Interplay of superconductivity and structural phase transition in the clathrate Ba₆Ge₂₅

H. Q. Yuan,^{1,2,*} F. M. Grosche,^{1,3} W. Carrillo-Cabrera,¹ V. Pacheco,^{1,†} G. Sparn,¹ M. Baenitz,¹

U. Schwarz,¹ Yu. Grin,¹ and F. Steglich¹

¹Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany

²Department of Physics, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China

³Department of Physics, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom

(Received 7 March 2004; revised manuscript received 25 August 2004; published 17 November 2004)

The cubic compound Ba_6Ge_{25} undergoes a structural phase transition around 200 K, below which the electrical resistivity increases abruptly. However, out of this "bad" metallic state ($\rho_0 \approx 1.5 \text{ m}\Omega \text{ cm}$), BCS-like superconductivity occurs at very low temperature ($T_c \approx 0.24 \text{ K}$). By applying hydrostatic pressure, the structural phase transition is suppressed at $p_c \approx 2.8 \text{ GPa}$, but the superconducting transition temperature T_c increases remarkably, reaching a maximum of $T_c \approx 3.8 \text{ K}$ at $p \sim p_c$. To understand these unusual properties, we have measured the upper critical magnetic field H_{c2} for Ba_6Ge_{25} and its isostructural compound $Na_2Ba_4Ge_{25}$ under pressure, from which the density of states at the Fermi energy $N(E_F)$ is determined. It demonstrates that, in Ba_6Ge_{25} , the structural phase transition causes a significant reduction of $N(E_F)$ (by a factor of about 4) and therefore largely weakens superconductivity. Furthermore, the drastic enhancement of T_c under pressure is found to be solely governed by $N(E_F)$.

DOI: 10.1103/PhysRevB.70.174512

PACS number(s): 74.25.Fy, 74.25.Jb, 74.62.Fj, 74.70.Wz

I. INTRODUCTION

In the last decade, there has been an increasing interest in the investigation of the group IV (Si, Ge, Sn) clathrates due to the discovery of superconductivity¹ and magnetism² in these compounds, and their potential applications as thermoelectric³ and low-compressibility⁴ materials.

Recently, a new type of superconducting clathrates, Ba₆Ge₂₅ and Na₂Ba₄Ge₂₅, was reported.⁵ Ba₆Ge₂₅ belongs to the clathrate-IX structure type (Pearson symbol cP124).^{6,7} It is characterized by a three-dimensional (3D) chiral framework of condensed Ge₂₀ pentagonal dodecahedra (pdods) embedded in a 3D-channel labyrinth. Each Ge₂₀ is centered by a Ba atom (Ba1) while the other Ba atoms (Ba2 and Ba3) occupy the cavities in the zeolite-like labyrinth created by the dense piling of pdods. There are two Ba1 and three Ba2 sites as well as one Ba3 site per formula unit. Na₂Ba₄Ge₂₅ is isostructural to Ba₆Ge₂₅, formed by randomly substituting 2/3 of the Ba2 sites in Ba_6Ge_{25} with $Na.^8$ According to the Zintl-Klemm model, one can express Ba₆Ge₂₅ as $(Ba^{2+})_6((3b)Ge^{1-})_8((4b)Ge^{0+})_{17}(4e^{-})$ and $Na_2Ba_4Ge_{25}$ as $(Na^{1+})_2(Ba^{2+})_4((3b)Ge^{1-})_8((4b)Ge^{0+})_{17}(2e^{-})$. This estimation gives four and two excess electrons per formula unit of Ba₆Ge₂₅ and Na₂Ba₄Ge₂₅, respectively. Four formula units constitute a cubic cell with a lattice parameter of a=14.5564(2) Å for Ba₆Ge₂₅ and of a=14.4703(2) Å for Na₂Ba₄Ge₂₅.

