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A simple antiferromagnetic approach to the Mott transition was recently shown to provide a satisfactory
explanation for the Mott gap collapse with doping observed in photoemission experiments on electron-doped
cuprates. Here this approach is extended in a number of ways. Random phase approximation, mode coupling
(via self-consistent renormalizatiprand(to a limited extent self-consistent Born approximation calculations
are compared to assess the roles of hot-spot fluctuations and interaction with spin waves. When fluctuations are
included, the calculation satisfies the Mermin-Wagner thedaiééel transition a=0 only—unless interlayer
coupling effects are includ¢dand the mean-field gap and transition temperature are replaced by pseudogap
and onset temperature. The model is in excellent agreement with experiments on the doping dependence of
both photoemission dispersion and magnetic properties. The magnetic phase terminates in a quantum critical
point (QCP), with a natural phase boundary for this QCP arising from hot-spot physics. Since the resulting
T=0 antiferromagnetic transition is controlled by a generalized Stoner factor, an ansatz is made of dividing the
Stoner factor up into a material-dependent part, the bare susceptibility and a correlation-dependent part, the
HubbardU, which depends only weakly on doping. From the material-dependent part of the interaction, it is
possible to explain the striking differences between electron and hole doping, despite an approximate symme-
try in the doping of the QCP. The slower divergence of the magnetic correlation length in hole-doped cuprates
may be an indication of more Mott-like physics.
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[. INTRODUCTION Clearly, a simpler alternative is an important desideratum,

Schrieffer, Wen, and Zhahgriginally proposed that the @nd one has recently been proposed. While phase separation
magnetic insulating phase in underdoped cuprates could H& & significant complication for hole doplngl, this instability
understood via a spin density way8DW) approach to the 2PP€ars tcg) be g_reatly reducgd or absent. in electron-doped
Mott transition, and successfully described the spin wavdnaterials’® allowing a much simpler analysis. Moreover, for
spectrum of the undoped parent compound, which is an arflectron doping, the band picture involving short-range com-
tiferromagnetic (AFM) insulator. Kampf and Schrieffer mensurate AFM order seems justified, in that magnetic cor-
showed that precursors of the Mott transition could give risg€lations remain commensurate, while the correlation length
to a pseudogap in the quasiparticle spectrum, between incip@liverges for all dopings up to the QCP. The desirability of a
ent upper(UHB) and lower Hubbard bandd.HB's). At- reference system free of phase separation complications co-
tempts were quickly made to go beyond mean-field theorieseres with Laughlin and Pines’ observati$iThis problem
by incorporating fluctuation effects, but a number of prob-[of identifying the correct quantum protectorhie exacer-
lems soon arose. While some calculations found evidence fdyated when the principles of self-organization ... compete.
pseudogap3others did nof. ... [H]igher organizing principles are best identified in the

The rapid disappearence of Néel order with hole dopindimiting case in which the competition is turned off, and the
created more problems: many calculations, even includingey breakthroughs are almost always associated with the ser-
strong fluctuations, predicted magnetic order Bs-0, endipitous discovery of such limits.”
coupled with diverging magnetic correlation lengt While many models attempt to describe the properties
whereas{ is found to remain finite even in the presence ofof the cuprates over a limited doping range, it has proven
the pseudogap. This has been used as evidence that the batifficult to systematically reproduce the changes over an ex-
structure picture of the Mott transition breaks down, andtended doping range. Remarkably, simple mean-field
must be replaced by a local picture: “Mott physics” insteadcalculationd were able to reproduce the full doping depen-
of “Slater physics.” On the other hand, other calculationsdence of ARPES spectra in the electron-doped cugtartes
find evidence for instabilities—either to incommensurateterms of a Mott gap collapsé€QCP) near optimal doping.
magnetisri or to phase separatidri,and the saturation af  Here, these results are expanded upon in a number of ways.
could be due to nanoscale phase separation physics. The sitirst, a number of models are applied to the electron-doped
ation is at a stalemate, with some models neglecting botBystem, to see the effects of various correlations. A key issue
phase separation and magnetic effects, and explaining ths finite temperature effects: the random phase approximation
pseudogap in terms of purely superconducting precursor efRPA) predicts a Néel temperaturé,~U—much larger
fects, while others find a magnetic quantum critical pointthan found experimentally. Proper inclusion of thermal fluc-
(QCP in the deeply underdoped regime, and yet others finduations, introduced via a self-consistent renormalization
a QCP above optimal doping. (SCR model!? drives the Néel temperaturg, to zero
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(Mermin-Wagner theoremreplacing the RPA gagyr by a  pendix D, properties of the bare susceptibilipAppendix
SCR pseudogaft” and the mean-field Néel temperatdié” E), calculation of the NAFL paramete(&ppendix B, and
with a crossover temperatuf@, with Aye=A", T',i,"F:T*. details of the estimation ofy (Appendix G. Some of these
Inclusion of spin wave scattering, via the self-consistentesults have been reported previously in the discussion of the
Born approximation(SCBA) produces a large incoherent mean-field resulfsand in a conference proceedings.
background, but the coherent part of the spectrum is recog-
nizably the same as the spectrum found in the RPA and SCR
approaches, with only moderate band renormalizations. The Il. MODE-COUPLING CALCULATION
present conclusioné@ncluding Ref. 12 are consistent with
more recent findings> 14

In summary, there is a QCP near optimal doping in the |n the present paper the mean-field results are extended by
electron-doped cuprates, associated with Mptteudggap incorporating fluctuations via mode-coupling the&thyfol-
collapse. The transition is characterized by three concurrengying Moriya’s self-consistent renormalizatigBCR)1117:18
factors: termination of a zero-temperature AFM transitionprocedure. Mode coupling theories have been applied to
(which can be associated with a finiteNéel transition due charge density waveCDW) systemd22° and have led to a
to weak interlayer coupling collapse of a pseudogap cen- g ,ccessful theory of weak itinerant magnetic syst&ha.

tered on(,); and crossover of the Fermi surfa}ce from,They have also been used to study glass transifibasd
small pockets to large barrel. Good agreement with experi:

. . o fecently extended to glasses in cuprdfesThe mode-
ment requires a weak Kanamori-stifil@enormalization of y 9 P

. ; . _coupling analysis is particularly convenient, being the sim-
the HubbardU with doping. The same model can describe ; e . o
both ARPES and magnetization results. A similar QCP isplest model for which the Mermin-Wagner theorem is satis

predicted at a comparable hole doping—indeed a natura{ied' The resulting pseudogaps compare well with recent

phase boundary for magnetism exists, associated with ho _h;)ﬁce)etrﬁéssslcénR teexcphenrilmueentSanmbeelee(;:gigl_iggzeg dceuzflr{\j:\t/ﬁ;.
spot physics. There is, however, a striking difference in the i hasc@ Iq th tif 9 tic fluctuati
hole-doping case: saturation of a spin sum rule leads to muc PMPeting phases, only the antiterromagnetic fiuctuations
smaller correlation lengths and absence of fifitBléel or- will be treated here. .

der. Stripe physics appears to play a lesser role—turning on The cuprates are treated in a one-band model. By com-

at lower temperatures—possibly as a form of interaction ofarson with a three-band mod@q\ppen(ﬁx A, this can be :
the doped polarons. shown to be an excellent approximation for the magnetic

This paper is organized as follows. Section Il describeéDrOpert'es' The bare electronic dispersion is
the SCR formalism. Since the transition occurs when a B ,
Stoner factor equals unity, it is controlled by treal part of 6=~ 2(cctcy) — 'y, (1)

the bare susceptibility. Hence Sec. Il reviews the properties | B ) )
of Re x, showing that plateaus ipas a function of dopingg ~ With Ci=coska. The dispersions for undoped ,BuO,Cl,

or o are all controlled by the physics of hot-spots. In turn,(SCOQ and electron-doped NCCO can be fit by assuming
these plateaus provide natural phase boundaries for QCP0-326 eV,t'/t=-0.276, withU taken as an effective dop-
The resulting susceptibility has a form similar to that postu-"d dependent paramefewith U=6t at half filling. Similar
lated for a nearly antiferromagnetic Fermi liquiNAFL), ~ Parameters are fourttito de,scrlbe the spin wave spectrtim
but there are extrécutoffy parameters, which cannot be ne- N L&CuQ;: 1=0.34 eV, t'/t=-0.25, andU/t=6.2. The
glected. In Sec. IV, this renormalized susceptibility is incor-former values will be used here. ,

porated into the lowest-order correction to the electronic self- Many textbooks on strong correlation physf$’ note
energy, allowing a calculation of the spectral functionthat the Hubbard) should be doping dependent, based on

associated with the pseudogél,=0). Excellent agreement the original results of Kanamot?, but there are no satisfac-
is found with the ARPES spectra of MJCeCuO,.s tory results for the doping dependence in the cuprates. A
(NCCO). An extension of the results to the hole—dopéd re_simple model calculation, which gives semiquantitative

gime is considered in Sec. V. The model also provides a goodreement with experiment in NCC8is described in Ap-

description of magnetic properties, as discussed in Sec. ypendix C.

Section VII shows that inclusion of interlayer hopping leads

to a finite Ty. Results are discussed in Sec. VIII, and conclu- B. Self-consistent equation

sions in Sec. IX. There are a number of appendixes. The first

two deal with extensions of the model, to a three-band model The SCR scheme is introduced to incorporate strong fluc-
(Appendix A) and to a comparison with the self-consistenttuations near the antiferromagnetic wave ve€oi he (path
Born approximation at half filling in Appendix B. The latter integra) formalism is standard and only the main results
incorporates coupling to magnetic polarons which can leadre given here. The quartic Hubbard contribution to the
to anomalous localization effects and bear some resemblant¢tamiltonian is decoupled by a Hubbard-Stratonovich trans-
to nanoscale phase separation. It is found that only minoformation introducing spin wave fields. The Fermion fields
guantitative changes to the earlier results are expected. Thae then integrated out, leaving an approximate quartic effec-
remaining appendixes describe technical details of calculative action, which describes fluctuations about the mean-field
tions, including the doping dependencelbfAppendix Q, a  solution due to mode coupling. In the SCR model, the dy-
more accurate solution of the self-consistency equatiqnm namical susceptibility is found self-consistently as

A. Model dispersion and doping dependence of)
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L Xo(Griwp) TABLE I. Electron doped cuprates.
X(qy“l)n)—l_u (—)I )+)\1 (2)
Xold,ten X Uit Ala® w(eV) a, ga 7 Ta(K) ul(ev)
with the bare susceptibility 0 6 0.696 0345 0583 0.635 1.20 1020 1.0
o)== f(&) — f(€g) g 004 5 116 0540 0455 0518 117 850 19
Xo( ) = ~ = gt @+’ B 510 3 134 132 0176 0342 115 500 7.0
35 156 1.13 0206 " 1.13 7 5.1
wheredis a positive infinitesimal, and the RPA susceptibility -0.15 25 1.75 216 0.054 0.172 1.09 56 12
given by Eq.(2) with A=0. ” 29 203 18 0062 " 1.05 " 9.2

The leading divergence corresponds to AFl\/ﬁa@, SO
the denominator of Eq.2)—the (inversg Stoner factor—is

expanded in terms of the small parameterand g’ Eﬁ—d 12u % dq’2 2 [/ de Ce
(analytically continuing w,— w+ie): o 7 (AQ')?+ (Ce)?

5q(w):1—U)(o((j,a))+)\: 5+Aq?-Bw?-iCw, (4) 3ucﬁa
where = Ry=1-7, (10
5=1-Uxo(Q0) +1, (5) . )

and 5,= 5-\. The self-consistent equation féris Ry = 5'”[1 +a,’]+ ?a(" (1)

6=+ E Do(diwn), 6 with a,=Ad?/«,. Since the right-hand side is finite and
q""n negative, fluctuations reduce but in general do not eliminate

whereu is a measure of the quartic mode-mode couplingthe order aff=0. At the RPA level(A=0), the AFM insta-

(Appendix F § and(neglectingB) bility is controlled by the Stoner criteriof,— 0. The quan-
1 ' tum corrected Stoner criterion $y,=7, where representa-

Dg (Giwy) = 6+ Aq'?+ Cley. (7)  tive values ofy are listed in Table I.

The sum over Matsubara frequencies can be carried out us- However, for finiteT, there are corrections-In(¢), so &
cannot be set to zero, and there is no finite temperature tran-

in
9 . ) sition (the Mermin-Wagner theorem is satisfjedio see this,
—E X(iw) = - —E Im X(e+i9) it is adequate to approximate c@thas 1k for x<1 and 1
Bia, " iy J iw,— € for x>1. In this case, Eq6) can be solved exactly, Appen-
dix D. However, this exact solution is not very illuminating,
- _f dicothilm X(e+i0). ®) and a simpler approx_imate sqlut_ion will be given here. Since
0 only the term proportional td is singular,T and § can be set
h to zero in the remaining term. Defining
en
d?Ga? So= S+ n-1, 12
WE%WW_L%Z e 2
aten Eqg. (6) becomes
X f e coth— ce & &
- . — S+A
o 7" oT 5+ AgDZ+ (Cep? P 6uT % dy an‘1< 2TC> _3uT ln(ZCT)'
A y y A 5
9
(13

Note the sharp energy cutoff in E(R). This comes about

because the linear-in- dissipation is a result of Landau where the second line uses E®6), below. Hence, there is
damping of the spin waves by electrons near the hot-spot$ finite temperature phase transition, ahohly approaches
and therefore the dissipation cuts off when the spin wavegrg asymptotically a3 — 0: approximately,

spectrum gets out of the electron-hole continuum. The cutoff

parameterx,, is defined in Appendix F 4, above E¢10). 5= 2CTe‘”A‘50V3”T‘¥ (14)
Numerical calculationgFig. 40 show that the cutoff can be '

quite sharp, particularly near the van Hove singularity

(VHS). D. Susceptibility
C. Approximate solutions Given the(inversg Stoner factors,, Eq. (4), the renor-
Equations(6) and(9) can easily be solved in the limf ~ malized susceptibility can be written in nearly antiferromag-
=0. In this case, there is a transition at netic Fermi liquid(NAFL)?8 form
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R X '
X(G o) = —2 —, (19
1+&(4- Q)? - 0 A? - iwl wg
with coefficients
. _Xo
==, 16
XQ 5 (16)
A
2= —, 17
&= (17)
1)
A%= B’ (18) 0.8 : L
(1.0,0.8) (1.0,1.0) q (0.8,0.8)
— 5 -
Wst= E (19 FIG. 1. Susceptibilityyg nearQ for several dopings near th@

point. Upper group ai=-0.05 eV, middle aju=0 (C point), and
The similarity of Eq.(15) to the corresponding result for bottom atu=+0.05 eV. Temperatures affle=200 K (dotted lines,
CDW’s?® should be noted—the SCR is a form of mode-100 K (short-dashed lings 10 K (long-dashed lings 1 K (solid

coupling theory. lines). Horizontal line= Ugx(u=0).

In the renormalized classical regime, the vanishing e
T—0 is controlled by a correlation length, EA.7), which The motivation for this approach comes from experience
can be written &8 with another strongly correlated system: electron-hole drop-

£= g e2mdeT (20) lets in photoexcited semiconductors. Here it was fdgfd
0 ' that the correlation effects were controlled by an isotropic
Numerically solving Eq(13) [or Eq. (D7)] for &, then the density-dependent interaction potential, whereas the mate-

spin stiffnesspg is exactly given by rial, anisotropy, and uniaxial pressure dependence were con-
trolled by the kinetic energy—i.e., by the bare band struc-
o= kLTm(é) (21)  ture. Asimilar approach has been applied to CDW systéms.
Am \&5)'

. = . . . A. Bare susceptibility
with &=+veA/2TC. Using Eq.(14), an approximates is . o _
Since the Stoner criterion depends on Rethe doping

0 A& dependence of this quantity is described in Appendix E. The
Ps= 12022 (22)
a
0.5 . .
ps is plotted in Fig. Bb), with u*=0.384 eV, chosen to give 04
a ps in agreement with experiment for=0, T=0 (Sec. V).
The T dependence of the prefactés agrees with one-loop 04 ¢ i
a-model result® rather than the more accurate two-loop g ® [100] NN
results?®3! This difference is presumably a deficiency of the ®, g3 . ., NN |
present model in not using fully self-consistent parameters; it < N . os
will be discussed further in Sec. VI. oz | g o 04 a.am ¢ |
I1l. SUSCEPTIBILITY AND PARAMETER EVALUATION
A key insight of the present calculations is that the prob- 0.1 ¢

lem can be separated into a kinetic part, involving the bare
susceptibilityy,, and a potential part, involving the Hubbard 0 : e
U and the mode-coupling parameterAll of the band struc- -0.3 -0.2 0.1 0.0

ture effects, which dominate the doping dependence, are con- hEV)

tained inyg, which is re_adily calculgted. The strong coupling 15 2. plateau widthy,, comparing Eq(E3) (solid lines and
effects are contained i) and u; since these are Coulomb e measured widthecircles from Fig. 32. Upper curve along
effects, they are independent of band structure and depeng_ o] direction, lower alondqc,q.]/+2 direction. Symbols = ex-
weakly on density. While they are hard to calculate, they caryerimental inverse correlation lengths® from YBCO: large
readily be parametrized, and a simple estiméig(x) is  squares = Ref. 35, triangles = Ref. 36; LSCO: small squares = Ref.
given in Appendix C, which is consistent with experiment. A 37. Diamonds ¥,/5000 K. Dotted line:=100a. Inset = plateau
single, doping-independent valuewfs chosen to agree with boundary for a series of chemical potentiglsrom 0 (smalles} to

t-J results at half filling. -0.359 eV(larges}.
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3 : f i -
0.2 | (b) 2 2000 -
x z
20 o ’ =
'S
=2 5 1000 |
1 L
op (K)soo 1000
0.6 : : : %03
04l i FIG. 4. Mean-field magnetic transition temperatures determined
- from Stoner criterion usint¢ of Fig. 3. Solid line: commensurate
] (at Q); long-dashed line: incommensurate. Dot-dashed lineTx,L0
02 r | whereTy is the onset of long range AFM order, from Refs. 39 and
40 (with filled circles. Insets = blowups nea€ and H points.
. . . Squares in inseth) = pseudogap data of Ref. 38.

