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We systematically examine the asymmetry of the electronic states in the hole- and electron-doped cuprates
by using at-J model with the second-neighbor hoppingt8 and third onet9 (the t-t8-t9-J model). Numerically
exact diagonalization method is employed for a 20-site square lattice. We impose twisted boundary conditions
(BC) instead of standard periodic BC. For static and dynamical correlation functions, averaging procedure over
the twisted BC is used to reduce the finite-size effect. We find that antiferromagnetic spin correlation remains
strong in electron doping in contrast to the case of hole doping, being similar to the case of the periodic BC.
This leads to a remarkable electron-hole asymmetry in the dynamical spin structure factor and two-magnon
Raman scattering. By changing the twist, the single-particle spectral function is obtained for all momenta in the
Brillouin zone. Examining the spectral function in detail, we find a gap opening at around thek =sp ,0d region
for 10% doping of holes(the carrier concentrationx=0.1), leading to a Fermi arc that is consistent with
experiments. In electron doping, however, a gap opens at aroundk =sp /2 ,p /2d and persists up tox=0.2, being
correlated with the strength of the antiferromagnetic correlation. We find that the magnitude of the gaps is
sensitive tot8 and t9. A pseudogap is also seen in the optical conductivity for electron doping, and its
magnitude is found to be the same as that in the spectral function. We compare calculated quantities with
corresponding experimental data, and discuss similarities and differences between them as well as their
implications.
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I. INTRODUCTION

High-temperature superconductivity in cuprates emerges
with carrier doping into insulating cuprates classified as the
Mott insulator. The carrier introduced into the cuprates is
either an electron or a hole. Although the symmetry of su-
perconducting order parameter is common withd wave in
both cases,1–6 the phase diagrams exhibit asymmetric behav-
iors between the electron and hole carriers. The most promi-
nent difference appears in the antiferromagnetic(AF) region
near the Mott insulator, where the AF order disappears with a
small amount of carrier concentrationsx,3%d in a hole-
doped cuprate La2−xSrxCuO4 (LSCO), while in an electron-
doped cuprate Nd2−xCexCuO4 (NCCO) the AF order persists
up to x=0.15.7 A difference in magnetic properties is also
seen in inelastic neutron scattering experiments: LSCO
shows incommensurate spin structures for a wide range ofx,8

while in NCCO there is no incommensurate structures but
commensurate ones are observed.9 It is also an important
difference that a spin-gap behavior observed in the under-
doped region of hole-doped cuprates by the nuclear magnetic
resonance experiments is not reported in electron-doped
cuprates.5

Differences in the electronic properties between the hole-
and electron-doped cuprates are also observed in other ex-
periments. The optical conductivity obtained from reflectiv-
ity measurements exhibits a pseudogap feature at around 0.2
eV in the AF phase of NCCO,10 but there is no such a feature
in LSCO with the same carrier concentration. The occur-
rence of the pseudogap in the optical conductivity is corre-
lated with the strong temperature dependence of the Hall
coefficients and a metallic behavior in thec-axis resistivity.

From angle-resolved photoemission(ARPES) experiments,
it is clearly observed that hole carriers doped into the parent
Mott insulators first enter into thek =s±p /2 , ±p /2d points in
the Brillouin zone and produce a Fermi arc,11–13but electron
carriers are accommodated at aroundk =s±p ,0d ands0, ±pd
and then the Fermi surface is formed in the superconducting
region.14 The doping dependence of core-level photoemis-
sion also shows different behaviors of the chemical potential
shift between NCCO and LSCO.15 These experimental data
indicate the difference of the electronic states between hole-
and electron-doped cuprates.

The electronic states and magnetic properties in the
electron-doped cuprates have been theoretically examined by
many groups, focusing on the comparison with the hole-
doped ones.16–33Among them, the present author has studied
a t-J model with the second-neighbor hoppingt8 and third
onet9 (a t-t8-t9-J model).16,18,19By applying the numerically
exact diagonalization technique based on the Lanczos algo-
rithm to small clusters, the dynamical spin structure factor,
optical conductivity, single-particle spectral function, and
thermodynamic properties have been calculated, and it has
been pointed out that the difference of AF correlations
caused by the presence oft8 and t9 is a prime source of the
contrasting behaviors in the electronic states between the
hole- and electron-doped cuprates.

In small clusters used in our previous works,16,18,19 the
momenta defined were discrete in the momentum space,
since periodic boundary conditions(BC) were used. Thus,
momentum-dependent quantities such as the single-particle
spectral function suffer from the discreteness. Two-particle
correlation functions also suffer from the finite-size effects
under the periodic BC, because the two-particle operators are
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described as the convolution of the single-particle operators
that are defined discretely in the momentum space. There-
fore, it is necessary to introduce a method that overcomes
such discreteness and to clarify whether such a method
changes the conclusions derived from small cluster calcula-
tions under the periodic BC. In this paper, we introduce
twisted BC for a 20-site squaret-t8-t9-J cluster. The intro-
duction of the twist can make the momenta defined continu-
ous in the Brillouin zone, and thus we overcome the diffi-
culty of the discreteness in the spectral function.34 For two-
particle correlation functions, we introduce an averaging
procedure over the twisted BC. This procedure is known to
reduce finite-size effects.35 Therefore, results obtained under
the twisted BC are expected to provide information that has
not been obtained under the periodic BC. The quantities ex-
amined in this paper are, in addition to the single-particle
spectral function, several response functions in terms of spin
and charge, i.e., the dynamical spin correlation, two-magnon
Raman scattering, and the optical conductivity, together with
several static correlations.