Ba₆Ge₂₅ exhibits rich properties at low temperatures.^{5,9} At ambient pressure, Ba₆Ge₂₅ undergoes a two-step structural phase transition at temperatures of $T_{S1} \approx 215$ K and $T_{S2} \approx 180$ K due to the Ge–Ge bond breaking combined with the displacement of neighboring Ba atoms to the split positions.¹⁰ The structural transition is accompanied by drastic changes of both transport and thermodynamic properties.⁹ The magnetic susceptibility is negative over the whole temperature range and decreases steeply at the structural phase transition. Upon cooling down, the electrical resistivity $\rho(T)$ exhibits metallic behavior at high temperature, but increases abruptly at T_{S1} and subsequently again at T_{S2} . It slowly rises with further decreasing temperature and approaches a saturation value of $\rho_0 \approx 1.5 \text{ m}\Omega$ cm below 10 K. Surprisingly, BCS-like superconductivity occurs at $T_c \approx 0.24$ K out of the resulting bad metal.⁵ Upon applying pressure, the structural phase transition is shifted to lower temperature while T_c increases drastically. T_c reaches a maximum value of $T_c \approx 3.8$ K at a critical pressure of $p_c \approx 2.8$ GPa, where the structural distortion is completely suppressed and the system displays metallic behavior above T_c , resembling the case of Na₂Ba₄Ge₂₅ at $p \ge 0.5$

To understand these fascinating phenomena observed in Ba₆Ge₂₅, here we analyze the possible reasons for the enhancement of T_c under pressure. For comparison, the pressure dependence of T_{S1} , T_{S2} , and T_c for Ba₆Ge₂₅, previously presented in Ref. 5, is replotted as a function of lattice parameter a in Fig. 1 together with that of $Na_2Ba_4Ge_{25}$. The relationship between pressure and lattice parameter for Ba₆Ge₂₅ was obtained from high pressure x-ray diffraction experiments at ambient temperature employing a synchrotron source, which gives a volume bulk modulus of B_0 =44(2) GPa and its pressure derivative of B'_0 =5.8(8). As an approximation, the same bulk modulus was also used for Na₂Ba₄Ge₂₅. Contrary to Ba₆Ge₂₅, Na₂Ba₄Ge₂₅ does not undergo a structural phase transition. From Fig. 1, one can see that the critical lattice parameter a_c of Ba₆Ge₂₅ is much smaller than the ambient-pressure lattice parameter of Na₂Ba₄Ge₂₅, indicating that the occurrence of the structural phase transition is not simply governed by volume. In light of this, it is surprising to observe that T_c of these two compounds is equal at $a \approx 14.47$ Å, which is the ambientpressure lattice parameter of Na₂Ba₄Ge₂₅. This coincidence seems more accidental rather than being due to a physical effect. As shown in Fig. 1, Ba_6Ge_{25} has a much lower T_c than

FIG. 1. The transition temperature vs lattice parameter (pressure) phase diagram for Ba₆Ge₂₅. For the calculation of the lattice parameters see text. The values of T_c are multiplied by a factor of 20. For a better comparison, $T_c(a)$ of Na₂Ba₄Ge₂₅ (\Box) at ambient pressure is marked by a vertical dashed line, while the dependence of T_c on the lattice parameter a is represented by the dotted line.

Na₂Ba₄Ge₂₅ at ambient pressure. In Ba₆Ge₂₅, the specific heat and magnetic susceptibility give a bulk superconducting transition at $T_c \simeq 0.14$ K and the resistivity shows T_c $\simeq 0.24$ K. By comparison, Na₂Ba₄Ge₂₅ demonstrates a much higher T_c (~0.84 K) from both specific heat and resistivity at ambient pressure. Correspondingly, a higher Sommerfeld coefficient γ is obtained in Na₂Ba₄Ge₂₅ (\approx 33.3 mJ/ mol K²) than in Ba₆Ge₂₅ (\approx 21.5 mJ/mol K²), revealing that the electronic density of states $N(E_F)$ in Na₂Ba₄Ge₂₅ is higher than in Ba₆Ge₂₅. On the other hand, once the structural transition (T_{S1} , T_{S2} in Fig. 1) of Ba₆Ge₂₅ is suppressed by applying pressure, these two compounds behave very similarly both in the superconducting and in the normal state. However, Ba_6Ge_{25} now shows a much higher T_c than $Na_2Ba_4Ge_{25}$. The relatively larger T_c in Ba_6Ge_{25} at elevated pressure may be understood as follows: (1) Ba₆Ge₂₅ has a nominally higher charge-carrier concentration than Na₂Ba₄Ge₂₅ and (2) Ba may have a stronger hybridization with the Ge states than Na as discussed for the type-I clathrates.¹¹ All these effects may enhance the density of states $N(E_F)$ and give rise to a higher T_c in Ba₆Ge₂₅.

