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A simple antiferromagnetic approach to the Mott transition was recently shown to provide a satisfactory
explanation for the Mott gap collapse with doping observed in photoemission experiments on electron-doped
cuprates. Here this approach is extended in a number of ways. Random phase approximation, mode coupling
(via self-consistent renormalization), and(to a limited extent) self-consistent Born approximation calculations
are compared to assess the roles of hot-spot fluctuations and interaction with spin waves. When fluctuations are
included, the calculation satisfies the Mermin-Wagner theorem(Néel transition atT=0 only—unless interlayer
coupling effects are included), and the mean-field gap and transition temperature are replaced by pseudogap
and onset temperature. The model is in excellent agreement with experiments on the doping dependence of
both photoemission dispersion and magnetic properties. The magnetic phase terminates in a quantum critical
point (QCP), with a natural phase boundary for this QCP arising from hot-spot physics. Since the resulting
T=0 antiferromagnetic transition is controlled by a generalized Stoner factor, an ansatz is made of dividing the
Stoner factor up into a material-dependent part, the bare susceptibility and a correlation-dependent part, the
HubbardU, which depends only weakly on doping. From the material-dependent part of the interaction, it is
possible to explain the striking differences between electron and hole doping, despite an approximate symme-
try in the doping of the QCP. The slower divergence of the magnetic correlation length in hole-doped cuprates
may be an indication of more Mott-like physics.
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I. INTRODUCTION

Schrieffer, Wen, and Zhang1 originally proposed that the
magnetic insulating phase in underdoped cuprates could be
understood via a spin density wave(SDW) approach to the
Mott transition, and successfully described the spin wave
spectrum of the undoped parent compound, which is an an-
tiferromagnetic (AFM) insulator. Kampf and Schrieffer2

showed that precursors of the Mott transition could give rise
to a pseudogap in the quasiparticle spectrum, between incipi-
ent upper(UHB) and lower Hubbard bands(LHB’s). At-
tempts were quickly made to go beyond mean-field theories
by incorporating fluctuation effects, but a number of prob-
lems soon arose. While some calculations found evidence for
pseudogaps,3 others did not.4

The rapid disappearence of Néel order with hole doping
created more problems: many calculations, even including
strong fluctuations, predicted magnetic order asT→0,
coupled with diverging magnetic correlation lengthj,
whereasj is found to remain finite even in the presence of
the pseudogap. This has been used as evidence that the band
structure picture of the Mott transition breaks down, and
must be replaced by a local picture: “Mott physics” instead
of “Slater physics.” On the other hand, other calculations
find evidence for instabilities—either to incommensurate
magnetism5 or to phase separation,6,7 and the saturation ofj
could be due to nanoscale phase separation physics. The situ-
ation is at a stalemate, with some models neglecting both
phase separation and magnetic effects, and explaining the
pseudogap in terms of purely superconducting precursor ef-
fects, while others find a magnetic quantum critical point
(QCP) in the deeply underdoped regime, and yet others find
a QCP above optimal doping.

Clearly, a simpler alternative is an important desideratum,
and one has recently been proposed. While phase separation
is a significant complication for hole doping, this instability
appears to be greatly reduced or absent in electron-doped
materials,8,9 allowing a much simpler analysis. Moreover, for
electron doping, the band picture involving short-range com-
mensurate AFM order seems justified, in that magnetic cor-
relations remain commensurate, while the correlation length
diverges for all dopings up to the QCP. The desirability of a
reference system free of phase separation complications co-
heres with Laughlin and Pines’ observation:10 “This problem
[of identifying the correct quantum protectorate] is exacer-
bated when the principles of self-organization . . . compete.
. . . [H]igher organizing principles are best identified in the
limiting case in which the competition is turned off, and the
key breakthroughs are almost always associated with the ser-
endipitous discovery of such limits.”

While many models attempt to describe the properties
of the cuprates over a limited doping range, it has proven
difficult to systematically reproduce the changes over an ex-
tended doping range. Remarkably, simple mean-field
calculations9 were able to reproduce the full doping depen-
dence of ARPES spectra in the electron-doped cuprates8 in
terms of a Mott gap collapse(QCP) near optimal doping.
Here, these results are expanded upon in a number of ways.
First, a number of models are applied to the electron-doped
system, to see the effects of various correlations. A key issue
is finite temperature effects: the random phase approximation
(RPA) predicts a Néel temperatureTN,U—much larger
than found experimentally. Proper inclusion of thermal fluc-
tuations, introduced via a self-consistent renormalization
(SCR) model,11,12 drives the Néel temperatureTN to zero
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(Mermin-Wagner theorem), replacing the RPA gapDMF by a
SCR pseudogapD* and the mean-field Néel temperatureTN

MF

with a crossover temperatureT* , with DMF.D* , TN
MF.T* .

Inclusion of spin wave scattering, via the self-consistent
Born approximation(SCBA) produces a large incoherent
background, but the coherent part of the spectrum is recog-
nizably the same as the spectrum found in the RPA and SCR
approaches, with only moderate band renormalizations. The
present conclusions(including Ref. 12) are consistent with
more recent findings.13,14

In summary, there is a QCP near optimal doping in the
electron-doped cuprates, associated with Mott(pseudo)gap
collapse. The transition is characterized by three concurrent
factors: termination of a zero-temperature AFM transition
(which can be associated with a finite-T Néel transition due
to weak interlayer coupling); collapse of a pseudogap cen-
tered onsp ,pd; and crossover of the Fermi surface from
small pockets to large barrel. Good agreement with experi-
ment requires a weak Kanamori-style15 renormalization of
the HubbardU with doping. The same model can describe
both ARPES and magnetization results. A similar QCP is
predicted at a comparable hole doping—indeed a natural
phase boundary for magnetism exists, associated with hot-
spot physics. There is, however, a striking difference in the
hole-doping case: saturation of a spin sum rule leads to much
smaller correlation lengths and absence of finite-T Néel or-
der. Stripe physics appears to play a lesser role—turning on
at lower temperatures—possibly as a form of interaction of
the doped polarons.

This paper is organized as follows. Section II describes
the SCR formalism. Since the transition occurs when a
Stoner factor equals unity, it is controlled by thereal part of
the bare susceptibility. Hence Sec. III reviews the properties
of Re x, showing that plateaus inx as a function of dopingqW
or v are all controlled by the physics of hot-spots. In turn,
these plateaus provide natural phase boundaries for QCP’s.
The resulting susceptibility has a form similar to that postu-
lated for a nearly antiferromagnetic Fermi liquid(NAFL),
but there are extra(cutoff) parameters, which cannot be ne-
glected. In Sec. IV, this renormalized susceptibility is incor-
porated into the lowest-order correction to the electronic self-
energy, allowing a calculation of the spectral function
associated with the pseudogapsTN=0d. Excellent agreement
is found with the ARPES spectra of Nd2−xCexCuO4±d

(NCCO). An extension of the results to the hole-doped re-
gime is considered in Sec. V. The model also provides a good
description of magnetic properties, as discussed in Sec. VI.
Section VII shows that inclusion of interlayer hopping leads
to a finiteTN. Results are discussed in Sec. VIII, and conclu-
sions in Sec. IX. There are a number of appendixes. The first
two deal with extensions of the model, to a three-band model
(Appendix A) and to a comparison with the self-consistent
Born approximation at half filling in Appendix B. The latter
incorporates coupling to magnetic polarons which can lead
to anomalous localization effects and bear some resemblance
to nanoscale phase separation. It is found that only minor
quantitative changes to the earlier results are expected. The
remaining appendixes describe technical details of calcula-
tions, including the doping dependence ofU (Appendix C), a
more accurate solution of the self-consistency equation(Ap-

pendix D), properties of the bare susceptibility(Appendix
E), calculation of the NAFL parameters(Appendix F), and
details of the estimation ofTN (Appendix G). Some of these
results have been reported previously in the discussion of the
mean-field results9 and in a conference proceedings.12

II. MODE-COUPLING CALCULATION

A. Model dispersion and doping dependence ofU

In the present paper the mean-field results are extended by
incorporating fluctuations via mode-coupling theory,16 fol-
lowing Moriya’s self-consistent renormalization(SCR)11,17,18

procedure. Mode coupling theories have been applied to
charge density wave(CDW) systems,19,20 and have led to a
successful theory of weak itinerant magnetic systems.11,17

They have also been used to study glass transitions,21 and
recently extended to glasses in cuprates.22 The mode-
coupling analysis is particularly convenient, being the sim-
plest model for which the Mermin-Wagner theorem is satis-
fied. The resulting pseudogaps compare well with recent
photoemission experiments in electron-doped cuprates.
While the SCR technique can be generalized to deal with
competing phases,23 only the antiferromagnetic fluctuations
will be treated here.

The cuprates are treated in a one-band model. By com-
parison with a three-band model(Appendix A), this can be
shown to be an excellent approximation for the magnetic
properties. The bare electronic dispersion is

ek = − 2tscx + cyd − 4t8cxcy, s1d

with ci =coskia. The dispersions for undoped Sr2CuO2Cl2
(SCOC) and electron-doped NCCO can be fit by assuming
t=0.326 eV,t8 / t=−0.276, withU taken as an effective dop-
ing dependent parameter,9 with U=6t at half filling. Similar
parameters are found24 to describe the spin wave spectrum25

in La2CuO4: t=0.34 eV, t8 / t=−0.25, and U / t=6.2. The
former values will be used here.

Many textbooks on strong correlation physics26,27 note
that the HubbardU should be doping dependent, based on
the original results of Kanamori,15 but there are no satisfac-
tory results for the doping dependence in the cuprates. A
simple model calculation, which gives semiquantitative
agreement with experiment in NCCO,8,9 is described in Ap-
pendix C.

B. Self-consistent equation

The SCR scheme is introduced to incorporate strong fluc-

tuations near the antiferromagnetic wave vectorQW . The(path
integral) formalism is standard27 and only the main results
are given here. The quartic Hubbard contribution to the
Hamiltonian is decoupled by a Hubbard-Stratonovich trans-
formation introducing spin wave fieldsf. The Fermion fields
are then integrated out, leaving an approximate quartic effec-
tive action, which describes fluctuations about the mean-field
solution due to mode coupling. In the SCR model, the dy-
namical susceptibility is found self-consistently as
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xsqW,ivnd =
x0sqW,ivnd

1 − Ux0sqW,ivnd + l
, s2d

with the bare susceptibility

x0sqW,vd = − o
kW

fsekWd − fsekW+qWd

ekW − ekW+qW + v + id
, s3d

whered is a positive infinitesimal, and the RPA susceptibility
given by Eq.(2) with l=0.

The leading divergence corresponds to AFM atqW =QW , so
the denominator of Eq.(2)—the (inverse) Stoner factor—is

expanded in terms of the small parametersv andqW8;qW −QW

(analytically continuingivn→v+ ie):

dqsvd = 1 −Ux0sqW,vd + l = d + Aq82 − Bv2 − iCv, s4d

where

d = 1 −Ux0sQW ,0d + l, s5d

andd0=d−l. The self-consistent equation ford is

d = d0 +
12u

bV o
qW,ivn

D0sqW,ivnd, s6d

where u is a measure of the quartic mode-mode coupling
(Appendix F 6) and (neglectingB)

D0
−1sqW,ivnd = d + Aq82 + Cuvnu. s7d

The sum over Matsubara frequencies can be carried out us-
ing

1

b
o
ivn

Xsivnd = −
1

bp
o
ivn

E
−`

`

de
Im Xse + idd

ivn − e

= −E
0

`

d
e

p
coth

e

2T
Im Xse + idd. s8d

Then

1

bV o
qW,ivn

D0sqW,ivnd =E d2qWa2

s2pd2

3E
0

av/C de

p
coth

e

2T

Ce

sd + Aq82d2 + sCed2 .

s9d

Note the sharp energy cutoff in Eq.(9). This comes about
because the linear-in-v dissipation is a result of Landau
damping of the spin waves by electrons near the hot-spots,
and therefore the dissipation cuts off when the spin wave
spectrum gets out of the electron-hole continuum. The cutoff
parameterav is defined in Appendix F 4, above Eq.(F10).
Numerical calculations(Fig. 40) show that the cutoff can be
quite sharp, particularly near the van Hove singularity
(VHS).

C. Approximate solutions

Equations(6) and (9) can easily be solved in the limitT
=0. In this case, there is a transition at

d0 = − 12uE
0

qc
2 dq82a2

4p
E

0

av/C de

p

Ce

sAq82d2 + sCed2

= −
3uqc

2a2

p2C
R0 ; 1 − h, s10d

R0 =
1

2
lnf1 + aq

−2g +
tan−1saqd

aq
, s11d

with aq=Aqc
2/av. Since the right-hand side is finite and

negative, fluctuations reduce but in general do not eliminate
the order atT=0. At the RPA levelsl=0d, the AFM insta-
bility is controlled by the Stoner criteriond0→0. The quan-
tum corrected Stoner criterion isUx0=h, where representa-
tive values ofh are listed in Table I.

However, for finiteT, there are corrections,lnsdd, so d
cannot be set to zero, and there is no finite temperature tran-
sition (the Mermin-Wagner theorem is satisfied). To see this,
it is adequate to approximate cothsxd as 1/x for xø1 and 1
for x.1. In this case, Eq.(6) can be solved exactly, Appen-
dix D. However, this exact solution is not very illuminating,
and a simpler approximate solution will be given here. Since
only the term proportional toT is singular,T andd can be set
to zero in the remaining term. Defining

d̄0 = d0 + h − 1, s12d

Eq. (6) becomes

d − d̄0 =
6uTa2

p2A
E

d

d+Aqc
2 dy

y
tan−1S2TC

y
D .

3uTa2

pA
lnS2CT

d
D ,

s13d

where the second line uses Eq.(D6), below. Hence, there is
no finite temperature phase transition, andd only approaches
zero asymptotically asT→0: approximately,

d = 2CTe−pAud̄0u/3uTa2
. s14d

D. Susceptibility

Given the(inverse) Stoner factordq, Eq. (4), the renor-
malized susceptibility can be written in nearly antiferromag-
netic Fermi liquid(NAFL)28 form

TABLE I. Electron doped cuprates.

x U/ t A/a2 v1 seVd av qca h TA
* sKd u−1 seVd

0 6 0.696 0.345 0.583 0.635 1.20 1020 1.0

−0.04 5 1.16 0.540 0.455 0.518 1.17 850 1.9

−0.10 3 1.34 1.32 0.176 0.342 1.15 500 7.0

” 3.5 1.56 1.13 0.206 ” 1.13 ” 5.1

−0.15 2.5 1.75 2.16 0.054 0.172 1.09 56 12

” 2.9 2.03 1.86 0.062 ” 1.05 ” 9.2
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xsqW,vd =
xQ

1 + j2sqW − QW d2 − v2/D2 − iv/vsf

, s15d

with coefficients

xQW =
x0

d
, s16d

j2 =
A

d
, s17d

D2 =
d

B
, s18d

vsf =
d

C
. s19d

The similarity of Eq. (15) to the corresponding result for
CDW’s20 should be noted—the SCR is a form of mode-
coupling theory.

In the renormalized classical regime, the vanishing ofd as
T→0 is controlled by a correlation length, Eq.(17), which
can be written as29

j = j0e
2prs/kBT. s20d

Numerically solving Eq.(13) [or Eq. (D7)] for d, then the
spin stiffnessrs is exactly given by

rs =
kBT

4p
lnS A

j0
2d
D , s21d

with j0=ÎeA/2TC. Using Eq.(14), an approximaters is

rs
a =

Aud̄0u
12ua2 . s22d

rs is plotted in Fig. 5(b), with u−1=0.384 eV, chosen to give
a rs in agreement with experiment forx=0, T=0 (Sec. VI).
The T dependence of the prefactorj0 agrees with one-loop
s-model results30 rather than the more accurate two-loop
results.29,31This difference is presumably a deficiency of the
present model in not using fully self-consistent parameters; it
will be discussed further in Sec. VI.

III. SUSCEPTIBILITY AND PARAMETER EVALUATION

A key insight of the present calculations is that the prob-
lem can be separated into a kinetic part, involving the bare
susceptibilityx0, and a potential part, involving the Hubbard
U and the mode-coupling parameteru. All of the band struc-
ture effects, which dominate the doping dependence, are con-
tained inx0, which is readily calculated. The strong coupling
effects are contained inU and u; since these are Coulomb
effects, they are independent of band structure and depend
weakly on density. While they are hard to calculate, they can
readily be parametrized, and a simple estimateUeffsxd is
given in Appendix C, which is consistent with experiment. A
single, doping-independent value ofu is chosen to agree with
t-J results at half filling.

The motivation for this approach comes from experience
with another strongly correlated system: electron-hole drop-
lets in photoexcited semiconductors. Here it was found32,33

that the correlation effects were controlled by an isotropic
density-dependent interaction potential, whereas the mate-
rial, anisotropy, and uniaxial pressure dependence were con-
trolled by the kinetic energy—i.e., by the bare band struc-
ture. A similar approach has been applied to CDW systems.34

A. Bare susceptibility

Since the Stoner criterion depends on Rex0, the doping
dependence of this quantity is described in Appendix E. The

FIG. 1. Susceptibilityx0 nearQW for several dopings near theC
point. Upper group atm=−0.05 eV, middle atm=0 (C point), and
bottom atm= +0.05 eV. Temperatures areT=200 K (dotted lines),
100 K (short-dashed lines), 10 K (long-dashed lines), 1 K (solid
lines). Horizontal line5 Ueffsm=0d.

FIG. 2. Plateau widthqc, comparing Eq.(E3) (solid lines) and
the measured widths(circles) from Fig. 32. Upper curve along
fqc,0g direction, lower alongfqc,qcg /Î2 direction. Symbols = ex-
perimental inverse correlation lengthsj−1 from YBCO: large
squares = Ref. 35, triangles = Ref. 36; LSCO: small squares = Ref.
37. Diamonds =TA

* /5000 K. Dotted line:j=100a. Inset = plateau
boundary for a series of chemical potentialsm from 0 (smallest) to
−0.359 eV(largest).
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most important property is the presence of susceptibility pla-
teaus, both in theq dependence and in the doping depen-
dence. These plateaus are characteristic of thehot-spot re-

gime, where the antiferromagnetic wave vectorQW connects
two points on the Fermi surface. For instance, Fig. 1 shows
x0 for several dopings near the termination of the hot-spot
plateau on the electron-doped side(called theC point). For
chemical potentialm,0 the T=0 susceptibility has an ex-
tremely flat top nearsp ,pd, which collapses to a square-root
cusp at theC point. Note that there is a strongT dependence
to x0 on the plateau. Whereas theq plateau width collapses
to zero on the electron-doping side, it actually grows on the
hole-doping side and has maximum width at the termination
of the hot-spot regime(the H point), Fig. 2. This electron-
hole asymmetry has important consequences in the cuprates,
and may explain the small values of the correlation
lengths35–37 on the hole-doped side, as discussed further in
Sec. V.

