.0, the values of all the correction terms characterized by the peak in tf#q) at someqy., value
of the energy are zero as expected and the dimer energy lgtweens and 7/2.
-3J/4. However, the energy correction is finite as we switch At K=0, the series expansidiq) reproduces the known
on thekK, indicating that the chiral field lifts the ground-state results. ForJ<0.5, theS(q) peaks a,a=, While it is at
dimer degeneracy. Omax< 7 for J>0.5. With the introduction oK, the ga
To understand the excitation characteristics in khkne  value remains the samg,,=m) for J<0.5, for allK val-
for various values ofl, we compute the excitation energy ues. However, abové=0.5, to start with, folK=0, thegax
using series expansion. The spin gap is generally defined &s less thanr, and after introduction oK, the S(g) remains
the minimum energy point in the(q) vs g plot, wheree(q) is  peaked at the incommensurate values up to Khealue
energy gap to the triplet state at a wave vegtétForJ<J,,  where the excitation gap vanishes. Interestingly, the chiral
we find that increase iiK increases the singlet-triplet gap, term above a certain critical strength restores back the Néel
while for J abovel., the gap reduces witk up to a certain  quasi-LRO phaséq,,,.=) from the incommensurate phase.

N
X= UN% [So1 (Si X Spist) + S+ (Spisa X Spisd) .-
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FIG. 5. Structure factor§(q) vs q for various values oK at J FIG. 6. Phase diagram in the-K phase plane. Whilé and B
=0.6. have the Néel quasi-long-range order, the shaded region has spiral

order. The dashed line correspond to the gapless line, with open
In Fig. 5, we plot theS(q) as a function ofj at J=0.6, for a  circles from finite-size scaling of the finite-size diagonalizations
number ofK values. As can be seen, thg.,value is incom- data and the filled squares with error bars from series expansion.
mensurate up t&=0.4, above which the,., restores back The arrows indicate the behavior of the spin gap; the gap increases
to 7. in the arrow directions.
Finally, we present the phase diagram of the above model

in the J-K phase plane in Fig. 6. Putting together all the he arrows indicate the increase of the spin gap towards the
above results for the finite sized systems with scaling and thgirection of the arrow. Sinc&=0 has been well studied for
series expansion, it is clear that there exist a gapless line ig,qn largeJ, we present results up th~0.7.

J-K plane above]>J.. All over the phase diagram, the T4 conclude, we have shown that although the strength of
system is in a Néel quasi-LRO phase except in the shadefe chiral interaction is quite small, it can give rise to exotic
region, where it is in spiral phase. While the gap increasegpases specifically when the system becomes spontaneously
with the increase il values in phase A, in the case of phasegimerized due to frustrations. It can even change the ground-

B, the gap reduces with an increase in chiral strength up Qiate ordering. We also found an existence of a gapless line
the critical chiral values, above which it increases again with, the J—K phase plane.

the increase K. ForK=0, asJ increases abové., the spin
gap increases, however, up to a certdjrabove which it S.K.P. thanks DST and CSIR, India, for research grants
again decreases. The full phase diagram is shown in Fig. @&nd D.P. thanks CSIR, India, for partial support.
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