In Fig. 2, T_c of Ba₆Ge₂₅ is plotted as a function of the residual resistivity ρ_0 . Remarkably, T_c can be nicely fitted by an exponential decrease of T_c =7.5 K $e^{-2(m\Omega cm)^{-1}\rho_0}$ (solid line in Fig. 2). According to the BCS formula,

$$T_c \propto \Theta_D \exp[-1/N(E_F)V], \qquad (1)$$

where Θ_D is the Debye temperature and V is the pairing potential arising from the electron-phonon interaction. Comparing Eq. (1) to the fitting function shown in Fig. 2, one finds that $\rho_0 \sim 1/N(E_F)$ if V and Θ_D are independent of pressure. This latter assumption is corroborated by the pressure dependence of T_c for Na₂Ba₄Ge₂₅. In Ba₆Ge₂₅, the residual resistivity ρ_0 strongly decreases with increasing pressure, suggesting a corresponding increase of $N(E_F)$. It is noted that the strong decrease of the residual resistivity ρ_0 under pres-

FIG. 2. T_c vs the residual resistivity ρ_0 for Ba₆Ge₂₅. The solid line is an exponential fit to the data points.

sure is not due to effects like, e.g., grain-boundary scattering in the polycrystalline samples because applying pressure hardly changes the electrical resistivity at room temperature.⁵

From the above discussion, one can see that the variation of $N(E_F)$ as a function of pressure may govern the stability of superconductivity in Ba₆Ge₂₅. The disorder resulting from the structural transition may smear out the density of states at the Fermi energy, which causes a significant reduction of $N(E_F)$. Recently, electronic band-structure calculations for Ba₆Ge₂₅ and Na₂Ba₄Ge₂₅, using the linear muffin-tin orbital method within the local-density approximation,¹² have shown that the barium states strongly contribute to $N(E_F)$. A sharp peak in the density of states is found close to the Fermi level in the ideal Ba_6Ge_{25} (i.e., all the Ba atoms are at their average positions), but this peak is split while shifting the Ba2 atoms towards one of the split positions. The reduction of $N(E_F)$ may also explain the structural-transition induced anomalies on the thermodynamic properties such as the magnetic susceptibility. To provide experimental evidence in support of these speculations, in this paper we study the upper critical field of Ba₆Ge₂₅ and Na₂Ba₄Ge₂₅ under hydrostatic pressure, from which the pressure dependence of the density of states $N(E_F)$ is inferred. It demonstrates that $N(E_F)$ of Ba_6Ge_{25} plays a governing role for the enhancement of T_c under pressure, increasing by a factor of about 4 as the structural distortion is suppressed.

II. EXPERIMENTAL METHODS

Polycrystalline samples of Ba₆Ge₂₅ and Na₂Ba₄Ge₂₅ have been prepared by a high frequency melting technique in an argon protective atmosphere.⁹ Powder x-ray diffraction and metallography identify them as being single phase. It is noted that the samples measured here are not the same as those studied before in Ref. 5. Since the density of states at the Fermi energy is simply proportional to the Sommerfeld coefficient γ , measurements of heat capacity under pressure may provide direct information about $N(E_F)$. However, Ba₆Ge₂₅ has a small volume specific heat, which prevents it from being resolved in the experiments using a standard piston-cylinder pressure cell. Therefore, we have chosen an alternative approach to estimate $N(E_F)$, namely by measuring the upper critical magnetic field of the superconductor (H_{c_2}).

FIG. 3. The temperature dependence of the electrical resistivity $\rho(T)$ for Ba₆Ge₂₅ at various magnetic fields: (a) p=0.74 GPa and (b) p=2.73 GPa. (c) The upper critical field $H_{c2}(T)$ for p=0.1,0.74,1.86,2.6, and 2.73 GPa. When the applied field exceeds $H_{c2}(T)$, the entire specimen reverts to the normal state. The thick lines illustrate the linear fits to the data near T_c .

The electrical resistivity $\rho(T)$ has been measured by using a low power AC four-terminal method in a dilution refrigerator. To reach high pressure, we employ a CuBe/MP35N nonmagnetic hydrostatic clamp cell filled with a 1:1 mixture of iso-pentane and *n*-pentane as pressure transmitting medium. The relatively large volume of this cell allows simultaneous measurements on multiple samples up to 3 GPa, which offers an opportunity to study the two different compounds under the same conditions. The pressure was determined within an error of 0.05 GPa at low temperature from the superconducting transition temperature of Sn. Absolute resistivity values for the small crystals were obtained by extrapolating the high pressure, room temperature data to zero pressure to match the ambient pressure, room temperature resistivity measured on large reference crystals.