The plateaus inq lead to corresponding plateaus in the
doping dependence, ofx0, Fig. 3(a) [note that electron dop-
ing corresponds tox,0]. By comparison with the density of
states(DOS), Fig. 3(b), it can be seen that on the hole-
doping side the hot-spot plateau terminates at the Van Hove
singularity(VHS), wherex0 has a small additional peak. The
two ends of the doping plateau are denoted herein as theC
point and theH point (the VHS).

B. Mean-field Mott and Néel transitions

For the parameter values expected in the cuprates, these
susceptibility plateaus control the physics of the Mott gap
collapse. As a function of doping, the mean-field Mott gap is
found to close at a doping just beyond the edge of the pla-
teau, for both electron and hole doping, Fig. 4. The solid and
long-dashed lines are the commensurate and incommensu-
rate mean-field Mott transition temperaturesT*sxd calculated
using the estimatedUeffsxd, dotted line in Fig. 3. For electron
doping, there is a double transition, first from commensurate
to incommensurate antiferromagnetic order at the plateau
edge, then to the loss of any magnetic order at a slightly
higher doping[inset (a)]. For hole doping, the dominant an-
tiferromagnetic order is incommensurate for all dopings, but
the difference inTN becomes significant only near theH
point [inset(b)]. When fluctuations are included(below), it is
found that the Néel transition is shifted to zero temperature,
while a pseudogap first appears near the mean-fieldTN. Note
that in the hole-doped regime, there is good agreement be-
tween the mean-field transition and the pseudogap[squares
in Fig. 4(b) = data of Krasnov,38 assuming 2D=4.6T*]. For
the real cuprates, the terminations of the Mott gaps are pre-
empted by superconducting transitions, close to the critical
regime.

The mean-field Néel transition is associated with short-
range magnetic order, and hence should be compared to the
experimental pseudogap transitionT* , while the experimen-
tal Néel transition involves long-range magnetic order. It is
controlled by small parameters, such as anisotropy and inter-
layer coupling(Sec. VII) and need have no connection to the
mean-fieldTN. Nevertheless, the mean-field calculation pro-
vides an approximate envelope of the resulting data, but
overestimates the transition temperatures by a factor of 10,
Fig. 4. The agreement is particularly good on the electron
doped side(except for overestimating the doping of the

FIG. 3. (a) Susceptibilityx0 at QW as a function of doping for
several temperatures. From highest to lowest curves nearx=0.1, the
temperatures areT=1, 100, 300, 600, 1000, 2000, and 4000 K.
Dotted line =1/Ueff, dot-dashed line =1.5/Ueff. (b) Density of states

NF for the same temperatures.(c) Susceptibilityx0 at QW as a func-
tion of doping for several frequencies atT=1 K: v=0.01, 0.1, 0.3,
0.6, 1.0 eV.(d) Pseudo-VHS(peak ofx0) as a function of tempera-
ture TV (circles) or scaled frequencyTc

−=vc
−/p (squares); triangles

=Tincomm.

FIG. 4. Mean-field magnetic transition temperatures determined
from Stoner criterion usingUeff of Fig. 3. Solid line: commensurate

(at QW ); long-dashed line: incommensurate. Dot-dashed line =10TN,
whereTN is the onset of long range AFM order, from Refs. 39 and
40 (with filled circles). Insets = blowups nearC and H points.
Squares in inset(b) = pseudogap data of Ref. 38.
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QCP), while for hole doping the experimentally observed39

TN (dot-dashed line) shows a stronger falloff, perhaps due to
phase separation. Since stripes can frustrate magnetic order,
the figure also includes the magnetic ordering temperature of
quasistatic stripe arrays, from Nd-substituted La2−xSrxCuO4
(LSCO),40 which is taken as a lower bound for the Néel
ordering transition in the absence of stripes. A possible ex-
planation for the rough proportionality of the mean-field and
long-range Néel transitions will be discussed in Sec. VII.

C. NAFL parameters

The susceptibility Eq.(15) is well-known in NAFL
(Refs. 28 and 41) and spin fermion42,43 theories and in renor-
malization group (RG) calculations of quantum phase
transitions.44,45 In these calculations, the parameters of Eq.
(15) (equivalently,A, B, andC) are usually determined em-
pirically from fits to experiments. However, the good agree-
ment between experiment and mean-field theory for electron
doped cuprates encourages us to try tocalculate these pa-
rameters from first principles, following Ref. 17, using the
empirical Usxd and u values. Details of the derivation are
discussed in Appendix F, and the results are displayed in
Table I.

Table I also lists values of the mode coupling parameteru
estimated in Appendix F 6. Due to the approximate nature of
this calculation, a simpler empirical(doping-independent)
value of u is assumed. As discussed in Sec. VI,rs is esti-
mated from the measured correlation length forx=0, using
Eq. (20). Sincers~u−1, Eq. (22), this givesu−1=0.384 eV,
which is assumed for all dopings.(Note that this is within a
factor of three of the calculated value at half filling.) The
calculated values ofrs are illustrated in Fig. 5(b), based on
Eqs.(D1) and (22).

The main results of this calculation can be summarized as
follows. (1) Due to the susceptibility plateaus, twonew pa-
rametersare required in the NAFL calculation, cutoffs in
wave numberqc and frequencyav. (2) All parameters have a
strong doping dependence, and in the case of the curvatureA
a strong temperature dependence as well. The doping depen-
dences become particularly pronounced near the edges of the
hot-spot plateau, which is where QCP’s are likely to be lo-

cated. Hence, the present calculation replaces a large number
of experimentally determined, doping dependent parameters
with a single parameterUsxd with a weak doping dependence
of well-understood form.(3) On the hole-doped side, the
curvature parameterA becomes very small and can change
sign on the broad susceptibility plateau. This has profound
consequences for the divergence of the correlation length,
and can play a role in enhancing competing phases(incom-
mensurate or stripe phases).

IV. ARPES SPECTRA

A. SCR transition and correlation length

Given the above parameters, the doping dependence of
the MF and SCR transitions is compared in Fig. 5 for the
four electron dopings studied in Refs. 8 and 9. The MF tran-
sition occurs when the bare Stoner factord0=1−xQW 0U be-
comes negative, Fig. 5(a). However, in SCR the renormal-
ized Stoner factord stays positive, so there is noT.0 phase
transition (Mermin-Wagner theorem), althoughd−d0 has a
strong increase near the temperature whered0 changes sign.
There is still a zero-T Néel transition, controlled by the quan-

tum corrected Stoner factord̄0=h−xQW 0U. From Fig. 5(c), it
can be seen that atx=−0.15, the system is close to a QCP,

d̄0sT=0d→0. This QCP is controlled by the Stoner criterion
of the zero-T antiferromagnet. While there is no long-range
order, there is still a Mott(pseudo)gap, controlled by short-
range order, Fig. 5(d). A direct comparison of the transition
temperatures is presented on a linearT scale in Fig. 6. The
spin stiffnessrs [Fig. 5(b)] is found to be nearlyT indepen-
dent below the pseudogap onset. While the value ofU has
been adjusted to fit the ARPES spectra, it is important to note
that good agreement has also now been found with magnetic
properties. This is discussed in Sec. VI.

B. General results

Given the susceptibility(15), the self-energy can be cal-
culated approximately as

FIG. 5. (a) d−d0 (thin solid
lines =−d0), (b) rs calculated from

Eqs.(22) and(14), (c) −d̄0, (d) D̄,
Eq. (28). In all the plots, the solid
curves correspond tox=0.0, dot-
ted lines: x=−0.04, short-dashed
lines:x=−0.10, long-dashed lines:
x=−0.15.
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SskW,ivnd =
g2x0

bV o
qW,ivm

G0skW + qW,ivn + ivmdD0sqW,ivmd

=
g2x0

V o
qW
E

−av/C

av/C de

p

nsed + fsjkW+qWd

ivn + e − jkW+qW

3
Ce

sd + Aq82d2 + sCed2 , s23d

with bare Green’s functionG0skW , ivnd=1/sivn−jkWd, jkW =ekW

−m, and magnetic propagatorD0, Eq. (7); for the form of the
integral, see the discussion near Eq.(9). In addition, x0

=x0sQW ,0d, qW =QW +qW8, n is the Bose function, and

g2x0 = U2x0SUx0sQW ,ivnd +
1

1 + Ux0sQW ,ivnd
D .

3U

2

s24d

(Ref. 46). The last form is an approximation based on the
empirical substitutionx0→ .1/U in the pseudogap regime.
(An improved approximation forS [G0→G in Eq. (23)] is
discussed in Appendix B.) After analytical continuation, the
imaginary part of the retarded self-energy is

Im SRskW,vd =
− g2x0

V o
qW
E

−av/C

av/C

defnsed + fsjkW+qWdg

3dsv + e − jkW+qWd
Ce

sd + Aq82d2 + sCed2 .

s25d

The resulting self-energy is plotted in Fig. 7 forT=100 K.

(The weak oscillations seen in some branches ofSI are an
artifact due to an insufficient density of points in the numeri-
cal integration.) Note that ImS has the form of a broadened
d function peaked atv=jkW+QW . If it were a d function, ImS

=−pD̄2dsv−jkW+QW d, then

ReSRskW,vd =
1

p
E

−`

`

de
Im SRskW,ed

e − v
=

D̄2

v − jkW+QW
, s26d

so away from thed function

GskW,vd =
1

v − jkW − ReSRskW,vd
=

v − jkW+QW

sv − jkWdsv − jkW+QW d − D̄2
.

s27d

This is exactly the Green’s function of the mean-field

calculation,1 with the substitutionD→ D̄, where D̄ can be
evaluated by integrating

D̄2 = −
1

p
E

−`

`

dv Im SRskW,vd =
U

8u
sd − d0d, s28d

Fig. 5(d). This result is due to the Bose termnsed in the
square bracket of Eq.(25), the Fermi functionf making no

contribution. This leads toD̄ being independent ofkW.

FIG. 6. Temperature dependence of gapD̄ for (from highest to
lowest) x=0, −0.04, −0.10, and −0.15. Arrows show mean-field
transition temperatureTN.

FIG. 7. Imaginary part of the self-energy(25) assuming 1/C
=0.05t, d=0.002, av=1, T=100 K. The branches are labeled
skx,kyd, in units of p.

FIG. 8. SCR dispersion rela-
tions for electron doped materials,
calculated at T=100 K: (a) x
=0 sU / t=6d, (b) x=−0.04sU / t
=5d, (c) x=−0.10sU / t=3.5d, and
(d) x=−0.15sU / t=2.9d. Line-
width indicates relative intensity;
for x=−0.15 all shadow features
are extremely weak.
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Equations(27) and(28) constitute an important result, the
connection between the Mott gap and short-range magnetic
order.47,48 Recalling thatD=UkMil, or D2=U2kSil2, where
kMil=s−1dikSil is the staggered magnetization, then, in the
spirit of an alloy analogy, a short-range order parameter can
be defined as

D̄SR
2 sivd =

− g2

4b
E

0

b

o
ki,jl

kSi+stdSj−s0dleivtdt

=
− g2

4b
o

k

scx + cydx+−sk,ivd .
g2

2b
o

k

x+−sk,0d

s29d

which is equivalent to Eq.(28). [In the last equality in Eq.
(29) the limit iv→0 is an adiabatic approximation,11 while

the approximation is made thatx peaks nearQW .] Thus, as

long as there is short-range magnetic order(D̄ or rs nonzero),
there will be a Mott(pseudo) gap.

C. Application to the cuprates

Using the correct ImSR from Eq.(25), and the calculated
parameter values from Table I, ARPES spectra are calculated
for electron-doped cuprates, at the four dopings for which
detailed data are available.8 The resulting dispersions are
shown in Fig. 8. There is a well defined pseudogap, with two

peaks in the spectral function at a givenkW. It should be
stressed that since there is no interlayer coupling, long-range
antiferromagnetic order exists only atT=0 K. The agree-
ment with the mean-field results,9 Fig. 9, and experiment8 is

quite good, except that the SCR gap is smaller at half filling.
This is due to lack of self-consistency: in calculating the
self-energy, a susceptibility based on the bare Green’s func-
tion was used, neglecting the opening of a gap near the
Fermi level. In Appendix B it will be shown that when this is
accounted for(via the self-consistent Born approximation) a
larger gap is found. For completeness, Fig. 10 shows the
mean-field dispersion in the three-band model, discussed in
Appendix A. The overall agreement in all cases is quite strik-
ing.

In an earlier calculation12 a somewhat larger value ofu
was assumed,u−1=0.256 eV. This leads to stronger quantum
corrections: the parameterh−1 (Table I) was about twice as
large and the gaps in Fig. 8 were smaller, particularly near
half filling.

Figure 11 shows typical calculated spectra for severalkW

points in thea-b plane. Broadened Hubbard bands are found,
which gradually smear out at high temperatures asd in-
creases(j decreases).

Figures 12–14 illustrate the temperature dependence of
ImsGd and ImsSd for two dopings,x=0 and −0.15. The
broadening of the peaks can be understood from Eq.(25):
particle-hole excitations are present within a range ±av /C of
jkW+qW. Away from this particle-hole continuum the main peaks
are sharp, while they broaden when they enter the con-
tinuum.

Note that the Mott gap collapse is anisotropic: for the
undoped case, the nodal gap collapses between 2–3000 K,
while a gap persists nearsp ,0d above 5000 K. ImsSd has
striking oscillatory structure, particularly nearsp /2 ,p /2d,
which produces a similar weak structure in ImsGd at low T.
[Similar, weaker oscillations are present nearsp ,0d, which

FIG. 9. Mean-field dispersion
relations for electron doped mate-
rials, calculated atT=1 K: (a) x
=0 sU / t=6d, (b) x=−0.04sU / t
=5d, (c) x=−0.10sU / t=3d, and
(d) x=−0.15sU / t=2.6d. Line-
width indicates relative intensity.

FIG. 10. Mean-field disper-
sions in three-band model for
electron doped materials, showing
the two antibonding bands, as-
sumingmQ=0.3 (a), 0.2 (b), 0.05
(c), and 0.01(d). Other parameters
are discussed in Appendix A.
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can be better seen in Fig. 4(c) of Ref. 12.] In addition, there
is a very intense, stronglyT-dependent peak in ImsSd exactly
at jkW+qW [Fig. 12(b)—also present but not shown in Fig.
13(b)—see Sec. VIII B]. It is the divergence of this peak as
T→0 which signals the AFM transition. At low tempera-
tures, the peak positions in ImsGd have a temperature depen-
dence consistent with the collapse of the Mott gap—e.g., the
LHB shifts to higher energies(toward midgap) at higher
temperatures. Some experiments on hole-doped cuprates find
the opposite dependence,49 which can possibly be understood
as a localization or phase separation effect.

In contrast, forx=−0.15, Fig. 13, the splittings are absent
nearsp /2 ,p /2d, and vanish nearsp ,0d by ,500 K, and the
lines actually sharpen on warming. If the effectiveU is re-
duced to 2.5t, no splitting is found, but the peak position and
broadening have an anomalousT dependence. Clearly, the
system is very close to a QCP. Figure 15 shows in more
detail how the spectrum evolves withU near this point.

Finally, Fig. 16 displays Fermi surface maps forx=
−0.10 and −0.15, showing the crossover from small to large

Fermi surface. Hot-spot effects are prominent atx=−0.15,
pinning the Fermi surface to the zone diagonal and broaden-
ing it at a pseudogap due to hot-spot scattering.50 These
should be compared with the mean-field9 and experimental8

results. It should be noted that in the mean-field calculation,
it was necessary to include at9 parameter to reproduce the
experimental hole pocket near the zone diagonal. Such a pa-
rameter would have shifted the Fermi surface across the zone
diagonal, leading to improved agreement with experiment
here as well.

Thus, the SCR calculation agrees with the mean-field
results,9 if the mean-field gaps and transition temperatures
are interpreted as the opening of a pseudogap at finiteT, with
the long-range AFM appearing only atT=0. Moreover, the
overall dispersions, Fig. 8 are in quite good agreement with
the mean-field results9 and experiments.8

V. EXTENSION TO HOLE-DOPED CUPRATES

Thus, for electron-doped cuprates, a threefold coincidence
of Mott gap collapse, Fermi surface crossover, and zero-T

FIG. 11. Spectral functions for
(a) x=0, (b) x=−0.04, (c) x=
−0.10, and (d) x=−0.15, at T
=100 K. Solid lines atsp ,0d, and
long-dashed lines atsp /2 ,p /2d.

FIG. 12. Temperature dependence of(a) spectral function and
(b) imaginary part of self-energy, forx=0.0 atsp ,0d. Temperatures
are 100, 500, 1000, 2000, 3000, 4000, and 5000 K.

FIG. 13. Temperature dependence of(a) spectral function and
(b) imaginary part of self-energy, forx=0.0 at sp /2 ,p /2d. Tem-
peratures are 100, 500, 1000, 2000, 3000, 4000, and 5000 K.
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QCP is found. SCR theory predicts a similar triad for the
hole-doped cuprates, and the present section explores the ex-
tent to which this is found experimentally.

A. Pseudogap

In hole-doped cuprates, ARPES finds two features which
are commonly referred to as pseudogaps—a “hump” feature
found nearsp ,0d at higher binding energy than the main,
superconducting “peak,” and the “leading edge gap,” a loss
of spectral weight in the immediate vicinity of the Fermi
level. This latter feature is not explained by the present cal-
culation; it may be the magnetic feature discussed in Appen-
dix B 2,13,14,51 or it may be associated with the onset of
strong superconducting fluctuations.48,52

On the other hand, the “hump” feature can be consistently
interpreted as the collapse of the Mott pseudogap.48 Bilayer
splitting cannot explain SIN tunneling measurements38,52,53

which find two humplike features, roughly symmetric about
the Fermi level. Correlation with ARPES suggests that the
tunneling peaks reflect structure nearsp ,0d, and Fig. 17
shows that semiquantitative agreement with experiment can
be attained in terms of weakly split Hubbard bands, for a
screenedU=2.3t [see also Fig. 4(b)]. For simplicity, the cal-
culation is carried out at the mean-field level. Figures 17(c)
and 17(d) show how the bottom of the UHB nearsp ,0d
gradually merges into the VHS of the LHB. The intensities

FIG. 14. Temperature dependence of spectral function forx=
−0.15 atsp ,0d, for U / t=2.9 (a) and 2.5(c). Temperatures are 100
(solid line), 500 (long-dashed line), 1000 (short-dashed line), and
2000 K (dot-dashed line). (b) Imaginary part of self-energy atT
=100 K, U / t=2.9.

FIG. 15. U dependence of spectral functions forx=−0.15 atT
=100 K near theT=0 QCP, forU / t=2.5 (short-dashed line), 2.7
(long-dashed line), 2.9 (solid line), 3.0 (dot-dashed line), and 3.2
(dotted line).

FIG. 16. Fermi surface map forx=−0.10(a) and −0.15(b).