Being consistent with the previous works under periodic
BC,16,18,19we find that AF spin correlation remains strong in
electron doping, in contrast to the case of hole doping, in the
presence of the second- and third-neighbor hoppingst8 and
t9. This leads to a remarkable electron-hole asymmetry in the
dynamical spin structure factor and two-magnon Raman
scattering. The single-particle spectral function also shows
dramatic differences between hole and electron dopings.
Along the nodal direction, i.e., thek =s0,0d-sp ,pd direction,
a quasiparticle band in the hole-doped system is gapless at
the Fermi level as expected, while in electron doping the
band is gapped up to the concentrationx=0.2. The gap is
found to be correlated with the strength of AF correlation,
indicating that the gap is magnetically driven. The spectral
function around the antinodal region, i.e.,k =sp ,0d region,
shows contrasting behaviors: A gap appears in hole doping
but not in electron doping, leading to a Fermi-arc behavior
only in the hole-doped system. The gap is found to be sen-
sitive to t8 and t9, as is the case of the nodal gap in electron
doping. Such a Fermi arc behavior has not been detected
under the periodic BC. In the optical conductivity, a
pseudogap clearly appears in the electron-doped system after
the averaging procedure over the twisted BC. The origin of
the pseudogap is attributed to the strong AF correlation in the
spin background. The gap is found to have the same magni-
tude as that in the spectral function along the nodal direction,
indicating the same origin. In terms of pairing of carriers, we
examine thed-wave pairing correlation function. The pairing
is found to be enhanced in the underdoped region of
electron-doped system and also in the overdoped region of
hole-doped one, being consistent with previous studies under
the periodic and open BC.36,37Since the quantities examined
have fewer finite-size effects as compared with those under
the periodic BC, we can make a more precise comparison
between these results and experimental data. From the com-
parison, we discuss similarities and differences between
them as well as their implications.

This paper is organized as follows. In Sec. II, we intro-
duce thet-t8-t9-J model and show outlines of the procedure
to calculate the single-particle spectral function as well as the

correlation functions for a 20-site square lattice under the
twisted BC. In Sec. III, calculated results of the doping de-
pendence of magnetic properties such as the spin correlation
functions and two-magnon Raman scattering are presented.
Being consistent with experiments, AF correlation remains
strong in electron doping. The single-particle spectral func-
tions are shown in Sec. IV. Asymmetric electronic states be-
tween hole and electron dopings are discussed, focusing on
gaps that appear in different momentum spaces. Their impli-
cations are discussed compared with experimental data of
ARPES. In Sec. V, the charge dynamics and pairing proper-
ties in thet-t8-t9-J model are discussed. The doping depen-
dence of the optical conductivity clearly shows asymmetric
electronic excitations that are closely related to the single-
particle properties. Thed-wave pairing also shows remark-
able asymmetric behaviors, and the role of thek =sp ,0d
states for the pairing is discussed. The summary is given in
Sec. VI.

II. MODEL AND METHOD

The Hamiltonian of at-J model with the second-neighbor
hoppingt8 and third onet9 (a t-t8-t9-J model) reads

H = − t o
i,d,s

sc̃i+d,s
† c̃i,s + c̃i−d,s

† c̃i,sd

− t8 o
i,d8,s

sc̃i+d8,s
† c̃i,s + c̃i−d8,s

† c̃i,sd

− t9 o
i,d9,s

sc̃i+d9,s
† c̃i,s + c̃i−d9,s

† c̃i,sd + Jo
i,d

Si+d ·Si , s1d

with d=x and y ,d8=x+y and x−y, and d9=2x and 2y ,x
andy being the unit vectors in thex andy directions, respec-
tively. The operatorc̃i,s=ci,ss1−ni,−sd annihilates a localized
particle with spins at sitei with the constraint of no double
occupancy, andSi is the spin operator at sitei. In the model,
the difference between hole and electron doping is taken into
account by the sign difference of the hopping parameters
together with the difference of the localized particle.16 For
hole doping, the particle is an electron witht.0, t8,0, and
t9.0, while the particle is a hole witht,0, t8.0, and
t9,0 for electron doping. Although the ratiost8 / t and t9 / t
are material dependent,38 we take in this studyt8 / t=−0.25
and t9 / t=0.12 for both the hole- and electron-doped cases,
which is obtained by fitting the ARPES Fermi surface for
NCCO with x=0.15.39 The utu is usually taken to be 0.35
eV.38 We setJ/ utu=0.4. Hereafter,"=e=1, and the distance
between the nearest-neighbor sites in the two-dimensional
lattice is set to be unity.

In order to examine the single-particle spectral function in
the model, we use the exact diagonalization method for an
N-site square lattice with the translational vectorsRa= lx
+my andRb=−mx+ ly, being thatl ,mù0 andN= l2+m2. If
periodic BC are used for the lattice, the momentumk0 for
single particle is defined ask0=2psln1−mn2d /Nx+2psmn1

− ln2d /Ny ,n1 and n2 being integers that give discreteN
points in the first Brillouin zone. Introducing BC with twist,
we can define momenta continuously in the Brillouin zone.34
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This procedure gives smooth band structures even if we use
finite-size lattices. The twist induces the condition that
c̃i+Ra,s

=eifac̃i,s and c̃i+Rb,s
=eifbc̃i,s, with arbitrary phasesfa

andfb. Note thatfa=fb=0spd corresponds to the periodic
(antiperiodic) BC. Introducing an arbitrary momentumk
=kxx+kyy defining fasbd=k ·Rasbd, the momentum for a
given k reads

k = k0 + k. s2d

In order for k to cover the full Brillouin zone,k needs to
scan a square with the four corners thatskx,kyd= ±p /Nsl
−m, l +md and ±p /Nsl +m,−l +md. We note that imposing
the twist is equivalent to transforming the operatorc̃i,s

† c̃j ,s in
(1) into eik·sRj−Ridc̃i,s

† c̃j ,s ,Ri being the position of sitei. The
twist changes the hopping terms but not the exchange term in
(1).

For a givenk, the single-particle spectral functionAsk ,vd
at zero temperature reads

Ask,vd = A−sk,vd + A+sk,vd, s3d

with

A±sk,vd = o
m,s

ukCm
k uak,suC0

klu2dsv 7 sEm
k − E0

kd − mkd,

s4d

where A+sA−d is the electron-addition(electron-removal)
spectral function. For hole doping,ak,s= c̃k,s

† and c̃k,s for A+
andA−, respectively,c̃k,s

† sc̃k,sd being the Fourier component
of c̃i,s

† sc̃i,sd with momentumk defined in(2) and spins. On
the other hand,ak,s= c̃k,s and c̃k,s

† for A+ and A−, respec-
tively, for electron doping. TheC0

k and Cm
k represent the

ground state with the energyE0
k and the final state withEm

k ,
respectively, for a givenk. The chemical potentialmk is also
dependent onk, which is defined as one half of the energy
difference between the first ionization and affinity states of
the system. In this study, we calculateAsk ,vd for a lattice
with N=20sl =4,m=2d using a standard Lanczos technique
with a Lorentzian broadening of 0.2utu. The total number ofk
taken in the calculation isNk=320; thereby, the Brillouin
zone hasp /40 meshes.