III. RESULTS AND DISCUSSION

In Fig. 3, we present the results of the upper critical magnetic field for Ba_6Ge_{25} . As an example, the temperature dependence of the resistivity $\rho(T)$ for p=0.74 GPa and 2.73 GPa at various magnetic fields is shown in Figs. 3(a) and 3(b), respectively. The broad superconducting transition at low pressures might be due to sample inhomogeneities. One can see that the superconducting transitions are rapidly suppressed by applying a magnetic field. In Fig. 3(c), the critical field H_{c2} is plotted as a function of temperature for various pressures. The thick lines represent the linear fits for the data

FIG. 4. Values of the initial slope H'_{c2} vs pressure for Ba₆Ge₂₅ (\blacktriangle) and Na₂Ba₄Ge₂₅ (\Box).

near T_c . One can see that all the thick lines are nearly parallel, indicating a weak pressure dependence of the initial slope of the upper critical field. Similar behavior of H_{c2} is also observed in Na₂Ba₄Ge₂₅.

The values of the initial slope of the upper critical field $H'_{c2} = (-dH_{c2}/dT)_{Tc}$ are shown in Fig. 4 for Ba₆Ge₂₅ and Na₂Ba₄Ge₂₅. Evidently, H'_{c2} of Na₂Ba₄Ge₂₅ is nearly pressure independent between 1 and 3 GPa. By applying pressure to suppress the structural distortion in Ba₆Ge₂₅, T_c undergoes a drastic enhancement. However, no significant change of H'_{c2} is observed in Ba₆Ge₂₅ studied here exhibits a relatively small value of $H'_{c2} \approx 1.5$ T/K at p=0.1 GPa in comparison with the previous results measured at ambient pressure $(H'_{c2} \approx 2.9 \text{ T/K})$.⁵ Since in polycrystalline samples the grain boundaries and the grain geometries may affect the critical current and the penetration depth, respectively, the difference in the absolute values of H'_{c2} might be mainly due to the different grain geometries in the two samples measured.

Based on the evaluation of the Ginzburg-Landau parameters from the BCS-Gorkov equations, a few superconducting and normal-state parameters can be estimated from the measurements of the upper critical magnetic field.^{13,14} Within the BCS theory, the initial slope of the upper critical field can be expressed by

$$H_{c2}' = - \left. \frac{dH_{c2}}{dT} \right|_{T_c}$$

= $R(\lambda_{tr}) \left[\left(1.18 \times 10^{35} \frac{\text{T m}^2 \text{ K}^2}{\text{J}^2} \right) \frac{\gamma^2 T_c}{S^2} + \left(4490 \frac{\text{T m}^2 \text{ K}}{\Omega \text{J}} \right) \gamma \rho_0 \right].$ (2)

Here *S* is the Fermi surface area on which the Cooper pairs are formed; $R(\lambda_{tr})$ varies monotonously between R(0)=1 in the dirty limit and $R(\infty)=1.17$ in the clean limit. In the dirty limit, the second term in Eq. (2) dominates and H'_{c2} can be written as¹³

$$H'_{c2}(\text{dirty}) = \left(4490 \frac{\text{T m}^2 \text{ K}^2}{\Omega \text{J}}\right) \gamma \rho_0.$$
(3)

Then γ can be estimated from the measurements of ρ_0 and H'_{c2} according to Eq. (3).

FIG. 5. The pressure dependence of the coherence length ξ (a), the mean-free path *l* (b), and the ratio l/ξ (c) for Ba₆Ge₂₅. The relation of $l/\xi \ll 1$ indicates that Ba₆Ge₂₅ is in the dirty limit even at high pressures.

The electronic density of states $N(E_F)$ per formula unit can be calculated from

$$\gamma = \frac{\pi^2 k_B^2}{3} \frac{N(E_F)}{V_0},$$
 (4)

where V_0 is the cell volume per formula unit.