FIG. 17. (a) CalculatedDOS for a series of hole-doped cuprates,
assumingUeff=2.3t, with x=0.176(solid-line), 0.184(long-dashed
line), 0.202(short-dashed line), 0.225(dotted line), and 0.244(dot-
dashed line). (b) Comparison of shift of lowerDOS peak (circles)
from (a) with representative tunneling data(Ref. 38) (triangles).
(c), (d) Band dispersion near the pseudogap forx=0.176 (c) and
0.244(d).
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and positions of the two DOS peaks reveal a clear asymme-
try. As the Mott gap vanishes, the two peaks merge into the
VHS of the bare band.(There may be complications due to
nanoscale phase segregation, since STM studies suggest that
the peak and hump features are spatially segregated.54)

The above interpretation requires that for hole doping also
the Mott gap must collapse slightly above optimal doping.
This is consistent with recent experimental observations of a
QCP.55 Moreover, the model predicts that at the QCP, where
the pseudogap just closes, the Fermi level is exactly at the
VHS (H point). This result had been found experimentally in
some lightly overdoped cuprates.56,57

In a recent confirmation of the QCP just beyond optimal
hole doping,58 it is suggested that this “has to do with the
restoration of the Fermi-liquid state in the overdoped regime
characterized by a large Fermi surface” (emphasis added); a
similar conclusion was made by Balakirevet al.59 Thus two
elements of the QCP triad are present. The third is more
elusive.

B. T=0 QCP

In electron-doped cuprates, a finite Néel temperature per-
sists all the way to the QCP; by contrast, for hole doping
TN→0 at a dopingx,0.02−0.03, considerably below the
proposed QCP. Here it is suggested that aT=0 magnetic
transition persists out to the QCP, but the correlation length
grows so slowly that three-dimensional Néel order is super-
ceded by the superconducting transition. Details are pre-
sented in a related publication,60 and only briefly summa-
rized here.

The key insight is that the susceptibility must satisfy the
fluctuation-dissipation theorem11,26

kM2l = −E dv

p
nsvdE d2q

s2pd2Scx + cy

2
DIm xsqW,vd,

s30d

where kM2l is the mean square local amplitude of nearest-
neighbor spin fluctuations andn is the Bose function. For
hole-doped cuprates theq plateaus constitute a problem. For
electron-doped cuprates, the plateau width is quite small, and
the susceptibility is large only over an areaj−2, so the sum
rule (30) is never saturated, andxQ and j both diverge ex-
ponentially with decreasingT. For hole doping the plateau
width is large, Fig. 2, and the curvature on the plateauAq2 is
relatively small, so asT decreases intensity grows all across
the plateau. This tends to saturate the sum rule, leading to a
greatly weakened divergence of the correlation length

j2 =
a

T
− b, s31d

with a and b constants. From Eqs.(6) and (9), it can be
shown that

a .
Apud0u
3ua2qc

2 .
8p2AkM2l
Ux0Qqc

2 s32d

[where the latter form follows from Eq.(30), and x0Q

=x0sQW ,0d] so a→0 at the QCP.

This result has a number of consequences.(1) Neutron
diffraction35,36measures the plateau width, Fig. 2 and not the
correlation length.(2) NMR (Ref. 61) measures the correla-
tion length, and in YBCO finds a weakT→0 divergence of
j, as predicted. Thus the present results resolve a
long-standing61,62controversy about the correlation length in
hole-doped cuprates.(3) In the cuprates, Néel order appears
at T.0 only if the correlation length exceeds 100a, wherea
is the lattice constant63 (the connection betweenTN andj is
discussed in the next section). This explains the broad range
of hole dopings where there is onlyT=0 AFM order: Fig. 2
shows that the measuredj→100a only at x=0.02 in LSCO
(see also Fig. 19, below). (4) Moreover, the slope of theT−1/2

term inj decreases rapidly with doping, signaling a QCP just
above optimal doping. Hence, the triad of features of the
AFM QCP are also present in the hole-doped cuprates, with
the broad susceptibility plateaus responsible for the striking
differences from electron doping.

C. Incommensurate magnetism and competing phases

The above analysis strongly suggests that at high-energy
scales the physics of the cuprates is dominated by magnetic
ordering. This includes the large pseudogap regime and the
attendant QCP’s. None of this analysis precludes interesting
new physics on lower-energy scales, including of course su-
perconductivity near the QCP’s. Another possibility is the
admixture of a second phase generating an enhanced gap—a
popular choice being the flux phase.64

The physics associated with nanoscale phase separation,
or “stripe” physics, seems to also fall in this category. Incom-
mensurate magnetic modulations are seen in several cuprates
— particularly the LSCO family – and while the SCR model
does find an incommensurate susceptibility particularly for
hole doping[Fig. 35(b)] it probably cannot reproduce the
observed doping dependence of the incommensuration. In-
deed, it has been noted6 that the incommensurability gener-
ally signals an instability toward phase separation. Experi-
ments suggest that phase separation and/or stripe physics is
present in the hole-doped cuprates65,54 down to arbitrarily
small dopings.66 However, the temperature at which stripes
are stabilized seems too low65,67 for them to be directly re-
sponsible for the pseudogap phenomena.

A detailed discussion of this issue here is clearly out of
the question, but the following suggests a possible explana-
tion. Doped carriers in an AFM are strongly dressed by their
environment, forming magnetic polarons68 in a pure Hubbard
model, but in a more general situation being sensitive to
nearby competing phases.69 Thus, it is suggested that the
physics of competing phases enters the problem at the level
of the properties of polarons, and different degrees of phase
separation and/or stripe formation in different cuprates have
to do with the tendency of polarons to cluster. That is, the
stripe physics should enter the problem on a lower energy/
temperature scale than the fundamental pseudogap phenom-
ena discussed in the present paper. Theq plateau in hole-
doped cuprates greatly enhances the sensitivity to stripe
physics, since the system is close to instability over a wide
range of incommensurate modulations.
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VI. MAGNETIC PROPERTIES

A. Electron doping

While the present model was developed on the basis of
ARPES data, the collapse of the Mott gap should be clearly
reflected in other properties as well, in particular in the mag-
netic response. Indeed, Manget al.63 have recently measured
the ordered momentM in reduced NCCO samples, and find
good agreement with the present model9 [see Fig. 19(b) be-
low]. The correlation length has not yet been measured in
reduced(superconducting) NCCO, but there are data for the
as-grown material, which is insulating,70,63 Fig. 18. The rea-
sons for the striking differences between the two types of
samples are not fully understood, but there seems to be some
interstitial oxygen which localizes a fraction of the doped
electrons, so one must dope the as-grown samples more to
produce a given reduction of the magnetic properties(e.g., to
get a certain value ofTN, the doping of the as-grown sample
xg must be about 0.02–0.03 larger than for the reduced
samplexr, inset in Fig. 18). The data for the undoped sample
were used to estimaterssx=0,T=0d, and thereby u−1

=0.384 eV. Comparing this to thes-model calculations,29,30

rs=JS2, gives J=113 meV, in good agreement with other
estimates.

However, a fit to Eq.(20) could only be made by reducing
the (T-dependent) prefactorj0 by a factor of 16. A similar
problem was encountered in thes-model calculations: one-
loop renormalization30 found j0,1/ÎT, as here[below Eq.
(20)], while a two-loop calculation31 found aT-independent
j0. Introducing a Castro Neto-Hone-like interpolation
formula71

j0 =
e

4
Î eA

2CsT + 2prsd
, s33d

yields the solid-line fit in Fig. 18, with no adjustment of the
prefactor. Moreover, the curves for the doped samples apply
the samecorrection factors. The agreement inT dependence
is quite good; while the theoreticalxr is smaller than the
experimentalxg, the ratio is consistent with both those de-
rived from TN and from the magnetizationM (inset in Fig.
18). This strongly suggests that as far as magnetic properties
are concerned as-grown NCCO behaves similar to a reduced
NCCO, with a few percent of the electrons localized(how-
ever, as-grown NCCO never becomes superconducting).

In discussing the as-grown NCCO samples, mention
should be made of the “anomalous pseudogap”72 found in an
as-grown sample nearx=−0.15—which should correspond
to x,−0.12 in the reduced samples. From Fig. 5(c), rs falls
off in the range 200–1000 K asx varies from −0.15 to
−0.10, signaling the opening of the Mott(pseudo)gap. In the
as-grown sample, a pseudogap was found to open below
240 K, centered at 300 meV. From Figs. 8 and 9, the gap
near sp ,0d would be in this range. Additional infrared and
Raman phonons were observed, beyond those allowed by
tetragonal symmetry. This could be associated with the
orthorhombic symmetry of the magnetic Brillouin zone.
Clearly more work needs to be done, but if this is the correct
interpretation, the present model predicts what the doping
dependence should be, and that similar features should be
seen in the reduced samples as well.

B. Hole doping

The results on NCCO should be contrasted to those for
LSCO,37 Fig. 19(a), where a saturation of the effectivej is
observed in all doped samples. For undoped La2CuO4, the
data(open circles) largely overlap those of Nd2CuO4 (open
and filled diamonds), but a small change of slope may be
present in the best fits. For lightly doped LSCO,37 the data
can be fit to Eq.(31) down to ,150 K, Fig. 19(a), below
which j saturates or decreases. In principle, it should be
possible to calculate this saturation ofj directly from Eq.
(20). As noted in Appendix F, the value ofA tends to be
overestimated when the susceptibility peak is incommensu-
rate. Thus, the dotted line in Fig. 19(a) is the calculated value
of j, using Eq.(33) with parameters appropriate tox=0.10
hole doping, except thatA/a2=0.24, only 1/3 the value esti-
mated from Fig. 35(a).

From thea coefficient of Eq.(31) it should be possible to
extract the magnetization(32). However, as explained in Sec.
VI B, neutron scattering data tend to measure the suscepti-
bility plateau widthqc, strongly underestimatingj. This is
illustrated in Fig. 19(b), where magnetizationM =ÎkM2l de-
rived from j via Eq. (32) is compared toM in NCCO esti-
mated from the ARPES data9 (squares) and from magnetiza-
tion (upright73 and inverted63 triangles). The j-derived data
include the NCCO neutron data of Fig. 19(a) (triangles) and
NMR data from YBCO(Ref. 61) (circles) expected60 to give
a better estimate ofj. For both sets of data, the parameter
A/x0QUa2 was taken as a constant 2.8. Except for the lowest

FIG. 18. Temperature dependence of correlation lengthj in
NCCO. Data are from Ref. 70:x=0 (open diamonds) and −0.15
(open squares); from Ref. 63:x=0 (solid diamonds), −0.10 (solid
up triangles), −0.14 (solid down triangles), and −0.18 (solid
circles). Fits are to Eq.(33), with parameters appropriate tox=0
(solid line), −0.04 (long-dashed line),−0.085 (dotted line), and
−0.10 (short-dashed line). Temperatures are measured in units of
J=125 meV. Inset: Plot of as-grown nominal dopingxg vs reduced
nominal dopingxr for fixed values ofTN (circles), M (squares), and
j (diamonds). Solid line isxg=1.2xr +0.012.
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doping, the neutron data lead to an underestimate forM,
confirming that the measuredj is too small. In contrast, the
NMR data are consistent with the electron-doped results, and
strongly suggest the presence of a QCP just above optimal
doping.

More recent experiments on very lightly doped LSCO
(Ref. 74) have found that the magnetization at these dopings
is actually incommensurate—consistent with diagonal
stripes. This points out an interesting parallel with the
present model: early experimental samples displayed flat,
diamond-shaped susceptibility plateaus nearsp ,pd. As
sample quality improves, incommensurate structure seems to
become more prominent: see, e.g., Fig. 1 of Ref. 75. Related
behavior arises in the model: The susceptibility for hole-
doped cuprates displays a flat-topped plateau at high tem-
peraturesd.0. As the temperature is loweredd→0, incom-
mensurate structures develop from fine structure on top of
the plateau, Fig. 3 of Ref. 60, gradually dominating the spec-
trum. However, in the calculations this incommensurability
is sensitive to sample “quality”: it only shows up whend is
very close to zero. Hence, in real samples, the appearence of
such structure should be very sensitive to disorder or sample

inhomogeneity. Finally, it should be noted that interpretation
of the incommensurability in terms of stripes remains con-
troversial in cuprates other than the LSCO family. Rezniket
al.76 report an approximately uniform ring of incommensu-
rability in optimally doped YBCO, which is dispersive and
pushed up to finite frequencies by the spin gap in the super-
conducting state. A ring or diamond of incommensurability is
actually quite close to what is found here, and the extension
of the present calculations to the superconducting phase
should be quite similar to the results of Eschrig and
Norman.77

VII. THREE-DIMENSIONAL NÉEL ORDER

The (inverse) Stoner factordq (4) can be generalized to
include interlayer coupling

dqsvd = d + Aq2 + Azqz
2 − Bv2 − iCv, s34d

leading to a susceptibility

xsqW,vd =
xQ

1 + j2fsqW − QW d2 + azsqz − Qzd2g − v2/D2 − iv/vsf

s35d

with az=Az/A. In the physical cuprates, the interlayer hop-
ping has an anomalous dispersion, generally written astz
= tz0scx−cyd2. This formula holds for bilayer splitting, and in
general when the CuO2 planes are stackeduniformly. How-
ever, as explained in Appendix G, many of the cuprates,
including NCCO, have astaggered layering, with the Cu in
one CuO2 plane laying above a vacancy in the neighboring
CuO2 sheet. This leads to a magnetic frustration: the Cu in
one sheet has four nearest neighbors in the adjacent sheet,
two with spin up, two with spin down. This frustration is
reflected in a more complicated dispersion oftz:

tz = tz0scx − cyd2cos
kxa

2
cos

kya

2
, s36d

which vanishes atsp ,0d and s0,pd, and leads to a greatly
reduced interlayer coupling.(Effects of AFM frustration as-
sociated with layering have been discussed in Ref. 78.)

The consequences of both uniform and staggered stacking
are explored in Appendix G. If thec-axis resistivity is coher-
ent, it can be used to estimate the interlayer hoppingtz0. It is
found that the value oftz0 needed to produce a given resis-
tivity anisotropy is approximately five times smaller for uni-
form stacking, to account for the frustration in the staggered
stacking. With the correspondingtz0’s determined from resis-
tivity, both forms of interlayer coupling give rise to compa-
rable interlayer coupling, and hence a finite Néel tempera-
ture. While the optimalQ vector depends on doping, at half

filling both forms predictQW =sp ,p ,0d, consistent with ex-
periment in La2CuO4. Even for quite strong anisotropy, this
mechanism can account for the observedTN’s (in fact, tends
to overestimateTN), without the necessity of invoking addi-
tional mechanisms, such as a Kosterlitz-Thouless transition,
with the reduced spin dimensionality caused by spin-orbit
coupling effects.79–82

FIG. 19. (a) Temperature dependence of correlation lengthj in
LSCO for x=0 (open circles), 0.02 (inverted triangles), 0.03
(squares), and 0.04 (triangles) (from Ref. 37), compared with
Nd2CuO4 (open and filled diamonds, as in Fig. 18). Thick solid
curve = fit for undoped material from Fig. 18). Thin solid lines =
fits to Eq. (31). Dotted line = calculated value forx=0.10, as de-
scribed in the text.(b) Comparison of magnetization extracted from
jsTd, Eq. (32) [filled triangles for LSCO(Ref. 37), circles for
YBCO (Refs. 61 and 60)], with that for NCCO, taken from ARPES
fit, Ref. 9 (squares), and from magnetization(scaled toM =0.4 at
x=0; open triangles: Ref. 73, inverted triangles: Ref. 63). All lines
are simply drawn to connect the data points, except for that part of
the dotted line connected with the ARPES data(squares) extrapo-
lated beyondx=0.15. This represents a mean-field calculation, as-
suming thatU does not change with doping over this range, and
using the band parameters of Ref. 9.
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Within mode-coupling theory83 (Appendix G), the Néel
temperature is found from the gap equation[Eqs. (G1) and
(D7)

x0sTdU = h +

3uTa2lnS T

T3D
D

pA
, s37d

whereT3D, tz
2 is defined below Eq.(G8). It is found thatT3D

is approximately constant, independent of doping in the
electron-doped regime. Apart from a small numerical factor,
Eq. (37) differs from the isotropic three-dimensional result
by the logarithmic factor, which divergessTN→0d as tz→0.

Equation(37) can be rewritten in a suggestive form. Ap-
proximatingrs by rs

a=Asx0U−hd /12ua2 [Eq. (22)], then, us-
ing Eq. (20), the Néel transition occurs when

JzF jsTNd
j0sTNdG2

= GTN, s38d

where Jz=Jstz0/ td2, J=4t2/U, and G=4tz0
2 /UT3D. A very

similar form was proposed earlier,84 and experimentally63

Néel order seems to appear whenj.100a.
Figure 20 compares the calculated value ofTN with the

experimental values. While the overall doping dependence is
comparable, the calculatedTN is about an order of magnitude
higher. The calculation is for staggered stacking, withtz ad-
justed to reproduce the observed resistivity anisotropy, but
Appendix G shows that the overestimate is generic: the co-
efficient of the logarithm needs to be larger to reduceTN.
Also shown in Fig. 20(dotted line) is a simplified model,
which assumes that

T0
* =

pA

3ua2lnS T

T3D
D s39d

is doping independent,T0
* =1200 K. This model reproduces

qualitatively the shape of the numerical calculation, but with
a magnitude comparable to experiment. The magnitude ofTN

could be matched almost quantitatively ifUeff also has a
significant temperature dependence, as discussed in Appen-
dix G. The overall doping dependence is also comparable to
experiment. The agreement could be further improved by
using a smaller value oft8, which would shrink the doping
range over which Néel order occurs.

Finally, it should be noted that a finiteTN can change a
continuous QCP into a first order one. This follows beacuse
the plateau width increases with increasing temperature.
Hence, near the plateau edge, the system can satisfy the
Stoner criterion at some finite temperature, but fail to satisfy
it at a lower temperature, having fallen off of the plateau
edge. Such a first-order termination of the AFM state seems
to be found in the electron-doped cuprates, most notably in
Pr2−xCexCuO4 (PCCO),85 and in a related organic material.86

[Note added in proof: See now also O. N. Bakharev, I. M.
Abu-Shiekah, H. B. Brom, A. A. Nugroho, I. P. McCulloch,
and J. Zaanen, Phys. Rev. Lett.93, 037002(2004).]

VIII. DISCUSSION

A. Slater vs Mott physics

Theories of magnetism fall into two diametrically op-
posed classes:87 band vs atomic models or Slater vs Mott
physics. In principle, these are not independent theories but
the wave vs particle versions of a single underlying quantum
theory. At lowest order, the opening of the Mott gap is strik-
ingly different in the two approaches. In Slater theory, long-
range magnetic order leads to a unit cell doubling, so each
subband remains conventional, with two electrons per unit
cell. In Mott theory, the bands are highly unconventional: the
gap opening is purely a local effect—there is an energy pen-
alty of U for two electrons to sit on the same copper site.
Since there is no change in lattice symmetry, the unit cell
remains the same, and the bands hold only half as many
electrons as conventional bands. With additional refinements,
the predictions of the two models begin to merge. In the
Hubbard model, residual hopping proportional to 4t2/U,J
leads to AFM coupling of the electrons, and can lead to
parasitic Néel order, at a temperatureTN much lower than
that at which the Mott gap opens. On the other hand, strong
fluctuations in the Slater model can greatly reduceTN, leav-
ing a pseudogap near the mean-field instability temperature.