In contrast to the single-particle spectral function, the mo-
mentum transfer in two-particle correlation functions such as
the dynamical spin correlation function is restricted to dis-
crete momenta defined by theN-site lattice even if we intro-
duce the twisted BC. In order to evaluate various two-
particle correlation functions under the twisted BC, we
average the correlation functions over theNk points of k.
This procedure is known to reduce finite-size effects.35

The dynamical spin correlation function reads

Ssq,vd =
1

Nk
o
k

o
m

ukCm
k uSq

zuC0
klu2dsv − Em

k + E0
kd, s5d

whereSq
z is the Fourier component of thez component of the

spin operator with momentum transferq. A standard Lanczos
technique with a Lorentzian broadening of 0.02utu is used for
eachk in (5).

The two-magnon Raman scattering spectrum with theB1g
symmetry is given by

IRsvd =
1

Nk
o
k

o
m

ukCm
k uRuC0

klu2dsv − Em
k + E0

kd, s6d

with the Raman operator forB1g mode

R= o
i

sSi+x ·Si − Si+y ·Sid. s7d

A standard Lanczos technique with a Lorentzian broadening
of 0.1utu is used for eachk in (7).

The real part of the optical conductivity under the electric
field applied along thex direction is given by

ssvd = ssingsvd + sregsvd, s8d

where the regular partsregsvd is

sregsvd =
1

Nk
o
k

p

Nv
o
m

ukCm
k u jxuC0

klu2dsv − Em
k + E0

kd,

s9d

with the x component of the current operator

jx = − ito
i,s

sc̃i+x,s
† c̃i,s − c̃i−x,s

† c̃i,sd

− it8 o
i,d8,s

sc̃i+d8,s
† c̃i,s − c̃i−d8,s

† c̃i,sd

− i2t9o
i,s

sc̃i+2x,s
† c̃i,s − c̃i−2x,s

† c̃i,sd. s10d

The singular partssingsvd in (8) is related to the charge stiff-
nessD, which is sometimes called the Drude weight, through

ssingsvd = 2pDdsvd. s11d

The D satisfies a sum rule

K = −
1

2N

1

Nk
o
k

kC0
kutxxuC0

kl = D +
1

p
E

0

`

sregsvddv,

s12d

where the stress-tensor operatortxx is given by

txx = − to
i,s

sc̃i+x,s
† c̃i,s + c̃i−x,s

† c̃i,sd

− t8 o
i,d8,s

sc̃i+d8,s
† c̃i,s + c̃i−d8,s

† c̃i,sd

− 2t9o
i,s

sc̃i+2x,s
† c̃i,s + c̃i−2x,s

† c̃i,sd . s13d

A standard Lanczos technique with a Lorentzian broadening
of 0.1utu is used for eachk in calculating (9). The same
broadening is used for the singular part(11).

We also calculate static correlation functions as a function
of distancer. The spin correlation with staggered phase fac-
tors, which is a measure of the strength of AF correlation, is
defined as
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Cspinsrd =
1

Nk
o
k

Pr

N Nr
o
i,r

kC0
kuSi+r ·SiuC0

kl, s14d

where the summation ofr is taken to be bonds satisfying
uru=r, andNr is the number of the bonds. The factorPr is 1
when the two sites are in the same sublattice, and −1 other-
wise. The charge correlation for doped carriers is

Cchargesrd =
1

Nk
o
k

1

N Nr
o
i,r

kC0
kus1 − ni+rds1 − niduC0

kl,

s15d

where the number operatorni is given byni =osci,s
† ci,s. In

terms of superconductivity in thet-t8-t9-J model, thed-wave
pairing correlation can be calculated, which is defined as

Cpairsrd =
1

Nk
o
k

1

N Nr
o
i,r

kC0
kuDi+r

† DiuC0
kl , s16d

whereDi is thedx2−y2-wave singlet operator

Di =
1
Î2

o
s

s− 1dssc̃i,sc̃i+x,−s + c̃i,sc̃i−x,−s − c̃i,sc̃i+y,−s

− c̃i,sc̃i−y,−sd. s17d

III. MAGNETIC PROPERTIES

In this section we show calculated results of doping de-
pendences of the spin correlation functions and two-magnon
Raman scattering for theN=20 square lattice of thet-t8 - t9
-J model.

Figure 1 shows the staggered spin correlationCspinsrd
in (14) for different carrier concentrationx, where x
=Nc/N,Nc being the number of carriers in theN-site lattice.
For the Heisenberg modelsx=0.0d, the correlation is almost
constant at large distance, indicating the presence of AF or-
der. In hole doping, the AF correlation is suppressed and

rapidly decays at large distance with increasingx. On the
other hand, the AF correlation in electron doping is similar to
that of the Heisenberg model, although the magnitude de-
creases with doping. This indicates the presence of AF order
even in the electron doped systems up tox=0.2. At x=0.3
the AF correlation almost disappears at large distance. We
note that, although detailed studies on doping dependence of
the magnetic correlation length for electron-doped NCCO
have been reported,40,41 the present results cannot be com-
pared with them because of small system size. For at-t8-
t9 -U model, whereU represents the on-site Coulomb inter-
action, it has been reported31 that the temperature-dependent
correlation length agrees with the experiments.

The difference of AF correlation between hole and elec-
tron dopings in thet-t8s-t9d-J model has already been pointed
out under periodic BC.16–18 The present results obtained by
averaging over twisted BC confirm that such a difference in
AF correlation is independent of BC and thus intrinsic to the
model. The origin of the difference comes from the sign
difference oft8 and t9.16,18 Let us consider the Hilbert-space
bases with Néel-type spin configuration in the spin back-
ground. Thet8 and t9 do not change spin configuration of
these bases because of the same sublattice hoppings. This
means that the self-energies of the bases are dependent on
the values oft8 and t9. We can find16,18 that the energies
become lower whent8.0 corresponding to electron doping.
This stabilizes the Néel-type spin configuration; thereby, AF
correlation remains strong in electron doping. For hole dop-
ing, on the other hand, the self-energies of the bases are
increased and thus become comparable with other bases with
different spin configurations. Such a mixture of various spin
configurations gives rise to a similar effect caused by
nearest-neighbor hopping of carriers. In fact, we find from
Fig. 1(a) that the spin correlation is similar to that of the
t-J model. We note that the similarity between thet-t8-t9-J
and t-J model has not been observed in a cluster under the
periodic BC, where the spin correlation decreases with in-
creasing the magnitude oft8 and t9.