FIG. 3. (a) Susceptibility yo at (3 as a function of doping for
several temperatures. From highest to lowest curvesxze@ul, the
temperatures ar@=1, 100, 300, 600, 1000, 2000, and 4000 K.  For the parameter values expected in the cuprates, these
Dotted line =1 U, dot-dashed line =1.8). (b) Density of states  susceptibility plateaus control the physics of the Mott gap
N for the same temperature®) Susceptibilityy, at Q as a func-  collapse. As a function of doping, the mean-field Mott gap is
tion of doping for several frequencies Bt 1 K: ©=0.01, 0.1, 0.3, found to close at a doping just beyond the edge of the pla-
0.6, 1.0 eV(d) Pseudo-VHSpeak ofy,) as a function of tempera- teau, for both electron and hole doping, Fig. 4. The solid and
ture Ty (circles or scaled frequency,=w_/ (squarey triangles  long-dashed lines are the commensurate and incommensu-
=Tincomm rate mean-field Mott transition temperatufé$x) calculated

using the estimated«(x), dotted line in Fig. 3. For electron
most important property is the presence of susceptibility plagjoping, there is a double transition, first from commensurate
teaus, both in the dependence and in the doping depen-iy incommensurate antiferromagnetic order at the plateau
dence. These plateaus are characteristic ofhEbtespot re-  edge, then to the loss of any magnetic order at a slightly
gime, where the antiferromagnetic wave vedficonnects higher dopinglinset(a)]. For hole doping, the dominant an-
two points on the Fermi surface. For instance, Fig. 1 showsiferromagnetic order is incommensurate for all dopings, but
xo for several dopings near the termination of the hot-spothe difference inTy becomes significant only near thé
plateau on the electron-doped si@alled theC point). For  point[inset(b)]. When fluctuations are includg¢below), it is
chemical potentiaju<0 the T=0 susceptibility has an ex- found that the Néel transition is shifted to zero temperature,
tremely flat top neatsr, ), which collapses to a square-root while a pseudogap first appears near the mean-figldNote
cusp at theC point. Note that there is a strodgdependence that in the hole-doped regime, there is good agreement be-
to xo on the plateau. Whereas theplateau width collapses tween the mean-field transition and the pseudogapares
to zero on the electron-doping side, it actually grows on thén Fig. 4(b) = data of Krasnov® assuming 2=4.6T"]. For
hole-doping side and has maximum width at the terminatiorihe real cuprates, the terminations of the Mott gaps are pre-
of the hot-spot regiméthe H point), Fig. 2. This electron- empted by superconducting transitions, close to the critical
hole asymmetry has important consequences in the cuprateggime.
and may explain the small values of the correlation The mean-field Néel transition is associated with short-
lengths®37 on the hole-doped side, as discussed further irrange magnetic order, and hence should be compared to the
Sec. V. experimental pseudogap transitidn, while the experimen-

The plateaus irg lead to corresponding plateaus in the tal Néel transition involves long-range magnetic order. It is
doping dependence, af, Fig. @) [note that electron dop- controlled by small parameters, such as anisotropy and inter-
ing corresponds t&<0]. By comparison with the density of layer coupling(Sec. VIl) and need have no connection to the
states(DOS), Fig. 3b), it can be seen that on the hole- mean-fieldTy. Nevertheless, the mean-field calculation pro-
doping side the hot-spot plateau terminates at the Van Hoveides an approximate envelope of the resulting data, but
singularity(VHS), wherey, has a small additional peak. The overestimates the transition temperatures by a factor of 10,
two ends of the doping plateau are denoted herein a€the Fig. 4. The agreement is particularly good on the electron
point and theH point (the VHS. doped side(except for overestimating the doping of the

B. Mean-field Mott and Néel transitions
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v 1.0

I
o 05
0.0

FIG. 5. (8 -6y (thin solid
lines ==&), (b) ps calculated from
Egs.(22) and(14), (c) =&, (d) A,
Eqg. (28). In all the plots, the solid
curves correspond tg=0.0, dot-
ted lines: x=-0.04, short-dashed
lines:x=-0.10, long-dashed lines:
x=-0.15.

-0.5

0.0
-0.5
1.0

QCP), while for hole doping the experimentally obser¥®d cated. Hence, the present calculation replaces a large number
Ty (dot-dashed lineshows a stronger falloff, perhaps due to of experimentally determined, doping dependent parameters
phase separation. Since stripes can frustrate magnetic ordevith a single parametey(x) with a weak doping dependence
the figure also includes the magnetic ordering temperature ajf well-understood form(3) On the hole-doped side, the
quasistatic stripe arrays, from Nd-substituted L8r,CuO,  curvature parametek becomes very small and can change
(LSCO),*° which is taken as a lower bound for the Néel sign on the broad susceptibility plateau. This has profound
ordering transition in the absence of stripes. A possible exeonsequences for the divergence of the correlation length,
planation for the rough proportionality of the mean-field andand can play a role in enhancing competing phaseom-
long-range Néel transitions will be discussed in Sec. VII. mensurate or stripe phages

C. NAFL parameters

The susceptibility Eq.(15) is well-known in NAFL IV. ARPES SPECTRA
(Refs. 28 and 4jland spin fermiof?-#3theories and in renor- A. SCR transition and correlation length
malization group (RG) calculations of quantum phase
transitions*44° In these calculations, the parameters of Eq. Given the above parameters, the doping dependence of
(15) (equivalently,A, B, andC) are usually determined em- the MF and SCR transitions is compared in Fig. 5 for the
pirically from fits to experiments. However, the good agree-four electron dopings studied in Refs. 8 and 9. The MF tran-
ment between experiment and mean-field theory for electrofition occurs when the bare Stoner factiyr1-xqU be-
doped cuprates encourages us to trycédculatethese pa- comes negative, Fig.(&. However, in SCR the renormal-
rameters from first principles, following Ref. 17, using the ized Stoner factob stays positive, so there is fo>0 phase
empirical U(x) and u values. Details of the derivation are transition(Mermin-Wagner theorem although -6, has a
discussed in Appendix F, and the results are displayed iftrong increase near the temperature whigrehanges sign.
Table I. There is still a zerdF Néel transition, controlled by the quan-

Table | also lists values of the mode coupling parameter tum corrected Stoner fact@y=7—xgoU. From Fig. §c), it
estimated in Appendix F 6. Due to the approximate nature otan be seen that at=—0.15, the system is close to a QCP,
this calculation, a simpler empiricatioping-independent 5 (T=0)— 0. This QCP is controlled by the Stoner criterion
value ofu is assumed. As discussed in Sec. Wl,is esti- ot the 7er0T antiferromagnet. While there is no long-range
mated from the mezi\fured correlation Iengt_q Xe10, using  rqer, there is still a Mottpseudogap, controlled by short-
EQ. (20). Sinceps=u™, Eq. (22), this givesu"=0.384 eV, 5046 order, Fig. @). A direct comparison of the transition
which is assumed for all dopinggNote that this is within @  tomperatures is presented on a lin@ascale in Fig. 6. The
factor of three of the caIc;uIated vallue at half filling.he spin stifinesso [Fig. 5b)] is found to be nearlyT indepen-
calculated values ops are illustrated in Fig. @), based on  jaont below the pseudogap onset. While the valué dias
Egs.(D1) and(22). been adjusted to fit the ARPES spectra, it is important to note

The main results of this calculation can be summarized ag, good agreement has also now been found with magnetic
follows. (1) Due to the susceptibility plateaus, twew pa- properties. This is discussed in Sec. VI.
rametersare required in the NAFL calculation, cutoffs in

wave numbep, and frequencyy,,. (2) All parameters have a

strong doping dependence, and in the case of the curvature B. General results

a strong temperature dependence as well. The doping depen-

dences become particularly pronounced near the edges of the Given the susceptibility15), the self-energy can be cal-
hot-spot plateau, which is where QCP’s are likely to be lo-culated approximately as
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FIG. 6. Temperature dependence of gaor (from highest to 40 | \ /o {1 1
lowesy x=0, -0.04, -0.10, and -0.15. Arrows show mean-field 20| \‘ ]
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2
S(Kian) =220 S Go(k+ Gian + ip)Dolin) o

dlom FIG. 7. Imaginary part of the self-energ25) assuming 1C
B gz)(oE f”‘wlc d_en(€)+f(§12+q) =0.0%, 6=0.002, a,=1, T=100 K. The branches are labeled

V 5 )apc ™ ion+ €= §ivg (ky.,ky), in units of .
Ce (The weak oscillations seen in some branche& péire an
X 5 5 (23 _ : ) ; L ,
(6+Agq'“)*+(Ce) artifact due to an insufficient density of points in the numeri-

. ) - ) cal integration). Note that Im2, has the form of a broadened
with bare Green's functiorGy(k,iwy)=1/(iwn=&J, &=e€c 6 function peaked ai=¢.s. If it were a é function, Im3,
- u, and magnetic propagatby, Eq.(7); for the form of the  __ A28(w—£0.7) then
integral, see the discussion near K§). In addition, y, (e CREE)

=x5(Q,0), G=Q+§', n is the Bose function, and Im SR(K, ) A2
€ =

- 1(”
Re3R(k,w) = —f d —, (26
) ) - 3U T) €E-w ® = &uQ
9°X0=Ux0| Uxo(Qiwp) + ————— | = >
1+Uxo(Qiiw,) so away from thes function
(24) 1 w= §E+6

Gk w) =

(Ref. 4. The last form is an approximation based on the e RE N e A2
empirical substitutiony,— =1/U in the pseudogap regime. w=&-ReX ko) (0-§)(w-E&ug ~A
(An improved approximation foE, [Gy— G in Eq. (23)] is (27)

_cjlscqssed in Appendix BAfter analytical cqntlnuatlon, the This is exactly the Green’s function of the mean-field
imaginary part of the retarded self-energy is

calculation! with the substitutionAHK, where A can be
RC - Pxox [“/° i evaluated by integrating
Im 27(k, w) = TE de[n(e) + f(&erg)]
G - a/C -  1(" R U
Ce ——;f_mdw Im3 (k,w)—@(ﬁ— &), (28)
(6+Aq'?)?+(Ce)*’

Xo(w+e= §I2+cj)

Fig. 5d). This result is due to the Bose ternte) in the
(25 square bracket of Eq25), the Fermi functionf making no
The resulting self-energy is plotted in Fig. 7 fd=100 K.  contribution. This leads t& being independent .

> 1 4L
3 (a) (b) FIG. 8. SCR dispersion rela-
0 0 tions for electron doped materials,
calculated at T=100K: (@) X
_1ﬁ\/\_1/—1——\_‘/\ =0(U/t=6), (b) x=-0.04(U/t
T T =5), (c) x=-0.10(U/t=3.5), and
(d) x=-0.15(U/t=2.9. Line-
(c) (d) width indicates relative intensity;
for x=-0.15 all shadow features

/\_{\/\ are extremely weak.
1 -
X
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T T
S 1.0 | ror ]
S 1.0k -
2 1 (a) | [ (b)
“ o0 00 FIG. 9. Mean-field dispersion
F 1 10'_ _ relations for electron doped mate-
N0 fp——— N , rials, calculated aff=1 K: (a) x
+sE 1 A4 5F . 2 =0(U/t=6), (b) x=-0.04(U/t
%‘1'0_ | 1'0_ } =5), (c) x=-0.10(U/t=3), and
= (c) 1 (d) (d) x=-0.15(U/t=2.6). Line-
Wosl 405+ - X - T )
’ ' width indicates relative intensity.
0.0 —_ 0.0 N 4
05+ —H-05+ .
-1.0 ' L '
r X S r r X S r

Equationg27) and(28) constitute an important result, the quite good, except that the SCR gap is smaller at half filling.
connection between the Mott gap and short-range magnetithis is due to lack of self-consistency: in calculating the
order?”8 Recalling thatA=U(M,), or A2=UXS)?, where self-energy, a susceptibility based on the bare Green’s func-
(M;)=(-1)(S) is the staggered magnetization, then, in thetion was used, neglecting the opening of a gap near the

spirit of an alloy analogy, a short-range order parameter cah©™Mi 1evel. In Appendix B it will be shown that when this is
be defined as accounted foKvia the self-consistent Born approximatjcen

larger gap is found. For completeness, Fig. 10 shows the
— -2 (P , mean-field dispersion in the three-band model, discussed in
Aspliw) = 28 <2><3+(T)Sj—(0)>e'“"d7 Appendix A. The overall agreement in all cases is quite strik-
0 (i ing.
~g? _ G In an earlier calculatiol¥ a somewhat larger value of
=—>> (cx* ey xs—(Kiw) = = x+-(k,0) was assumed;1=0.256 eV. This leads to stronger quantum
4B "« 287 corrections: the parameter—1 (Table ) was about twice as
(29) large and the gaps in Fig. 8 were smaller, particularly near
o _ o half filling.
which is equivalent to Eq(28). [In the last equality in Eq. Figure 11 shows typical calculated spectra for sevkral
(29) the limit io—0 is an adiabatic approximatidwhile  ints in thea-b plane. Broadened Hubbard bands are found,
the approximation is made that peaks neaQ.] Thus, as  which gradually smear out at high temperaturesdam-
long as there is short-range magnetic ordeor p; nonzerg, ~ creasesé decreases
there will be a Mott(pseud9 gap. Figures 12-14 illustrate the temperature dependence of
Im(G) and ImZ) for two dopings,x=0 and -0.15. The
broadening of the peaks can be understood from (E§):
particle-hole excitations are present within a rangg AC of
Using the correct InER from Eq.(25), and the calculated éc+g- Away from this particle-hole continuum the main peaks
parameter values from Table I, ARPES spectra are calculategre sharp, while they broaden when they enter the con-
for electron-doped cuprates, at the four dopings for whichinyum.
detailed data are availableThe resulting dispersions are Note that the Mott gap collapse is anisotropic: for the
shown in Fig. 8. There is a well defined pseudogap, with twaundoped case, the nodal gap collapses between 2-3000 K,
peaks in the spectral function at a givén It should be while a gap persists nedrr,0) above 5000 K. Inf) has
stressed that since there is no interlayer coupling, long-ranggiriking oscillatory structure, particularly nedéwr/2,7/2),
antiferromagnetic order exists only @at=0 K. The agree- which produces a similar weak structure in({® at low T.
ment with the mean-field resufsFig. 9, and experimefis  [Similar, weaker oscillations are present néar,0), which

C. Application to the cuprates

T

1.5F - 0.5F ' 3

—~ 1.0 -1 0.0

>

T o5 (@) 1.0l (b) ]

Woo A0k 4 FIG. 10. Mean-field disper-
0.5 445k i sions in three-band model for

-1‘0{\,-/\./\,2,0 . electron doped materials, showing

T t the two antibonding bands, as-
;05-(0) 7 05k d - sumingmgy=0.3 (a), 0.2 (b), 0.05
30_0 (d) (c), and 0.01(d). Other parameters
- S e are discussed in Appendix A.
-0.51 - 'QsM
1.0 i = ;

r X S r r X S r
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10 T T T T 20 T T T T
off @] . (b) .
o 6 II \\ "\ - I
~ /A 10 / a
€ 41 Fy - \ A
- / SR / \\ / / \
L / 1 5F ! . .
4 4 \\ i et % // \ Y FIG. 11. Spectral functions for
0 — e o el 1 ~, 0 LI Sk e il ~ol —_ — —_
04 0.0 0.4 0.8 04 00 0.4 0.8 @ x=0, (b x=-0.04, (¢) x=
50 T T L T 50 T T T T —0.10, and (d) X:—0.15, at T
40l i (€) 4 «l , (d) - =100 K. Solid lines atr,0), and
&30 "l ' 1 =l I i long-dashed lines dtr/2,7/2).
E 20+ :' ,‘\ 1 20} ,’ \ .
101 'In ST I S j = .
0 (. e //!\ 1/ \\ _— . //I \\I\
-0.4 -0.2 O‘Ow(ev)0‘2 0.4 0.4 02 ) (ev) 00 0.2

can be better seen in Fig(a} of Ref. 12] In addition, there  Fermi surface. Hot-spot effects are prominentxat-0.15,
is a very intense, stronglj-dependent peak in I(R) exactly  pinning the Fermi surface to the zone diagonal and broaden-
at &4 [Fig. 12b)—also present but not shown in Fig. ing it at a pseudogap due to hot-spot scattethhese
13(b)—see Sec. VIII B. It is the divergence of this peak as should be compared with the mean-ffelthd experiment8l
T—0 which signals the AFM transition. At low tempera- results. It should be noted that in the mean-field calculation,
tures, the peak positions in (@) have a temperature depen- jt was necessary to includet4 parameter to reproduce the
dence consistent with the collapse of the Mott gap—e.g., thexperimental hole pocket near the zone diagonal. Such a pa-
LHB shifts to higher energiegtoward midgap at higher  rameter would have shifted the Fermi surface across the zone
temperatures. Some experiments on hole-doped cuprates figthgonal, leading to improved agreement with experiment
the opposite dependent&which can possibly be understood here as well.
as a localization or phase separation effect. Thus, the SCR calculation agrees with the mean-field
In contrast, forx=-0.15, Fig. 13, the splittings are absent roqjte9 if the mean-field gaps and transition temperatures
near(w/2,m/2), and vanish neafm,0) by ~500 K, and the 56 interpreted as the opening of a pseudogap at finitéth
lines actually sharpen on warming. If the effectieis re-  he |ong-range AFM appearing only &=0. Moreover, the

duced to 2. no splitting is found, but the peak position and ,yeral| dispersions, Fig. 8 are in quite good agreement with
broadening have an anomalolisdependence. Clearly, the e mean-field resuftsand experimentd.

system is very close to a QCP. Figure 15 shows in more
detail how the spectrum evolves with near this point.

Finally, Fig. 16 displays Fermi surface maps fer V. EXTENSION TO HOLE-DOPED CUPRATES
—-0.10 and -0.15, showing the crossover from small to large

20

Thus, for electron-doped cuprates, a threefold coincidence
g of Mott gap collapse, Fermi surface crossover, and Zero-

=

10° | .

@ - -

£ 10' | 7]

10" N

n %

10° " y

05 -04 -03 -02 -01 00 041 02
o (eV)

FIG. 12. Temperature dependence(af spectral function and FIG. 13. Temperature dependence(a¥ spectral function and
(b) imaginary part of self-energy, for=0.0 at(s,0). Temperatures (b) imaginary part of self-energy, fax=0.0 at(#/2,7/2). Tem-
are 100, 500, 1000, 2000, 3000, 4000, and 5000 K. peratures are 100, 500, 1000, 2000, 3000, 4000, and 5000 K.
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1.0 T T T T

B 08F (a) -
0.6 .
0.4F -
0.2 T .
0. | 1 | |

S0 I 1 1 T T T T
2ol ‘ < os} b) |
E 300 i }0.8 . ( )
=T 7 0.6 i
100 -
o om : 0.4} i
-0.34 032 vy 030 -0.28 .
FIG. 14. Temperature dependence of spectral functionxfor 0.2 7
-0.15 at(7r,0), for U/t=2.9 (a) and 2.5(c). Temperatures are 100 0.0 | | | |
(solid line), 500 (long-dashed ling 1000 (short-dashed line and '0.0 02 04 06 08 1.0
2000 K (dot-dashed ling (b) Imaginary part of self-energy &k K/
=100 K, U/t=2.9. .