Here two questions are briefly addressed:(1) How far into
the strong coupling regime can a band model be pushed and
(2) what is the nature of the breakdown of the calculation. It
should be possible to probe these issues via mean-field re-
sults. Two separate indicators for the breakdown are pre-
sented.

A first indication comes from looking at competing or-
ders. A Stoner criterionUxq=1 gives the onset temperature

for magnetic order atqW, ranging from AFMqW =QW to ferro-
magneticqW =0, Fig. 21. While at half filling for any value of
U, AFM order dominates, the splitting decreases with in-
creasingU. The local, or Mott physics should arise when
fluctuations to all magnetic orders are comparably likely, or
the spread in transition temperaturesDTc is !T. Since the
probability of a fluctuation ofN particles into a phase with

FIG. 20. Comparison of experimental Néel temperatures for
NCCO and LSCO(solid line) and for the stripe(magnetic) ordering
transitions observed in Nd-substituted LSCO(Ref. 40) (solid line
with squares) with the model of interlayer coupling with staggered
stacking andtz0= t /10,30 meV, plotted asTN/10 (dot-dot-dash
line). Also included is the approximate expression(39) (dotted line
with circles). (Note that there is a range of hole doping for whichA
is found to be negative; in this rangeTN was arbitrarily assumed to
vanish in the staggered model,TN=0.)
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excess free energyDf is ,e−NDf/kBT, one can crudely state

that a phase will be significantly excited ifTN−TcsQW d
øa0TN, wherea0 is a small numerical constant. The width
of the DTc curve in Fig. 21(a) shows the fraction of the
Brillouin zone that is significantly excited fora0=0.01(e.g.,
for U / tù32.5, all modes are excited). This suggests that for
Uù15t, these fluctuations spread over a significant fraction
of the Brillouin zone, while forU.30t virtually all magnetic
states are equally excited and the Slater picture is badly bro-
ken down. However, the cuprates are generally found to be
in the regimeUø12t, where a Slater picture should be rea-
sonably accurate even close to theTN

* crossover.
Alternatively, when the mean-field solution becomes in-

sensitive to the band structure, it is likely that a local picture
is becoming dominant. In the present instance, the band
structure is determined by the ratiot8 / t. For any nonzero
value of t8, the susceptibility has a generic doping
dependence,88,89 Fig. 22—changing the sign oft8 merely in-
terchanges electron and hole doping. The role of the suscep-
tibility plateaus can be quantified, by defining ranges ofU
where the nature of the transition changes, Fig. 22(b). Thus,

for U,UV, there is no Mott transition atx=0, and the phys-
ics is dominated by an AFM transition at the VHS, for
UV,U,U2, there is a Mott transition at half filling, which
terminates(on the electron-doped side) before the plateau
ends, and hence is controlled by dynamic critical exponent
z=2, for U2,U,U1, the Mott gap collapses in the en-
hanced regime near the edge of the plateau, and forU.U1
the Mott gap terminates well off of the plateau, in a region of
z=1 physics. For the presentt=−0.552, the approximate val-
ues are UV/ t=2.4, U2/ t=2.6, and U1/ t=3.6sx,0d or
4.1sx.0d. Note that thez=2 regime is quite narrow, and can
probably be subsumed into the VHS regime. These values
depend ont8, and the VHS moves to half filling ast8→0,
Fig. 22(b). Even whent8=0, Sen and Singh90 find a cross-
over from SDW-like to Heisenberg-like behavior as correla-
tions increase beyondU0V=3.26t [diamond in Fig. 22(b)]. It
must be kept in mind thatU depends on doping, and the
above estimates refer toU near the plateau edge. The bare
U0=Usx=0d can be estimated by assuming the doping is
high enough to reach the Kanamori limit15 U=U0/ s1
+U0/8td. This results inU0V/ t=3.4, U02/ t=3.8, U01/ t=6.5
or 8.4 fort=−0.552. These last values are comparable to but
somewhat smaller that those estimated by the first criterion.

Note that the cuprates are in the rangeU2,U,U1, where
the plateau edges form natural phase boundaries for the
Stoner criterion, thereby providing a natural explanation for
the approximate electron-hole symmetry of the QCP’s. The
above discussion suggests that the cuprates are in a crossover
regime, with the electron-doped cuprates close to the Slater
limit, whereas the hole-doped cuprates should display en-
hanced Mott physics associated with the flatness of the
qW-susceptibility plateau and the associated competing phases.

FIG. 21. (a) Mean-field transition temperatures for NéelsTNd
and ferromagneticsTCd orders and their differenceDTc=TN−TC

(upper dashed line). At any U / t the ratio of the shaded area to the
total area below this line gives the fraction of the Brillouin zone

which is significantly excited[TcsQW dù s1−a0dTN, for a0=0.01]. (b)
Replot of transition temperatures scaled toU. (c) Plot of Tc vs qW, for
U=6t. The curve bears an uncanny resemblance to the(scaled)
electronic dispersion of the LHB, long-dashed line.

FIG. 22. (a) Bare susceptibilityx0sQW ,0d at T=1 K, for several
values oft=−0.0552, −0.110, −0.276, −0.552, −0.828, −0.9, −0.99
(solid lines), and 0(dashed line). (b) Crossover couplings as a func-
tion of t: UV (triangles), U2 (squares), and U1 (circles). (Dashed
line =U1 for electron doping.)
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B. Magnon Bose condensation and non-Fermi liquid physics

Figure 23 shows the sharp peak which arises in ImS at
low T. The growth is exponential, approximately matching
that of the coherence length,(20). (Note that it requires a fine
mesh in the integral of Eq.(25) to capture this growth.) This
peak arises exactly at the incipient magnetic zone boundary,
and turns into true Bragg scattering at the transition to long-
range order: the increase in peak height is almost exactly
compensated by a decrease in the width of the peak. A
simple physical explanation is that the SDW transition can
be interpreted as a Bose condensation of the zone boundary
magnons. Then the Mermin-Wagner theorem reduces to the
fact that in a two-dimensional system, Bose particles can
only condense atT=0. A similar explanation for the transi-
tion has been presented earlier.3

In turn, the soft zone-boundary phonons explain one ori-
gin of non-Fermi-liquid physics in the model: Bragg scatter-
ing from a fluctuating diffraction grating. How does one de-
fine Luttinger’s theorem when the unit cell is strongly
fluctuating?

C. Comparison with other calculations

As noted above, the present calculations predict that at the
magnetic QCP the(possiblyT=0) Néel phase will terminate,
the Mott gap will collapse, and the Fermi pockets will merge
into a large Fermi surface. This result distinguishes the
present calculations from many others in the literature. Here
a number of Slater-like theories are discussed.

The present results are generally consistent with thet-J
model in the low doping regime. However, since thet-J
model cannot readily deal with both Hubbard bands simulta-
neously, it is not appropriate in the present analysis of
electron-doped cuprates, where(a) ARPES can detect both
bands(at least up to the Fermi level) and(b) the Mott gap is
found to collapse with doping, leading to an overlapping of
both bands at the Fermi level. In thet-J model double occu-
pancy is forbidden in the LHB, while in the UHB empty sites
are forbidden. Moreover, the Hubbard model only allowsJ
values forJø1 (Figs. 28 and 30), and near this upper limit
significant modifications are needed. In the SCBA approach
to the t-J model, the parameterA1 has a broad peak91 when
J,0.8, not found in the Hubbard model SCBA calculations,
suggesting thatt-J and Hubbard can be equivalent only for
J!0.8 or for U@5—that is, near half filling only. It is in-
teresting to note that a recentt-t8-t9-J model calculation
seems consistent with the first doped carriers forming weakly
interacting quasiparticles in pockets of the respective upper
or lower Hubbard bands, for either electron or hole doping.92

A more detailed comparison with the SCBA model at half
filling is presented in Appendix B.

Related to thet-J model are a number of calculations
based on Eq.(2), but withU replaced by the exchangeJ, and
generally with auxiliary restrictions on double occupancy.
This is appropriate for studying magnetismin the LHB,
while assuming that the Mott gap is large. The results of
these calculations(e.g., Ref. 102) are consistent with Fig.
3(a), with U→J: there is no magnetic transition except for a
small region very close to the VHS.93 By their starting as-
sumption, these models cannot address the issue of Mott gap
collapse studied here.

The NAFL and spin fermion models are also based on
Slater-type physics, and should in principle make similar
predictions to the present SCR model. However, they tend to
take their parameters from experiment, which can lead to
complications in the presence of stripe phases. For example,
for hole doping, long-range Neel order and diverging suscep-
tibilities terminate at a very low doping,x,0.02. While the
SCR model predictsxQCP,0.25, some empirical models
takexQCP,0.02. In this case, the QCP is divorced from Mott
gap, since the Mott gap will clearly persist abovex=0.02.
Even worse, Matsudaet al.66 have shown that for doping
betweenx=0.02 and half filling the system is phase sepa-
rated, so uniform AFM order exists only atxø0.

Three examples of spin fermion calculations will be
given, to highlight the differences and similarities.(1)
Abanovet al.94 postulate a small-x magnetic QCP. They find
that the magnetic resonance mode frequency goes to zero at
this QCP, but also the superconducting gap vanishes at the
same doping, which would have important consequences for
the mechanism of superconductivity. This is in sharp contrast

FIG. 23. (a), (b): Blowups of ImsSd for x=0 at sp ,0d (a) and
sp /2 ,p /2d (b) at T=100 K (solid lines), 500 K (long-dashed lines),
and 1000 K(a) or 750 K (b) (short-dashed lines). (c) Maximum of
ImsSd vs T for sp ,0d (squares) and sp /2 ,p /2d (circles); 0.1/(full
width at half maximum) for sp ,0d (triangles) andsp /2 ,p /2d (dia-
monds); solid line = correspondingjsTd, Eq. (20).
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to the present model, where the magnetic QCP is at much
higher doping. In this model, the low-x QCP is supercon-
ducting, presumably associated with stripe effects.(2) Chu-
bukov and Morr47,95 studied the crossover from small to
large Fermi surfaces—here driven at fixed doping by reduc-
ing U. They state95 that “as the system moves away from half
filling, the spectral weight transfers from the upper band into
the lower band and, near optimal doping, there exists just
one coherent band of quasiparticles.” This suggests that the
crossover is due to a spectral weight shift, and not to the gap
closing—in contrast to the present results and to experiment
on NCCO. However, it should be noted that(a) their paper
actually concentrates on changes at the Fermi level, and did
not explore how the UHB might have shifted withU and(b)
it is possible that thecoherentpart of the UHB collapses,
while some weight remains in the incoherent part.(3) On the
other hand, Schmalianet al.48 go beyond the SCBA, sum-
ming both noncrossing and crossing diagrams via a generali-
zation of a technique of Sadovskii;96 their results for hole
doping are quite similar to the present results, with a mag-
netic QCP above optimal doping—but withj adjusted at
each doping to fit the experiment.

A number of groups have studied the Hubbard model us-
ing FLEX calculations, and have had considerable success
in describing anomalous transport properties.97 Here a
pseudogap is found even though the FLEX model cannot
describe the splitting into UHB and LHB, and the pseudogap
is derived from superconducting fluctuations. However, these
models are consistent with the present results, in that(1) the
pseudogap they describe is clearly the lower, leading edge
pseudogap which is not described by the present model and
(2) their calculation of the normal state properties require a
value ofU / t,1.5−2.5 much smaller than the values found
at half filling, and comparable to(or even smaller than) the
doped values found here.(Spin fermion calculations also ex-
tract a small value ofU—there calledg—from experiments
in near-optimally hole-doped cuprates.98)

The present calculations are in general consistent with the
results of Ref. 3. These authors employ a(two-particle self-
consistent) conserving approximation, and attempt to calcu-
late Usxd directly.99 However, they incorporate the strong
thermal (Mermin-Wagner) fluctuations directly into their
definition of U, so the resulting doping dependence should
not be compared to the form assumed here.

A leading edge pseudogap can also arise in the Hubbard
model in the absence of superconductivity,14,51,100but only
for largeU.8t.14

Some recent calculations have confirmed thatU must de-
crease with electron doping to reproduce the ARPES data: in
Kusonose and Rice13 the demonstration is indirect—the gap
collapse does not occur in a SCBA calculation ifU is kept
large. Sénéchal and Tremblay14 give a more direct demon-
stration; their model can also explain the hole-doped
pseudogap nearsp ,0d in the absence of stripe physics ifU
doesnot decrease with hole doping. Finally, a proper study
of the model incorporating QCP fluctuations is a strong de-
sideratum, but the problem of combining QCP and Mermin-
Wagner fluctuations has rarely101 been tackled in the litera-
ture.

D. VHS

Whether or not the VHS is responsible for the observed
electron-hole asymmetry, the present calculations reveal
some novel features of van Hove physics.

1. Temperature-dependent VHS

As noted by Onufrieva and Pfeuty,102 the VHS’s associ-
ated with the susceptibilities(and hence with charge or spin
nesting) aredifferent from those associated with the density
of states(and superconductivity). Thus, whereas supercon-
ductivity will occur at the same optimal doping for all tem-
peratures, the doping of maximal nesting instability is a
strong function of temperature.

This contrasting behavior of nesting vs pairing suscepti-
bilities is related to a characteristic difference in the nature of
the two instabilities. A superconducting instability has an in-
trinsic electron-hole symmetry, which means that the gap is
tied to the Fermi level, and a full(s- or d-wave) gap can be
opened at any doping level. On the other hand, a nesting gap
is dispersive, and only part of it lies at the Fermi level(ex-
cept in special cases). Furthermore, a(superlattice) Lutting-
er’s theorem must be obeyed, requiring the presence of re-
sidual Fermi surface pockets. Stated differently, a full nesting
gap can only open at integer filling, so as the interaction
strength increases, any nesting instability must migrate to
integral doping(e.g., half filling in the original band struc-
ture). This same VHS migration is mirrored in theT depen-
dence of the magnetic(or charge) susceptibility.

2. VHS transitions

We have seen that the doping-dependentUeff gives rise to
a Mott gap collapse near the edges of the susceptibility pla-
teau in Fig. 3. IfUeff is smaller(dot-dashed line:Ueff reduced
by 2/3), more complicated behavior should arise. Due to the
peak inx near theH point, there could be a reentrant tran-
sition, with one magnetic order near half filling, and a second
near the VHS. For an even smallerUeff (or replacingUeff
→J),102 the transition nearx=0 can be eliminated, leaving a
spin density wave transition near the VHS. In principle there
could even be a phase separation between two AFM phases:
an insulating phase near half filling and a metallic phase near
the VHS.

IX. CONCLUSIONS

The key conclusion to this work can be stated as follows:
In doped cuprates there is a magnetic QCP where three fac-
tors coincide: the crossover from small to large Fermi sur-
face, Mott gap collapse, and Néel transition termination. In
the SCR calculation there is no finite temperature Néel tran-
sition, at least in the isotropic 2D limit, but the zero-
temperature Néel transition persists with doping up to a QCP
controlled by a modified Stoner criterion. While the Mott gap
opening is more of a crossover than a sharp transition, nev-
ertheless, the upper and lower Hubbard bands merge at
nearly the same point, and the Fermi surface pockets recom-
bine to a single large Fermi surface, consistent with band
structure calculations. Comparison with experiment suggests
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that this correctly describes the situation in electron-doped
NCCO, both in ARPES(Sec. IV) and in magnetization stud-
ies, Ref. 63 and Sec. VI.

The hole-doped case also appears to fit this model, but
with complications associated with theq plateau. Thus,(a)
the pseudogap collapses in a QCP, as expected,(b) evidence
for the Fermi surface crossover has recently been
reported,59,58 (c) the correlation length appears to diverge as
T→0, but much more weakly than for electron doping, due
to a sum rule saturation.60 In more detail, the main results of
this paper can be summarized as follows.

Fluctuation effects were added to the mean-field Hubbard
model via a mode coupling calculation, which allowed satis-
fying of the Mermin-Wagner theoremsTN=0d. It was found
that the mean-field gapDMF and Néel temperatureTN

MF

evolved into a pseudogapDps,DMF and an onset tempera-
ture T* ,TN

MF (as is familiar from the related CDW results).
The resulting dispersions and Fermi surfaces are in excel-

lent agreement with photoemission experiments on electron-
doped cuprates,8 while the pseudogap seems consistent with
ARPES and tunneling results in hole-doped cuprates.

Magnetic properties—saturation magnetization and coher-
ence length—are also well fit by the same model. The good
agreement between ARPES and direct magnetic measure-
ments leaves little doubt that the(large) pseudogap is pre-
dominantly magnetic in origin.

The zero-temperature Néel transition is controlled by a
Stoner-like criterion, hence is sensitive to the bare suscepti-
bility and in turn to the Fermi surface geometry(hot-spots).
This lead to an approximately electron-hole symmetric QCP
near optimal doping(termination of hot-spot regime), at
which both zero temperature Néel transition and pseudogap
transition simultaneously terminate.

The model leads to a NAFL-type susceptibility, and the
calculation of the NAFL parameters has been reduced to a
calculation of the coupling parametersU and u, the former
having a significant doping(and possibly temperature) de-
pendence. At present,Usxd is estimated from experiment,
and the mode couplingu via consistency with thet−J model.
(A small portion of the renormalization ofU arises from
quantum corrections to the Stoner criterion.)

The present theory differs from conventional NAFL
theory by the inclusion of two cutoff parametersqc and vc

−

which shrink to zero at either theH or C points. For ex-
ample,qc is large near theH point, but shrinks to zero at the
C point, causing theA parameter to have a strong tempera-
ture dependence in the electron-doping regime.

Finally, a striking temperature/frequency dependence of
the VHS susceptibility peak,102 causing it to shift to half
filling at high T, is interpreted in terms of Luttinger’s theo-
rem: if the coupling is strong enough to open a full gap, the
gap must fall at half filling.

Note added. After the present work was completed, I re-
ceived a preprint from A.-M. S. Tremblay reporting similar
calculations for electron-doped cuprates.103

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministerio de
Educación through Grant No. SAB2000-0034, and by the

U.S.D.O.E. Contract No. W-31-109-ENG-38, and benefited
from the allocation of supercomputer time at the NERSC and
the Northeastern University Advanced Scientific Computa-
tion Center(NU-ASCC). Part of this work was done while I
was on sabbatical at the Instituto de Ciencia de Materiales de
Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain. I thank
my hosts, Maria Vozmediano and Paco Guinea, for a very
stimulating visit, for numerous discussions, and for correct-
ing an error in the original calculation. I thank Walter Harri-
son for stimulating conversations on calculating the inter-
layer coupling, and Martin Greven and Antonio Castro-Neto
for useful comments on the magnetic properties, and A.-M.
S. Tremblay for a preprint of his work.

APPENDIX A: THREE-BAND MODEL

A major simplification of the present calculation is to treat
the cuprates in a one-band model. This is consistent with the
Zhang-Rice picture,104 although the approximation is less
drastic for electron doping, since the upper Hubbard band is
already predominantly copperlike. Nevertheless, the model
also describes the doping dependence of the “lower Hubbard
band,” which is really a charge transfer, predominantly oxy-
genlike band. Here an explanation for why this simplification
works is suggested.