The dynamical spin correlation functions(5) in the N
=20 lattice are shown in Fig. 2. Forx=0.1 of electron dop-
ing, the excitation atq=sp ,pd exhibits the minimum energy
among the momenta defined in the lattice, and has the largest
weight. Since the staggered spin correlationCspinsrd shown in
Fig. 1 indicates the presence of long-range AF order, the
finite-excitation energy atq=sp ,pd can be due to the finite-
size effect that inevitably causes a discrete energy separation
between the ground state and excited states. Away from
sp ,pd, the spectral weights are distributed at the higher-
energy region, whose scale is comparable with the spin-wave
excitation of the Heisenberg model whose lower-bound
edges are denoted by the downward arrows. This again con-
firms that the ground state is the AF ordered state even in the
presence of mobile carriers. With further doping of electrons
sx=0.2d, the sp ,pd spectrum loses its weight and the high-
energy weights at other momenta shift to the lower-energy
side, as expected from the reduction of AF correlation. This
doping dependence is qualitatively consistent with recent in-
elastic neutron scattering measurements for an electron-
doped material, Pr2−xCexCuO4.

42

FIG. 1. Staggered spin correlationCspinsrd as a function of the
two-spin distancer for an N=20 t-t8-t9-J lattice, obtained by aver-
aging over twisted BC.(a) Hole doping(t=1, t8=−0.25, t9=0.12,
andJ=0.4) and(b) electron doping(t=−1, t8=0.25,t9=−0.12, and
J=0.4). Solid squares, circles, upper triangles, and lower triangles
are x=0 (Heisenberg model), x=0.1, x=0.2, andx=0.3, respec-
tively. For comparison thet-J results are plotted with open symbols
in (a).
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At x=0.1 of hole doping, the lowest-energy excitations
are not atq=sp ,pd but at sp ,0d as shown in Fig. 2(a),
although the spectral weight is the highest atsp ,pd. For x
=0.2, the sp ,pd weight decreases and the weight at
s3p /5 ,4p /5d shifts to lower energy. These behaviors indi-
cate a tendency toward incommensurate spin correlations re-
ported in hole-doped materials such as LSCO(Ref. 8) and
YBa2Cu3O7−d.

43 At sp ,pd for x=0.1, we find, from the com-
parison between the solid and dotted lines, that the introduc-
tion of t8 andt9 shifts weights to lower-energy side. Since the
equal-time spin correlations are almost the same, as seen in
Fig. 1, we can say that the effect oft8 and t9 on magnetic
properties is the shift of AF spin fluctuation toward lower
frequencies.

Two-magnon Raman scattering also shows such contrast-
ing magnetic behaviors between hole- and electron-doped
systems. Figure 3 exhibits theB1g two-magnon Raman spec-
trum IRsvd in (7) for theN=20 lattice. The dotted lines in the
figure represent theB1g two-magnon Raman spectrum of the
Heisenberg modelsx=0d, which is obtained by averaging
over the spectra forN=16, 18, 20, and 26 lattices in order to
reduce finite-size effects. The main peak due to two magnons
appears at aroundv,3J.44 For x=0.1 of electron doping,
the two-magnon peak position remains unchanged withv
,3J as expected from the presence of AF order, though its
weight decreases. In contrast, the two-magnon peak shifts to
the lower-energy side in hole doping fromv,3J to 2J at
x=0.1. At x=0.2, there are no pronounced magnon peaks in
both the hole and electron dopings. Such a contrasting be-
havior about the position of the two-magnon peak is consis-
tent with recent experimental data, where in hole doping the
peak position shifts to the lower-energy side45 but not in
electron doping.46 We note that the line shapes of the calcu-
lated spectra cannot be directly compared with those of ex-

perimental ones because of excluding electronic Raman con-
tributions.

IV. SINGLE-PARTICLE SPECTRAL FUNCTION

In this section, we present doping dependence of the
single-particle spectral functionAsk ,vd for both hole- and
electron-dopedt-t8-t9-J models, and discuss the similarity
and difference between the calculated results and ARPES
data.

A. Half filling

Let us start with the spectral function at half fillingsx
=0d. Figure 4 shows the weight map along the high-

FIG. 2. Dynamical spin correlation functionSsq ,vd for an N
=20 t-t8-t9-J lattice, obtained by averaging over twisted BC.(a)
Hole doping(t=1, t8=−0.25,t9=0.12, andJ=0.4) and(b) electron
doping (t=−1, t8=0.25, t9=−0.12, andJ=0.4). Solid and dashed
lines represent the data forx=0.1 andx=0.2, respectively. The dot-
ted line atq=sp ,pd in (a) represents the data for thet-J model at
x=0.1. The momenta defined in the lattice are shown in(a). In (b)
the edge of the spin-wave excitations in the Heisenberg modelsx
=0d obtained by the linear-spin-wave theory is indicated by the
downward arrow for each momentum.

FIG. 3. Two-magnon Raman spectrumIRsvd with B1g geometry
for an N=20 t-t8-t9-J lattice, obtained by averaging over twisted
BC. (a) Hole doping(t=1, t8=−0.25,t9=0.12, andJ=0.4) and (b)
electron doping(t=−1, t8=0.25, t9=−0.12, andJ=0.4). Solid and
dashed lines represent the data forx=0.1 andx=0.2, respectively.
The dotted lines represent the spectrum in the Heisenberg model
sx=0d obtained by averaging over the spectra forN=16, 18, 20, and
26 lattices.

FIG. 4. (Color online) Weight map of the spectral function for
an N=20 t-t8-t9-J model at half filling along the high-symmetry
lines. utu=1, t8 / t=−0.25,t9 / t=0.12, andJ/ utu=0.4. Twisted BC are
imposed on the lattice in calculating the final states. For each BC a
Lorentzian broadening of 0.2utu is used. The scale of the weight is
shown in the bar at the right side of the panels. The on-site Cou-
lomb interaction that determines the Mott-gap magnitude is set to
be U / utu=4utu /J=10. The chemical potential is located at the zero
energy.

ASYMMETRY OF THE ELECTRONIC STATES IN HOLE-… PHYSICAL REVIEW B 70, 174517(2004)

174517-5



symmetry lines in the first Brillouin zone obtained by intro-
ducing the twist for theN=20 t-t8-t9-J model as mentioned
in Sec. II. To obtain continuous weights, we perform a
smoothing procedure for each symmetry line that has
p /40 meshes.47 The on-site Coulomb interaction that deter-
mines Mott-gap magnitude is set to beU / utu=4utu /J=10.