) ) o ) FIG. 16. Fermi surface map for=-0.10(a) and —0.15(b).
QCP is found. SCR theory predicts a similar triad for the

hole-doped cuprates, and the present section explores the &xhich find two humplike features, roughly symmetric about

tent to which this is found experimentally. the Fermi level. Correlation with ARPES suggests that the
tunneling peaks reflect structure ne@r,0), and Fig. 17
A. Pseudogap shows that semiquantitative agreement with experiment can

In hole-doped cuprates, ARPES finds two features whicte attained in terms of weakly split Hubbard bands, for a
are commonly referred to as pseudogaps—a “hump” featurgcreened)=2.3 [see also Fig. é)]. For simplicity, the cal-
found near(w,0) at higher binding energy than the main, culation is carried out at the mean-field level. Figure¢ci7
superconducting “peak,” and the “leading edge gap,” a los@nd 17d) show how the bottom of the UHB nedtr,0)
of spectral weight in the immediate vicinity of the Fermi gradually merges into the VHS of the LHB. The intensities
level. This latter feature is not explained by the present cal-

culation; it may be the magnetic feature discussed in Appen- . soal | ' 1(0)'.
dix B 2131451 or it may be associated with the onset of )
strong superconducting fluctuatiotfs>? 8 3 w 02 /\ T
On the other hand, the “hump” feature can be consistently © 2 1 00
inte_zrpreted as the coll_apse of the Mott pseudoapilayer N : 02k [\ / \ ]
splitting cannot explain SIN tunneling measureméiis>3 : : \ \ - - - :
-100  -50 0 50 r X S r
100 F T T T 7 T E-FF (me.v ) T T T T
i sof@" ' ' o0.10F y
l o S (d)
80| r gyl - seofh @ () B o0sf U }1 -
6 LR & ([ ] w 0.00
= 60} [l : 1 _ <40 -
E ; s ! 20} ’ -0.05F E
40F 1 ! T ok -0.10f .
I ] [ IR R SR | 1 1 1 1
20 ¢ 9 . 018 020 _022 024 r X S r
Z - 1\ y X
0 A3
0.45 0.40 0.35 -0.30 0.25 0.20 FIG. 17. (a) Calculatedbos for a series of hole-doped cuprates,
o (eV) assumingUqg=2.3, with x=0.176(solid-line), 0.184(long-dashed

line), 0.202(short-dashed line 0.225(dotted ling, and 0.244dot-

FIG. 15. U dependence of spectral functions for-0.15 atT dashed ling (b) Comparison of shift of lowepos peak(circles

=100 K near theT=0 QCP, forU/t=2.5 (short-dashed line 2.7 from (a) with representative tunneling dat&ef. 38 (triangles.

(long-dashed ling 2.9 (solid ling), 3.0 (dot-dashed ling and 3.2  (c), (d) Band dispersion near the pseudogap ¥e10.176 (c) and
(dotted ling. 0.244(d).
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and positions of the two DOS peaks reveal a clear asymme- This result has a number of consequencé$.Neutron
try. As the Mott gap vanishes, the two peaks merge into thaliffraction®®3¢measures the plateau width, Fig. 2 and not the
VHS of the bare band.There may be complications due to correlation length(2) NMR (Ref. 61 measures the correla-
nanoscale phase segregation, since STM studies suggest thiah length, and in YBCO finds a weak— 0 divergence of
the peak and hump features are spatially segregéted. & as predicted. Thus the present results resolve a
The above interpretation requires that for hole doping alsdong-standin§'®? controversy about the correlation length in
the Mott gap must collapse slightly above optimal doping.hole-doped cuprate$3) In the cuprates, Néel order appears
This is consistent with recent experimental observations of at T> 0 only if the correlation length exceeds E)Qvherea
QCP>°> Moreover, the model predicts that at the QCP, wherds the lattice constafi (the connection betweeRy and ¢ is
the pseudogap just closes, the Fermi level is exactly at thdiscussed in the next sectiphis explains the broad range
VHS (H point). This result had been found experimentally in of hole dopings where there is only=0 AFM order: Fig. 2
some lightly overdoped cuprate&®’ shows that the measurgd- 100a only atx=0.02 in LSCO
In a recent confirmation of the QCP just beyond optimal(see also Fig. 19, below(4) Moreover, the slope of th& 12
hole doping® it is suggested that this “has to do with the term in& decreases rapidly with doping, signaling a QCP just
restoration of the Fermi-liquid state in the overdoped regimeabove optimal doping. Hence, the triad of features of the
characterized by a large Fermi surfdcéemphasis addgda  AFM QCP are also present in the hole-doped cuprates, with
similar conclusion was made by Balakiretal®® Thus two  the broad susceptibility plateaus responsible for the striking
elements of the QCP triad are present. The third is morelifferences from electron doping.
elusive.

B. T=0 QCP C. Incommensurate magnetism and competing phases

In electron-doped cuprates, a finite Néel temperature per- The above ana|ysis Strong]y suggests that at high_energy
sists all the way to the QCP; by contrast, for hole dopingscales the physics of the cuprates is dominated by magnetic
Ty—0 at a dopingx~0.02-0.03, considerably below the ordering. This includes the large pseudogap regime and the
proposed QCP. Here it is suggested thalT=0 magnetic  attendant QCP’s. None of this analysis precludes interesting
transition persists out to the QCP, but the correlation lengthew physics on lower-energy scales, including of course su-
grows so slowly that three-dimensional Néel order is superperconductivity near the QCP’s. Another possibility is the
ceded by the superconducting transition. Details are preadmixture of a second phase generating an enhanced gap—a
sented in a related publicatidh,and only briefly summa- popular choice being the flux pha&e.

rized here. The physics associated with nanoscale phase separation,
The key insight is that the susceptibility must satisfy theor “stripe” physics, seems to also fall in this category. Incom-
fluctuation-dissipation theorev® mensurate magnetic modulations are seen in several cuprates
do g [+ — particularly the LSCO family — and while the SCR model
<|v|2>:-f —n(w)J Z(X—CY)m] x(G, @), does find an incommensurate susceptibility particularly for
™ (2m)\ 2 hole doping[Fig. 35b)] it probably cannot reproduce the

(30) observed doping dependence of the incommensuration. In-
N ) deed, it has been not&that the incommensurability gener-

where (M*) is the mean square local amplitude of nearesty signals an instability toward phase separation. Experi-
neighbor spin fluctuations and is the Bose function. For ments suggest that phase separation and/or stripe physics is
hole-doped cuprates tipplateaus constitute a problem. For present in the hole-doped cupr&f¥ down to arbitrarily
electron-doped cuprates, the plateau width is quite small, angmall doping$® However, the temperature at which stripes
the susceptibility is large only over an aré&, so the sum  gre stabilized seems too 16%7 for them to be directly re-
rule (30) is never saturated, ang, and ¢ both diverge ex- sponsible for the pseudogap phenomena.
ponentially with decreasing. For hole doping the plateau A detailed discussion of this issue here is clearly out of
width is large, Fig. 2, and the curvature on the platdagiis  the question, but the following suggests a possible explana-
relatively small, so a3 decreases intensity grows all acrosstion. Doped carriers in an AFM are strongly dressed by their
the plateau. This tends to saturate the sum rule, leading to gnvironment, forming magnetic polaré&in a pure Hubbard

greatly weakened divergence of the correlation length model, but in a more general situation being sensitive to
a nearby competing phasésThus, it is suggested that the

£==-b, (31 physics of competing phases enters the problem at the level

T of the properties of polarons, and different degrees of phase

with a and b constants. From Eqg6) and (9), it can be  Separation and/or stripe formation in different cuprates have

shown that to do with the tendency of polarons to cluster. That is, the

stripe physics should enter the problem on a lower energy/
temperature scale than the fundamental pseudogap phenom-
ena discussed in the present paper. fhelateau in hole-
doped cuprates greatly enhances the sensitivity to stripe
[where the latter form follows from Eq(30), and xoq  physics, since the system is close to instability over a wide
=x0(Q,0)] soa— 0 at the QCP. range of incommensurate modulations.

_ Adala|  8m*AM?)
3ua2q§ UXOqu

(32
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100 Av (a) ] 0= 3N 20T+ 2mpy 33
2 Av ,"0 1 yields the solid-line fit in Fig. 18, with no adjustment of the
4 A. ’D' i prefactor. Moreover, the curves for the doped samples apply
i 4 g e . the samecorrection factors. The agreementTlirdependence
S 9 Ty e i is quite good; while the theoreticad is smaller than the
N P experimentalx,, the ratio is consistent with both those de-
10 D'lj:b i rived from Ty and from the magnetizatiol (inset in Fig.
8 7 L B ] 18). This strongly suggests that as far as magnetic properties
6 ’ 0.16 o o ] are concerned as-grown NCCO behaves similar to a reduced
4 = 0.12 4 . NCCO, with a few percent of the electrons localizéw-
0.08F¢ 204 (b) i ever, as-grown NCCO never becomes superconducting
2 T In discussing the as-grown NCCO samples, mention
0.040.080.12 x should be made of the “anomalous pseudoawund in an
1 L 1 1 " as-grown sample near=-0.15—which should correspond
6 8 JT 10 12 to x~-0.12 in the reduced samples. From Figc)5p; falls

off in the range 200-1000 K as varies from —0.15 to

FIG. 18. Temperature dependence of correlation lergin -0.10, signaling the opening of the Md@fiseudggap. In the
NCCO. Data are from Ref. 7k=0 (open diamondsand —-0.15 as-grown sample, a pseudogap was found to open below
(open squargs from Ref. 63:x=0 (solid diamondg -0.10(solid 240 K, centered at 300 meV. From Figs. 8 and 9, the gap
up triangley, —0.14 (solid down triangles and -0.18(solid  near(7,0) would be in this range. Additional infrared and
circles. Fits are to Eq(33), with parameters appropriate 10  Raman phonons were observed, beyond those allowed by
(solid ling), -0.04 (long-dashed ling-0.085 (dotted ling, and  tetragonal symmetry. This could be associated with the
—0.10 (short-dashed line Temperatures are mea;ured in units of §rthorhombic symmetry of the magnetic Brillouin zone.
J=125 meV. Inset: Plot of as-grown nominal dopixgvs reduced Clearly more work needs to be done, but if this is the correct
nominal doping, for fixed values offy (circles, M (square and inarpretation, the present model predicts what the doping
¢ (diamonds. Solid line isx;=1.24+0.012. dependence should be, and that similar features should be

VI. MAGNETIC PROPERTIES seen in the reduced samples as well.

A. Electron doping

While the present model was developed on the basis of
ARPES data, the collapse of the Mott gap should be clearly The results on NCCO should be contrasted to those for
reflected in other properties as well, in particular in the magLSCO?’ Fig. 19a), where a saturation of the effectiveis
netic response. Indeed, Maegal 3 have recently measured observed in all doped samples. For undopegQLeD,, the
the ordered momen¥ in reduced NCCO samples, and find data(open circleg largely overlap those of N€uQ, (open
good agreement with the present mddeke Fig. 1eb) be- and filled diamonds but a small change of slope may be
low]. The correlation length has not yet been measured ifresent in the best fits. For lightly doped LS€Qhe data
reduced(superconductingNCCO, but there are data for the can be fit to Eq(31) down to ~150 K, Fig. 19a), below
as-grown material, which is insulatif§8 Fig. 18. The rea- Which ¢ saturates or decreases. In principle, it should be
sons for the striking differences between the two types opossible to calculate this saturation &fdirectly from Eq.
samples are not fully understood, but there seems to be sonf@0). As noted in Appendix F, the value & tends to be
interstitial oxygen which localizes a fraction of the dopedoverestimated when the susceptibility peak is incommensu-
electrons, so one must dope the as-grown samples more fate. Thus, the dotted line in Fig. @ is the calculated value
produce a given reduction of the magnetic propertieg., to  of & using Eq.(33) with parameters appropriate 16=0.10
get a certain value ofy, the doping of the as-grown sample hole doping, except thak/a’=0.24, only 1/3 the value esti-

X, must be about 0.02-0.03 larger than for the reducednated from Fig. 3&). _ _
samplex,, inset in Fig. 18. The data for the undoped sample  From thea coefficient of Eq(31) it should be possible to
were used to estimatey(x=0,T=0), and therebyu™ extract the magnetizatiqi32). However, as explained in Sec.
=0.384 eV. Comparing this to the-model calculationg®3° VI B, neutron scattering data tend to measure the suscepti-
ps=JS, gives J=113 meV, in good agreement with other bility plateau widthq., strongly underestimating. This is
estimates. illustrated in Fig. 1@b), where magnetizatioM:\/m de-

However, a fit to Eq(20) could only be made by reducing rived from ¢ via Eq. (32) is compared tdvl in NCCO esti-
the (T-dependentprefactor&, by a factor of 16. A similar mated from the ARPES dé&tésquaresand from magnetiza-
problem was encountered in tlemodel calculations: one- tion (upright’® and inverte triangles. The &-derived data
loop renormalizatio?? found &~ 1/\T, as herdbelow Eq. include the NCCO neutron data of Fig.(&9(triangleg and
(20)], while a two-loop calculatiot found aT-independent NMR data from YBCO(Ref. 6]) (circles expecte to give
&. Introducing a Castro Neto-Hone-like interpolation a better estimate of. For both sets of data, the parameter
formula’® Al xooUa? was taken as a constant 2.8. Except for the lowest

B. Hole doping
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[\*)
T

inhomogeneity. Finally, it should be noted that interpretation
of the incommensurability in terms of stripes remains con-
troversial in cuprates other than the LSCO family. Reztik
al.’® report an approximately uniform ring of incommensu-
rability in optimally doped YBCO, which is dispersive and
pushed up to finite frequencies by the spin gap in the super-
] conducting state. A ring or diamond of incommensurability is
actually quite close to what is found here, and the extension
of the present calculations to the superconducting phase
should be quite similar to the results of Eschrig and
- Norman’”

-
|

o.5|-'!
= 04

VIl. THREE-DIMENSIONAL NEEL ORDER
0.3 .
The (inversg Stoner factors, (4) can be generalized to
0.2 7 include interlayer coupling
A N i
go o 8o(w) = 8+ A+ Al - Bw? - iCo, (34)
0N . A
0.00 0.05 0.10 Ny 015 0.0 leading to a susceptibility
FIG. 19. (a) Temperature dependence of correlation length x(G,0) = s A2 A 2 2/h2
LSCO for x=0 (open circley, 0.02 (inverted triangles 0.03 1+£1(0- Q7+ a0, = Q)] ~ /A"~ il
(squarey and 0.04(triangley (from Ref. 33, compared with (35

Nd,CuGQ, (open and filled diamonds, as in Fig.)18hick solid

curve = fit for undoped material from Fig. 18Thin solid lines = with &,=A,/A. In the physical cuprates, the interlayer hop-

fits to Eqg.(31). Dotted line = calculated value for=0.10, as de- ping has e;n ar_wmalous dispersion,_ generall_y_writtertzgs
scribed in the text(b) Comparison of magnetization extracted from =tx(Cx—cy). This formula holds for bilayer splitting, and in
&T), Eq. (32) [filled triangles for LSCO(Ref. 37, circles for ~ 9eneral when the Cufplanes are stackeahiformly. How-
YBCO (Refs. 61 and 60, with that for NCCO, taken from ARPES €Ver, as explained in Appendix G, many of the cuprates,
fit, Ref. 9 (squarey and from magnetizatiogscaled toM=0.4 at  including NCCO, have ataggered layeringwith the Cu in
x=0; open triangles: Ref. 73, inverted triangles: Ref). @3l lines ~ one CuQ plane laying above a vacancy in the neighboring
are simply drawn to connect the data points, except for that part dEUO, sheet. This leads to a magnetic frustration: the Cu in
the dotted line connected with the ARPES détquaresextrapo-  one sheet has four nearest neighbors in the adjacent sheet,
lated beyonck=0.15. This represents a mean-field calculation, astwo with spin up, two with spin down. This frustration is
suming thatU does not change with doping over this range, andreflected in a more complicated dispersiont,of
using the band parameters of Ref. 9.
= ~ )08 cos 2 36

doping, the neutron data lead to an underestimateMor t2= ta(C = G) COS?CO 2 (36)
confirming that the measurelis too small. In contrast, the i )
NMR data are consistent with the electron-doped results, anfhich vanishes at,0) and (0,), and leads to a greatly
strongly suggest the presence of a QCP just above optimégduced interlayer couplingEffects of AFM frustration as-
doping. sociated with layering have been discussed in Ref, 78.

More recent experiments on very lightly doped LSCO  The consequences of both uniform and staggered stacking
(Ref. 74 have found that the magnetization at these dopingé'® explored in Appendix G. If the-axis resistivity is coher-
is actually incommensurate—consistent with diagonalnt it can be used to estimate the interlayer hoppindt is
stripes. This points out an interesting parallel with thefound that the value of,, needed to produce a given resis-
present model: early experimental samples displayed flaflVity @nisotropy is approximately five times smaller for uni-
diamond-shaped susceptibility plateaus ndar, 7). As form stacking, to account for the frustration in the staggered
sample quality improves, incommensurate structure seems £acking. With the correspondinig's determined from resis-
become more prominent: see, e.g., Fig. 1 of Ref. 75. Relatel1ty; both forms of interlayer coupling give rise to compa-
behavior arises in the model: The susceptibility for hole-"able interlayer coupling, and hence a finite Néel tempera-
doped cuprates displays a flat-topped plateau at high tenfdre- While the optimaQ vector depends on doping, at half
peraturess>0. As the temperature is lowergd- 0, incom-  filling both forms predictQ=(,7,0), consistent with ex-
mensurate structures develop from fine structure on top gberiment in LaCuQ,. Even for quite strong anisotropy, this
the plateau, Fig. 3 of Ref. 60, gradually dominating the specmechanism can account for the obserdgg (in fact, tends
trum. However, in the calculations this incommensurabilityto overestimatéy), without the necessity of invoking addi-
is sensitive to sample “quality”: it only shows up whéris  tional mechanisms, such as a Kosterlitz-Thouless transition,
very close to zero. Hence, in real samples, the appearence with the reduced spin dimensionality caused by spin-orbit
such structure should be very sensitive to disorder or sampleoupling effects®-82
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__300 could be matched almost quantitatively Uf; also has a
X significant temperature dependence, as discussed in Appen-
|_2200 dix G. The overall doping dependence is also comparable to

experiment. The agreement could be further improved by
using a smaller value df , which would shrink the doping
range over which Néel order occurs.

Finally, it should be noted that a finifgy can change a
continuous QCP into a first order one. This follows beacuse
the plateau width increases with increasing temperature.
Hence, near the plateau edge, the system can satisfy the

FIG. 20. Comparison of experimental Néel temperatures fo,Stoner criterion at some finite temperature, but fail to satisfy
NCCO and LSCQsolid line) and for the stripgmagnetig ordering it @t @ lower temperature, having fallen off of the plateau
transitions observed in Nd-substituted LSCRef. 40 (solid line ~ €dge. Such a first-order termination of the AFM state seems
with squareswith the model of interlayer coupling with staggered t0 be found in the electron-doped cuprates, most notably in
stacking andt,y=t/10~30 meV, plotted asTy/10 (dot-dot-dash Pr_CeCu0, (PCCO 2 and in a related organic materfal.
line). Also included is the approximate express{@9) (dotted line  [Note added in proofSee now also O. N. Bakharev, I. M.
with circles. (Note that there is a range of hole doping for whith  Abu-Shiekah, H. B. Brom, A. A. Nugroho, I. P. McCulloch,
is found to be negative; in this randg was arbitrarily assumed to and J. Zaanen, Phys. Rev. Le&3, 037002(2004).]
vanish in the staggered mod@&l,=0.)