Even without carrying out self-consistent calculations, the
nature of the Mott transition can be understood by introduc-
ing a doping dependent gap. The energy bands can be calcu-
lated from the Hamiltonian matrix

H = o
j

Ddj
†dj + o

ki,jl
tCuOfdj

†pi

+ sc.c.dg 1 ∑
Šj,j8&

tOO@pj
†pj8 1 ~c.c.!# 1 Unj↑nj↓ 1 Upni↑ni↓,

sA1d

whereD is the difference in on-site energy between copper
and oxygen,tCuO is the copper-oxygen hopping parameter,
tOO the oxygen-oxygen hopping parameter, andU sUpd the
Hubbard interaction parameter on CusOd. For good agree-
ment with the doping dependence of the one-band model, it
is necessary to properly incorporate the Hartree correction to
the self-energyD=D0+SH, SH=Un↓ (for up spins), andn↓
=n/2−mQ, with n the average electron energy. The resulting
dispersions are shown in Fig. 10 for the antibonding bands,
and Fig. 24 for the full dispersion. In these figures, the fol-
lowing parameters are assumed:tCuO=0.8 eV,tOO=−0.4 eV,
D0=0, U=6 eV, andUp=3.75 eV.

The band dispersion is extremely similar to that found in
the one-band model, Fig. 9, even though the lower band
crosses over from the Zhang-Rice(hybridized copper-
oxygen band) at half filling to a more copperlike lower Hub-
bard band with increasing electron doping. In addition, the
effective magnetizations are proportional, Fig. 25, although
the one-band model overestimates the magnetization by 1/3.
This can be understood: in the three-band model, the shape
of the Hubbard bands is fixed by the combined effects of the
magnetic instability and hybridization with the oxygen band.
In the one-band model, only the former effect is present,
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necessitating a larger value ofm to produce the same net
splitting.

This remarkable agreement between one- and three-band
models goes well beyond the Zhang-Rice model. That model
is restricted to the LHB in a small range of doping near half
filling; the present results compare both LHB and UHB over
the full range of electron doping. The result is nontrivial—in
the three-band model, the bonding and nonbonding bands are
also split into upper and lower Hubbard bands. This degree
of agreement comes about because the parameterD includes
a large contribution from the magnetic Hartree term. In turn,
this suggests that in the absence of magnetic effects the Cu
and O energies are nearly degenerate—as found in early
LDA band structure calculations(see discussion in Ref. 105).

APPENDIX B: SELF-CONSISTENT BORN
APPROXIMATION

A limitation of the SCR calculations is that the self-energy
Eq. (23) is calculated using the bare susceptibility, whereas
the full susceptibility should be strongly modified by the

opening of the Mott gap. This can be corrected for by includ-
ing the full Green’s function into the self-energy calculation.
This is conveniently done atT=0, since there is a long-range
ordered phase, and the sole difference between the SCR and
mean-field calculations is a weak renormalization of the
HubbardU. In this case, a renormalized Green’s function can
be found by summing all the noncrossing diagrams; this is
the self-consistent Born approximation(SCBA). By includ-
ing the interaction of the quasiparticles with spin waves, it
also incorporates the physics of magnetic polarons. Magnetic
polarons closely resemble lattice polarons, leading to both
coherent and incoherent contributions to the spectral func-
tion, with considerable bandwidth renormalization in the co-
herent spectrum. In thet-J model it is known that the SCBA
gives a good description of exact diagonalization results on
small lattices.106

Here, a simple calculation is presented to estimate the
effect of the SCBA corrections on the dispersion of the insu-
lating phase. Only the coherent band dispersion is included,
and the SCBA is applied to the RPA solution,107 which
should be similar to the ordered SCR phase atT=0. The
calculation of Chubukov and Morr47 is extended to include
both lower and upper Hubbard bands. The RPA dispersions
of the upperscd and lowersvd Hubbard bands can be written
as follows. If the bare dispersion isek=−2tfcosskxad
+cosskyadg−4t8cosskxadcosskyad−2t9fcoss2kxad+coss2kyadg,
then definingek

s±d=sek±ek+Qd /2, Ek
s−d=Îek

s−d2+D2, D=UkSzl,
then

Ek
c,v = ek

s+d ± Ek
s−d. sB1d

HereD is the AFM gap,D,U /2 at half filling. For largeD,
this can be expanded as

E
kW
c,v

= A00 + A01coskxa coskya + A02scos 2kxa + cos 2kyad,

sB2d

with

A01 = J/2 ± t8, sB3d

A02 = J/2 ± 2t9. sB4d

The same dispersion is found in thet-J model,108,91suggest-
ing that the SCBA will be an equally good approximation
here.

The self-consistent equation[replacing Eq.(23)] can be
written

G−1sk,vd = v − sEk
c,v − md

−E d2q

4p2Cc,vsk,qdGsk + q,v + vqd, sB5d

whereCc,v is a vertex correction for the upperscd or lower
svd Hubbard band andvq is the spin wave dispersion. As will
be seen below[Eq. (B16)], C~ t2, so Eq.(B5) is independent
of t depending only on ratiost8 / t, t9 / t, andJ/ t. However, the
final dispersion also scales witht, so any comparison with
experiment requires all four parameters. For an arbitrary
electronic dispersion, these quantities can be evaluated as

FIG. 24. Dispersion of all six bands in three-band model, as-
sumingmQ=0.3 (a) and 0.01(b).

FIG. 25. Effective magnetizationmeff=mU/6t for the three-
band(circles) and one-band(squares) models. The one-band result
has been multiplied by 3/4 to better agree with the three-band
results.
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follows. The transverse susceptibility in the RPA can be writ-
ten as1,109

x̄+−sq,q,vd

=
x0

+−sq,vdf1 − Ux0
+−sq + Q,vdg + UfxQ

+−sq,vdg2

f1 − Ux0
+−sq,vdgf1 − Ux0

+−sq + Q,vg − U2fxQ
+−sq,vdg2 ,

sB6d

x̄+−sq,q + Q,vd

=
xQ

+−sq,vd
f1 − Ux0

+−sq,vdgf1 − Ux0
+−sq + Q,vg − U2fxQ

+−sq,vdg2 ,

sB7d

with

x0
+−sq,vd =

1

2N
o
k

8 F1 −
ek

s−dek+q
s−d − D2

Ek
s−dEk+q

s−d G
3F 1

Ek + Ek+q − v
+

1

Ek + Ek+q + v
G sB8d

and

xQ
+−sq,vd =

1

2N
o
k

8 DsEk
s−d + Ek+q

s−d d
Ek

s−dEk+q
s−d

3F 1

Ek + Ek+q − v
−

1

Ek + Ek+q + v
G . sB9d

In the largeU limit, Eq. (B6) becomes

x̄0
+−sq,q,vd = hq

2F 1

v + vq
−

1

v − vq
G , sB10d

with

hq
2 =

1

2
Îaq − gq

aq + gq
, sB11d

vq = 2JÎaq
2 − gq

2, sB12d

gq =
cossqxad + cossqyad

2
, sB13d

and

aq = 1 +
J8

J
f1 − cossqxadcossqyadg +

J9

J
s1 − g2qd,

sB14d

with J=4t2/U, J8 /J=st8 / td2, J9 /J=st9 / td2. As befits a Gold-
stone mode,vq=0 at q=s0,0d and sp ,pd. In this case,
Cc,v=Fc,v

2 , with

Fc,v = h̄qsek
s−d − ek+q

s−d d ± hqsek
s−d + ek+q

s−d d, sB15d

with h̄q=1/s2hqd, or

Cc,v = 16t2Faqsgk
2 + gk+q

2 d − 2gkgk+qgq

Îaq
2 − gq

2
± sgk

2 − gk+q
2 dG .

sB16d

Given vq, Ek
c,v, andCc,v, Eq. (B5) can be solved numeri-

cally to find both the coherent and incoherent parts of the
ARPES spectral weight. However, the incoherent part con-
tributes to a weak background, and the experimental spectra
are generally compared to the coherent part. Hence, for
present purposes what is needed is the dispersion of the co-
herent part ofG. Following Chubukov and Morr47 this can
be simplified. The Green’s function has the form

Gsk,vd =
Z

v − vmax+ Ēk − igsv − vmaxd2Qsvmax− vd
,

sB17d

with quasiparticle residueZ, band edgevmax, dampingg,
dispersionEk, with step functionQsxd=1s0d for x. s,d0.
The quasiparticle residue can be found as

1 − Z

Z2 =E d2q

4p2

Csk0,qd
svq + Ek0+qd2 , sB18d

where k0 is the band-edge momentum:kW0=sp /2 ,p /2d
3fsp ,0dg for hole [electron] doping.(With the conventional
signst8,0, t9.0; in the special caset8= t9=0, both energies
are degenerate.) An equation for the dispersion can then be
found by substituting Eq.(B17) into Eq. (B5), and setting
v=vmax:

Ēk
c,v = ZEk

c,v − Z2ek
c,v, sB19d

ek
c,v =E d2q

4p2F Csk,qd
vq + Ek+q

−
Csk0,qd

vq + Ek0+q
G . sB20d

(The damping adds a small correction to the dispersion,
which we ignore.) It is convenient to rewrite Eq.(B2) as

Ek
c,v = 4A01fc01 + cosskxadcosskyadg

+ A02fc02 + coss2kxad + coss2kyadg, sB21d

with c01=0 s1d, c02=2 s−2d for the lower (upper) Hubbard

band. It is found thatĒk satisfies a similar equation, with
renormalizedA0i →Ai. In this case, the self-consistent equa-
tion (B19) can be reduced to a pair of equations at fixedk
values. For example, atk=s0,0d

4s1 + c01dA1 + s2 + c02dA2 = Zf4s1 + c01dA01 + s2 + c02dA02g

− Z2es0,0d
c,v , sB22d

with a similar equation atkW =sp ,0d [or sp /2 ,p /2d]. Figure
26 illustrates the self-consistent values ofZ, A1, andA2 as a
function of J for fixed t8, t9.

Note that any attempt to extract the bare parameters from
the measured dispersion is highly underdetermined. Thus,

while the band dispersionĒk and spin wave dispersionvq
depend explicitly onJ, t8, andt9, the vertex function depends
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on t, so there are four parameters to determine, but only two
parametersA1 andA2 can be found from the ARPES disper-
sion. Moreover, from Fig. 26(a), the valueA1 is insensitive to
J in the range of interest. In principle, the parameters can be
determined from additional measurements, including the
Mott gapD, the spin wave velocitycs (asq→0, vq→csq),

cs = 2aÎJS J

2
+ J8 + 2J9D , sB23d

or the maxima in the spin wave spectravsp/2,p/2d=2sJ+J8
+2J9d, vsp,0d=2sJ+2J8d.

Given this indeterminancy, a simplified picture is assumed
here to estimate parameter changes: the renormalized value
of t=0.326 eV is assumed fixed, to keepC and the experi-
mental ratiosAi / t constant, and further, the ratiot8 / t9=
−2.5 was assumed constant. Then the pairs of solid and long-
dashed horizontal lines in Fig. 26(a) give the experimental
ranges110,111for A1 andA2, respectively. A reasonable match
can be found for a baret8=−0.375t. In this case, the value of
A2 suggests a bareJ in the range 0.33–0.41t, or
108–135 meV. For the same parameter range, the individual
parameters are renormalized byZi =Ai /A0i, with Z1
. 0.059–0.020s0.8 – 0.84d , Z2.0.44–0.51s−0.21–−0.54d
for the lower(upper) Hubbard band. The ratioJ/ t9 must be
renormalized by the SCBA, sinceA2 and A02 cross zero at
different values ofJ, causingZ2 to be negative for the upper
Hubbard band(it diverges whenA02→0).

The above calculation can be repeated for different values
of t9, and the allowed parameter values forJ and t9 are
shown in Fig. 27(a). The “best” SCBA value(square) differs
from the SCR value(circle) by less than a factor of 2. Since
J is reduced by polaron coupling,U=4t2/J must increase,
Fig. 27(b). This can be seen directly from the self-consistent
equation forG. The leading edge of the band is found from
RefG−1sk0,vmaxdg=0 or

vmax= vmax 0+E d2q

4p2

Csk0,qd
vq + Ek0+q

. sB24d

The gap 2D is equal to the splitting between the upper and
lower Hubbard bands atsp /2 ,p /2d—it is not the sum of the
vmax’s for these two bands, since the bottom of the upper
Hubbard band lies atsp ,0d. Correcting for the renormaliza-
tion of the dispersion atsp /2 ,p /2d reduces the gap, but even
so the renormalizedD (Fig. 28, short-dashed line) is larger
than the bare value(solid line). Figure 29 shows that the
SCBA increases the Mott gap near half filling, which cor-
rects a shortcoming of the SCR model, noted above.

1. Extension to smallU

The above results were valid for the large-U limit, where
the gap parameterD=UkSzil→U /2@ t, in which caseJ
=2t2/D. As D decreases, certain modifications are necessary.
The most important is a modification ofJ. From the above
analysis, the susceptibility, spin wave dispersion, and renor-
malized band parameters all depended on the bare electronic
dispersion. Hence, the value ofJ should be chosen to best
approximate the bareA0i, Eqs. (B3) and (B4). This can be
accomplished by matching the exact dispersion to the ap-

proximate form atkW =s0,0d, or

FIG. 26. Renormalized parameters for lower(a) and upper(b)
Hubbard bands:Z (solid lines), A1 (dot-dashed lines), andA2 (dot-
ted lines), in comparison withZA01 (long-dashed-short-dashed
lines), and ZA02 (short-dashed lines), assuming parameterst
=0.326 eV,t8=−0.375t, and t9=0.15t. Horizontal lines = experi-
mental range forA1 (long-dashed lines) and A2 (solid lines), after
Refs. 110 and 111. Also shown are the individual renormalization
factors Z1 (long-dash-dotted line) and Z2 (long-dash-dot-dotted
line). Vertical lines delimit parameter values consistent with
experiment.

FIG. 27. Parameter values consistent with ARPES data forJ (a)
and 2D (b). Broad range determined byA1; narrow range[in both
(a) and (b)] by A2. Circle = parameters assumed in SCR result,
square = best SCBA approximation. Dashed line in(a) J=0.6t
−1.5t9.
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J

t
=

D

4t
FÎ1 +S4t

D
D2

− 1G , sB25d

Fig. 30. Note thatJ→1 asD→0, Fig. 28. It is interesting to
note that when the renormalization correction, Eq.(B24), is
added in, the renormalizedD (dotted line in Fig. 28) lies
close to the perturbative resultD=2t2/J (solid line).

For small D an additional correction is required, to ac-
count for quartic corrections int /D. This can be done, as
above, by adding a termA03s1−c2xc2yd to the model bare
dispersion, which allows a fit to the exact bare dispersion at
sp /2 ,0d, if

A03

t
=

D

2t
FÎ1 +S2t

D
D2

− 1G −
J

2t
. sB26d

This yields a very good approximation to the dispersion
down to D= t /2, Fig. 30(short-dashed line). The parameter
A03 is plotted in Fig. 28. 2. Summary of SCBA results

(1) Thus at half filling polaronic effects renormalize the
bandwidth by only a factor of,2, with some change in line
shape. Polaronic effectsreducethe values ofJ, t8, andt9, and
henceincreasethe value ofU. Thus the gap is enhanced at
half filling, correcting a shortcoming of the SCR calculation
(Figs. 8 and 9).While the present calculations are restricted
to half filling, some additional features can be extracted from
the calculations of Kusunose and Rice(KR).13

(2) While considerable weight is transferred to an inco-
herent spectrum, the coherent spectrum is quite similar to
that found in RPA and SCR calculations, and it is this com-
ponent which is mainly seen in the ARPES spectra. Possible
evidence for the incoherent states is a second peak seen in
ARPES spectra of half-filled cuprates,112 about 0.6 eV below
the main peak of the LHB near the nodal point. While KR
find an incoherent peak at half filling about 2.5t below the
first peak, its intensity actually maximizes away from the
nodal direction towardG, while the experimental peak is
stronger in the opposite direction, towardssp ,pd.

(3) An important result of the RPA and SCR calculations
is thatU must decrease with doping to reproduce the experi-
mentally observed crossover to a large Fermi surface. The

FIG. 28. RenormalizedU parameter as a function ofJ: solid line
= bareU=4t2/J in large gap limit; short-dashed line = renormalized
U from Eq.(B24); long-dashed line = bareD corrected for the small
gap limit, Eq.(B24); dotted line = renormalizedU in the small gap
limit from Eq. (B24); dot-dashed line =A03.

FIG. 29. Comparison of mean-field(dashed lines) and SCBA
(solid lines) dispersions fort8=−0.375t, t9=0.15t, and two choices
of J, J/ t=0.42 (a) or 0.33(b).

FIG. 30. Mean-field band structure(solid lines) plus approxima-
tions involving Eqs.(B25) and (B26), with (short-dashed lines) or
without (long-dashed lines) a finiteA03, for D / t=0.5(a), 1.0(b), 2.0
(c), and 3.0(d).
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same result has been found by Sénéchal and Tremblay.14 The
results of KR are consistent, in that KR keptU doping inde-
pendent, and did not find this crossover.

(4) Whereas in the mean-field and SCR calculations, elec-
tron doping shifts the Fermi level into the UHB without af-
fecting the relative weights of the two subbands, in the
SCBA the UHB states below the Fermi level are formed by
spectral weight transfer from the LHB. This spectral weight
transfer had been seen experimentally, and its absence was
known to be a shortcoming of mean-field theory, which is
thus seen to be corrected in the SCBA.

(5) In lightly doped NCCO, Armitageet al.8 found an
additional weak pseudogap—actually a leading edge gap at
the Fermi level of the UHB—which was not reproduced by
the SCR calculation. Such a pseudogap is found by KR, and
in an earlier calculation by Stanescu and Phillips.51,113 KR
interpreted this as evidence that the filled states were not
actually part of the UHB but were in-gap states close to the
bottom of the UHB. Similar in-gap states had been proposed
for hole-doped cuprates,114 and have been considered as evi-
dence for stripes.(In LSCO, where stripes are most clearly
observed, the added states are close to midgap;115 in other
hole-doped cuprates, the evidence is less clear, but if in-gap
states exist, they must lie close to the top of the LHB.)

The connection between polarons and stripes is a delicate
issue: for very light doping one would expect magnetic po-
larons to form for both hole and electron doping. These po-
larons are strongly dressed electrons, with many features of
second-phase inclusions, and have been suggested to act as
precursors for nanoscale phase separation.68,116 In hole-
doped cuprates, there is considerable evidence that these po-
larons tend to cluster and form stripes. In electron-doped
cuprates there is considerably less evidence for stripes, and it
may be that polarons do not form clusters. Hence, the differ-
ences between a polaronic phase and a stripe phase might be
rather subtle.

APPENDIX C: CHARGE SUSCEPTIBILITY AND Ueff

The present calculations confirm that the SCR requires
essentially the same doping dependence of the HubbardU as
found in earlier mean-field calculations in order to explain
the ARPES data on NCCO. A fully satisfactory calculation of
Usxd is not available, but the following points can be made.