The top of the lower Hubbard band is located atk
=sp /2 ,p /2d. Quasiparticle energies at aroundsp ,0d are
lower than that of sp /2 ,p /2d. The spectral weights at
aroundsp ,0d are suppressed in contrast to the case of the
t -J model, where the quasiparticle energies at bothk
=sp ,0d and sp /2 ,p /2d are almost degenerate and their
weights are similar.38 On the other hand, the quasiparticle at
sp ,0d in the upper Hubbard band is located at the bottom of
the band. Therefore, the charge excitation with minimum en-
ergy is from k =sp /2 ,p /2d in the lower Hubbard band to
sp ,0d in the upper Hubbard band. In other words, the Mott
gap in the two-dimensional insulating cuprates is an indirect
gap, as previously pointed out by the exact diagonalization
study of a Hubbard model witht8 and t9.48 From such an
indirect nature, we can expect that doped holes predomi-
nantly enter into thesp /2 ,p /2d region in heavy underdop-
ing, while the electrons enter into thesp ,0d region.

We also see in Fig. 4 that the spectral weights at around
the bottom of the upper Hubbard band are the largest among
those at other regions. Since spectral weight at half filling is
roughly proportional to the product of the weight of the
Néel-type configuration in the Heisenberg ground state by
that in the single-carrier final state, the large weights at
aroundsp ,0d imply that the Néel-type configuration is domi-
nant in the final states nearsp ,0d, and thus AF correlation is
strong in the low-energy sectors of the single electron-doped
system. Such a momentum-dependent feature comes from
the presence oft8 and t9.18

B. Hole doping

Figure 5 shows the weight map of the spectral function
for a two-hole doped systemsx=0.1d along the high-
symmetry lines in the first Brillouin zone. The red lines in
the figure represent a noninteracting tight-binding band with
the same hopping amplitudes ast=1, t8 / t=−0.25, andt9 / t
=0.12, which is available for a guide of the band renormal-
ization of thet-t8-t9-J model. From the weight map, we find
that large spectral weights appear at aroundk =sp /2 ,p /2d

just below and above the Fermi level. We also find that along
the s0,0d-sp ,pd direction the dispersion exhibits a slight
downturn toward(0, 0) at sp /2 ,p /2d. On the other hand, at
aroundsp ,0d the spectra are located below the Fermi level
with small weight and flat dispersion. These behaviors are
consistent with the picture that doped holes predominantly
occupy thesp /2 ,p /2d region in underdoped system, which
is expected from the dispersion at half filling as discussed
above.

The most interesting feature in Fig. 5 is a gapped behavior
near the Fermi level along thesp ,0d-sp ,pd direction. This
seems to correspond to the pseudogap observed in ARPES
experiments for hole-doped high-Tc cuprates.49 In order to
see such a gap feature in more detail, we show in Fig. 6 the
intensity map at the Fermi levelsv=0d for both the electron-
removalsA−d and electron-additionsA+d spectra. Note that in
finite-size latticesA−sk ,v=0d is not equal toA+sk ,v=0d, in
contrast with the case of the thermodynamic limit, and rather
A−sk ,v=0d in this case is comparable with ARPES intensity
near the Fermi level. In Fig. 6(a), spectral weights are large
near the nodals0,0d-sp ,pd direction, and the weights de-
crease away from the nodal region along the original nonin-
teracting Fermi surface. This is similar to the so-calledFermi
arc observed in the normal state of underdoped high-Tc

FIG. 5. (Color online) Weight map of the spectral function for
an N=20 t-t8-t9-J model at the hole concentrationx=1−18/20
=0.1. t=1, t8=−0.25,t9=0.12, andJ=0.4. Twisted BC are imposed
on the lattice. For each BC a Lorentzian broadening of 0.2t is used.
The scale of the weight is shown in the bar at the right side of the
panels. The red curves represent a noninteracting tight-binding band
with the same hopping amplitudes.

FIG. 6. (Color online) Contour plot of
Ask ,v=0d for an N=20 t-t8-t9-J model at the
hole concentrationx=1−18/20=0.1. t=1, t8=
−0.25, t9=0.12, andJ=0.4. (a) Electron-removal
spectrumA−sk ,v=0d and (b) electron-addition
spectrumA+sk ,v=0d. The scale of the weight is
shown in the bar at the right side of the panels.
The red curves represent a noninteracting tight-
binding Fermi surface with the same hopping
amplitudes.
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materials.12,13,49 We do not find pocket-like features in the
electron-removal side at aroundsp /2 ,p /2d, consistent with
the experiments.

We also note that the ridge of the spectra in Fig. 6(a)
reaches the momenta ofs0.6p ,0d and s0,0.6pd. Such a
feature has experimentally observed in Na-doped
Ca2CuO2Cl2,

13 and theoretically demonstrated by using the
method of equations of motion for thet-t8-J model.50 In the
present calculations, the presence of the weight at around
s0.6p ,0d and s0,0.6pd is interpreted as the effect oft8 and
t9: The quasiparticle energy at aroundsp /2 ,0d is insensitive
to t8 andt9 in contrast with that atsp ,0d, as is expected from
the tight-binding form. Thereby, the quasiparticle is kept
close to the Fermi level at thesp /2 ,0d region.

In the electron-addition side[Fig. 6(b)], spectral weights
predominantly spread along thes0,pd-sp ,0d direction. In or-
der to detect these weights, we need angle-resolved inverse
photoemission with high resolution.

The gap along thesp ,0d-sp ,pd direction is sensitive to
the magnitude oft8 andt9. To see this, we show in Fig. 7 the
spectral function for thet-J model withx=0.1. We find a less
clear gap observed along thesp ,0d-sp ,pd direction, al-
though the dispersion along thes0,0d-sp ,pd direction is

similar to that of thet-t8-t9-J model. Therefore, we can say
that the long-range hoppingst8 andt9 are responsible for the
formation of the gap and thus for a Fermi-arc behavior ob-
served in ARPES experiments of hole-doped cuprates.12,13,49

Recent ARPES experiments51 have shown that the flat band
at around k =sp ,0d is deeper in energy for
Bi2−zPbzSr2Ca1−xsPr,ErdxCu2O8+d (BSCCO) than for LSCO.
Sincet8 and t9 for BSCCO are known to be larger than that
for LSCO,38 the experimental data are consistent with the
present picture thatt8 and t9 predominantly control the
pseudogap magnitude.