100

Within mode-coupling theof} (Appendix G, the Néel VIil. DISCUSSION
E%r%perature is found from the gap equatj@&@ys.(G1) and A. Slater vs Mott physics
Theories of magnetism fall into two diametrically op-
3uTa2In(l> posed classé¥: band vs atomic models or Slater vs Mott
D physics. In principle, these are not independent theories but
xo(MU =7+ A ' (37) the wave vs particle versions of a single underlying quantum

theory. At lowest order, the opening of the Mott gap is strik-

whereT;p~t2 is defined below EqG8). Itis found thatTsp  ingly different in the two approaches. In Slater theory, long-
is approximately constant, independent of doping in theange magnetic order leads to a unit cell doubling, so each
electron-doped regime. Apart from a small numerical factorsubband remains conventional, with two electrons per unit
Eq. (37) differs from the isotropic three-dimensional result cell. In Mott theory, the bands are highly unconventional: the
by the logarithmic factor, which divergé3y—0) ast,—0.  gap opening is purely a local effect—there is an energy pen-
Equation(37) can be rewritten in a suggestive form. Ap- alty of U for two electrons to sit on the same copper site.
proximatingps by p3=A(xoU - 7)/12u& [Eq.(22)], then, us- ~ Since there is no change in lattice symmetry, the unit cell

ing Eqg.(20), the Néel transition occurs when remains the same, and the bands hold only half as many
5 electrons as conventional bands. With additional refinements,
J [M] =TTy (39) the predictions of the two models begin to merge. In the

2 &(TY) ’ Hubbard model, residual hopping proportional #8/4 ~J

leads to AFM coupling of the electrons, and can lead to

parasitic Néel order, at a temperaturg much lower than

. that at which the Mott gap opens. On the other hand, strong

Nee_l order seems 10 appear whes 100a. . fluctuations in the Slater model can greatly rediige leav-
F|g_ure 20 compares t_he calculated vaIyeTgfwnh the ing a pseudogap near the mean-field instability temperature.

experimental values. While the overall doping dependence is Here two questions are briefly address@g:How far into

comparable, the calculatdg is about an order of magnitude the strong coupling regime can a band mod.el be pushed and

higher. The calculation is for staggereq ;tgcking_, vijtad- 2) what is the nature of the breakdown of the calculation. It
justed to reproduce the observed resistivity anisotropy, bu, hould be possible to probe these issues via mean-field re-

Ap_p_endlx G shows that the overestimate is generic: the “O%5ults. Two separate indicators for the breakdown are pre-
efficient of the logarithm needs to be larger to reddge sented

Alslohshown n Ftlr?.tZO(dotted ling is a simplified model, A first indication comes from looking at competing or-
which assumes tha ders. A Stoner criteriotd y,=1 gives the onset temperature

where J,=J(t,0/1)%, J=4t?/U, and I'=4t%/UTsp. A very
similar form was proposed earligf,and experimentalf?

. A for magnetic order af, ranging from AFM cj:é to ferro-
To= T (39) magneticd=0, Fig. 21. While at half filling for any value of
3U&2|n(—> U, AFM order dominates, the splitting decreases with in-
3D

creasingU. The local, or Mott physics should arise when
is doping independentl,=1200 K. This model reproduces fluctuations to all magnetic orders are comparably likely, or
qualitatively the shape of the numerical calculation, but withthe spread in transition temperatur&$, is <T. Since the
a magnitude comparable to experiment. The magnitudg,of probability of a fluctuation oN particles into a phase with
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FIG. 22. (a) Bare susceptibilityXo(é,O) at T=1 K, for several
values ofr=-0.0552, -0.110, —0.276, —0.552, -0.828, —-0.9, —0.99
(solid lineg, and O(dashed ling (b) Crossover couplings as a func-
tion of = Uy (triangley, U, (squarey andU; (circles. (Dashed
line =U, for electron doping.

for U<U,, there is no Mott transition at=0, and the phys-
ics is dominated by an AFM transition at the VHS, for
FIG. 21. (a) Mean-field transition temperatures for Nédl,) U, <U <U,, there is a Mott transition at half filling, which
and ferromagneti¢Tc) orders and their differencAT.=Ty=Tc  terminates(on the electron-doped sigidefore the plateau
(upper dashed lineAt any U/t the ratio of the shaded area to the ends, and hence is controlled by dynamic critical exponent
total area below this line givesathe fraction of the Brillouin zone z=2  for U,<U<U,, the Mott gap collapses in the en-
which is significantly excitedT(Q) = (1-ag)Ty, for p=0.01. (b)  hanced regime near the edge of the plateau, andlfeiJ;
Replot of transition temperatures scaled)tac) Plot of Tovs g, for  the Mott gap terminates well off of the plateau, in a region of
U=6t. The curve bears an uncanny resemblance to(scaled z=1 physics. For the present—0.552, the approximate val-
electronic dispersion of the LHB, long-dashed line. ues are Uy/t=2.4, U,/t=2.6, and U,/t=3.6(x<0) or
4.1(x>0). Note that thez=2 regime is quite narrow, and can
excess free energgf is ~e A" sT, one can crudely state probably be subsumed into the VHS regime. These values
that a phase will be significantly excited Ty—T.(Q) depend ort’, and the VHS moves to half filling as — 0,
< ayTy, Whereay is a small numerical constant. The width Fig. 22b). Even whent’ =0, Sen and SindH find a cross-
of the AT, curve in Fig. 21a) shows the fraction of the over from SDW-like to Heisenberg-like behavior as correla-
Brillouin zone that is significantly excited far,=0.01(e.g.,  tions increase beyond,,=3.26 [diamond in Fig. 22)]. It
for U/t=32.5, all modes are excitgdThis suggests that for must be kept in mind that/ depends on doping, and the
U= 15, these fluctuations spread over a significant fractiordbove estimates refer 10 near the plateau edge. The bare
of the Brillouin zone, while fotJ > 3 virtually all magnetic ~ Uo=U(x=0) can be estimated by assuming the doping is
states are equally excited and the Slater picture is badly brdiigh enough to reach the Kanamori lifitU=Ug/(1
ken down. However, the cuprates are generally found to berUy/8t). This results inUg,/t=3.4, Ug,/t=3.8, Uy, /t=6.5
in the regimeU <12t, where a Slater picture should be rea- or 8.4 for r=—0.552. These last values are comparable to but
sonably accurate even close to fRgcrossover. somewhat smaller that those estimated by the first criterion.
Alternatively, when the mean-field solution becomes in- Note that the cuprates are in the ratgie< U <U,, where
sensitive to the band structure, it is likely that a local picturethe plateau edges form natural phase boundaries for the
is becoming dominant. In the present instance, the ban&toner criterion, thereby providing a natural explanation for
structure is determined by the ratto/t. For any nonzero the approximate electron-hole symmetry of the QCP’s. The
value of t’, the susceptibility has a generic doping above discussion suggests that the cuprates are in a crossover
dependenc@89Fig. 22—changing the sign af merely in-  regime, with the electron-doped cuprates close to the Slater
terchanges electron and hole doping. The role of the suscefimit, whereas the hole-doped cuprates should display en-
tibility plateaus can be quantified, by defining rangedJof hanced Mott physics associated with the flathess of the
where the nature of the transition changes, FigbR2lhus,  g-susceptibility plateau and the associated competing phases.
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C. Comparison with other calculations

10
%) 3 As noted above, the present calculations predict that at the
g10 magnetic QCP thépossiblyT=0) Néel phase will terminate,
2 the Mott gap will collapse, and the Fermi pockets will merge
10 into a large Fermi surface. This result distinguishes the
10" present calculations from many others in the literature. Here
a number of Slater-like theories are discussed.
10° L 1 1 1 The present results are generally consistent withttbe
-0.162 -0.160 -0.158 -0.156 -0.154 -0.152 model in the low doping regime. However, since thé
Jof I | '0) (eV)l model cannot readily deal with both Hubbard bands simulta-

neously, it is not appropriate in the present analysis of
electron-doped cuprates, whe@ ARPES can detect both
bands(at least up to the Fermi levehnd(b) the Mott gap is
found to collapse with doping, leading to an overlapping of
both bands at the Fermi level. In titd model double occu-
pancy is forbidden in the LHB, while in the UHB empty sites
are forbidden. Moreover, the Hubbard model only allalvs
values forJ<1 (Figs. 28 and 3f) and near this upper limit

018 019 020 021 022 0.23 significant modifications are needed. In the SCBA approach
—_ o (eV) to thet-J model, the parametek, has a broad pedkwhen
g10° ' ' ' ' ' J~0.8, not found in the Hubbard model SCBA calculations,
5’1 suggesting that-J and Hubbard can be equivalent only for
S J<0.8 or forU>5—that is, near half filling only. It is in-
=1 teresting to note that a recettt’-t"-J model calculation
) seems consistent with the first doped carriers forming weakly
g interacting quasiparticles in pockets of the respective upper
pat 1 or lower Hubbard bands, for either electron or hole dogg.
=10 | I ) | [ A more detailed comparison with the SCBA model at half

200 400 600 800 1000 filling is presented in Appendix B.
T (K) Related to thet-J model are a number of calculations

based on Eq2), but withU replaced by the exchandeand
FIG. 23. (a), (b): Blowups of Im(X) for x=0 at(=,0) (8 and  generally with auxiliary restrictions on double occupancy.
(m12,712) (b) atT=100 K(solid lines, 500 K (long-dashed lings  This is appropriate for studying magnetisim the LHB
and 1000 K(@) or 750 K (b) (short-dashed lings(c) Maximum of - \yhjle assuming that the Mott gap is large. The results of
Im(2) vs T for (w,0) (squarepand (m/2,m/2) (circles; 0.1full e calculationge.g., Ref. 10 are consistent with Fig.
width at half maximum for (7,0) (triangle§ and(w/2,7/2) (dia- 35 \yith U— J: there is no magnetic transition except for a
monds; solid line = corresponding(T), Eq. (20). small region very close to the VHS.By their starting as-
sumption, these models cannot address the issue of Mott gap
B. Magnon Bose condensation and non-Fermi liquid physics  collapse studied here.
The NAFL and spin fermion models are also based on
Figure 23 shows the sharp peak which arises intlmt  Slater-type physics, and should in principle make similar
low T. The growth is exponential, approximately matching predictions to the present SCR model. However, they tend to
that of the coherence lengit20). (Note that it requires a fine take their parameters from experiment, which can lead to
mesh in the integral of Eq25) to capture this growth.This ~ complications in the presence of stripe phases. For example,
peak arises exactly at the incipient magnetic zone boundaryor hole doping, long-range Neel order and diverging suscep-
and turns into true Bragg scattering at the transition to longtibilities terminate at a very low doping,~ 0.02. While the
range order: the increase in peak height is almost exactiBCR model predictsxgcp~0.25, some empirical models
compensated by a decrease in the width of the peak. Aakexgcp~0.02. In this case, the QCP is divorced from Mott
simple physical explanation is that the SDW transition cangap, since the Mott gap will clearly persist abox=0.02.
be interpreted as a Bose condensation of the zone boundaBven worse, Matsudat al have shown that for doping
magnons. Then the Mermin-Wagner theorem reduces to theetweenx=0.02 and half filling the system is phase sepa-
fact that in a two-dimensional system, Bose particles camated, so uniform AFM order exists only &t 0.
only condense at=0. A similar explanation for the transi- Three examples of spin fermion calculations will be
tion has been presented earfier. given, to highlight the differences and similaritie€l)
In turn, the soft zone-boundary phonons explain one oriAbanovet al®* postulate a smak-magnetic QCP. They find
gin of non-Fermi-liquid physics in the model: Bragg scatter-that the magnetic resonance mode frequency goes to zero at
ing from a fluctuating diffraction grating. How does one de-this QCP, but also the superconducting gap vanishes at the
fine Luttinger's theorem when the unit cell is strongly same doping, which would have important consequences for
fluctuating? the mechanism of superconductivity. This is in sharp contrast
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to the present model, where the magnetic QCP is at much D. VHS

higher doping. In this model, the low-QCP is supercon-  \yhether or not the VHS is responsible for the observed
ducting, presumably associated with stripe effe@@p.Chu-  glectron-hole asymmetry, the present calculations reveal
bukov and Mort"% studied the crossover from small to some novel features of van Hove physics.

large Fermi surfaces—here driven at fixed doping by reduc-

ing U. They stat&® that “as the system moves away from half 1. Temperature-dependent VHS

filling, the spectral weight transfers from the upper band into i , i
the lower band and, near optimal doping, there exists just AS noted by Onufrieva and Pfeuty’ the VHS's associ-

one coherent band of quasiparticles.” This suggests that tHged with the susceptibilitie@nd hence with charge or spin
crossover is due to a spectral weight shift, and not to the gaBestmg are differentfrom thqsg associated with the density
closing—in contrast to the present results and to experimerftf States(and superconductivily Thus, whereas supercon-
on NCCO. However, it should be noted thaj their paper ~ ductivity will occur at the same optimal doping for all tem-
actually concentrates on changes at the Fermi level, and difratures, the doping of maximal nesting instability is a
not explore how the UHB might have shifted withand(by ~ Stong function of temperature.

it is possible that theoherentpart of the UHB collapses,  _1MS contrasting behavior of nesting vs pairing suscepti-
while some weight remains in the incoherent ped1.On the bilities is related to a characteristic difference in the nature of

other hand, Schmaliaat al#® go beyond the SCBA, sum- the two instabilities. Asupercondugting instability has an in_—
ming both noncrossing and crossing diagrams via a generalffinsic electron-hole symmetry, which means that the gap is
zation of a technique of SadovsRfi:their results for hole ted to the Fermi level, and a fulb- or d-wave) gap can be
doping are quite similar to the present results, with a mag@Pened at any doping level. On the other hand, a nesting gap
netic QCP above optimal doping—but with adjusted at is d|s_perS|ve_, and only part of it lies at the F_erm| Ie@*-
each doping to fit the experiment. ce,pt in special casgsFurthermore, e(;gperlattlcae Lutting-

A number of groups have studied the Hubbard model us€!'S theorem must be obeyed, requiring the presence of re-
ing FLEX calculations, and have had considerable succesadual Fermi surface pockets. Stated differently, a full nesting
in describing anomalous transport properfiesHere a 9aP can only open at integer filling, so as the interaction
pseudogap is found even though the FLEX model Canno_‘{,trength increases, any nesting |nstab|_llty must migrate to
describe the splitting into UHB and LHB, and the pseudogagntégral doping(e.g., half filling in the original band struc-
is derived from superconducting fluctuations. However, thes&!'®- This same VHS migration is mirrored in tfiedepen-
models are consistent with the present results, in(thathe ~ dence of the magnetior charge susceptibility.
pseudogap they describe is clearly the lower, leading edge
pseudogap which is not described by the present model and
(2) their calculation of the normal state properties require a We have seen that the doping-dependggt gives rise to
value ofU/t~1.5-2.5 much smaller than the values founda Mott gap collapse near the edges of the susceptibility pla-
at half filling, and comparable tr even smaller thagrthe  teau in Fig. 3. IfU is smaller(dot-dashed linel . reduced
doped values found hereSpin fermion calculations also ex- by 2/3), more complicated behavior should arise. Due to the
tract a small value o)—there calledg—from experiments peak iny near theH point, there could be a reentrant tran-
in near-optimally hole-doped cuprat®. sition, with one magnetic order near half filling, and a second

The present calculations are in general consistent with thaear the VHS. For an even smallel; (or replacingUgg
results of Ref. 3. These authors employhao-particle self-  — J),202 the transition neax=0 can be eliminated, leaving a
consistent conserving approximation, and attempt to calcu-spin density wave transition near the VHS. In principle there
late U(x) directly®® However, they incorporate the strong could even be a phase separation between two AFM phases:
thermal (Mermin-Wagney fluctuations directly into their an insulating phase near half filling and a metallic phase near
definition of U, so the resulting doping dependence shouldthe VHS.
not be compared to the form assumed here.

A leading edge pseudogap can also arise in the Hubbard
model in the absence of superconductivity>1°°but only
for largeU > 8t.14 The key conclusion to this work can be stated as follows:

Some recent calculations have confirmed thahust de-  In doped cuprates there is a magnetic QCP where three fac-
crease with electron doping to reproduce the ARPES data: itors coincide: the crossover from small to large Fermi sur-
Kusonose and Ri¢éthe demonstration is indirect—the gap face, Mott gap collapse, and Néel transition termination. In
collapse does not occur in a SCBA calculatiorUifis kept  the SCR calculation there is no finite temperature Néel tran-
large. Sénéchal and Trembtéygive a more direct demon- sition, at least in the isotropic 2D limit, but the zero-
stration; their model can also explain the hole-dopedemperature Néel transition persists with doping up to a QCP
pseudogap nedrr,0) in the absence of stripe physicsUf  controlled by a modified Stoner criterion. While the Mott gap
doesnot decrease with hole doping. Finally, a proper studyopening is more of a crossover than a sharp transition, nev-
of the model incorporating QCP fluctuations is a strong deertheless, the upper and lower Hubbard bands merge at
sideratum, but the problem of combining QCP and Mermin-nearly the same point, and the Fermi surface pockets recom-
Wagner fluctuations has raré®y been tackled in the litera- bine to a single large Fermi surface, consistent with band
ture. structure calculations. Comparison with experiment suggests

2. VHS transitions

IX. CONCLUSIONS
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that this correctly describes the situation in electron-doped).S.D.O.E. Contract No. W-31-109-ENG-38, and benefited
NCCO, bhoth in ARPESSec. IV) and in magnetization stud- from the allocation of supercomputer time at the NERSC and
ies, Ref. 63 and Sec. VI. the Northeastern University Advanced Scientific Computa-
The hole-doped case also appears to fit this model, buton CenterNU-ASCCQC). Part of this work was done while |
with complications associated with tlieplateau. Thus(a)  was on sabbatical at the Instituto de Ciencia de Materiales de
the pseudogap collapses in a QCP, as expe@eevidence Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain. | thank
for the Fermi surface crossover has recently beemmy hosts, Maria Vozmediano and Paco Guinea, for a very
reportec?®58 (c) the correlation length appears to diverge asstimulating visit, for numerous discussions, and for correct-
T—0, but much more weakly than for electron doping, dueing an error in the original calculation. | thank Walter Harri-
to a sum rule saturatidi®.In more detail, the main results of son for stimulating conversations on calculating the inter-
this paper can be summarized as follows. layer coupling, and Martin Greven and Antonio Castro-Neto
Fluctuation effects were added to the mean-field Hubbardor useful comments on the magnetic properties, and A.-M.
model via a mode coupling calculation, which allowed satis-S. Tremblay for a preprint of his work.
fying of the Mermin-Wagner theoreifTy=0). It was found

that the . mean-field gai\ye and Néel temperaturéMF APPENDIX A: THREE-BAND MODEL
evolved into a pseudogap,s~ Aye and an onset tempera-
ture T ~Tk,"F (as is familiar from the related CDW results A major simplification of the present calculation is to treat

The resulting dispersions and Fermi surfaces are in excethe cuprates in a one-band model. This is consistent with the
lent agreement with photoemission experiments on electrorhang-Rice picturé)* although the approximation is less
doped cuprate¥while the pseudogap seems consistent withdrastic for electron doping, since the upper Hubbard band is
ARPES and tunneling results in hole-doped cuprates. already predominantly copperlike. Nevertheless, the model

Magnetic properties—saturation magnetization and coher@lso describes the doping dependence of the “lower Hubbard
ence length—are also well fit by the same model. The goo#and,” which is really a charge transfer, predominantly oxy-
agreement between ARPES and direct magnetic measurgenlike band. Here an explanation for why this simplification
ments leaves little doubt that th&arge pseudogap is pre- Works is suggested.
dominantly magnetic in origin. Even without carrying out self-consistent calculations, the