(1) Kanamori15 showed that the effective HubbardU
should decrease with doping, as an electron can hop around,
and hence avoid, a second electron. In the limit of a nearly
empty (or full) band, this should lead to a correction of the
form Ueff,U / s1+U /Wd, whereW=8t is the bandwidth. It
was found117,46 that Monte Carlo calculations of the suscep-
tibility of a doped Mott insulator were approximately equal
to the RPA susceptibility with suitableUeff, and Chenet
al.117 suggested the explicit formUeff=U / s1+kPlUd, with P
given by a vertex correction to the susceptibility andk¯l an
average overqW, at zero frequency. Figure 31(b) presents a
calculation forUeff based on Chenet al. However, whereas
Chenet al.performed the average in the paramagnetic phase,
using bare Green’s functions, here the dressed Green’s func-
tions appropriate to the Néel phase are used, to approxi-

mately incorporate the effect of this gap. This makes little
difference, sinceP is dominated by the intraband terms, and
remains finite at half filling. Explicitly,

P = −
1

No
i,j ,k

Ûi,jsk,k + qdF̃i,jsk,k + qd, sC1d

F̃i,jsk,k8d =
1 − fk

i − fk8
j

EiskWd + EjskW8d − v − id
, sC2d

E±skWd =
1

2
sek + ek+q ± E0d, sC3d

E0 = Îsek − ek+qd2 + 4D2, sC4d

Ûi,jsk,k8d =
1

4
s1 + iAkds1 + jAk8d + i jBkBk8, sC5d

with i , j summed over +,−,D the AFM gap, andAk=sek

−ek+Qd /E0k, Bk=D /E0k. In agreement with Chen et al., the
calculation findsU to be renormalized by a factor of 2 at
finite doping, but does not recover a largeU near half filling,
although different results are found depending on whether
x=0 from the startstriangled or whetherx→0 from the hole
or electron doping sides.

s2d For modeling purposes, it is useful to have aUeff
which evolves smoothly from a large value at half filling
to a reduced, Kanamori value at finite doping. A simple
toy model consists of taking the RPA screening of a
charge response. There should be a close connection be-
tween the Kanamori mechanism and screening. Screening
involves creation of a correlation hole about a given
charge, while Kanamori’sUeff involves the ability of a
second charge to move around the first, while avoiding

FIG. 31. CalculatedUeff assuming(a) simple screening or(b)
full vertex correction of Chenet al. (Ref. 117). In both cases, a bare
U=6.75t was assumed. Solid lines = electron doping; long-dashed
lines = hole doping; triangles(squares) in (a) = paramagnetic
screening ofU, at T=1 K s2000 Kd; triangle in (b) = undoped;
circles = data of Ref. 8.
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double occupancy. Near half filling, the second charge
must move in the correlation hole. Approximating9 the
vertex correction by the RPA screening of the charge sus-
ceptibility

Ueff =
U

1 + kxlU
, sC6d

it is possible to reproduce9 the experimentally observed8

doping dependence, while matching the calculation of Chen
et al. away from half filling, Fig. 31sad ssolid and dashed
linesd. A similar but larger screening effect was recently re-
ported by Esirgen et al.118

s3d In the above calculation, the susceptibility in Eq.sC6d
is approximated by the charge susceptibility in the AFM
state,x̄0

00 from Eq.s2.24d of Ref. 1, evaluated with the bare
U=6.75t. To estimate the onset of Néel order at high tem-
peratures, the calculation was repeated using the paramag-
netic susceptibilityflines with triangles and squares in
Fig. 31sadg. The latter calculation finds a nearly doping
independent, but smallUeff; the former reproduces a large,
weakly screenedU near half filling. Such a difference is
expected in terms of screening: when there is no gap at
half filling, the enhanced susceptibility should be better
able to screenU, resulting in a smallerUeff. This suggests
that Ueff should have an important temperature depen-
dence as the gap decreases—which in turn will cause the
gap to close at a lower temperature. Figure 31sad also
shows that the intrinsic temperature dependence ofU in
the paramagnetic phase is weakscompare triangles,T
=1 K, and squares,T=2000 Kd. The calculations suggest
that the large values ofU found in the cuprates are char-
acteristic mainly of the half filled regime and relatively
low temperatures.

s4d This procedure is still not fully self-consistent. If
there is a large difference between the bareU and the
screenedUeff, the gap inx should depend on the actual
Ueff. However, sinceUeff.U at half filling, any simple
improvement will not significantly change the overall
doping dependence. This is the same kind of lack of self-
consistency found for the SCR approach, and will be here
neglected.

s5d There are also potential issues of double counting: is
the Kanamori correction automatically included in the SCR
calculation? This is not obvious within the Moriya formal-
ism, but has been claimed to be the case119 in the closely
related two-particle self-consistentsTPSCd scheme.3 Direct
comparisons are difficult, since in the equivalent of Eq.s2d,
the TPSC scheme definesUsp=U−l /x0, soUsp has a strong
temperature dependence which is absent in the SCRU. I
have made a preliminary comparison of the two approaches
as follows. For a given set of hopping parameters and a
given dopingx, one can check whether there is aT=0 Néel
transition associated with a given initial value ofU. At x=
−0.15 I find that both SCR and TPSC have very similar
critical values ofU,3t. Thus, if TPSC already includes
the vertex corrections of Chen et al.,117 then they should
not be included in renormalizingU.

In passing, I note that the TPSC uses conservation laws to
avoid explicitly calculating a mode-coupling parameteru.

The good agreement on the results of the two calculations
suggests the correctness of my estimatedu value.

s6d However, the essence of the Kanamori renormaliza-
tion is the ability of an electron to partially hop to other
atoms to minimize double occupancy—hence closely related
to the physics of the screening hole. Hence, to understand the
renormalization ofU, one should try to treat screening better.
Among effects not included in SCR calculations, two catego-
ries suggest themselves. First,within the Hubbard model,
screening can be affected by an improved treatment of mag-
netic polaron effects, as in the SCBA, Appendix B. Sec-
ondly, the cuprates can also be sensitive to effectsbeyondthe
Hubbard model, for instance longer range Coulomb interac-
tion and electron-phonon coupling, leading to, e.g., lattice
relaxation sdielectric polarond effects. For example, the
renormalization ofU in the Holstein-Hubbard model120 de-
pends on the doping-dependent phonon frequency.

s7d Recent calculations of the three-band model find that
a much smaller percent change ofU is needed to explain the
experiments. That is because the “U” of the one-band model
corresponds to a charge-transfer energy of the three-band
model, and a small change in the three-bandU can lead to a
large shift of the Cu UHB withrespect to the oxygen band.
These calculations will be reported in a separate publica-
tion.

s8d There remains an alternative possibility. In comparing
the SCR and TPSC calculations, I found that they are even
more sensitive to the “natural phase boundary”—the termi-
nation of the hot-spot plateau—than the mean-field calcula-
tions. When I included thet9 parameter of Kusko et al.,9 I
found that this shifted the plateau termination tox=−0.16,
and beyond this doping there is noT=0 Néel transition,
even for a bareU=6t.

APPENDIX D: IMPROVED SOLUTION OF SCR
EQUATION

Approximating cothsxd=maxs1/x,1d, and introducing the

notationĀqc
2=Aqc

2+d, āq=Āqc
2/av, andt=2TC, the solution

to Eq. (6) becomes

d − d0 =
3ua2

p2AC
fF1 + F2g, sD1d

with

F1 =E
d

d+Aqc
2

dyE
t

av

dx
x

x2 + y2 =
Āqc

2

2
lnF 1 + āq

2

āq
2 + st/avd2G

+ avtan−1sāqd −
d

2
lnFd2 + av

2

d2 + t2
G − avtan−1S d

av
D ,

sD2d

F2 = tE
d

d+Aqc
2

dyE
0

t dx

x2 + y2 = tE
d

d+Aqc
2 dy

y
tan−1S t

y
D

= tFI1S t

Āqc
2D − I1S t

d
DG , sD3d

with
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I1sxd = I0ftan−1sxdg − tan−1sxdlnsxd, sD4d

I0sxd =E
0

x

lnstan uddu = Lsxd + LSp

2
− xD − LSp

2
D ,

sD5d

andLsxd=−e0
xlnscos tddt is the Lobachevskiy function.121

For most purposes, it can be assumed thatd! t!Aqc
2, av,

in which caseI0ftan−1sxdg=uflnsud−1g, with u=minhx,1 /xj,
and thenF2, Eq. (D3), simplifies:

F2 = lnS t

d
DFd + t tan−1S t

d
DG + d −

t2

Aqc
2 .

p

2
t lnS t

d
D .

sD6d

Defining Z=1+s3ua2/p2ACdlnsav / td, then

Zd − d̄0 =
3ua2T

pA
lnS2CT

d
D , sD7d

which agrees with Eq.(13) whenZ→1.

APPENDIX E: HOT-SPOT PLATEAUS AND GENERIC
QCP’s

While the properties ofx0 are now reasonably well un-
derstood, they remarkably do not seem to have been used to
derive the parameters of SCR or NAFL theory. Here this
oversight is corrected. In particular, calculation of the curva-
ture parameterA is discussed below. A new cutoff parameter
qc is introduced, which is essential in explaining the differ-
ences between the QCP’s for hole and electron dopings. The
corresponding frequency parameterC, Eq. (F7), and its as-
sociated cutoff parameterav [below, Eq. (F10)] are dis-
cussed in Appendix F 4.

1. Plateaus in doping dependence

a. Hot-spots

In the self-consistent renormalization scheme, theT=0
AFM transition is controlled by a Stoner factorU Resx0d
=h, where h.1 includes a quantum correction, Table I.
Hence, the relevant quantity on which the study is based is
the real part of the bare magnetic susceptibility, Eq.(3). This
susceptibility has been analyzed in a number of papers.
Whereas usually only Imsxd is explored in detail(e.g., Refs.
89, 122, and 123), Resxd was studied in Ref. 102. The ex-
tended discussion which follows is intended to bring out sa-
lient features for the computation of the NAFL parameters.

The doping dependence ofx0sQW ,vd is illustrated in Fig.

3(a), where QW =sp ,pd. At low T, the susceptibility has a
plateau shape, which is not present in the density of statesNF
Fig. 3(b). Beyond the plateau edgesx0 falls off sharply on
both electron and hole doping sides of half filling. This sharp
falloff explains the appearence of QCP’s: the Stoner criterion
is satisfied on the plateau, but fails whenx0 drops.

The plateau shape is characteristic of hot-spot physics.
Hot-spots are those points where the Fermi surface(FS) in-

tersects the replica FS shifted byQW . They are located atcx
=−cy=cx0, with

cx0 = cosakx0 =Î m

4t8
, sE1d

and equivalent points. The edges of the plateau are those
points at which the overlap terminates(hot-spots cease to
exist). For the present band structure, hot-spots exist only
when the chemical potentialm is in the range 4t8ømø0, or
for doping 0.25.x.−0.19(electron dopings are considered
as negative). Since the two end points play an important role,
it is convenient to label them, and they are here called “hot”
hot-spot and “cold” hot spot(or H point andC point) for the
hole- and electron-doped termination points, respectively. It
will be demonstrated below that at each doping, the hot-spots
also lead to a susceptibility plateau in momentum space,

aroundQW , collapsing to a logarithmic(square root) diver-
gence at theH sCd point. TheH point is the VHS, and hence
also involves a conventional ETT. The physics is simpler
near theC point, where the topology hardly changes but the

FS andQW -FS become decoupled(it is therefore a form of
Kohn anomaly102).

b. The pseudo-VHS

The susceptibility Fig. 3(a) has a remarkable doping de-
pendence, with the large peak at the van Hove singularity
(VHS) shifting102 to half filling with increasing temperature
T. The peak position of this “pseudo-VHS” defines a tem-
peratureTVsxd, Fig. 3(d) (circles). This behavior can readily

be understood from the form ofx0sQW ,0d, Eq. (3). The de-
nominator ekW −ekW+QW =−4tscx+cyd, is independent oft8, and
hence has a stronger divergence than the density of states
(DOS). Indeed, this divergence matches the strong VHS
found for t8=0 (perfect nesting), and similar to that VHS
falls at half filling, x=0. There is one crucial difference—at
low temperatures, this divergence is cut off by the Fermi
functions, which leave the integrand non zero in a wedge
which intercepts the zone diagonal(where the denominator
vanishes) only at isolated points: the hot-spots. Hence, the
residual divergence at lowT is still dominated by the con-
ventional VHS. However, at finiteT, excitations along the
zone diagonal become allowed, leading to a stronger diver-

gence ofx0sQW ,0d nearx=0.
The strong temperature dependence of the pseudo-VHS is

in strong contrast to the density of statesNF, Fig. 3(b), and
also with the pairing correlations.102 The denominator of the
pairing susceptibility involves the sum of the energiesekW

+ekW+QW =−8t8cxcy, rather than their difference[as in Eq.(3)],
and hence always peaks at the ordinary VHS.

The difference between nesting and pairing susceptibili-
ties has a fundamental significance. By mixing electron and
holelike excitations, the superconducting gap is always
pinned to the Fermi level, and can open up a full gap at any
doping. On the other hand, a nesting gap need not be cen-
tered on the Fermi surface, and is constrained to obey Lut-
tinger’s theorem, conserving the net number of carriers in the
resultant Fermi surface. Hence, the only way a nesting insta-
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bility (such as antiferromagnetism) can open a full gap at the
Fermi level is for the instability to migrate with increased
coupling strength to integer filling of a superlattice zone
(e.g., half filling of the normal state).

Since the susceptibility has such a distinct temperature
dependence from the density of states, one might ask how
the frequency dependence compares. This is illustrated in
Fig. 3(c) at low temperatures1 Kd. While the frequency in-
troduces additional sharp features and has an overall very
distinct appearence from theT dependence, nevertheless the
main peak also shifts from the VHS toward lower doping
with increasingv—in fact, the shift is almost the same when
comparing"v andpkBT, Fig. 3(d). The dashed line in Fig.
3(d) is Tc

−="vc
−/pkB, with89

vc
− =

4tsm̂ − td
1 − t

, sE2d

with t=2t8 / t andm̂=m /2t. The proportionality of frequency
and temperature dependences holds only in the hole-doped
regime: temperature shifts the susceptibility peak only to half
filling, x=0, while frequency will shift the peak beyond half
filling sx,0d.

The structure in the low-temperature susceptibility, Fig. 3,
with its largest peak at theH point on the hole-doped side, is
in striking contrast to the calculated doping dependence of
the Néel transition, Fig. 4, which has a broad plateau on the
electron-doped side, but falls off more quickly with hole
doping, showing no sign of a peak near the VHS. This con-
trast can be accounted for by two effects. First, the shift of
spectral weight with temperature of the pseudo-VHS, noted
in Fig. 3, would tend to produce a symmetric falloff ofTN
with either electron or hole doping. But the dos peak at the
VHS leads to better screening ofUeff for hole doping,
thereby further depressingTN.

2. Plateaus in momentum space

a. Plateaus

In analyzing either thermal fluctuations or the quantum
fluctuations associated with QCP’s, it is necessary to under-

stand the susceptibility near the AFM vectorQW . At each dop-
ing, hot-spot physics leads to a plateau in momentum space,

centered onQW . Figure 32 shows howx0 varies nearQW at a
low temperatures100 Kd for a series of different dopings.
Results nearT=0 are presented in Ref. 12. For all dopings
there is a plateau inq. The width of the plateau atT=0 can
be readily determined: in any direction, it is the minimumq
needed to shift the replica FS so that the hot-spots are elimi-
nated. This can be found from the dispersion, Eq.(1), by

substitutingkW→ sQW +qWd /2, or

− 2tsŝx + ŝyd − 4t8ŝxŝy = m, sE3d

with ŝi =sinsqia/2d. As shown in Fig. 2, this formula agrees
with the (anisotropic) plateau width measured from Fig. 32
(circles). The inset shows the shape of the plateau as a func-
tion of doping. The diamond shape of the plateau, Eq.(E3),
is related to the profile of the hole pockets formed by the

overlap of the shifted and unshifted FS’s. Specifically, the
plateau is the region of overlap of the two hole pockets,
shifted to have a common center, as illustrated in Fig. 33.
The remaining parts of the pockets also show up, as ridges124

in the susceptibility, radiating from the corners of the dia-
mond(similar to the peaks in them=0.05 eV data in Fig. 1,
below). As noted by Bénardet al.,89 the susceptibility in
two-dimensions acts as a FS caliper. The plateau width leads
to a natural limit on the magnetic correlation lengthjc
,1/qc in agreement with experimental data from
YBa2Cu3O7−d (YBCO) (Refs. 35 and 36) (squares, triangles
in Fig. 2), as noted previously.102,123 Related data from
LSCO (Ref. 37) are also shown.

FIG. 32. Susceptibilityx0 nearQW for a variety of dopings atT

=100 K. From highest to lowest solid curves nearS;QW , the chemi-
cal potentials arem=−0.35, −0.30, −0.25, −0.20, −0.15, −0.10,
−0.055, −0.02, and 0 eV. For the dashed curves(top to bottom),
m=−0.352, −0.355, and −0.359 eV.

FIG. 33. Illustrating origin of plateaus(dotted line) from crossed
hole pockets(short-dashed lines).
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b. Cusps

For electron doping, the plateaus inq are particularly flat
topped, Fig. 32. At low temperatures the edges sharpen up,
Fig. 1, and the falloff inx0 acquires a square-root singularity
(Appendix F 3). The width of the plateau decreasing to zero
as x→xC, and for electron doping beyond theC point
sm.0d, the plateau ends and the susceptibility displays split

peaks away fromQW , Fig. 1, with a dip in between. ThusxC is
a QCP(Ref. 102) where the magnetic order changes from
commensurate to incommensurate.(There is a corresponding
QCP at theH point.102) However, the magnitude ofx0 also
changes rapidly nearm=0, so there should be an independent
QCP from a magnetic to a nonmagnetic phase near the same
doping, as discussed in the previous subsection[note the line
depicting 1/Usm=0d in Fig. 1.]

Technically, similar cusps also arise at the plateau edges
for electron doping, 0.m.−0.22 eV. The tops of the pla-
teaus are not completely flat, Fig. 34(a) and the highest sus-

ceptibility is shifted away fromQW (Appendix F 3). However,
these effects are much weaker than those associated with
m.0 (Dx /xø0.5%—compare the vertical scales of Figs. 1
and 34). Thus near the mean-field transition any structure on
the plateaus is smeared out by thermal broadening. Even at
T=0, these features are likely to be negligible compared to
dispersion inU which arises from renormalization effects.125

APPENDIX F: PARAMETER EVALUATION
FOR MODE COUPLING THEORY

Below the evaluation of the SCR parameters is discussed.
The collapse of theqW and/orv plateau widths near theH and
C points leads to the introduction of additional parametersqc
and av. The narrow width of theqW plateau, particularly for

electron doping, leads to an additional complication not in-
cluded in the conventional SCR analysis: the curvature of the

bare susceptibility nearQW =sp ,pd (the S point of the BZ) is
strongly temperature dependent, and for some dopings may
even change sign. In principle, it is not difficult to incorpo-
rate anAsTd into the analysis near the mean-field Néel tem-
peratureTN

* (pseudogap onset). But for the present 2D sys-
tem, long-range Néel order only sets in atTN=0, and forT
!TN

* , a self-consistent value ofA should be found, by taking
into account the effect of the pseudogap in modifying the
electronic dispersion and hencex. For the present, this com-
plication is ignored, and at low temperaturesA is taken as
A=AsTN

* d, where TN
* is the magnetic pseudogap onset, the

temperature wherex0sQW dUeff=1. This should be the most
importantA for controlling the pseudogap, and moreover at
lower temperatures the band renormalization should strongly
modify AsTd. With this choice, the resultingAsmd is plotted
in Fig. 35(a), along with theC parameter, evaluated atT=0.
For electron doping, this choice ofA is always positive and
varies smoothly with doping, diverging at theC point. By
contrast, for hole dopingA is often negative, again illustrat-
ing the instability of the uniform AFM phase. GivenA and
C, Fig. 36 shows the calculated values ofxQW and vSF, nor-
malized toj2.