In order to examine this more quantitatively, we plot in
Fig. 8 thet8 dependence of the gap energyEgap for two cases
of t9 / t8=−0.12/0.25=−0.48 andt9 / t8=0. TheEgap is defined
as the minimum-energy difference between the electron-
removal and electron-addition states atk =sp ,p /4d. At
−t8 / t=0, the gap is finite but may come partly from the
finite-size effect. With increasing −t8 / t , Egap increases for
both the cases oft9 / t8=0 and −0.48. Comparing them, we
also find thatt9 significantly contributes for the gap magni-
tude. Sincet8 and t9 not only reduce quasiparticle energy at
aroundsp ,0d but also enhance low-energy AF fluctuation in

FIG. 8. Dependence of the gap energyEgap on t8 for an
N=20 t-t8-t9-J model at the hole concentrationx=0.1. t=1 andJ
=0.4.Egap is the minimum-energy difference between the electron-
removal and electron-addition states atk =sp ,p /4d. The ratio of
t9 / t is kept at −0.12/0.25=−0.48(solid squares) and 0 (open
squares).

FIG. 9. (Color online) Same as Fig. 5 butx=1−16/20=0.2.

FIG. 10. (Color online) Weight map of the spectral function for
an N=20 t-t8-t9-J model at the electron concentrationx=22/20
−1=0.1.t=−1, t8=0.25,t9=−0.12, andJ=0.4. Twisted BC are im-
posed on the lattice. For each BC a Lorentzian broadening of 0.2utu
is used. The scale of the weight is shown in the bar at the right side
of the panels. The red curves represent a noninteracting tight-
binding band with the same hopping amplitudes.

FIG. 7. (Color online) Same as Fig. 5 but for at-J model.
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the spin background, the magnitude of the gap seems to be
related to the strength of AF fluctuation. In fact, we find that
the gap is also dependent on the value ofJ: The gap at
−t8 / t=0.25 changes from 0.85t for J/ t=0.4 to 0.51t for J/ t
=0.2.

From Fig. 5 we see that gap opens not only alongsp ,0d
-sp ,pd but also along thes0,0d-sp ,pd direction. In the lat-
ter, the gap appears in the electron-addition sidesv.0d, and
its magnitude is smaller than that atsp ,p /4d.50 The gap
value is also found to be dependent ont8 if Fig. 5 is com-
pared with Fig. 7. In order to detect this gap, we need angle-
resolved inverse photoemission experiments.

At x=0.2 (four holes in theN=20 lattice), the gap be-
comes less clear than that atx=0.1, as shown in Fig. 9.
Along thes0,0d-sp ,pd direction, the gap feature almost dis-
appears, and a downturn of the dispersion atsp /2 ,p /2d,
seen atx=0.1, vanishes completely. Furthermore, a spectral
distribution near the Fermi level along thesp ,0d-sp ,pd di-
rection becomes continuous, though the weight at around
sp ,p /4d is still small. We can say that overall behavior
gradually approaches the noninteracting band with increas-
ing hole concentration.

C. Electron doping

Figure 10 showsAsk ,vd for a two-electron doped system
sx=0.1d of the N=20 t-t8-t9-J model. The spectra are very

different from those for hole doping. At aroundk =sp ,0d, an
electron pocket is seen as expected from the spectral function
at half filling (see Fig. 4). Note that, in order to get such a
clear pocket, the presence of AF order is necessary.18 In fact,
strong AF correlation remains in the lattice, as explained in
Sec. III. Along thes0,0d-sp ,pd direction, we find a clear gap
in the dispersion.

The Fermi surface map is shown in Fig. 11, where elec-
tron pockets centered atsp ,0d and s0,pd are clearly seen.
The presence of the pockets and the absence of weights
along the nodal direction are consistent with ARPES data14

for underdoped NCCO where AF long-range order persists.
We also note that recent spectral function calculations for a
Hubbard model with long-range hoppings display gap behav-
iors consistent with our results as long asU is large.28–33

The spectral function for a four-electron doped system
sx=0.2d is exhibited in Fig. 12. Thesp ,0d electron pocket
seen atx=0.1 almost disappears, although the spectral inten-
sity at aroundsp ,0d is still strong enough to show a remnant
of the pocket. In contrast, thesp /2 ,p /2d gap clearly remains
but with smaller gap magnitude. With further doping, the
spectra show dispersions similar to a noninteracting system.
Figure 13 exhibits the case ofx=0.3, where the gap at
around sp /2 ,p /2d almost disappears and the dispersion
qualitatively follows the noninteracting band. The velocity at
the Fermi level is almost one half of the noninteracting-band
velocity, which is independent of the Fermi momentum.

FIG. 12. (Color online) Same as Fig. 10 but
x=24/20−1=0.2.

FIG. 11. (Color online) Con-
tour plot of Ask ,v=0d for an N
=20 t-t8-t9-J model at the electron
concentrationx=22/20−1=0.1.t
=−1, t8=0.25, t9=−0.12, andJ
=0.4. (a) Electron-removal spec-
trum A−sk ,v=0d and(b) electron-
addition spectrum A+sk ,v=0d.
The red curves represent a nonin-
teracting tight-binding Fermi sur-
face with the same hopping
amplitudes.

FIG. 13. (Color online) Same as Fig. 10 but
x=26/20−1=0.3.
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Let us discuss the origin of the gap along thes0,0d -
sp ,pd direction seen forx=0.1 and 0.2. The gap is, of
course, the consequence of the presence oft8 andt9, because
there is no gap at the Fermi level along the nodal direction in
the t-J model(see Fig. 7). In Fig. 14, we show thet8 depen-
dence of the gap energyEgap defined at the noninteracting
Fermi momentumkF

0 along the nodal direction. Since the
t -J model has no gap, the gap value of 0.2utu at −t8 / t=0 is
due to the finite-size effect. As is the case of hole doping(see
Fig. 8), we find thatEgap increases with increasing −t8 / t for
bothx=0.1 and 0.2. From the comparison between the cases
of t9 / t8=0 and −0.48 forx=0.1, we also find thatt9 signifi-
cantly contributes to the formation of the gap. Sincet8 andt9
enhance AF correlation as discussed in Sec. III, the magni-
tude of the gap in electron doping seems to be related to the
strength of AF correlation. Reflecting the sensitivity to the
AF correlation, when we increaseJ from 0.4 to 0.6 keeping
t9 / t8=−0.48 forx=0.1,Egap increases from 1.01utu to 1.33utu.