The zero-temperature Néel transition is controlled by ahature of the Mott transition can be understood by introduc-
Stoner-like criterion, hence is sensitive to the bare suscepting a doping dependent gap. The energy bands can be calcu-
bility and in turn to the Fermi surface geomettyot-spoty.  lated from the Hamiltonian matrix
This lead to an approximately electron-hole symmetric QCP
near optimal doping(termination of hot-spot regime at H :Z Addej +Z tCuO[diTpi
which both zero temperature Néel transition and pseudogap ) i
transition simultaneously terminate. +c.c)]+ Y todpp +(c.c)] +Un.n, +Un.n,,

The model leads to a NAFL-type susceptibility, and the ()] qz]:> od PPy #(e.c)] ol P
calculation of the NAFL parameters has been reduced to a (A1)
calculation of the coupling parametdisand u, the former
having a significant dopingand possibly temperaturele-  whereA is the difference in on-site energy between copper
pendence. At present)(x) is estimated from experiment, and oxygentc,o is the copper-oxygen hopping parameter,
and the mode coupling via consistency with the-J model.  to, the oxygen-oxygen hopping parameter, andU,) the
(A small portion of the renormalization df} arises from Hubbard interaction parameter on @D). For good agree-
quantum corrections to the Stoner criterjon. ment with the doping dependence of the one-band model, it

The present theory differs from conventional NAFL is necessary to properly incorporate the Hartree correction to
theory by the inclusion of two cutoff parametegsand w;  the self-energyA=Ay+3, 3=Un, (for up sping, andn,
which shrink to zero at either thil or C points. For ex-  =n/2-m, with n the average electron energy. The resulting
ample,q. is large near théd point, but shrinks to zero at the dispersions are shown in Fig. 10 for the antibonding bands,
C point, causing thed parameter to have a strong tempera-and Fig. 24 for the full dispersion. In these figures, the fol-

ture dependence in the electron-doping regime. lowing parameters are assumeg;o=0.8 eV,tgo=-0.4 eV,
Finally, a striking temperature/frequency dependence of\,=0, U=6 eV, andU,=3.75 eV.
the VHS susceptibility peak¥? causing it to shift to half The band dispersion is extremely similar to that found in

filling at high T, is interpreted in terms of Luttinger’s theo- the one-band model, Fig. 9, even though the lower band
rem: if the coupling is strong enough to open a full gap, thecrosses over from the Zhang-Ricgybridized copper-
gap must fall at half filling. oxygen banglat half filling to a more copperlike lower Hub-
Note addedAfter the present work was completed, | re- bard band with increasing electron doping. In addition, the
ceived a preprint from A.-M. S. Tremblay reporting similar effective magnetizations are proportional, Fig. 25, although
calculations for electron-doped cupratés. the one-band model overestimates the magnetization by 1/3.
This can be understood: in the three-band model, the shape
of the Hubbard bands is fixed by the combined effects of the
This work was supported by the Spanish Ministerio demagnetic instability and hybridization with the oxygen band.
Educacion through Grant No. SAB2000-0034, and by thdn the one-band model, only the former effect is present,
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T opening of the Mott gap. This can be corrected for by includ-

% i (a) 1 ing the full Green’s function into the self-energy calculation.
L‘u’o This is conveniently done at=0, since there is a long-range
— ordered phase, and the sole difference between the SCR and
2 S mean-field calculations is a weak renormalization of the

s 4 HubbardU. In this case, a renormalized Green'’s function can
4 i be found by summing all the noncrossing diagrams; this is
the self-consistent Born approximatig8CBA). By includ-

‘v\—/’ ing the interaction of the quasiparticles with spin waves, it
or - also incorporates the physics of magnetic polarons. Magnetic

3_1 E/—\_/\_I polarons closely resemble lattice polarons, leading to both
w coherent and incoherent contributions to the spectral func-
-2 -(b) - tion, with considerable bandwidth renormalization in the co-
3l — . herent spectrum. In thieJ model it is known that the SCBA
~ gives a good description of exact diagonalization results on
4 . , - small latticest6
r X S r Here, a simple calculation is presented to estimate the

effect of the SCBA corrections on the dispersion of the insu-
FIG. 24. Dispersion of all six bands in three-band model, as{ating phase. Only the coherent band dispersion is included,
sumingmg=0.3(a) and 0.01(b). and the SCBA is applied to the RPA soluti#Hi, which
should be similar to the ordered SCR phaseTa0. The
necessitating a larger value af to produce the same net calculation of Chubukov and Mditis extended to include
splitting. both lower and upper Hubbard bands. The RPA dispersions
This remarkable agreement between one- and three-bamd the upper(c) and lower(v) Hubbard bands can be written
models goes well beyond the Zhang-Rice model. That modeds follows. If the bare dispersion ig.=-2t[cogk.a)
is restricted to the LHB in a small range of doping near half+ cogk,a)]-4t’ cogkea)cogkya) - 2t"[cog 2k.a) + cog 2kya) ],
filling; the present results compare both LHB and U_H_B OVerihen defininge(ki):(eki )2, E(k—): V/Gf(_)2+A2, A=U(S),
the full range of electron doping. The result is nontrivial—in
the three-band model, the bonding and nonbonding bands are
also split into upper and lower Hubbard bands. This degree Ec’ = e(k") + E(k". (B1)
of agreement comes about because the paramdteludes . -
a large contribution from the magnetic Hartree term. In turn,H€reA is the AFM gap,A~U/2 at half filling. For largeA,
this suggests that in the absence of magnetic effects the ¢liS €an be expanded as

and O energies are nearly degenerate—as found in early_—cv _
LDA band structure calculatior{see discussion in Ref. 105 )Ek = Aoo*+ Ag1C0SkA COSka+ Agy(COS &K@+ cos ),
(B2

APPENDIX B: SELF-CONSISTENT BORN with

APPROXIMATION
Agy=J2 £t (B3)

A limitation of the SCR calculations is that the self-energy
Eq. (23) is calculated using the bare susceptibility, whereas Agp=Jdi2 £ 2t". (B4)

the full susceptibility should be strongly modified by the ) o .
The same dispersion is found in thd model1%8°1suggest-

ing that the SCBA will be an equally good approximation

here.
0:3 The self-consistent equatidneplacing Eq.(23)] can be
E% written
02 G ko) =0~ (B - )
d’q
0.1+ - mwc,v(k!q)e(k*- q!w+ wq)! (BS)

whereW, , is a vertex correction for the uppée) or lower
(v) Hubbard band andy is the spin wave dispersion. As will
be seen beloEq. (B16)], ¥ «t?, so Eq.(B5) is independent
FIG. 25. Effective magnetizatiomez=mU/6t for the three-  Of t depending only on ratios/t, t"/t, andJ/t. However, the
band(circles and one-bandsquares models. The one-band result final dispersion also scales with so any comparison with

has been multiplied by 3/4 to better agree with the three-band&xperiment requires all four parameters. For an arbitrary
results. electronic dispersion, these quantities can be evaluated as

i : J
0 0.05 0.1 x 0.15

0
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follows. The transverse susceptibility in the RPA can be writ-

ten ad109

X (0,9,)

X (@0)[1-Ux @+ Q)]+ Ul (@)
[1-Uxg (@)L - Ux§ (0 + Qo] - Uxs (q,0)

(B6)
X (9,0+Q,0)
XQ , (0, )
[1 Uxo (0,0)][1-Uxg (a+Q, ] - U xg (0, @)
(B7)
with
PRI o P . el %
Xo (4 @)= 5N < ECES,
1
x{ + } (B8)
Ek+ Ek+q - Ek+ Ek+q +w
and
AES +E))
25k T Beg)
XQ (9, 0) = ZNE E( )Ek+q

1
X - . (B9)
Ek+ Ek+q - w Ek+ Ek+q +w
In the largeU limit, Eq. (B6) becomes

. 1 1
Xo (q,q,w)=n§[ - } (B10)
w+wq W~ Wy
with
1 /3%~7
2== B11
77q 2 aq+7q! ( )
wq=2]Va; ~ 15, (B12)
cogq.a) + cogq,a)
yg= 2 . b (B13)
and
J/ JI/
a =1+ 3[1 - cogqea)codq,a)] + 3(1 ~ Yog)
(B14)

with J=4t?/U, J'/J=(t'/1)?, I’/ I=(t"/1). As befits a Gold-
stone mode,w,=0 at g=(0,0) and (=, ). In this case,
W, =®2  with

cu?

Do, = 7g(6) — ) = (el +ery),  (B15)

with 74=1/(27,), or

PHYSICAL REVIEW B70, 174518(2004

aq(yzk + 72k+q) B 27k7k+q7q
a7

V., =16

i('yﬁ_ 'yﬁ+q) .

(B16)

Givenwg, Eg°, and ¥, Eq.(B5) can be solved numeri-
cally to find both the coherent and incoherent parts of the
ARPES spectral weight. However, the incoherent part con-
tributes to a weak background, and the experimental spectra
are generally compared to the coherent part. Hence, for
present purposes what is needed is the dispersion of the co-
herent part ofG. Following Chubukov and Moff this can
be simplified. The Green’s function has the form

Z

G(k,w) = — :
= i')’(w - wmax)2®(wmax_ o)
(B17)

with quasiparticle residu&, band edgew,,,, dampingy,
dispersionE,, with step function®(x)=1(0) for x>(<)0.
The quasiparticle residue can be found as

1—Z_Jd_2q W (ko, Q)
72 ) 47 (wg+ Epg)®

W~ Omaxt

(B19)

where k; is the band-edge momentumzoz(w/Z,WIZ)
X[(7r,0)] for hole [electror] doping.(With the conventional
signst’ <0,t”>0; in the special casg=t"=0, both energies
are degenerafeAn equation for the dispersion can then be
found by substituting Eq(B17) into Eq. (B5), and setting

W= Wmax

ECU—ZEﬁ - 2%, (B19)
o [[Fa] Yka Pk,
* _f 47’2[“’q+Ek+q wg+ Biq | (820

(The damping adds a small correction to the dispersion,
which we ignore). It is convenient to rewrite EqB2) as

= 4Ag [ Coy + cogk,a)codk,a)]
+ApdCop + cod2k,a) + cog2ka)],  (B21)

with €9, =01(1), c;=2(-2) for the lower (uppe) Hubbard
band. It is found thag, satisfies a similar equation, with
renormalizedAy — A;. In this case, the self-consistent equa-
tion (B19) can be reduced to a pair of equations at fikxed
values. For example, &=(0,0)

4(1 +Co)As + (2 +Co)Ar = Z[4(1 + Co)Ags + (2 + Cor) Aoyl

- 2%y, (B22)
with a similar equation ak=(s,0) [or (7/2,7/2)]. Figure
26 illustrates the self-consistent valuesZpfA;, andA, as a
function of J for fixed t’, t".

Note that any attempt to extract the bare parameters from
the measured dispersion is highly underdetermined. Thus,

while the band dispersiok, and spin wave dispersion,
depend explicitly ord, t’, andt”, the vertex function depends
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0.8 T T T T T
N 06
<
< 04
0.2
0.0
1 1 1
0.0 0.00 0.05 0.10 t"/t 0.15 0.20
) 1 ) 1 )
N 0.8 14} (b) -
= q12F -
< 0.4 10 -
8 - -
0.0 6k -
41 .
-0.4 ] ] 1 ] ]
0.0 . . . . . 0.00 0.05 0.10 "/t 0.15 0.20

FIG. 26. Renormalized parameters for lowey and upper(b) FIG. 27. Parameter values C(_)nsistent with ARPES d_ata fay
Hubbard bandsZ (solid lineg, A, (dot-dashed lingsandA, (dot- ~ and 2 (b). Broad range determined b; narrow rangein both
ted lines, in comparison withZA,, (long-dashed-short-dashed (@ and (b)] by Ag. Circle = parameters assumed in SCR result,
lines, and ZA,, (short-dashed lings assuming parameters  Sduare = best SCBA approximation. Dashed line(an J=0.6&
=0.326 eV,t'=-0.375, andt”=0.18. Horizontal lines = experi- -1.8"
mental range foA; (long-dashed lingsand A, (solid lineg, after
Refs. 110 and 111. Also shown are the individual renormalization The above calculation can be repeated for different values
factors Z; (long-dash-dotted lineand Z, (long-dash-dot-dotted of t”, and the allowed parameter values fbrand t” are
line). Vertical lines delimit parameter values consistent with shown in Fig. 27a). The “best” SCBA valugsquare differs
experiment. from the SCR valuécircle) by less than a factor of 2. Since
J is reduced by polaron coupling)=4t?/J must increase,
ont, so there are four parameters to determine, but only twdig. 27b). This can be seen directly from the self-consistent
parameterg\; andA, can be found from the ARPES disper- equation forG. The leading edge of the band is found from
sion. Moreover, from Fig. 28), the valueA, is insensitive to  R§G™(kg, wmad]=0 or
Jin the range of interest. In principle, the parameters can be a—
determined from additional measurements, including the Omax= Omax 0+f _QM (B24)
Mott gapA, the spin wave velocitgs (asq— 0, wg— CsJ), 477 wy+ Exyta
J The gap A is equal to the splitting between the upper and
Cs=2ay/ J(E +J'+2 ">, (B23)  lower Hubbard bands #tr/2,7r/2)—it is notthe sum of the
wmaxS for these two bands, since the bottom of the upper
or the maxima in the spin wave spect#,, .»=2(J+J  Hubbard band lies gtr,0). Correcting for the renormaliza-
+20"), (70 =2(3+27"). tion of the dispersion dtr/2,7/2) reduces the gap, but even

Given this indeterminancy, a simplified picture is assumedf© the renormalized (Fig. 28, short-dashed lings larger
here to estimate parameter changes: the renormalized valfgan the bare valugsolid line). Figure 29 shows that the
of t=0.326 eV is assumed fixed, to kedpand the experi- SCBA increases the Mott gap near half filling, which cor-
mental ratiosA;/t constant, and further, the ratig/t’=  ects a shortcoming of the SCR model, noted above.

—2.5 was assumed constant. Then the pairs of solid and long- 1. Extension to smallU
dashed horizontal lines in Fig. @8 give the experimental ' ) o

can be found for a bag=-0.374. In this case, the value of the gap parameteA=U(S;)—U/2>t, in which caseJ

A, suggests a barel in the range 0.33-0.41 or =2t2/A. As A decreases, certain modifications are necessary.
108-135 meV. For the same parameter range, the individudihe most important is a modification df From the above
parameters are renormalized b¥,=Aj/Ay, with Z; analysis, the susceptibility, spin wave dispersion, and renor-
=~ 0.059-0.0200.8—0.84, Z,~0.44—0.51(-0.21—-0.54 malized band parameters all depended on the bare electronic
for the lower(uppe) Hubbard band. The ratid/t” must be dispers;_ion. Hence, the value dfshould be chos_en to best
renormalized by the SCBA, sino&, and Ay, cross zero at approximate the baréy;, Egs.(B3) and (B4). This can be
different values of], causingZ, to be negative for the upper accomplished by matching the exact dispersion to the ap-
Hubbard bandit diverges whenmy,— 0). proximate form ak=(0,0), or
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FIG. 28. Renormalizetd parameter as a function 4f solid line
= bareU=4t?/J in large gap limit; short-dashed line = renormalized
U from Eq.(B24); long-dashed line = bar& corrected for the small
gap limit, Eq.(B24); dotted line = renormalizet) in the small gap
limit from Eq. (B24); dot-dashed line Ags.

J A 42
E_E[ 1+(X> —1:|, (B25)

Fig. 30. Note thatl— 1 asA— 0, Fig. 28. It is interesting to
note that when the renormalization correction, E8R4), is
added in, the renormalized (dotted line in Fig. 28 lies
close to the perturbative result=2t?/J (solid line).

For small A an additional correction is required, to ac-
count for quartic corrections it/A. This can be done, as
above, by adding a termys(1-c,c,) to the model bare
dispersion, which allows a fit to the exact bare dispersion at

(m12,0), if r X S rr r X S T
A >1\2 FIG. 30. Mean-field band structu¢solid lineg plus approxima-
A_03 - _[ 1+ <_t) - 1} - i (B26) tions involving Eqs(B25) and (B26), with (short-dashed lingsor
t 2t A 2t without (long-dashed linesa finite Ay, for A/t=0.5(a), 1.0(b), 2.0

This yields a very good approximation to the dispersion(c)’ and 3.0(d).

down toA=t/2, Fig. 30(short-dashed line The parameter

Ao is plotted in Fig. 28. 2. Summary of SCBA results
10 | (1) Thus at half filling polaronic effects renormalize the
=N -~ S—~= " bandwidth by only a factor of-2, with some change in line
ﬁ 5| ST i i shape. Polaronic effecteducethe values of], t’, andt”, and
- henceincreasethe value ofU. Thus the gap is enhanced at
(a) half filling, correcting a shortcoming of the SCR calculation
o 7 (Figs. 8 and @While the present calculations are restricted
to half filling, some additional features can be extracted from
] e -7 T~ the calculations of Kusunose and Rid¢€R).:®
e ] (2) While considerable weight is transferred to an inco-
1E= 7 =i~ Pt herent spectrum, the coherent spectrum is quite similar to
S = = that found in RPA and SCR calculations, and it is this com-
E 5k == - ponent which is mainly seen in the ARPES spectra. Possible
(b) evidence for the incoherent states is a second peak seen in
ok - ARPES spectra of half-filled cupraté’s,about 0.6 eV below
the main peak of the LHB near the nodal point. While KR
5 - - find an incoherent peak at half filling about lielow the
-~ o - ———T == first peak, its intensity actually maximizes away from the

r‘%——#’—\’f nodal direction toward, while the experimental peak is

stronger in the opposite direction, towards, ).