For hole doping, the mean-field transition temperature at
the incommensurate vectorq is only marginally higher than
that atQ, Fig. 4, suggesting that incommensurability should
have only a small effect on the phase diagram. Thus, one
might attempt to define a positiveA by measuring the curva-
ture from an incommensurate nesting vector. However, thisA
is highly anomalous, for a number of reasons. First, the in-

commensurateqW8 sqW =QW +qW8d forms roughly a square around

FIG. 34. (a) Expanded view of susceptibilityx0 on the plateaus

nearQW for a variety of dopings atT=100 K (solid curves) or 1 K

(dashed curves). From highest to lowest curves nearQW , the chemi-
cal potentials arem=−0.20, −0.15, and −0.05 eV(for both solid and
dashed curves). All curves exceptm=−0.20 eV have been shifted
vertically to fit within the expanded frame.(b) Similar plateaus for
the hole-doped materialssT=1 Kd, with (from highest to lowest)
m=−0.359, −0.35, −0.3, −0.25, and −0.22 eV.

FIG. 35. (a) Calculated values ofA (circles for commensurate

QW , diamonds for incommensurateqW =QW +qW8) andC (squares). Solid
line = Eq.(F7). (b) Incommensurate wave vectorq8 in two different
directions: circles alongs1,0d, squares alongs1,1d; dashed line:
q8~x.
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QW , inset in Fig. 2, with the peak susceptibility generally
along thesp ,0d axis [circles in Fig. 35(b)]. In this case, by
symmetry there are four peaks in the susceptibility, at
sp±q8 ,pd and atsp ,p±q8d. Moreover, the curvature mea-
sured from any incommensurate peak is highly anisotropic,
since the susceptibility is nearly constant along the ridge of
the square, with a shallow minimum atsp ,pd. Thus parallel
to the ridge,Ai is nearly zero. Moreover, perpendicular to the
ridge, A' takes on very different values on the sides of the
ridge displaced toward or away fromsp ,pd. The curvature is
small, with significant deviations from quadratic(weaker
curvature) moving towardsp ,pd, while moving away from
sp ,pd, the curvature is larger, and deviating toward stronger
curvature as the susceptibility falls off the edge of the pla-
teau. For reference purposes, the average value of the qua-
dratic part ofA' is plotted as diamonds in Fig. 35(a). (In this
case,vSF has a peak near the VHS, Fig. 36.) This definition
of A is almost certainly an overestimate. In the analysis of
hole-doped cuprates in Secs. V and VI, the commensurate
SCR model will be applied, withA as a free parameter. It
will be found that agreement with measurement requires a
somewhat smaller value forA than the estimated value of
A'. This smallA value, combined with the broad plateau,
lead to a sum-rule saturation forx0 and a much slower di-
vergence ofjsTd than found for electron-doped cuprates.

In Sec. IV, the present results are applied to understanding
the ARPES spectra of electron-doped cuprates, concentrating
on the four dopings analyzed by Armitageet al.8 For conve-
nience, Table I summarizes the parameters for these dopings.
From the mean-field analyses,9 the effective Hubbard param-
eters were found to beUeff / t=6 sx=0d, 5 sx=−0.04d, 3 sx=
−0.10d, and 2.5sx=−0.15d. (These numbers differ somewhat
from those of Ref. 9, which included a second neighbor hop-
ping t9 to give the best fit of the Fermi surfaces.) The Stoner
factor has a quantum correctionh, Eq. (10), which tends to
suppress the AFM transition; hence a smaller renormaliza-
tion of U is required. This is reflected in Table I: forx=
−0.1, −0.15, there are two rows, the upper row using the
mean-fieldU parameters, the lower with the quantum correc-
tion. Note that theU’s are enhanced by essentially the quan-
tum correction factor. These values will be used in the sub-
sequent analysis.

It is convenient to compare the present results with pa-
rameters estimated for the SCR model41 from experimental
data for(optimally) hole-doped cuprates. The parameters are
defined asT0=AqB

2 /2pC, TA=AqB
2 /2x0, y0=d0sT=0d /AqB

2,
and y1.12a2u/p3AC. The results are listed in Table II,
where the first line gives the hole-doped results estimated in
Ref. 41. Moriyaet al.41 tookqB

2 =1/4pa2 sqBa=0.282d, while
for Table II it is assumed thatqB=qc. A key difference is that
Moriya et al.41 assume the system is in the paramagnetic
phasesy0.0d at and above optimal(hole) doping, while in
the present worky0,0, and the system is paramagnetic due
to the Mermin-Wagner theorem, with the Mott gap appearing
as a pseudogap. The small magnitude ofy0 is suggestive of a
system pinned close to a QCP. Finally, the parametery1 is
estimated using the valueu−1=0.384 eV(above), and not the
values of Table I.

1. Overview of parameter evaluations

At T=0, the imaginary part of the susceptibilityxsQW ,vd
can be calculated analytically:

ImfxsQW ,vdg = o
kW

ffsekWd − fsekW+QW dgdsekW+QW − ekW − vd

=
Fsu1,k̃d − Fsu2,k̃d

4t
, sF1d

where Fsu ,xd is an elliptic integral,k̃=Î1−sv /8td2, and

sinsuid=sinsfid / k̃, with

cos2sf1d = Hc−
2 if v ø vc

−,

v̂/2 if v . vc
−,

sF2d

cos2sf2d = Hc+
2 if v ø v0,

1 if v . v0,
sF3d

with m̂=m /2t, v̂=v /4t, c±
2=a±+Îa±

2−v̂2, and a±=1
−sm̂± v̂d /t. Similar results fort8=0 are discussed in Ref. 89.
The real part Rex can be found from the Kramers-Kronig
result

Re xsQW ,vd =
1

p
E

0

` Im xsQW ,v8dv8dv8

v82 − v2 . sF4d

TABLE II. SCR parameters.

x T0 sKd TA sKd y0 y1

,0.2 1600–4000 3000–10000 0.01–0.02 3

0.0 180 1150 −5.27 0.75

−0.04 310 1300 −3.31 0.7

−0.10 380 670 −1.23 1.5

−0.15 200 220 −0.31 1.85

FIG. 36. Calculated values ofxQW /j2 (solid line) and vSFj
2

(short-dashed line), assumingU=6t. long-dashed line = doping
xsmds310d; dot-dashed line =vSFj

2 corrected for incommensurate

qW ÞQW s31/5d.
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2. Curvature „A…

The plateau is a region of anomalously small local curva-

ture Â=A/U [Eq. (34)] of the susceptibilityx0sQW +qWd=xQ

−Âq2, whereA is an important NAFL parameter. Clearly, at
T=100 K the curvatureA has gone negative near theH
point, Fig. 32. At even lower temperatures, it reverts to posi-
tive values, Fig. 34(b). The temperature dependence of the
normalized parameterA8=sp /ad2sA/ td is illustrated in Fig.
37 at several dopings. The temperature dependence is domi-
nated by divergences at bothH andC points. The divergence
at the H point, Fig. 37(a), is the well-known logarithmic
VHS. However, at finite temperatures spectral weight is
shifted away from the VHS andA turns negative, only re-
covering a positive sign aboveT.2000 K. The temperature
at whichA turns negative can be defined asTincomm: A,0 for
T.Tincomm. From Fig. 3(d), Tincomm is comparable to but
larger thanTV (for xø0.06A remains positive). This in fact
explains the origin ofTincomm. Figure 37(a) demonstrates that
A is negative atT→0 beyond theH point sm=−0.4 eVd.
Thus, increasingT aboveTV produces the same susceptibility
crossover. A similar crossover was discussed by Sachdevet
al.,126 except that they assumed that in the high-temperature
phase the AFM fluctuations remained centered on the com-

mensurateQW , whereas hereA is negative. At sufficiently high
temperaturesA again becomes positive for all dopings—i.e.,

the leading singularity ofx0 is always atQW .
At the C point, the collapse of the plateau width translates

into a divergence of the curvature atQW sÂ→`d. This diver-
gence of the high-temperature susceptibility is cut off at low
T, Fig. 37(d), when the thermal smearing becomes smaller
than the plateau width. For smallerT, A is controlled by the
curvature on the plateau. The temperature at whichA has a
peak, defined asTA

* , is plotted as diamonds in Fig. 2(the
peak is only found forxø0). Rather surprisingly,TA

* scales
with the plateau widthqc, even though the dynamic exponent
is z=2. Further, the maximum slope scales approximately as
Amax,TA

*−1.5, which follows from the fact thatA,T−1.5 at
the C point.

At intermediate doping, Figs. 37(b) and 37(c), A is gen-
erally a scaled-down version of the behavior near the two

end points, with a crossover nearm=−0.25 eV, where theT
dependence is weak. Also for intermediate temperatures,
there can be fine structure on the plateau[e.g., solid lines in
Fig. 34(a)] which can lead to wild swings inAsTd. However,
at these dopings they are not relevant, since the susceptibility

peaks are away fromQW , and this fine structure is not gener-
ally reported in Fig. 37.

3. A at the C point

To understand theq plateau, and in particular theC point,
where the plateau width shrinks to zero, it is convenient to
introduce a simplified model,127 for which theq dependence
of x can be calculatedanalytically. While the dashed lines
in Fig. 41 represented anv shift, they can equally well
describe theq shift of the energy denominator, Eq.(3). The
plateau edge corresponds to the point where the dashed
line intersects theq-shifted FS(horizontal arrows). (Recall

that qW =QW +qW8.) In the simplified model, the energy denomi-
nator is linearized, soDe~k', independent ofki. Choosing
qW to point along thesp ,pd direction, the FS can be approxi-
mated by two circles of radiuskF, centered atsp ,pd and
s−p ,−pd [for this choice of qW the other two circles at
sp ,−pd and s−p ,pd can be ignored]. The Q-shifted FS is
then a circle centered atG=s0,0d. The FS atsp ,pd and the
Q-shifted FS are illustrated in Fig. 38(c). To keep the picture
symmetrical, both FS’s are shifted(in opposite directions) by
q8 /2 whenq8Þ0.

Adding the contributions of the overlap of theq-shifted
FS with both the FS atsp ,pd and the one ats−p ,−pd, xq

~ Ikd+q8/2+ Ikd−q8/2, with

I =E
0

kc dk'dki

k'

, sF5d

where the region of integration is over the part of the upper
FS in Fig. 38(c) not overlapped by the lower(q-shifted) FS,

FIG. 37. Temperature dependence ofA8 for several dopings.

FIG. 38. (a) Calculated susceptibilityxsqd for several values of
overlapd. (b) Blowup of plateau region, forxq−xq=0. (c) Model of
Fermi surfaces, definingd, k1 sk'd, andk2 skid.
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and k' ranges from zero at the apex of the wedge to the
middle of the upper FS,kc=kF−kd, wherekd is the overlap
parameter defined in Fig. 38(c). To lowest order, forkd!kF,

I = 2kF + ÎkFkdlnU1 − b

1 + b
U sF6d

with b=Îkd /kF. The expression forIkd−q8/2 must be modified
when q8.2kd and the two FS’s no longer overlap:127

Ikd−q8/2=2kFf1−g tan−11/gg, with g=Îsq8−2kdd /2kF. The
calculated susceptibilities, Fig. 38(a), display the flat topped
plateaus with weak positive curvature[A,0, Fig. 38(b)]. At
the plateau edge the susceptibility falls sharply,x,1
−pg /2,Îq8. TheC point corresponds tokd=0.

4. C and plateaus in frequency

Figure 39 illustrates ImxsQW ,vd, RexsQW ,vd, and

Im x /v; Ĉ. While plateaus in Resx0d have been noted
above, Fig. 3(c), here the main interest lies inC
=U Im x /v. This linear-in-frequency contribution to Imx,
generated by hot-spots, is an important parameter in SCR
and NAFL theories, and has been well studied. The height of

the plateau at zero frequencyC=UĈsv=0d can be repre-
sented as a frequencyv1=1/C, which can be found
explicitly126

C =
1

2pJsx0
2 s1 + tcx0d

=
1

v1
sF7d

(with J=4t2/U, sx0
2 =1−cx0

2 ).

However, it is important to note thatC also approximates
a plateau, particularly near theH point, Fig. 40, with a well-
defined cutoff. Moreover, the width of this plateau vanishes
near both theH andC points, controlled by two characteris-
tic frequenciesvc

−, Eq. (E2), and

v0 =
8t

t
fÎ1 − m̂t − 1g, sF8d

respectively. The origin of these critical frequencies can be
understood from Fig. 41. The thick(thin) solid lines repre-
sent the original(Q shifted) Fermi surfaces, while the dashed
lines represent

v = ekW+QW − ekW , sF9d

for various values ofv. Equation(F9) gives the points at

which the denominator ofx0sQW ,vd, Eq. (3), vanishes. Thus

FIG. 39. (a) Im xsQW ,vd, (b) Re xsQW ,vd, (c) Im x /v; Ĉ, and

(d) d Re xsQW ,vd /dv, for (a), (c): m=0 (solid line), −0.05 (long-
dashed line), −0.10 (dashed line), −0.15 (dotted line), −0.20 (dot-
dashed line), −0.25 (dot-dot-dashed line), and −0.30 eV(short-
dashed line); (b), (d): x=0 (solid line), −0.04 (long-dashed line),
−0.10 (dashed line), and −0.15(dotted line).

FIG. 40. Ĉ calculated for several values ofm: m=−0.355(dia-
monds), −0.357 (circles), −0.358 (squares), −0.359 eV(triangles)
smv=−0.3599 eVd. Inset: Band dispersionekW (solid line), ekW+QW

(dashed line), for m=0. Arrow =vc
−.

FIG. 41. Origins of critical cutoffs. Thick solid line = FS; thin
solid line =Q-shifted FS; dashed lines = Eq.(F9), for several values
of v. Chemical potentialm= (a) 0, (b) −0.1,(c) −0.14,(d) −0.2 eV.
Horizontal arrows indicatev0, vertical arrowsvc

−.
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at T=0, Imfx0sQW ,vdg is proportional to the length of the
dashed line lying between the original andQ-shifted FS’s
[i.e., wherefsekWd− fsekW+qWd= ±1]. Since the two FS’s meet at

an angle, forming a wedge, Imfx0sQW ,vdg,v.
From Fig. 41, the critical frequencies(denoted by arrows)

are points where thev dependence of this length changes
abruptly, leading to a sharp change in Imx. Thus, near theH
point, the plateau width isvc

− (inset, Fig. 40), while near the
C point it is v0. The vertical arrows in Fig. 41 indicatevc

−,
where the dashed line[Eq. (F9)] intersects the FS at the zone
boundary, while the horizontal arrows are89 v0, where the
dashed line ceases to intersect theQ-shifted FS. There is a
crossover atmc.−0.14 eV: for m.mc, v0=vc

− while for
m,mc, v0=vc

−. Combining Eqs.(E2) and (F8), v0=vc
− at

mc=f1−zs2−Îzd2g2t /t=−0.1384 eV, with z=1−t. For

v.minhv0,vc
−j, Imfx0sQW ,vdg,v1/2, so C,1/v1/2—i.e.,

the susceptibility is no longer on the plateau.
Defining a width parameterav=minhav

− ,av
0j, with av

0

=v0/v1, then

v1/vc
− =

2pts1 − td
U

F1 + tcx0

− t
G ;

1

av
− . sF10d

This latter is in good agreement with the numerical results
(arrows in Fig. 40) and is similar to the result found by
Onufrieva and Pfeuty,102 using a hyperbolic band approxima-
tion valid near a VHS,v1/vc

−=2pts1−td /U.
Because of the dynamic scalingv,qz, this crossover is

also reflected in the behavior on the plateau inqW, Fig. 34: for
m.−0.14 eV, the plateau has a negative curvature, which
can almost be scaled between different dopings, while for
m,−0.14 eV, the plateau starts to fill in, ultimately devel-

oping a peak atQW . [See also Fig. 3 in Ref. 12.] Note that the
plateau width collapses in frequency at both theH and C
points, while the collapse in wave numbersqc→0d is only
present near theC point.

5. B

The parameterB is small, and generally neglected. How-
ever, it enters into the evaluation ofu, so will be discussed
briefly. The expression forB may be written exactly as the
v→0 limit of

B = U Reo
kW
F fsekWd − fsekW+QW d

sekW+QW − ekWd
G 1

fsekW+QW − ekWd2 − v2g
.

sF11d

It can be shown thatB has a logarithmic correction due to the
hot-spots. The integral can be approximately evaluated by(a)
using symmetry to reduce the integral to one over an octant
of the Brillouin zone containing one hot-spot,(b) splitting
the domain of integration into(i) a circle of radiuskc about
the hot-spot and(ii ) the remainder of the domain, and(c)
numerically evaluating the integral over domain(ii ) while
providing an analytic approximation to that over(i). Then the
k integral over the hot-spot circle can be written approxi-
mately as

I =E
0

kc s1 − 3bukddk

au
2k2 − v2 .

1

au
2F 1

kc
− 3buln

aukc

v
G . sF12d

At T=0, the integralI must then be integrated inu over the
wedge where the difference in Fermi functions does not van-
ish. The integral from outside the hot-spot circle will elimi-
nate thekc dependence, but should not affect the lnsvd term.

It is difficult to directly evaluate the two-dimensional
principal value integral forB. Instead, it is much simpler to
evaluate Resxd via Kramers-Kronig transformation of Imsxd
and findB by numerical differentiation. When this is done,
Fig. 39(d), it is found that the logarithmic correction is too
small to determine accurately. An alternative estimate ofB
comes from noting[Eq. (4)] that B=A/vs

2, wherevs is an
effective spin-wave velocity. This has a significant
renormalization1 when going from the paramagnetic state
(based onx0) to the AFM state atT=0: vs=Î2ta in the
former andÎ2Ja in the latter.