Even for x=0.2, the gap increases with increasing −t8 / t.
This implies that AF correlation is still strong enough to
produce the gap. However, comparing with the experimental
fact that at this concentration thed-wave superconductivity
emerges at low temperature, the gap obtained in the present
calculation may indicate an overestimate of the AF correla-
tion. Thus, we may need to clarify the mechanism of the gap
closing which makes the system ad-wave superconductor.
We will discuss this in the following section.

V. CHARGE DYNAMICS AND PAIRING PROPERTIES

In this section, we first discuss the difference of the opti-
cal conductivity between the hole- and electron-dopedt-t8 -
t9 -J models. Next, we show thed-wave pairing correlations
together with charge correlations in the models.

A. Optical conductivity

Figure 15 shows the dependence of the optical conductiv-
ity ssvd on the carrier concentrationx for the N=20 t-t8-t9

-J lattice. Atx=0.1, there is a broad-peak structure at around
v, t in addition to the Drude contribution centered atv=0
for both the hole and electron dopings. Such a broad-peak
structure is known to be incoherent charge excitations ac-
companied by magnetic excitations.52 This is physically
characterized as an excitation from the AF ground state to an
excited state where wrong spin bonds are created by the mo-
tion of carriers. As a result of the presence of the broad peak
separated from the Drude contribution, a gap-like feature,
i.e., a pseudogap, emerges at aroundv,0.5t.

For electron doping, it has been discussed18 that the
pseudogap is very sensitive not only toJ but alsot8 and t9:
Increasing the absolute values oft8 / t and t9 / t, the gap in-
creases in energy. Such a pseudogap feature inssvd has been
clearly observed in electron-doped NCCO.10 In Fig. 15(a),
the gap feature is also seen in hole-doped case atx=0.1.
Although the gap feature has not been clearly reported in the
normal state of hole-doped LSCO, a broad peak can be seen
at v,0.5 eV for xø0.06.53 The calculated broad-peak
structure in hole doping probably corresponds to the broad
peak observed experimentally.

At x=0.2, a remarkable difference appears between hole
and electron dopings in Fig. 15: A pseudogap remains in
electron doping accompanied by a peak atv=0.7utu, while it
disappears in hole doping. Since such a gap feature is related
to magnetic excitations as discussed above, the difference
should reflect the difference of magnetic properties. In fact,
AF correlation at x=0.2 behaves differently as already
shown in Fig. 1, where the AF order is expected for electron
doping, while the AF correlation length is very short(smaller
than 2 lattice units) in hole doping. This clearly demonstrates
the fact that charge dynamics is strongly influenced by AF
spin correlation. Atx=0.3, ssvd in electron doping shows
similar behaviors to the hole-doped case. This is reasonable
because the concentration ofx=0.3 is enough to kill AF cor-
relation.

It is also interesting to compare the peak position inssvd
with the gap in the single-particle spectral functionAsk ,vd
discussed in Sec. IV. In electron doping, the values of the gap

FIG. 14. Dependence of the gap energyEgap on t8 for an
electron-dopedN=20 t-t8-t9-J model. t=−1 andJ=0.4. Egap is the
the minimum-energy difference between the electron-removal and
electron-addition states at the noninteracting Fermi momentumkF

0

along thes0,0d-sp ,pd direction. For the electron concentrationx
=0.1, the ratio oft9 / t is kept at −0.12/0.25=−0.48(solid squares)
and 0(open squares). For x=0.2, t9 / t=−0.48(solid circles).

FIG. 15. Optical conductivityssvd for anN=20 t-t8-t9-J model.
(a) Hole doping(t=1, t8=−0.25,t9=0.12, andJ=0.4) and(b) elec-
tron doping(t=−1, t8=0.25, t9=−0.12, andJ=0.4). Dashed, solid,
and dotted lines represent the carrier concentration ofx=0.1, 0.2,
and 0.3, respectively. Delta functions are broadened by a Lorentzian
with a width of 0.1utu. Insets: Thex dependence of the Drude weight
D as well as the integrated total weightK.
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Egap at aroundk =sp /2 ,p /2d are 1.0t and 0.74t for x=0.1
and 0.2, respectively(see Fig. 14). These numbers almost
agree to the peak positions inssvd as shown in Fig. 15(b).
Such an agreement indicates that the pseudogap inssvd and
the gap inAsk ,vd in electron doping have the same origin.
Needless to say, AF spin correlation is the underlying cause
of the gaps.

In the inset of Fig. 15, the Drude weightD as well as the
integrated total weightK defined in(12) is plotted as a func-
tion of x. Both the weights increase withx. Comparing the
hole and electron dopings, we find thatD as well asK is
larger in electron doping than in hole doping. Such an en-
hancement in electron doping, particular forxø0.2, is a con-
sequence of the interplay between the charge motion and
spin background, where the AF spin background makes pos-
sible smooth sublattice-charge flows viat8 and t9.18

B. Charge correlation and d-wave pairing

In order to consider the pairing of carriers, we first show
in Fig. 16 the charge correlation functionCchargesrd that gives
information on attraction between doped carriers. Comparing
hole and electron dopings, we find that the nearest-neighbor
attractionsr =1d is stronger in electron doping than in hole
doping, and vice versa for the long-distance correlationsr
=Î10d, which is irrespective of carrier concentrationx. The
relatively strong nearest-neighbor attraction in electron dop-
ing is easily understood if we consider the fact that the AF
order existing in electron doping is favorable for the pair
formation gaining the exchange energy. For hole doping,
such a force to attract two carriers is weak and thus the
carriers spread over the whole system, leading to the en-
hancement of long-range carrier correlation.

Since the nearest-neighbor charge attraction is strong in
electron doping, short-range pairing of two electrons is also
expected to be strong as compared with hole doping. How-
ever, this does not automatically mean that superconducting
pair-pair correlation is strong. In Fig. 17, we show the
d-wave pairing correlationCpairsrd at the largest distancesr
=Î10d in the N=20 lattice. We find that thed-wave pairing

correlation is strongly enhanced for electron dopingst8
=0.25d at x=0.1, which is consistent with a density-matrix
renormalization-group calculation.36 With increasingx from
0.1 to 0.2, the correlation decreases rapidly. The enhance-
ment of pairing correlation fort8=0.25 predominantly comes
from the enhancement of pairing itself as indicated in Fig.
16. In the momentum space, the strong pairing originates
from the large single-particle spectral weights near the Fermi
level atk =sp ,0d, as shown in Fig. 10. This is easily under-
stood if we express the pairing operatorDi in (17) as
2/Nokscoskx−coskydoss−1dsc̃k,sc̃−k,−s: The d-wave opera-
tor has the largest amplitude atk =sp ,0d and thus the large
single-particle occupation at thisk seen in electron doping at
x=0.1 gives rise to large pairing interaction.