FIG. 29. Comparison of mean-fieldlashed linesand SCBA ~ (3) An important result of the RPA and SCR calculations
(solid lineg dispersions fot’ =-0.375, t"=0.1%, and two choices is thatU must decrease with doping to reproduce the experi-
of J, J/t=0.42(a) or 0.33(h). mentally observed crossover to a large Fermi surface. The
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same result has been found by Sénéchal and TrentbEe 6
results of KR are consistent, in that KR keptdoping inde- Ne (a)
pendent, and did not find this crossover. AT
(4) Whereas in the mean-field and SCR calculations, elec- = S~
tron doping shifts the Fermi level into the UHB without af- =Pl Tm==AnAT A AT T T T i
fecting the relative weights of the two subbands, in the
SCBA the UHB states below the Fermi level are formed by 0 , , ,
spectral weight transfer from the LHB. This spectral weight 69 01 02 03 04
transfer had been seen experimentally, and its absence was
known to be a shortcoming of mean-field theory, which is ol
thus seen to be corrected in the SCBA. et
(5) In lightly doped NCCO, Armitageet al® found an i B
additional weak pseudogap—actually a leading edge gap at ~ 2 1
the Fermi level of the UHB—which was not reproduced by
the SCR calculation. Such a pseudogap is found by KR, and 0 o1 02 03 04
in an earlier calculation by Stanescu and Philfipsi® KR X
interpreted this as evidence that the filled states were not
actually part of the UHB but were in-gap states close to th
bottom of the UHB. Similar in-gap states had been propose%
for hole-doped cupratéd? and have been considered as evi-
dence for stripes(In LSCO, where stripes are most clearly screening ofU, at T=1 K (2000 K): triangle in (b) = undoped:
observed, the added states are close to midgaip; other "4 ooo (g ’ '
hole-doped cuprates, the evidence is less clear, but if in-gap T

states exist, they must lie close to the top of the LHB. , , ) )
Y P H ately incorporate the effect of this gap. This makes little

The connection between polarons and stripes is a delicate ! , , 4
issue: for very light doping one would expect magnetic po-cifference, sincé is dominated by the intraband terms, and
remains finite at half filling. Explicitly,

larons to form for both hole and electron doping. These po-

FIG. 31. CalculatedJ¢ assuming(a) simple screening o(b)

Il vertex correction of Cheet al. (Ref. 117. In both cases, a bare
=6.78 was assumed. Solid lines = electron doping; long-dashed
lines = hole doping; trianglegsquarey in (a) = paramagnetic

larons are strongly dressed electrons, with many features of 1 ~ -
second-phase inclusions, and have been suggested to act as P=- NE Ui j(kk+a)F;;(kk+0q), (Cy
precursors for nanoscale phase separ&fidtf In hole- Lk

doped cuprates, there is considerable evidence that these po-

larons tend to cluster and form stripes. In electron-doped ~ ) 1—fik—f{<,
cuprates there is considerably less evidence for stripes, and it Fijkk)=—2 =y — (C2
may be that polarons do not form clusters. Hence, the differ- Bk +E(K)-w-is
ences between a polaronic phase and a stripe phase might be 1
rather subtle. E,(K) = 5(6k+ e * Eo), (Cc3)
APPENDIX C: CHARGE SUSCEPTIBILITY AND U -_—
Ep= V(e — €k+q)2 +4A2, (C9)

The present calculations confirm that the SCR requires
essentially the same doping dependence of the Hublbasl R 1
found in earlier mean-field calculations in order to explain Ui j(kK') =—(1 +iA)(1 +jAy) +ijBBy, (CH)
the ARPES data on NCCO. A fully satisfactory calculation of 4
U(x) is not available, but the following points can be made.yjth i,j summed over +,-A the AFM gap, andA,=(e

(1) Kanamort> showed that the effective Hubbald  _¢, )/E,, B,=A/E,. In agreement with Chen et al., the
should decrease with doping, as an electron can hop aroungy|cylation findsU to be renormalized by a factor of 2 at
and hence avoid, a second electron. In the limit of a nearlyinite doping, but does not recover a largenear half filling,
empty (or full) band, this should lead to a correction of the gjthough different results are found depending on whether
form Ugi~U/(1+U/W), whereW=8t is the bandwidth. It y=q from the star(triangle or whetherx— 0 from the hole
was found"**that Monte Carlo calculations of the suscep- or electron doping sides.
tibility of a doped Mott insulator were approximately equal  (2) For modeling purposes, it is useful to haveUay
to the RPA susceptibility with suitabl&ley, and Chenet  \yhich evolves smoothly from a large value at half filling
al.*'" suggested the explicit fortdeg=U/(1+(P)U), with P {0 a reduced, Kanamori value at finite doping. A simple
given by a vertex correction to the susceptibility ahd) an  toy model consists of taking the RPA screening of a
average oveq, at zero frequency. Figure @) presents a charge response. There should be a close connection be-
calculation forUq¢ based on Cheet al. However, whereas tween the Kanamori mechanism and screening. Screening
Chenet al. performed the average in the paramagnetic phasénvolves creation of a correlation hole about a given
using bare Green’s functions, here the dressed Green'’s funcharge, while Kanamori’dJy; involves the ability of a
tions appropriate to the Néel phase are used, to approxsecond charge to move around the first, while avoiding
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double occupancy. Near half filling, the second chargeThe good agreement on the results of the two calculations
must move in the correlation hole. Approximatihthe  suggests the correctness of my estimatedlue.
vertex correction by the RPA screening of the charge sus- (6) However, the essence of the Kanamori renormaliza-
ceptibility tion is the ability of an electron to partially hop to other

U atoms to minimize double occupancy—hence closely related
= (C6) to the physics of the screening hole. Hence, to understand the

1+(0U renormalization ofJ, one should try to treat screening better.

it is possible to reproduéethe experimentally observéd Among effects notincluded in SCR calculations, two catego-
doping dependence, while matching the calculation of Chefi€S suggest themselves. Firstithin the Hubbard model,
et al. away from half filling, Fig. 3a) (solid and dashed Screening can be affected by an improved treatment of mag-

lines). A similar but larger screening effect was recently re-netic polaron effects, as in the SCBA, Appendix B. Sec-
ported by Esirgen et a8 ondly, the cuprates can also be sensitive to effeejondhe

(3) In the above calculation, the susceptibility in EG6) Hubbard model, for instance longer range Coulomb interac-

is approximated by the charge susceptibility in the AFmtion and electron-phonon coupling, leading to, e.g., lattice
state,}So from Eq.(2.24) of Ref. 1, evaluated with the bare relaxation (dielectric polaron effects. For example, the
U=6.7%. To estimate the onset of Néel order at high tem-fénormalization ofU in the Holstein-Hubbard modéP de-

peratures, the calculation was repeated using the paramaends on the doping-dependent phonon frequency.
netic susceptibility[lines with triangles and squares in (7) Recent calculations of the three-band model find that

Fig. 31a)]. The latter calculation finds a nearly doping @ Much smaller percent changelois needed to explain the
independent, but small.s; the former reproduces a large, experiments. That is because thd”“of the one-band model
weakly screened) near half filling. Such a difference is c0rresponds to a charge-transfer energy of the three-band
expected in terms of screening: when there is no gap d'°del, and a small change in the three-bahdan lead to a
half filling, the enhanced susceptibility should be betterlarge shift of the Cu UHB withrespect to the oxygen band.
able to screett, resulting in a smallebg. This suggests These calculations will be reported in a separate publica-
that Ut should have an important temperature depenton: _ , o _
dence as the gap decreases—which in turn will cause the (8) There remains an alternative possibility. In comparing
gap to close at a lower temperature. Figure(@3lalso the SCR and TPSC calculations, | found that they are even
shows that the intrinsic temperature dependence) of more sensitive to the “natural phase boundary’—the termi-
the paramagnetic phase is we&kompare trianglesT nation of the hot-spot plateau—than the mean-field calcula-
=1 K, and squaresT=2000 K). The calculations suggest tions. When | included th¢’ parameter of Kusko et al.)

that the large values df found in the cuprates are char- found that this shifted the plateau terminationxte—0.16,

acteristic mainly of the half filled regime and relatively @nd beyond this doping there is =0 Neel transition,

Ueff

low temperatures. even for a bardJ=6t.
(4) _Thls procedL_Jre is still not fully self-consistent. If APPENDIX D: IMPROVED SOLUTION OFE SCR
there is a large difference between the bareand the
. EQUATION
screenedU., the gap iny should depend on the actual o _ .
Ue. However, sinceU4=U at half filling, any simple Approximating cotix)=max1/x, 1), and introducing the

improvement will not significantly change the overall notationAq§:Aq§+5,Eq:Aqﬁlaw, andt=2TC, the solution

doping dependence. This is the same kind of lack of selfto Eq. (6) becomes

consistency found for the SCR approach, and will be here

neglected. 5= 8y=
(5) There are also potential issues of double counting: is mAC

the Kanamori correction automatically included in the SCP\Nith

calculation? This is not obvious within the Moriya formal-

ism, but has been claimed to be the &% the closely S+AQ @, A2 1+a2
e [ x_Ag | 1va

2
M e v E, (D1)

related two-particle self-consistefPSQ schemé. Direct =—"%In

2.2 =2 2
comparisons are difficult, since in the equivalent of E), g t Xy 2 G+ (Va,)

the TPSC scheme defineék,=U—-N\/x,, soUs, has a strong S | &+a? S
temperature dependence which is absent in the SCR + o tan(ag) -5in 52”2“’ - %tan—1<—>,
have made a preliminary comparison of the two approaches %o

as follows. For a given set of hopping parameters and a (D2)
given dopingx, one can check whether there iSa0 Néel ,

transition associated with a given initial value df At x= F.=t OHAGL q todx — SAG d_yt —1(5)
-0.15 I find that both SCR and TPSC have very similar 2= 5 y 0 X2 +Y? - s y an y

critical values ofU~3t. Thus, if TPSC already includes

the vertex corrections of Chen et &t/ then they should —d 2 oy (t) (D3)

not be included in renormalizing. N S 1 :
In passing, | note that the TPSC uses conservation laws to

avoid explicitly calculating a mode-coupling parameter  with
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1,(x) = I[tan}(x)] - tar Y(x)In(x), (D4)

7T

lo(x) = f: In(tan #)do=L(x) + L(% - x> - L(E)

(D5)

andL(x)=—f3In(cost)dt is the Lobachevskiy functiof?!

For most purposes, it can be assumed that<Aq€, Ay
in which casd[tari(x)]=6[In() - 1], with §=min{x, 1/x},
and thenF,, Eq. (D3), simplifies:

F,= In(%)[éﬂ tan‘1<£5)} +6- At—:% = gt In(%).

(D6)
Defining Z=1+(3ua®/ mAC)In(a,/t), then
— 3udT [2CT
28— 8= In{ — |, (D7)
A 1)

which agrees with Eq(13) whenZ— 1.

APPENDIX E: HOT-SPOT PLATEAUS AND GENERIC
QCP’s

While the properties ofy, are now reasonably well un-

PHYSICAL REVIEW B 70, 174518(2004)

tersects the replica FS shifted bﬁ/ They are located at,

==Cy=Cy, With
o
=cosakg= /",
Cxo Ko at’

and equivalent points. The edges of the plateau are those
points at which the overlap terminatélsot-spots cease to
exisy). For the present band structure, hot-spots exist only
when the chemical potentia is in the range 8 < <0, or

for doping 0.25>x>-0.19(electron dopings are considered
as negative Since the two end points play an important role,
it is convenient to label them, and they are here called “hot”
hot-spot and “cold” hot spaor H point andC point) for the
hole- and electron-doped termination points, respectively. It
will be demonstrated below that at each doping, the hot-spots
also lead to a susceptibility plateau in momentum space,
aroundQ, collapsing to a logarithmi¢square root diver-
gence at théd (C) point. TheH point is the VHS, and hence
also involves a conventional ETT. The physics is simpler
near theC point, where the topology hardly changes but the
FS andQ-FS become decouplegt is therefore a form of
Kohn anomaly?).

(ED

b. The pseudo-VHS
The susceptibility Fig. @) has a remarkable doping de-

derstood, they remarkably do not seem to have been used faqgence, with the large peak at the van Hove singularity
derive the parameters of SCR or NAFL theory. Here this/yg) ghifting%2 to half filling with increasing temperature

oversight is corrected. In particular, calculation of the curva— e peak position of this
ture parameteA is discussed below. A new cutoff parameter
. is introduced, which is essential in explaining the differ-
ences between the QCP’s for hole and electron dopings. THE

corresponding frequency paramet@yr Eq. (F7), and its as-
sociated cutoff parametet, [below, Eg.(F10] are dis-
cussed in Appendix F 4.

1. Plateaus in doping dependence
a. Hot-spots

In the self-consistent renormalization scheme, The0
AFM transition is controlled by a Stoner factdl Re(xo)

=7, where »>1 includes a quantum correction, Table I.
Hence, the relevant quantity on which the study is based i

the real part of the bare magnetic susceptibility, ). This

susceptibility has been analyzed in a number of paper

Whereas usually only Ify) is explored in detai(e.g., Refs.

89, 122, and 123 Rey) was studied in Ref. 102. The ex-
tended discussion which follows is intended to bring out sa
lient features for the computation of the NAFL parameters.

The doping dependence Qﬁ(é,w) is illustrated in Fig.

3(a), where (5=(77,7r). At low T, the susceptibility has a

“pseudo-VHS” defines a tem-
peratureTy(x), Fig. 3d) (circles. This behavior can readily

understood from the form of,(Q,0), Eq. (3). The de-
nominator e,— €.o=—4t(c,+cy), is independent ot’, and
hence has a stronger divergence than the density of states
(D09). Indeed, this divergence matches the strong VHS
found for t'=0 (perfect nesting and similar to that VHS
falls at half filling, x=0. There is one crucial difference—at
low temperatures, this divergence is cut off by the Fermi
functions, which leave the integrand non zero in a wedge
which intercepts the zone diagon@here the denominator
vanishe only at isolated points: the hot-spots. Hence, the
residual divergence at low is still dominated by the con-
ventional VHS. However, at finitd, excitations along the
Jone diagonal become allowed, leading to a stronger diver-

dence oon(é, 0) nearx=0.

The strong temperature dependence of the pseudo-VHS is
in strong contrast to the density of stafés, Fig. 3b), and
also with the pairing correlatiort8? The denominator of the
pairing susceptibility involves the sum of the energigs
+€eo=—8t'ccy, rather than their differencgas in Eq.(3)],
and hence always peaks at the ordinary VHS.

The difference between nesting and pairing susceptibili-

plateau shape, which is not present in the density of shtes ties has a fundamental significance. By mixing electron and

Fig. 3b). Beyond the plateau edggs falls off sharply on

holelike excitations, the superconducting gap is always

both electron and hole doping sides of half filling. This sharppinned to the Fermi level, and can open up a full gap at any
falloff explains the appearence of QCP’s: the Stoner criteriordoping. On the other hand, a nesting gap need not be cen-

is satisfied on the plateau, but fails whggdrops.

tered on the Fermi surface, and is constrained to obey Lut-

The plateau shape is characteristic of hot-spot physicginger’s theorem, conserving the net number of carriers in the

Hot-spots are those points where the Fermi surf&® in-

resultant Fermi surface. Hence, the only way a nesting insta-
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bility (such as antiferromagnetigrman open a full gap at the

Fermi level is for the instability to migrate with increased w5 =TT
coupling strength to integer filling of a superlattice zone | __—==2T_T"~<
(e.g., half filling of the normal staje

Since the susceptibility has such a distinct temperature 14

dependence from the density of states, one might ask how
the frequency dependence compares. This is illustrated in .3
Fig. ) at low temperaturg¢l K). While the frequency in- v
troduces additional sharp features and has an overall very
distinct appearence from thiedependence, nevertheless the
main peak also shifts from the VHS toward lower doping
with increasingm—in fact, the shift is almost the same when

comparinghw and 7kgT, Fig. 3d). The dashed line in Fig. » /

3(d) is T, =fiw,/ kg, with8® (1,0.6) (1,0.8)

)
@e = 1-7

[\

(1) (0.8,0.8)

q
FIG. 32. Susceptibilityyy nearQ for a variety of dopings at

with 7=2t'/t and fu=w/2t. The proportionality of frequency =100 K. From highest to lowest solid curves n&ar Q, the chemi-

f | potentials areu=-0.35, -0.30, -0.25, -0.20, -0.15, -0.10,
and. temperature dependences holds .OTT'V in the hOIe_dOp(;'(\—:%.OpSS, -0.02, a% 0 eV. For the dashed curgtep to bottom,
regime: temperature shifts the susceptibility peak only to half —_0.352 -0.355. and ~0.359 eV
filling, x=0, while frequency will shift the peak beyond half P TEE9e TS ' '
filling (x<0).

The structure in the low-temperature susceptibility, Fig. 3,overlap of the shifted and unshifted FS'’s. Specifically, the
with its largest peak at thid point on the hole-doped side, is pjateau is the region of overlap of the two hole pockets,
in striking contrast to the calculated doping dependence odhifted to have a common center, as illustrated in Fig. 33.
the Néel transition, Fig. 4, which has a broa.d plategu on thgne remaining parts of the pockets also show up, as ridfjes
electron-doped side, but falls off more quickly with hole iy the susceptibility, radiating from the corners of the dia-
doping, showing no sign of a peak near the VHS. This conmgnd(similar to the peaks in the=0.05 eV data in Fig. 1,
trast can be accounted for by two effects. First, the shift Ofoelow). As noted by Bénarcet al,®® the susceptibility in
spectral weight with temperature of the pseudo-VHS, notegyo-dimensions acts as a FS caliper. The plateau width leads
in Fig. 3, would tend to produce a symmetric falloff 8 o a natural limit on the magnetic correlation length
with either electron or hole doping. But the dos peak at the_ 1/g. in agreement with experimental data from
VHS leads to better s_creening &d.¢ for hole doping, YBa,Cu;0,_5 (YBCO) (Refs. 35 and 3p(squares, triangles
thereby further depressing. in Fig. 2, as noted previoushP?123 Related data from

LSCO (Ref. 37 are also shown.

2. Plateaus in momentum space

a. Plateaus 1.0

In analyzing either thermal fluctuations or the quantum
fluctuations associated with QCP’s, it is necessary to under-

stand the susceptibility near the AFM vectﬁrAt each dop- 0.5
ing, hot-spot physics leads to a plateau in momentum space,
centered oM. Figure 32 shows hovy, varies neaiQ at a :‘;
low temperaturg(100 K) for a series of different dopings.

Results neaif=0 are presented in Ref. 12. For all dopings 0.0

there is a plateau ig. The width of the plateau at=0 can

be readily determined: in any direction, it is the minimgm

needed to shift the replica FS so that the hot-spots are elimi-

nated. This can be found from the dispersion, EQ, by -0.5

substitutingIZ—> ((§+(j)/2, or

- 2A(5+8) - 483 = 1, (E3)
with §=sin(g;a/2). As shown in Fig. 2, this formula agrees
with the (anisotropig plateau width measured from Fig. 32
(circle. The inset shows the shape of the plateau as a func-

tion of doping. The diamond shape of the plateau, &), FIG. 33. lllustrating origin of plateauslotted ling from crossed
is related to the profile of the hole pockets formed by thehole pocketgshort-dashed lings
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FIG. 34. (a) Expanded view of susceptibility, on the plateaus 0.05
nearQ for a variety of dopings al=100 K (solid curve$ or 1 K )
(dashed curvesFrom highest to lowest curves ne@r the chemi- 0.00 . S
cal potentials arge=-0.20, —0.15, and —0.05 effor both solid and 0.08 0.12 0.16 X 0.20 0.24
dashed curvesAll curves exceptu=-0.20 eV have been shifted
vertically to fit within the expanded frameb) Similar plateaus for ~ FIG. 35. (a) Calculated values oh (circles for commensurate
the hole-doped materialsT=1 K), with (from highest to lowe$t  Q, diamonds for incommensurafie=Q+q’) andC (squares Solid
#=-0.359, -0.35, -0.3, -0.25, and -0.22 eV. line = Eq.(F7). (b) Incommensurate wave vectgt in two different
directions: circles alondl,0), squares alongl,1); dashed line:
b. Cusps q’ <X

For electron doping, the plateausdrare particularly flat  electron doping, leads to an additional complication not in-
topped, Fig. 32. At low temperatures the edges sharpen ugjuded in the conventional SCR analysis: the curvature of the
Fig. 1, and the falloff inyy acquires a square-root singularity bare susceptibility nea@:(w,w) (the S point of the B2 is

(Appendix F 3. The width of the plateau decreasing to Zero g on :
. ; gly temperature dependent, and for some dopings may
as Xx—Xxc, and for electron doping beyond thé point ven change sign. In principle, it is not difficult to incorpo-

(w>0), the plateau ends and the susceptibility displays splif_, anA(T) into the analysis near the mean-field Néel tem-

peaks away fron@, Fig. 1, with a dip in between. Thug is  peratureT), (pseudogap onsetBut for the present 2D sys-
a QCP(Ref. 103 where the magnetic order changes fromtem, |ong-range Néel order only sets inTat=0, and forT
commensurate to incommensuratehere is a corresponding <77 a self-consistent value @ should be found, by taking
QCP at theH point%) However, the magnitude of also  into account the effect of the pseudogap in modifying the
changes rapidly near=0, so there should be an independente|ectronic dispersion and hengeFor the present, this com-
QCP from a magnetic to a nonmagnetic phase near the samication is ignored, and at low temperaturass taken as
doping, as discussed in the previous subsedtiote the line A=A(T), where Ty is the magnetic pseudogap onset, the

depicting 1U(x=0) in Fig. 1] N _ .
Technically, similar cusps also arise at the plateau edgegamperature whergo(Q)Uey=1. This should be the most

for electron doping, 02> ~0.22 eV. The tops of the pla- |PorantA for controling the pseudogap, and moreover at
teaus are not completely flat, Fig.(@tand the highest sus- ower temperatures the band renormalization shoud strongly

S ~ i modify A(T). With this choice, the resulting(u) is plotted
ceptibility is shifted away fron® (Appendix F 3. However, in Fig. 35a), along with theC parameter, evaluated &&0.

these effects are much weaker than _those associat_ed Wit alectron doping, this choice &fis always positive and
n=>0 (Ay/x=<0.5%—compare the vertical scales of Figs. 1,3rie5 smoothly with doping, diverging at t@ point. By
and 34. Thus near the mean-field transition any structure Oontrast, for hole dopin is often negative, again illustrat-

the plateaus is smeared out by thermal broadening. Even fﬁg the instability of the uniform AFM phase. Givek and

T.:O, thesg featur_es are likely to be negligibl_e compared tQ:, Fig. 36 shows the calculated values f and wgg, nor-
dispersion inU which arises from renormalization effedts. malized to£2.