6. u

The quartic effective action is

S=
1

2 o
qW,ivn

P2sqW,ivndfsqW,ivndfs− qW,− ivnd

+
1

4sbN0d2o8 P4sqW i,ividfsqW1,iv1dfsqW2,iv2d

3 fsqW3,iv3dfsqW4,iv4d, sF13d

where the prime in the second sum means summing over all
qW i, vi, such thatoi=1

4 qW i =0, oi=1
4 vi =0,

P2sqW,ivnd =
U

2
f1 − Ux0sqW,ivndg, sF14d

P4sqW i,ivnd =
U4

8 o
kW,ien

G0skW,iendG0skW + qW1,ien + iv1d

3G0skW + qW1 + qW2,ien + iv1 + iv2d

3G0skW − qW4,ien − iv4d, sF15d

with u=P4/N0bU2.
Since there is some controversy45,42 concerningu, it shall

be evaluated in detail. Millis45 showed that for free electrons
(parabolic bands) this expression is in general well defined,

but diverges whenQW is a “spanning” vector of the Fermi
surface—in the present case, this would correspond to theH
andC points. Abanovet al.42 found a more severe problem:
u has an important frequency dependence and cannot be ap-
proximated by a constant in the hot-spot regime. The prob-
lem lies in the limit of external frequencies→0, momenta

→0, or QW . Taking this limit on the momenta, the expression
for u can be written as
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u =
U2

N0b
o
kW,ivn

1

sekW − ivndsekW − ivn + iv4d

3
1

sekW+QW − ivn − iv1dsekW+QW − ivn − iv1 − iv2d
.

sF16d

The sum over Matsubara frequencies yields

u = U2o
kW
F fsekWd

iv4
S 1

siv3 − Dedsiv3 + iv2 − Ded

−
1

siv1 + Dedsiv1 + iv2 + DedD
+

fsekW+QW d

iv2
S 1

siv3 − Dedsiv1 + iv2 + Ded

−
1

siv1 + Dedsiv3 + iv2 − DedDG , sF17d

whereDe=ekW −ekW+QW . Letting vi,±=svi ±vi+2d /2 si =1,2d, and
noting thatv1+=−v2+, this simplifies to

u = 2U2o
kW

ffsekW+QW d − fsekWdgW−

sW−
2 + v1+

2 dsW−
2 + v2−

2 d
, sF18d

where

W− = siv1− + Ded. sF19d

Thus in Matsubara frequency space,u is largest forv1+
=v2−=0, so it should indeed be reasonable to estimate it in
that limit:

usiv1,0,0d = U2 ]2

] siv1d2o
kW

fsekW+QW d − fsekWd

iv1 + De
. sF20d

In turn, it should be possible to approximateu, Eq. (F20), by
its v1→0 limit, if this is nonsingular. From Eq.(4),
Ux0sQW ,vd=Bv2+ iCv+1−d0. Thus, the analytic continua-
tion iv1→v+ id yields

us0,0,0d = U2lim
v→0

]2x0sQW ,vd
] v2 . 2BU. sF21d

Values ofu are listed in Table I. However, there are possible
problems, as found above. In addition, the form ofB can
change close to the AFM state(Appendix F 5), and moreover
B has a correction in lnsvd, which would formally lead to a
divergence inu. Hence, the values in Table I will be taken as
approximate, andu approximated by a doping-independent
constant estimated by comparison to thet-J model.

APPENDIX G: INTERLAYER COUPLING

1. Dispersion oftz: Direct and staggered stacking

Andersenet al.128 demonstrated that the anomalous form
of interlayer hopping in the cupratestz= tz0scx−cyd2 could be

understood by coupling the Cudx
2−dy

2 and Op orbitals to the
Cu4s orbitals, which have significant interlayer coupling.
Here, I provide a simplified calculation including only these
orbitals, and show how the dispersion is modified by stag-
gered stacking of the CuO2 layers. For uniform stacking(Cu
above Cu), the hopping matrix becomes

H =1
D − 2tsx 2tsy 0

− 2tsx 0 0 − 2tpssx

2tsy 0 0 − 2tpssy

0 − 2tpssx − 2tpssy Ds + Esz

2 , sG1d

with si =sin kia/2. Here the first (last) row is for the
Cudx

2−dy
2 sCu4sd orbital, and the middle rows are for the Opx

and Opy orbitals, with Esz=−4tszcoskzc. In the limit Ds
+Esz@D@ t ,tps, the antibonding band has dispersion

E = D −
2t2

D
scx + cy − 2d −

4t2tps
2

D2sDs + Eszd
scx − cyd2, sG2d

so if tsz!Ds, the interlayer hopping has the form
tz0coskzcscx−cyd2, with tz0=−16t2tps

2 tsz/D2Ds
2. While this

form had been suggested earlier129 and found experimentally
for the bilayer splitting in BSCCO,130 it should be noted that
it is only approximate, and that, at least in YBCO, there is
considerable splitting of the bilayer bands along the zone
diagonal.128 Nevertheless, this form is adequate for the
present purposes.

When successive layers are staggered, the only modifica-
tion to the hopping matrix is in the form ofEsskzd, which
now acquires an in-plane dispersion

Esskzd = − 4tszcoskzcfcosskx + kyda/2 + cosskx − kyda/2g

= − 8tszcoskzc coskxa/2 coskya/2, sG3d

which leads to Eq.(36).

2. Estimation of tz from resistivity anisotropy

The dc conductivity can be estimated

sii =
2e2

V
o

kW
vi

2dsekW − mdtkW , sG4d

i =x,y,z, with V the unit cell volume,vi ="−1dekW /dki, andtkW

the scattering rate. Recent ARPES data suggest that, when
bilayer splitting is resolved,tkW is relatively isotropic over the

Fermi surface.131 TakingtkW independent ofkW, the conductivi-
ties are given by integrals over the Fermi surface. Figure
42(a) shows a normalized conductivity ratio

ŝzz

sxx
=

at2

ctz0
2

szz

sxx
, sG5d

while Fig. 42(b) shows the resulting normalized interlayer
hopping t̂z0= tz0Îc/a, which would be required to produce a
resistivity anisotropyrzz/rxx=1000. For simplicity, it is as-
sumed thattz0 is small, andŝzz/sxx is evaluated in the limit
tz0→0. It can be seen that(a) the staggered stacking reduces
the conductivity by approximately a factor of 20, indepen-
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dent of doping(except near the VHS), so (b) assuming the
resistivity anisotropy is 1000 for optimally doped LSCO, it is
estimated thattz0/ t=0.11 for staggered stacking; by contrast,
if the stacking had been uniform, a value oftz0/ t=0.025
would have been required. The staggered result can be com-
pared to a recent band structure calculation,132 where tz/ t
=0.16 was found for LSCO. However, the same calculations
find a much smaller valuetz/ t=0.02 for NCCO, which lacks
an apical oxygen.

3. z component of ordering vector

Given a finite interlayer hoppingtz, the first issue is to
identify the three-dimensional ordering vector: whatQz
minimizes the free energy? At mean-field level, the initial
magnetic instability will be associated with the state for
which the RPA denominator first diverges, i.e., the state with

the largest value of Rex0sQW ,Qzd. (Note that these calcula-
tions implicitly assume that the two-dimensional ground

state involves commensurate order atQW .) For uniform stack-
ing, a complicated dependence on doping, temperature, and
tz is found. Figures 43 and 44 plotx0 vs chemical potential
for T=100, 10 K, respectively. The shift of the susceptibility
peak with doping can readily be understood by comparison
with Fig. 3. Both temperature and interlayer coupling act to
smear out the VHS, and in both cases cause the susceptibility
peak to shift to smaller chemical potential(lower hole dop-
ing), Fig. 43(d). Note that the peak shifts at different rates for
different Qz values, showing that the band is developing a
considerablec-axis dispersion. The fastest shift[short-
dashed line in Fig. 43(d), corresponding toQz=0] can thus
be considered as representing a crossover from quasi-two-
dimensional to fully three-dimensional dispersion.

This dispersive shift of the peak inx0 leads to a doping
dependence of the optimalQz, as illustrated in Fig. 45 for
tz0=0.2t. For large hole doping, near thetz0=0 VHS, the
susceptibility maximum corresponds toQz=p /c, while near
the susceptibility peak, the spin modulation becomes incom-
mensurate(intermediate values ofQz have the largest sus-
ceptibility). There is a rapid evolution of the optimalQz, and
beyond the peak regime, over essentially the entire electron-
doped regime, the optimalQz is 0. This same pattern is re-
peated for smallertz0, with only the region of the suscepti-
bility peak changing. The results are essentially independent
of the sign oftz.

4. Calculation of Az

a. Uniform stacking

Given tz and Qz, the parameterAz of Eq. (34) can be

evaluated: UxsQW +qzẑ,v=0d=UxsQW +Qzẑ,0d+Azsqz−Qzd2.
The dominant ordering vectors,Qz=p /c and Qz=0, can be
analyzed in more detail. For the former choice,

FIG. 42. (a) Normalized conductivity ratio,ŝzz/sxx vs doping
EF, for uniform (solid line) and staggered stacking[long-dashed
line and short-dashed lines320d] and (b) resulting normalized in-
terlayer hoppingt̂z0 for staggered(solid line) and uniform stacking
[long-dashed line and short-dashed lines34.5d].

FIG. 43. x0sQW ,Qzd at T=100 K vs chemical potentialm, for
uniform stacking andQz=p (a), p /2 (b), and 0 (c). The various
curves correspond totz0/ t=0.01, 0.02, 0.05, 0.1, 0.2, and 0.5, with
the peak inx0 shifting to the right with increasingtz0. Inset (d):
position of peak,mmax, vs tz0 for Qz=p (solid line), p /2 (long-
dashed line), and 0(short-dashed line).
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Az
p =

Uc2

4 o
kW
F tzcz

ekW − ekW+QW + id
S2

fkW − fkW+QW

ekW − ekW+QW + id
− ff

kW
8 + f

kW+QW
8 gD

− 2tz
2sz

2S f
kW
9 − f

kW+QW
9

ekW − ekW+QW + id
DG , sG6d

with f
kW
8=−fkWs1− fkWd /kBT, f

kW
9=−f

kW
8s1−2fkWd /kBT, cz=coskzc,

sz=sin kzc. For the latter case

Az
0 =

− Uc2

4 o
kW
FtzczS f

kW
8 − f

kW+QW
8

ekW − ekW+QW + id
D + 2tz

2sz
2F f

kW
9 − f

kW+QW
9

ekW − ekW+QW + id

+ 8
fkW − fkW+QW

sekW − ekW+QW + idd3 − 4
f
kW
8 + f

kW+QW
8

sekW − ekW+QW + idd2G . sG7d

Figure 46[47(a)] shows howx0sQW ,Qzd varies withQz for
tz0=0.1t f0.02tg, for a number of different dopings. For the
entire electron-doped regime, the peak is atQzm=0 [Figs.
46(b) and 47(d)], crossing over toQzm=p /c in the hole-
doped regime. Away from the peak, the susceptibility varies

asÂzqz
2, with qz=Qz−Qzm, and in the electron-doped regime

the full variation can be approximated by a cosine. The am-
plitude of the cosine falls to zero as theC point is ap-
proached. In the quasi-two-dimensional regime this ampli-

FIG. 44. x0sQW ,Qzd vs chemical potentialm, as in Fig. 43, but at
T=10 K.

FIG. 45. x0sQW ,Qzd vs chemical potentialm, for uniform stack-
ing and tz0=0.2t, and T=10 K (a), or 100 K (b), with Qz/p=1
(solid line), 0.75 (long-dashed line), 0.5 (short-dashed line), 0.25
(dotted line), 0 (dot-dashed line).

FIG. 46. (a) x0sQW ,Qzd vs Qz for tz0=0.1t, andT=10 K, and a
variety of chemical potentialsm=−0.003559(solid line), −0.08898
(long-dashed line), −0.1779 (short-dashed line), −0.2669 (dotted
line), −0.2847 (dot-dashed line), −0.2954 (long-long-short-short-
short-dashed line), −0.3025(long-short-short-dashed line), −0.3203
(dash-dot-dot line), −0.3381 (long-short-dashed line), and
−0.3559 meV (long-short-short-short-dashed line). (b) Dx

=x0sQW ,Qzd−x0sQW ,Qz=0d, where the curves have the same mean-
ing as in frame(a).
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tude scales withtz0
2 . Figures 47(b) and 47(c) show plots of

the best parabolic fit toAz8=Âz/c
2 for tz0/ t=0.02 (squares)

and 0.1(triangles). For tz0/ t=0.1, an alternativeAz8 is shown,
found by fitting the full susceptibility as a cosine inqz
(circles). The good agreement between the two techniques
shows that this is a reasonable approximation in the electron-
doped regimes−0.2 eVømø0d. Near the susceptibility
peak, the variation is nonsinusoidal, and the parabolic fit
leads to a large value forAz8.

b. Staggered stacking

The same calculations can be repeated for thetz of Eq.
(36), associated with staggered stacking; Fig. 48(a) showsAz
calculated from Eqs.(G6) and(G7) at Qz=0 (solid lines) and
p (dashed lines). The frustration induced by staggering of
the CuO2 layers is reflected in a strong suppression of theqz

dependence ofx, which leaves a small residual contribution
quadratic in tz0, Fig. 48(b). Sincetz vanishes atsp ,0d, there
is no shift of the susceptibility peak with doping. Note the
symmetry of theAz values between 0 andp. In fact,xsQzd is
closely sinusoidal, particularly for smalltz0, with maxima
either atp or 0. Thus, near either theH or C points, the
maximum ofx corresponds toQz=p. For intermediate dop-
ings, Qz=0 is favored. At two distinct chemical potentials,
the amplitude of the cosine collapses and changes sign. At
the crossing points,x is independent ofQz, leading formally
to TN→0. Note from Fig. 48(c) that the suppression ofAz is
approximately in the same ratio as that of the resistivity,
found above.

5. Calculation of TN

When there is a finite interlayer hoppingtz, Eq. (13)
becomes

FIG. 47. (a) x0sQW ,Qzd vs Qz for tz0=0.02t, andT=10 K, and a
variety of chemical potentialsm=−0.003559(solid line), −0.08898
(long-dashed line),−0.1779 (short-dashed line), −0.2669 (dotted
line), −0.3025 (dot-dashed line), −0.3381 (long-long-short-short-
short-dashed line), −0.3417 (long-dashed-dotted line), −0.3452
(long-short-short-dashed line), −0.3488 (long-short-short-short-
dashed line), and −0.3559 meV(long-dash-dot-dotted line). (b), (c)
Az8=Az/Uc2 vs m for tz0/ t=0.02 (squares,Az8325) and 0.1 (tri-
angles, circles). (d) Qzm vs m for tz0/ t=0.02 (squares) and 0.1
(triangles).

FIG. 48. (a) Az8=Az/Uc2 vs chemical potentialm for Qz=0
(solid lines) or p (dashed lines), for a variety of values oftz0 and
T=100 K. In order of increasing amplitude, the values aretz0/ t
=0.01, 0.02, 0.05, 0.1, 0.2, and 0.5.(b) Scaling of Az

8s0d with
stz0/ td2. Curves aretz0/ t=0.01 (solid line), 0.02(long-dashed line),
0.05(short-dashed line), 0.1(dotted line), 0.2(dot-dashed line), and
0.5 (dot-dot-dashed line). (c) Comparison of maxsAzd for staggered
stacking (solid line) and uniform stacking(triangles,31/20) at
tz0/ t=0.1.

MODE-COUPLING MODEL OF MOTT GAP COLLAPSE IN… PHYSICAL REVIEW B 70, 174518(2004)

174518-35



d − d̄0 =
6uTa2c

p2A
E

0

p/c dqz

p
E

y0

y0+Aqc
2 dy

y
tan−1S2TC

y
D

.
3uTa2

pA
lnS T

T3D
D , sG8d

wherey0=d+Azqz8
2 andT3D=p2Az/2Ce2c2. (A small correc-

tion to d̄0 is neglected. Treating theqz dependence as a co-
sine rather than a cutoff quadratic leads to qualitatively simi-
lar results.) Thus a finiteAz always cuts off the divergence
found in Eq.(13), leading to a finiteTN whenever there is a
zero-temperature Néel state(e.g., up to a QCP). It should be
noted that the above calculation implicitly assumed that
T.T3D,Az: for T,T3D the logarithm is cut off and the
system behaves as an anisotropic three-dimensional magnet.
For tz0/ t,0.1, the system is generally in the quasi-two-
dimensional limit, Fig. 49(a). Figure 49(b) compares the
mean-field Néel transition with the Néel transition found as-
suming uniform stacking and finite interlayer couplings
tz0/ t=0.1, 0.02, and 2310−6 (the last found by scaling the
T3D for tz0/ t=0.02 by the ratio oftz0

2 ’s). It is seen thatTN
→0 astz0→0, albeit exceedingly slowly.

The above calculations are for uniform stacking. For stag-
gered stackingAz is reduced, in approximately the same ratio
as the resistivities. Hence, the staggered stacking withtz0/ t
=0.1 should be comparable to uniform stacking withtz0/ t
=0.02, as observed, Fig. 49. WhileTN technically goes to
zero for staggered stacking nearx=−0.0838, the decrease is
logarithmic, and in practice no more than a weak dip is ex-

pected to be observed(the point with TN=0 K is omitted
from the plot in Fig. 20). Hence, iftz0 is estimated from the
resistivity, it will be nearly impossible to distinguish uniform
from staggered stacking via measurements ofTN.

In the above calculations, a constant value ofA was as-
sumed for each doping, as given in Fig. 35. In fact, for the
electron-doped cuprates,A,1/T1.5 for T.TA

* , Fig. 37. This
would cause an enhancement of the logarithmic correction,
,T2.5, tending to pinTN close toTA

* . For the present param-
eter values, this could reduceTN by roughly a factor of 2,
still larger than the experimental values.

A more likely source of the discrepancy is the possible
temperature dependence ofUeff, Appendix C. The largeUeff
at half filling arises from lack of screening, in the presence of
a Mott gap—and is appropriate in analyzing the low-T Fermi
surfaces found in ARPES. For calculating the onset of the
Mott gap, the mean-fieldTN, it is more appropriate to use the
paramagnetic susceptibility, as in Fig. 31(a). When this is
done, considerably smaller transition temperatures are found,
both at the mean-field level, Fig. 50(a), and when fluctua-
tions and interlayer hopping are included, Fig. 50(b). While
the latter are closer to the experimental values, no attempt
has been made to correctUeff for the short-range gap. Note
that on the hole-doped side, both experimental and theoreti-
cal TN’s go to zero nearx=0.25 in a QCP.

Note further that this second peak inTN is associated with
the VHS. It has several times been suggested that, when
more general interactions are allowed, this AFM order may
be replaced by some competing order7,133 (electron-phonon,
ferromagnetic, superconducting), which in turn could be the
origin of phase separation(stripe) physics.

FIG. 49. (a) T3D vs m for T=10 K and uniform stacking with
tz0=0.1t (circles, 31/25) or 0.02 (squares), or staggered stacking
with tz0=0.02(triangles). (b) TN vs x, comparing mean-field transi-
tion (solid line) with interlayer coupling models(uniform stacking)
assumingtz0/ t=0.1(long-dashed line), 0.02(short-dashed line), and
2310−6 (dot-dashed line), and the staggered stacking model assum-
ing tz0/ t=0.1 (dot-dot-dash line).

FIG. 50. (a) Mean-field TN vs x assuming paramagneticUeff

(Appendix C). (b) CorrespondingTN vs x, calculated using Eq.
(G8). Squares = staggered stacking withtz0/ t=0.1; triangles = uni-
form stacking withtz0/ t=0.02; solid line and circles = data, as in
Fig. 20.
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