The enhancement ofd-wave pairing correlation in elec-
tron doping is accompanied by an enhancement of AF corre-
lation. We speculate that the AF correlation exceeds the pair-
ing correlation near half filling, i.e., the AF order overcomes
the superconducting order. With increasing electron concen-
tration, AF correlation weakens and finally pairing correla-
tion may become dominant, resulting in a transition from AF
to superconducting order as observed experimentally. Such a
picture may have some connections with recent data for
Pr1−xLaCexCuO4 indicating the coexistence of AF order and
superconductivity in the vicinity of the transition.54

An important point to notice further is that the AF-
superconducting transition may be accompanied by a topol-
ogy change of the Fermi surface from small to large ones. At
the same time, the gap at the Fermi level along the nodal
direction is expected to be closed in order fordx2−y2-wave
superconductivity to be induced. However, in the present cal-
culations, the critical electron concentrationx, where the gap
closessx,0.3d, is higher than experimental values of the
AF-superconducting transitionsx,0.1–0.15d or a quantum
phase transition55 sx=0.165d. The discrepancy may indicate
the presence of additional effects that have not been included
in the presentt-t8-t9-J model: for instance(1) the x depen-
dence of the parameter values, which has been incorporated
into the studies of at-t8-t9-U model,28–32 and (2) the effect

FIG. 16. Charge correlationCchargesrd as a function of the two-
carrier distancer for an N=20 t-t8-t9-J lattice, averaging over
twisted BC. Solid squares: hole doping(t=1, t8=−0.25, t9=0.12,
and J=0.4). Open squares: electron doping(t=−1, t8=0.25, t9=
−0.12, andJ=0.4).

FIG. 17. t8 dependence ofdx2−y2-wave pairing correlation
Cpairsrd at the largest distancer =Î10 for anN=20 t-t8-t9-J lattice.
t=1 and t9=0.12 for t8=−0.25, while t=−1 and t9=−0.12 for t8
=0.25. J=0.4 for both cases.t8=0 corresponds to thet-J model.
Solid squares, circles, and triangles are forx=0.1, x=0.2, and 0.3,
respectively.
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of inhomegeneity, the presence of which has been reported in
local probes such as muon-spin relaxation56 and nuclear
magnetic resonance57,58 experiments. In any case, we may
need to clarify the origin of the discrepancy. This still re-
mains as a future issue.

In hole doping, thed-wave pairing correlation shows
small value up tox=0.2 (seet8=−0.25 in Fig. 17). However,
it is enhanced atx=0.3. This is consistent with a recent the-
oretical study,37 where the enhancement is attributed to the
increase of the occupation number atk =sp ,0d whose posi-
tion approaches the Fermi level.

VI. SUMMARY

In this paper, we have examined the doping dependence
of magnetic and electronic properties in the hole- and
electron-doped cuprates by using the exact diagonalization
technique for thet-t8-t9-J model. In order to reduce finite-
size effects in small-size lattice, twisted BC are introduced
instead of standard periodic BC. For the calculation of cor-
relation functions, we have averaged the results for various
twisted boundary conditions. The single-particle spectral
function has been obtained for all momenta in the Brillouin
zone by changing the twist.

We find that the fact that AF spin correlation remains
strong in electron doping in contrast to the case of hole dop-
ing, which has been obtained under the periodic BC,16,18,19

does not change even if the averaging procedure over the
twist is employed. This confirms asymmetric magnetic prop-
erties in thet-t8-t9-J model. This necessarily leads to a re-
markable electron-hole asymmetry in the dynamical spin
structure factor and two-magnon Raman scattering. The dop-
ing dependence of these quantities in electron doping is
qualitatively consistent with recent experimental data,42,46in-
dicating the justification for the use of thet-t8-t9-J model.

Using the twisted BC, we have also uncovered dramatic
differences in the single-particle spectral function between
hole and electron dopings. In hole doping, the quasiparticle
band forx=0.1 is gapless at the Fermi level along the nodal
s0,0d-sp ,pd direction, but a gapped behavior emerges near
the antinodal region. The Fermi surface map shows a Fermi
arc behavior, consistent with ARPES data in the underdoped
cuprates. It is important to notice that the presence oft8 and
t9 is essential to the Fermi arc. The gap near the antinodal
region disappears atx=0.2. In contrast, the gap appears near
the nodal region in electron doping up tox=0.2. The gap is
found to be correlated with the strength of AF correlation,
indicating that the gap is magnetically driven. In addition to

the gap, an electron pocket is clearly seen at aroundsp ,0d
for x=0.1.

In the optical conductivity, a pseudogap feature clearly
appears in the electron-doped system up tox=0.2 under the
averaging procedure over the twist. The origin of the gap is
attributed to the strong AF correlation in the spin back-
ground. In fact, we find that the pseudogap has the same
magnitude as that in the spectral function along the nodal
direction, confirming the same origin.

Comparing the calculated spectral function and optical
conductivity with recent experimental data,10,14 we find that
the presence of the electron pocket and pseudogap agrees
with the experimental data but only forxø0.15. In particu-
lar, the critical electron concentrationx where the gap closes
is x,0.3 for the present calculation, but this is higher than
experimental values of the AF-superconducting transition
sx,0.1–0.15d or a quantum phase transition55 sx=0.165d.
This discrepancy may indicate the presence of additional ef-
fects that have not been included in the presentt-t8-t9-J
model. We may need to clarify the origin of the discrepancy
but leave this as a future issue.

In terms of pairing of carriers, thed-wave pairing corre-
lation function is examined, and the pairing is found to be
enhanced in the underdoped region of electron-doped system
and also in the overdoped region of hole-doped one, consis-
tent with previous studies under the periodic and open
BC.36,37 In electron doping, AF correlation is also enhanced
in the same concentration. We thus speculate that AF corre-
lation exceeds pairing correlation near half filling, but with
increasing electron concentration AF correlation weakens
and finally pairing correlation may become dominant. Al-
though the electronic states in the normal state of high-Tc
cuprates, including asymmetry between hole and electron
doping, are found to be described well by thet-t8-t9-J model,
the relation of thet-t8-t9-J model to thed-wave supercon-
ductivity in addition to the competition between AF order
and superconductivity in electron doping remains to be re-
solved in the future.
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