For hole doping, the mean-field transition temperature at
the incommensurate vectqgris only marginally higher than
that atQ, Fig. 4, suggesting that incommensurability should
have only a small effect on the phase diagram. Thus, one

Below the evaluation of the SCR parameters is discussednight attempt to define a positivieby measuring the curva-
The collapse of thg and/orw plateau widths near the and ~ ture from an incommensurate nesting vector. However Ahis
C points leads to the introduction of additional parametgrs IS highly anomalous, for a number of reasons. First, the in-
and «,,. The narrow width of thej plateau, particularly for commensuratg’ (G=Q+4’) forms roughly a square around

APPENDIX F: PARAMETER EVALUATION
FOR MODE COUPLING THEORY

174518-27



R. S. MARKIEWICZ PHYSICAL REVIEW B70, 174518(2004

TABLE Il. SCR parameters.

5 X To (K) Ta(K) Yo Y1

e

® ~0.2 1600-4000 3000-10000 0.01-0.02 3
= 0.0 180 1150 -5.27 0.75
g -0.04 310 1300 -3.31 0.7
”g} ) ~ -0.10 380 670 -1.23 15
T . A -0.15 200 220 -0.31 1.85

03 O'Zu(ev) 0.1 0.0 It is convenient to compare the present results with pa-

rameters estimated for the SCR mdddtom experimental
FIG. 36. Calculated values ofg/é> (solid line) and wspé? data for(optimally) hole-doped cuprates. The parameters are
(short-dashed line assumingU=6t. long-dashed line = doping defined asTy=Aq3/27C, TA=AG/2xo, Yo=35o(T=0)/Ad3,
X(u) (X 10); dot-dashed line @se£? corrected for incommensurate and y, =12a%u/ 7°AC. The results are listed in Table I,
G+ Q(X1/5). where the first line gives the hole-doped results estimated in
. Ref. 41. Moriyaet al*! took q3=1/4ma’ (qga=0.282, while
Q, inset in Fig. 2, with the peak susceptibility generally for Table Il it is assumed thaiz=q.. A key difference is that
along the(m,0) axis [circles in Fig. 3§b)]. In this case, by Moriya et al#! assume the system is in the paramagnetic
symmetry there are four peaks in the susceptibility, atphase(y,>0) at and above optimahole) doping, while in
(mxq’,m) and at(,7+q’). Moreover, the curvature mea- the present worly,<0, and the system is paramagnetic due
sured from any incommensurate peak is highly anisotropicyg the Mermin-Wagner theorem, with the Mott gap appearing
since the susceptibility is nearly constant along the ridge ofg 5 pseudogap. The small magnitudggis suggestive of a
the square, with a shallow minimum @i, 7). Thus parallel system pinned close to a QCP. Finally, the parametes

to the ridge A, is nearly zero. Moreover, perpendic_ular to the ostimated using the value=0.384 eV(above, and not the
ridge, A, takes on very different values on the sides of the

ridge displaced toward or away frofw, 7). The curvature is values of Table I.
small, with significant deviations from quadrat{gveaker
curvaturg moving toward(, 7r), while moving away from 1. Overview of parameter evaluations
(m, ), the curvature is larger, and deviating toward stronger ) ) s
curvature as the susceptibility falls off the edge of the pla- At T=0, the imaginary part of the susceptibilig(Q, «)
teau. For reference purposes, the average value of the quean be calculated analytically:
dratic part ofA | is plotted as diamonds in Fig. @9. (In this
case,wgr has a peak near the VHS, Fig. 8&his definition IM[x(Q,w)]= > [f(&) - f(er6) 18 €ing — € — )
of A is almost certainly an overestimate. In the analysis of -
hole-doped cuprates in Secs. V and VI, the commensurate
SCR model will be applied, wittA as a free parameter. It F(01,K) = F(65,K)
will be found that agreement with measurement requires a = T
somewhat smaller value fok than the estimated value of
A, . This smallA value, combined with the broad plateau, ~
lead to a sum-rule saturation fag and a much slower di- where F(6,x) is an elliptic integral,k=11-(w/8t)? and
vergence of(T) than found for electron-doped cuprates. sin(ai):sin(¢)i)/~k, with

In Sec. IV, the present results are applied to understanding
the ARPES spectra of electron-doped cuprates, concentrating 2 if o<
on the four dopings analyzed by Armitageal® For conve- coS(¢) =1 . e (F2)
nience, Table | summarizes the parameters for these dopings. ol2 if > g,
From the mean-field analys@she effective Hubbard param-
eters were found to bE/t=6(x=0), 5(x=-0.09, 3(x= 5 .
-0.10, and 2.5x=-0.19. (These numbers differ somewhat co(,) = {C+ if < w, (F3)
from those of Ref. 9, which included a second neighbor hop- 1 if o> wg,
pingt” to give the best fit of the Fermi surface$he Stoner
factor has a quantum correctiop Eq. (10), which tends to ~ with a=w/2t, o=w/4t, ci=a.+Ja-a% and a,=1
suppress the AFM transition; hence a smaller renormaliza-(u+ @)/ 7. Similar results fot’ =0 are discussed in Ref. 89.
tion of U is required. This is reflected in Table I: fo= The real part Rg can be found from the Kramers-Kronig
-0.1, -0.15, there are two rows, the upper row using theesult
mean-fieldU parameters, the lower with the quantum correc-
tion. Note that theJ's are enhanced by essentially the quan- R 1 (*1m (6 0')o'do’
tum correction factor. These values will be used in the sub- Re x(Q,w) = —f ZSad 5 ) (F4)
sequent analysis. ™Jo

k

(F1)

w?-w
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FIG. 37. Temperature dependencefdffor several dopings. q
2. Curvature (A) FIG. 38. (a) Calculated susceptibility(q) for several values of

. . overlapé. (b) Blowup of plateau region, fogy— xg=0- () Model of

Trle plateau is a region of anomalously small local curvafgrmi surfaces, defining, k; (k,), andk, (k).
ture A=A/U [Eq. (34)] of the susceptibilityxo(Q+0d)=xq
—-Ag?, whereA is an important NAFL parameter. Clearly, at end points, with a crossover near-0.25 eV, where th@
T=100 K the curvatureA has gone negative near thé  dependence is weak. Also for intermediate temperatures,
point, Fig. 32. At even lower temperatures, it reverts to posithere can be fine structure on the plat¢eug., solid lines in
tive values, Fig. 3d). The temperature dependence of theFig. 34a)] which can lead to wild swings iA(T). However,
normalized parameteh’ =(7/a)%(A/t) is illustrated in Fig. at these dopings they are not relevant, since the susceptibility
37 at several dopings. The temperature dependence is donieaks are away fror@, and this fine structure is not gener-
nated by divergences at bdthandC points. The divergence galy reported in Fig. 37.
at the H point, Fig. 37a), is the well-known logarithmic
VHS. However, at finite temperatures spectral weight is
shifted away from the VHS ané turns negative, only re- 3. A at the C point
covering a positive sign above=2000 K. The temperature
at whichA turns negative can be definedBs.omm A<O for
T>Tincomm From Fig. 3d), Ticomm IS COmparable to but
larger thanTy, (for x<0.06A remains positive This in fact
explains the origin off,comm Figure 37a) demonstrates that
A is negative atT—0 beyond theH point (u=-0.4 e\).

To understand thg plateau, and in particular the point,
where the plateau width shrinks to zero, it is convenient to
introduce a simplified modé®’ for which theq dependence
of x can be calculatednalytically. While the dashed lines
in Fig. 41 represented am shift, they can equally well

: : .. describe they shift of the energy denominator, E(). The
Thus, increasing aboveT,, produces the same susceptibility plateau ed;qe corresponds tc?ythe point whereqat)he dashed

crossover. A similar crossover was discussed by Sacktlev . : ;

. . line inter heay-shif FS(horizontal arrows (Recall
al.,’?8 except that they assumed that in the high-temperature © *_te»sests they-s ,tEd_ ,S( orizontal arrows (Reca ,
phase the AFM fluctuations remained centered on the conil@td=Q+@",) In the simplified model, the energy denomi-

= . . " . nator is linearized, sde>k , independent ok;. Choosing
trgfnnseu;tj%;\vge;gsbggg% ':Sneg;tt'i\\// Z‘ gtrsgrféc;e?:ysflgihe q to point along thew, 7) direction, the FS can be approxi-
P 9 P - PINGS—-€. mated by two circles of radiukg, centered aiw,w) and

the leading singularity o is always atQ. _ (—=,—m) [for this choice ofq the other two circles at
At the C point, the collapse of the plateau width translates(w —m) and (-, ) can be ignoref The Q-shifted FS is

into a divergence of the curvature @(A— ). This diver-  then a circle centered &=(0,0). The FS atw, =) and the

gence of the high-temperature susceptibility is cut off at lowQ-shifted FS are illustrated in Fig. 8. To keep the picture

T, Fig. 371d), when the thermal smearing becomes smallelsymmetrical, both FS’s are shift¢ith opposite directionsby

than the plateau width. For small€r A is controlled by the  q’/2 whenq’ #0.

curvature on the plateau. The temperature at witidres a Adding the contributions of the overlap of theshifted

peak, defined a3, is plotted as diamonds in Eig. @he  FS with both the FS atm, ) and the one at-m,—m), Xq
peak is only found fox=0). Rather surprisinglyT, scales

: ; . %l rqri2t kg2 With
with the plateau widtly,, even though the dynamic exponent

is z=2. Further, the maximum slope scales approximately as | = ke dk, dk F5
Anmax~ Ta 1> which follows from the fact tha~T-%5 at Tk (F5)
the C point.

At intermediate doping, Figs. 83 and 37c), A is gen-  where the region of integration is over the part of the upper
erally a scaled-down version of the behavior near the twd=S in Fig. 38c) not overlapped by the lowen-shifted FS,
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FIG. 39. (8 Im x(Q,w), (b) Re x(Q,®), () Im x/w=C, and
(dyd Rex(é,w)/dw, for (a), (c): =0 (solid line), —0.05 (long-
dashed ling —0.10(dashed ling —0.15(dotted ling, —0.20 (dot-
dashed ling —0.25 (dot-dot-dashed line and -0.30 eV(short-
dashed ling (b), (d): x=0 (solid line), —0.04 (long-dashed ling
—-0.10(dashed ling and —0.15dotted ling.

and k, ranges from zero at the apex of the wedge to the

middle of the upper FS.=k-—ks, wherek; is the overlap
parameter defined in Fig. 8§. To lowest order, foks<kg,

1-8

1+

I = 2ke + Vkekgn (F6)
with B=1ks/ke. The expression forkg_q,,z must be modified
when q'>2ks; and the two FS's no longer overlap:
|k5_q7/2: ZkF[l -y tan_llly], with V= \J'(q’ - 2k5)/2k|: The
calculated susceptibilities, Fig. @8, display the flat topped
plateaus with weak positive curvatui<0, Fig. 38b)]. At
the plateau edge the susceptibility falls sharply-1
—-myl2~q'. The C point corresponds t&s=0.

4. C and plateaus in frequency

Figure 39 illustrates In)((é,w), Rex(é,w), and

Im X/wzé. While plateaus in Rggp) have been noted
above, Fig. &), here the main interest lies irC
=U Im x/w. This linear-in-frequency contribution to Imp,

generated by hot-spots, is an important parameter in SCR ‘g, [
and NAFL theories, and has been well studied. The height of '

the plateau at zero frequen@:Ué(w:O) can be repre-
sented as a frequencw;=1/C, which can be found
explicitly126

1 1

C=————"—"=— F7
27TJ§0(1 +7C) @ F7

(with J=412/U, £,=1-c%)).
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FIG. 40. C calculated for several values of ©=-0.355(dia-
mondg, —0.357 (circley, —0.358 (squarey —0.359 eV(triangles
(1,=-0.3599 eV. Inset: Band dispersiorg (solid line), e.q
(dashed ling for ©=0. Arrow =w_.

However, it is important to note th& also approximates
a plateau, particularly near thé point, Fig. 40, with a well-
defined cutoff. Moreover, the width of this plateau vanishes
near both thed andC points, controlled by two characteris-
tic frequenciesw,, Eq. (E2), and

8t ——
wy = 7[\3'1 -ur—1], (F8)

respectively. The origin of these critical frequencies can be
understood from Fig. 41. The thiqkhin) solid lines repre-
sent the originalQ shifted Fermi surfaces, while the dashed
lines represent

= 6.0 € (F9

for various values ofw. Equation(F9) gives the points at
which the denominator ofy(Q, ), Eq. (3), vanishes. Thus

06 —— :
£ os
T
04 L 0 L L L L
0.4 05 0605 06 07 08 09 1
05 5

0.1 r 0.1 F

00.5 06 07 08 09 100.5 06 07 08 09 1
a/n a/n

FIG. 41. Origins of critical cutoffs. Thick solid line = FS; thin
solid line =Q-shifted FS; dashed lines = E@9), for several values
of w. Chemical potentiak= (a) 0, (b) —-0.1,(c) —0.14,(d) -0.2 eV.
Horizontal arrows indicatey, vertical arrowsw,.

174518-30



MODE-COUPLING MODEL OF MOTT GAP COLLAPSE IN. PHYSICAL REVIEW B 70, 174518(2004)

at T=0, Im xo(Q,w)] is proportional to the length of the = o (1- 339k)dk~ 111 4, ch F12)
dashed line lying between the original a@dshifted FS’s /1, a2k - a’5| ke Aln -+ (

[i.e., wheref(e) - f(e.g)=x1]. Since the two FS’'s meet at

an angle, forming a wedge, [(Q, w)]~ w. At T=0, the integral must then be integrated ifiover the
From Fig. 41, the critical frequencig¢denoted by arrows  wedge where the difference in Fermi functions does not van-

are points where the dependence of this length changesish. The integral from outside the hot-spot circle will elimi-
abruptly, leading to a sharp change in ymThus, near théi nate thek. dependence, but should not affect theunterm.
point, the plateau width is; (inset, Fig. 40, while near the It is difficult to directly evaluate the two-dimensional
C point it is wy. The vertical arrows in Fig. 41 indicate;,  principal value integral foB. Instead, it is much simpler to
where the dashed ling&q. (F9)] intersects the FS at the zone evaluate Réy) via Kramers-Kronig transformation of Igg)
boundary, while the horizontal arrows &tew,, where the  and findB by numerical differentiation. When this is done,
dashed line ceases to intersect Mwshifted FS. There is a Fig. 3qd), it is found that the logarithmic correction is too
crossover atu.=-0.14 eV: for u> u., wo=w, while for  small to determine accurately. An alternative estimatds of
U< e, wo=w. Combining Eqs(E2) and (F8), wp=w; at  comes from notindEq. (4)] that B=A/v2, whereus is an
ue=[1-2(2-\2)?]2t/7=-0.1384 eV, with z=1-7. For effective spin-wave velocity. This has a significant
w>min{wg, wg}, |m[)(o((5'w)]~w1/2, so C~1/wY?>—ie., renormalizatioh when going from the paramagnetic state

the susceptibility is no longer on the plateau. (based onyg) to the AFM state aff=0: vs=\2ta in the

Defining a width parameter,=min{a;,a’}, with o«  former andy2Jain the latter.
=wp/ wq, then

_ o 2mt(l-D| 1+7c, 1 6.u
log = =—. F10
@re u { -7 a, (F19 The quartic effective action is

This latter is in good agreement with the numerical results 1
(arrows in Fig. 40 and is similar to the result found by S==> T,(G,iwy) (G,iw,) (- G, — i)
Onufrieva and Pfeut}f?using a hyperbolic band approxima- Gion
tion valid near a VHSw,/ w_=2nt(1-7)/U.

Because of the dynamic scaling~ g7 this crossover is 22 T1,(Gi,i ;) p(Ciy,i w7) P(Go, i )
also reflected in the behavior on the platead,iffig. 34: for 4(/3N )
u>-0.14 eV, the plateau has a negative curvature, which X B(Gayi 3) H(Gariwa), (F13

can almost be scaled between different dopings, while for

p=-014eV, tbe plateau starts to fill in, ultimately devel- where the prime in the second sum means summing over all
oping a peak aQ. [See also Fig. 3 in Ref. 1IPNote thatthe g ., such that’, =0, 3%, =0,

plateau width collapses in frequency at both theand C

points, while the collapse in wave numbgp— 0) is only

. U o
present near th€ point. I1(q,iw,) = E[l -Uxo(q,iwp)], (F14
5B .
The parameteB is small, and generally neglected. How- I1,(Gj,iwy) = U—E Go(E,iGn)Go(E*' Gpie,+iwy)
ever, it enters into the evaluation of so will be discussed 8 Kie,
briefly. The expression foB may be written exactly as the .
w— 0 limit of XGo(k+qy+Gpie, +im +iwy)
f(eQ) - f(ed) 1 X Go(K = Ga i€y~ iy), F1
BZUREE[ k kQQ . o(K=Ga,i €~ iwy) (F19
K (€k+Q &) [(6k+Q— &)~ o] .
with u=II,/NyBU?.
(F11 Since there is some controvef3§2 concerningy, it shall

It can be shown tha has a logarithmic correction due to the be evaluated in detail. Millf§ showed that for free electrons

hot-spots. The integral can be approximately evaluate@py (parabolic bano)sthis expression is in general well defined,
using symmetry to reduce the integral to one over an octarfut diverges wherQ is a “spanning” vector of the Fermi

of the Brillouin zone containing one hot-spah) spliting ~ Surface—in the present case, this would correspond téithe
the domain of integration intd) a circle of radiusk, about ~andC points. Abanowet al:*? found a more severe problem:

the hot-spot andii) the remainder of the domain, arid) U has an important frequency dependence and cannot be ap-
numerically evaluating the integral over domaiin) while ~ Proximated by a constant in the hot-spot regime. The prob-
providing an analytic approximation to that oex Then the  lem lies in the limit of external frequencies-0, momenta

k integral over the hot-spot circle can be written approxi-—0, orQ Taking this limit on the momenta, the expression
mately as for u can be written as
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' 1

= NO’BIZ,iwn(ﬂZ_ i) (€~ iwp +iwg)

u

1
X : : , , —.
(k0 —Twp—iwy)(€g— 1wy — 1w —iw))
(F16)

The sum over Matsubara frequencies yields

u=u?> {“ﬂ?)((iws_ 1

ia)4 Ae)(iw3+iw2—Ae)

k

1
i+ Ae)(iwg + iw2+Ae))

+ f(EIZ+(§)( 1
(iwg—Ae)(iwy +iwy + A€)

i(l)z

1
- (iw1+Ae)(iw3+iw2—Ae)>] (F17)

whereAe= - .. Letting w; . =(wjtwj,)/2(i=1,2), and

noting thatw,,=-w,,, this simplifies to
[f(eeq) — e IWC

W2+ JWE + w5 )"

u=2u2>,
k

(F189

where
W_=(iw_+ Ae). (F19

Thus in Matsubara frequency spaae,is largest forw;,

PHYSICAL REVIEW B70, 174518(2004

understood by coupling the gﬁudz and Q, orbitals to the
Cuy orbitals, which have signiﬁcant interlayer coupling.
Here, | provide a simplified calculation including only these
orbitals, and show how the dispersion is modified by stag-
gered stacking of the CuyQayers. For uniform stackingCu
above Cy, the hopping matrix becomes

A - 2ts, 2ts, 0
-2t 0 0 -2t
H= S P . (GY
2ts, 0 0 =2ty

0 2,8 2ty Ast+Eg
with s=sink;a/2. Here the first(las) row is for the

Cudi_dz (Cu,y) orbital, and the middle rows are for the, O

and Q, orbitals, with Eg,=—4ts;cosk,c. In the limit Ag
+Eg > A>t,t,, the antibonding band has dispersion

E—A—Z—tz( + _2)_i2t§s_( -¢)?, (G2
B VTV R

so if t,<A,, the interlayer hopping has the form
tCOSk,C(Ci—Cy)?, With t,o=—1622¢,,/A’AZ. While this
form had been suggested eadf@and found experimentally
for the bilayer splitting in BSCC®3° it should be noted that
it is only approximate, and that, at least in YBCO, there is
considerable splitting of the bilayer bands along the zone
diagonal*?® Nevertheless, this form is adequate for the
present purposes.

When successive layers are staggered, the only modifica-
tion to the hopping matrix is in the form dEy(k,), which
now acquires an in-plane dispersion

=w,_-=0, so it should indeed be reasonable to estimate it in g (k)= - 4t_cosk,c[codk, + ky)a/2 + cogk, - k)a/2]

that limit:

&
J (| (1)1)2

s f(eg) - f(fﬁ). (F20

lz i(,()l+A6

u(iwy,0,0) = U?

In turn, it should be possible to approximateEq. (F20), by
its w;—0 limit, if this is nonsingular. From Eq.(4),

UXo(é,w):Bw2+ij+1—5o. Thus, the analytic continua-

tion iw; — w+i48 yields

u(0,0,0 = U2lim quw)
Jw

w—0

= 2BU. (F21)

== 8t cosk,c cosk,a/2 coska/2,
which leads to Eq(36).

(G3)

2. Estimation of t, from resistivity anisotropy

The dc conductivity can be estimated

2¢?
Oii ="

Q (G4

- vfdlec m)m,
k

i=x,y,z, with Q the unit cell volumep;=#%"dec/dk, and 7
the scattering rate. Recent ARPES data suggest that, when

Values ofu are listed in Table I. However, there are possiblebilayer splitting is resolvedsy is relatively isotropic over the

problems, as found above. In addition, the formBoftan
change close to the AFM statappendix F 5, and moreover

Fermi surfacé3! Taking 7, independent ok, the conductivi-
ties are given by integrals over the Fermi surface. Figure

B has a correction in liw), which would formally lead to a  42(a) shows a normalized conductivity ratio

divergence iru. Hence, the values in Table | will be taken as
approximate, andi approximated by a doping-independent

constant estimated by comparison to themodel.

APPENDIX G: INTERLAYER COUPLING

1. Dispersion oft,: Direct and staggered stacking

O _ AP 0y

, (GH
Oxx Ct?o Oxx

while Fig. 42b) shows the resulting normalized interlayer
hoppingt,n=t,\c/a, which would be required to produce a
resistivity anisotropyp,,/ px=1000. For simplicity, it is as-
sumed that,, is small, ando,,/ oy, is evaluated in the limit

Andersenet al1?® demonstrated that the anomalous formt,— 0. It can be seen th&a) the staggered stacking reduces

of interlayer hopping in the cupratel';tzo(cx—cy)2 could be

the conductivity by approximately a factor of 20, indepen-
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-0.30 -0.20 -0.10
Ee (eV)

FIG. 42. (a) Normalized conductivity ratiog,,/ oy vs doping
Eg, for uniform (solid line) and staggered stackindgong-dashed
line and short-dashed line<20)] and (b) resulting normalized in-
terlayer hoppind, for staggeredsolid line) and uniform stacking
[long-dashed line and short-dashed line4.5)].

dent of doping(except near the VHS so (b) assuming the
resistivity anisotropy is 1000 for optimally doped LSCO, it is 0.8 |

estimated that,;/t=0.11 for staggered stacking; by contrast, ’ -0.30 -0.20

) . ; -0.10

if the stacking had been uniform, a value §/t=0.025 u V)
would have been required. The staggered result can be com-

pared to a recent band structure calculati®nwheret,/t FIG. 43. xo(©,Q,) at T=100 K vs chemical potentiais, for

=0.16 was found for LSCO. However, the same calculationg,nitorm stacking andQ,= (a), #/2 (b), and 0(c). The various
find a much smaller valug/t=0.02 for NCCO, which lacks  ¢yrves correspond tgy/t=0.01, 0.02, 0.05, 0.1, 0.2, and 0.5, with

an apical oxygen. the peak inyg shifting to the right with increasing,. Inset(d):
position of peak,umax VS t,o for Q,= (solid line), 7/2 (long-
3. z component of ordering vector dashed ling and O(short-dashed line

Given a finite interlayer hopping,, the first issue is to
identify the three-dimensional ordering vector: what This dispersive shift of the peak igy leads to a doping
minimizes the free energy? At mean-field level, the initialdependence of the optim&),, as illustrated in Fig. 45 for
magnetic instability will be associated with the state forto=0.2. For large hole doping, near thg,=0 VHS, the
which the RPA denominator first diverges, i.e., the state wittsusceptibility maximum corresponds @=/c, while near
the largest value of RQO(Q,QZ)- (Note that these calcula- the susceptibility peak, the spin modulation becomes incom-

tions implicitly assume that the two-dimensional roundmensurate(intermediate values o, have the largest sus-
plctty 9 ceptibility). There is a rapid evolution of the optim@l,, and

state involves commensurate ordefaf For uniform stack-  peyond the peak regime, over essentially the entire electron-
ing, a complicated dependence on doping, temperature, anghped regime, the optimad, is 0. This same pattern is re-
t, is found. Figures 43 and 44 plap vs chemical potential  peated for smallet,, with only the region of the suscepti-

for T=100, 10 K, respectively. The shift of the susceptibility yjity peak changing. The results are essentially independent
peak with doping can readily be understood by comparisory the sign oft,.

with Fig. 3. Both temperature and interlayer coupling act to
smear out the VHS, and in both cases cause the susceptibility

peak to shift to smaller chemical potentigwer hole dop- 4. Calculation of A,

ing), Fig. 43d). Note that the peak shifts at different rates for a. Uniform stacking

different Q, values, showing that the band is developing a )

considerablec-axis dispersion. The fastest shifshort- Given t, and Q, the parameteA, of Eq. (34) can be

dashed line in Fig. 48l), corresponding t&,=0] can thus evaluated: Ux(é+qzi,w=0)=UX(6+Q12,0)+AZ(qZ—Q92.
be considered as representing a crossover from quasi-twdhe dominant ordering vector,=w/c and Q,=0, can be
dimensional to fully three-dimensional dispersion. analyzed in more detail. For the former choice,

174518-33



R. S. MARKIEWICZ

-0.30

-0.20

010 |, @y

FIG. 44. XO(@,QZ) vs chemical potentiglk, as in Fig. 43, but at
T=10 K.

uc? t,C f = fieo C
ATz S| (2 e | (RN T »])
4 ; €&~ EQFio0\ €~ €ug+id +Q

(G6)

with fo=—~f(1-f)/ksT, f-=~f(1-2f)/keT, c,=coskg,
s,=sink,c. For the latter case

e g n_gn
A= > t&(%)”@i ——=_
4 - Ek_6k+Q+|5 €k_Ek+Q+|5

f - fl2+é

PR
+8 — = - .
(&~ eg*i0)®  (&—eug*io)?

(G7)

Figure 46[47(a)] shows howxo((j,QZ) varies withQ, for

PHYSICAL REVIEW B70, 174518(2004

-0.30

-0.20

-0.10
K (eV)

FIG. 45. XO(@,QZ) vs chemical potentiak, for uniform stack-
ing andt,,=0.2, and T=10 K (&), or 100 K (b), with Q,/7=1
(solid line), 0.75 (long-dashed ling 0.5 (short-dashed line 0.25
(dotted ling, 0 (dot-dashed ling

the full variation can be approximated by a cosine. The am-

plitude of the cosine falls to zero as th& point is ap-

proached. In the quasi-two-dimensional regime this ampli-

] LN T T
1.5} oy 0\. AP g W N -
xR |l :: "_._::--3(":)5‘: o~
18t 2l ORERT 0 TN oz
S Fin S i S
| .* ~ |
1'3_-1.1---/:__(?'2__ \_:-.-.I.—-
12 — === ———— - - i
_—— T
1'1 P it | 1 L e i g
0.0 0.5 1.0 1.5 2.0
O Q"".,' .'. - == I_ = == = ““‘:"
(] R
= ., ., N
< oot s, o -
s, e, . o .
30 3 BRI . .
. .
40} -
-3 " (b) ."'
-50x10 . o
Il 1 ‘am et 1
0.0 0.5 1.0 1.5 Qz/n 2.0

FIG. 46. (a) XO((':),QZ) vs Q, for t,=0.1, andT=10 K, and a

variety of chemical potentialg=-0.003559solid line), —0.08898
(long-dashed ling —0.1779 (short-dashed line —0.2669 (dotted
line), —0.2847 (dot-dashed ling —0.2954 (long-long-short-short-

t,0=0.1t [0.02], for a number of different dopings. For the gort_dashed line -0.3025(long-short-short-dashed line-0.3203

entire electron-doped regime, the peak isgt,=0 [Figs.
46(b) and 47d)], crossing over toQ,,=m/c in the hole-

(dash-dot-dot
—-0.3559 meV (long-short-short-short-dashed

ling -0.3381 (long-short-dashed ling and

line (b) Ay

doEed regime. Away from the peak, the susceptibility Varies:Xo(éyQﬂ‘Xo(é:Qz:O)v where the curves have the same mean-
asAZqi, with 9,=Q,—Q,, and in the electron-doped regime ing as in frame(a).
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| T R — N T T
=T __/'-7-_"__. _)\u 1
1.6 '_L';:“— -------- L ——
e == (a) = ——]
14.----_-:-—_--‘-.-—-'|h|_- lﬁ--“l.-l:l.-l-l‘.
12 .:--_- - -_.-_- - -_-_-. [P -.: - = -:_.
0.0 0.5 1.0 1.5 QZ/E 2.0
8ox10°F g o ' '
< (b)
< 60 4
40 -
20 -
4 , 010 0.0
oL, L . 1 : 1 . 2.0x10°F T T T T =
-0.30 -0.20 -0.10
T T T T T = |(ev) _~n 15
8 1.0 <
15 \ENg.g - 1.0
-n ao.
0.4
10 0.2 - 0.5
0.0
0.0EL ! . 1 : 1 X
5F -0.30 -0.24
U (V) ( C) -0.30 -0.20 -0.10u V)
Oh 1 1 I 5 ) ) _ _
036 -034 -032 -030 -0.28 -0.26 FIG_. 48. (@ AZ=AZ/UC_ Vs chemlca_l potentiaju for Q,=0
L (EeV) (solid lineg or 7 (dashed lines for a variety of values of,q and

T=100 K. In order of increasing amplitude, the values ggét

=0.01, 0.02, 0.05, 0.1, 0.2, and 0.) Scaling of A!'? with

(to/t)2. Curves are,/t=0.01(solid line), 0.02(long-dashed ling

0.05(short-dashed ling 0.1 (dotted ling, 0.2 (dot-dashed ling and
0.5 (dot-dot-dashed line (c) Comparison of mafd,) for staggered
stacking (solid line) and uniform stackingtriangles, X1/20) at

tzO/IZO.l.

FIG. 47. (a) XO(@,QQ vs Q, for t,0=0.02, andT=10 K, and a
variety of chemical potentiala=-0.003559(solid line), —0.08898
(long-dashed ling—0.1779 (short-dashed line —0.2669 (dotted
line), —0.3025 (dot-dashed ling —0.3381 (long-long-short-short-
short-dashed ling —0.3417 (long-dashed-dotted ling —0.3452
(long-short-short-dashed line —0.3488 (long-short-short-short-
dashed ling and -0.3559 meVlong-dash-dot-dotted line(b), (c)
AL=A,/UC? vs p for t,/t=0.02 (squares A, x 25) and 0.1(tri-
angles, circlep (d) Q. vs u for t,/t=0.02 (squares and 0.1  dependence gf, which leaves a small residual contribution
(triangles. quadraticin t,, Fig. 48b). Sincet, vanishes at,0), there

is no shift of the susceptibility peak with doping. Note the
tude scales Withﬁo. Figures 4f) and 47c) show plots of symmetry of theA, values between 0 and. In fact, x(Q,) is
the best parabolic fit té\,=A,/c? for t,,/t=0.02 (squarey  closely sinusoidal, particularly for smat}o, with maxima
and 0.1(triangles. Fort,,/t=0.1, an alternativé, is shown,  either at7 or 0. Thus, near either thel or C points, the
found by fitting the full susceptibility as a cosine o,  maximum ofy corresponds t®),=. For intermediate dop-
(circles. The good agreement between the two techniquegs, Q,=0 is favored. At two distinct chemical potentials,
shows that this is a reasonable approximation in the electrorthe amplitude of the cosine collapses and changes sign. At
doped regime(-0.2 eV=pu=<0). Near the susceptibility the crossing pointsy is independent o,, leading formally
peak, the variation is nonsinusoidal, and the parabolic fito Ty— 0. Note from Fig. 4&) that the suppression &, is
leads to a large value fok;. approximately in the same ratio as that of the resistivity,

found above.

b. Staggered stacking

The same calculations can be repeated fortjhef Eq.
(36), associated with staggered stacking; Figa#8howsA, 5. Calculation of Ty
calculated from Eq9G6) and(G7) at Q,=0 (solid lineg and
7 (dashed lines The frustration induced by staggering of  When there is a finite interlayer hoppirtg Eq. (13)
the CuQ layers is reflected in a strong suppression ofdhe becomes
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" N 1 "
-0.30 -0.20 010 (eV)

4000
~— 3000
2000
1000

Ty (K)

-0.1 0.0 01 x 0.2

FIG. 49. (a) T3p vs u for T=10 K and uniform stacking with FIG. 50. (a) Mean-field Ty vs x assuming paramagnetige
t,0=0.1t (circles, X1/25) or 0.02(squarey or staggered stacking (Appendix Q. (b) CorrespondingTy vs X, calculated using Eq.
with t,0=0.02(triangles. (b) Ty Vs X, comparing mean-field transi- (G8). Squares = staggered stacking wigf't=0.1; triangles = uni-
tion (solid line) with interlayer coupling modelauniform stacking ~ form stacking witht,,/t=0.02; solid line and circles = data, as in
assuming,o/t=0.1(long-dashed ling 0.02(short-dashed lineand ~ Fig. 20.

2% 1078 (dot-dashed ling and the staggered stacking model assum-

ing t,0/1=0.1 (dot-dot-dash ling pected to be observedhe point with Ty=0 K is omitted

from the plot in Fig. 20. Hence, ift, is estimated from the
— 6uTa2c me dg, Yo+Ad dy . 2TC resistivity, it will be nearly impossible to distinguish uniform
T %~ f f T from staggered stacking via measurement3 of
Yo In the above calculations, a constant valueAoivas as-

3uTa2 sumed for each doping, as given in Fig. 35. In fact, for the
A In\ -|-3D (G8) electron-doped cuprate8,~ 1/T*S for T>T,, Fig. 37. This
" 5 would cause an enhancement of the logarithmic correction,
wherey,=8+A0,” and Tap= A,/ 2C€C. (A small correc-  ~T25 tending to pinTy close toT,. For the present param-

tion to & is neglected. Treating thg, dependence as a co- eter values, this could redudg, by roughly a factor of 2,
sine rather than a cutoff quadratic leads to qualitatively simi-still larger than the experimental values.
lar results) Thus a finiteA, always cuts off the divergence A more likely source of the discrepancy is the possible
found in Eqg.(13), leading to a finiteTy whenever there is a temperature dependence Wiy, Appendix C. The largdJqy
zero-temperature Néel staieg., up to a QCP It should be  at half filling arises from lack of screening, in the presence of
noted that the above calculation implicitly assumed that Mott gap—and is appropriate in analyzing the l[dvirermi
T>Tsp~A, for T<Typ the logarithm is cut off and the surfaces found in ARPES. For calculating the onset of the
system behaves as an anisotropic three-dimensional magn&tott gap, the mean-fieldy, it is more appropriate to use the
For t,0/t<0.1, the system is generally in the quasi-two- paramagnetic susceptibility, as in Fig.(8L When this is
dimensional limit, Fig. 4@a). Figure 49b) compares the done, considerably smaller transition temperatures are found,
mean-field Néel transition with the Néel transition found as-both at the mean-field level, Fig. &), and when fluctua-
suming uniform stacking and finite interlayer couplingstions and interlayer hopping are included, Fig(h0While
t,0/t=0.1, 0.02, and X 10°® (the last found by scaling the the latter are closer to the experimental values, no attempt
Tap for t,/t=0.02 by the ratio oft%'s). It is seen thaffy ~ has been made to corredty for the short-range gap. Note
—0 ast,,—0, albeit exceedingly slowly. that on the hole-doped side, both experimental and theoreti-
The above calculations are for uniform stacking. For stag<€al Ty's go to zero neak=0.25 in a QCP.
gered stacking\, is reduced, in approximately the same ratio  Note further that this second peakTy is associated with
as the resistivities. Hence, the staggered stacking wjth  the VHS. It has several times been suggested that, when
=0.1 should be comparable to uniform stacking wigyft =~ more general interactions are allowed, this AFM order may
=0.02, as observed, Fig. 49. Whilg, technically goes to be replaced by some competing orde? (electron-phonon,
zero for staggered stacking neex—0.0838, the decrease is ferromagnetic, superconductingvhich in turn could be the
logarithmic, and in practice no more than a weak dip is ex-origin of phase separatigstripe) physics.
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