At ambient pressure, it has been demonstrated that Ba_6Ge_{25} is a bad metal with a very short mean-free path $(l \sim 3 \text{ Å})$.⁵ In order to confirm the feasibility of adopting the dirty limit in Ba_6Ge_{25} and $Na_2Ba_4Ge_{25}$ under pressure, we first examine the Ginzburg-Landau coherence length ξ as compared with the electronic mean-free path l, which are given by⁵

$$\xi^2 = 4.76 \times 10^4 (\text{T Å}^2) [H'_{c2}(\text{T/K}) \cdot T_c(\text{K})]^{-1}$$
(5)

and

$$l = 1200[k_F^2(\text{\AA}^{-2}) \cdot \rho_0(\mu \Omega \text{ cm})]^{-1}(\text{\AA}).$$
 (6)

Here, k_F is the wave vector at the Fermi surface. It is estimated here by assuming a spherical Fermi surface as for free electrons, which can be written as

$$k_F = (3\pi^2 n)^{1/3},\tag{7}$$

where *n* is the electron density. The Hall-effect measurements showed that the charge-carrier concentration of Ba_6Ge_{25} at low temperature is close to the nominal value derived from the Zintl rule, and in the case of $Na_2Ba_4Ge_{25}$ the experiment gives a higher electron concentration.⁹ For simplicity, we take the nominal value of *n* to estimate k_F here, which gives $k_F = 0.54(\text{\AA})^{-1}$ for Ba_6Ge_{25} and 0.43 Å⁻¹ for $Na_2Ba_4Ge_{25}$. Under hydrostatic pressure, we assume that it remains constant.

Figures 5 and 6 present the pressure dependences of the mean free path *l*, the coherence length ξ , and its ratio l/ξ for Ba₆Ge₂₅ and Na₂Ba₄Ge₂₅, respectively. Both compounds exhibit $l \ll \xi$ at all pressures [see Fig. 5(c) and Fig. 6(c)], suggesting that the samples are in the dirty limit and one can employ Eq. (3) to calculate γ from ρ_0 and H'_{c2} . The corresponding density of states $N(E_F)$ can then be calculated from Eq. (4). Comparing Fig. 5 with Fig. 6, one can see that the

FIG. 6. The pressure dependence of the coherence length ξ (a), the mean-free path *l* (b), and the ratio l/ξ (c) for Na₂Ba₄Ge₂₅. The relation of $l/\xi \ll l$ indicates that Na₂Ba₄Ge₂₅ is in the dirty limit.

compounds Ba₆Ge₂₅ and Na₂Ba₄Ge₂₅ display an opposite pressure dependence of *l* and ξ . This distinct behavior may originate from the structural transition in Ba₆Ge₂₅. When the structural transition vanishes at $p_c \sim 2.7$ GPa, the mean-free path of Ba₆Ge₂₅ approaches that of Na₂Ba₄Ge₂₅.

In Fig. 7, the pressure dependence of the obtained density of states $N(E_F)$ is shown for Ba₆Ge₂₅ and Na₂Ba₄Ge₂₅. As expected from the analysis previously made in the Introduction, $N(E_F)$ of Ba₆Ge₂₅ is strongly enhanced under pressure, increasing by a factor of about 4 at $p \sim p_c$. For the undistorted Ba₆Ge₂₅, $N(E_F, p)$ seems to saturate, which is again similar to the case of Na₂Ba₄Ge₂₅ but with a larger value.

It has been argued before that the density of states $N(E_F)$ might be closely associated with the residual resistivity ρ_0 in Ba₆Ge₂₅ from the analysis of T_c and ρ_0 . In Fig. 8(a), we plot ρ_0 against the experimentally obtained $1/N(E_F)$ for Ba₆Ge₂₅. It shows that all the data points fall on a straight line, confirming that $\rho_0 \sim 1/N(E_F)$ in the distorted Ba₆Ge₂₅. This is similar to the case of the widely studied A15 compounds (see, e.g., Ref. 15). Figure 8(b) shows T_c versus $1/N(E_F)$ for Ba₆Ge₂₅, which can be fitted by an exponential decay [T_c

FIG. 7. The pressure dependence of the density of states $N(E_F)$ for Ba₆Ge₂₅ (\blacktriangle) and Na₂Ba₄Ge₂₅ (\square). $N(E_F)$ of Ba₆Ge₂₅ is enhanced by a factor of about 4 as its structural transition is suppressed at $p_c \sim 2.7$ GPa, whereas Na₂Ba₄Ge₂₅ shows a weak decrease of $N(E_F)$ under pressure.

FIG. 8. The residual resistivity ρ_0 (a) and the superconducting transition temperature T_c (b) vs $1/N(E_F)$ for Ba₆Ge₂₅, which shows $\rho_0 \sim 1/N(E_F)$ and $T_c=11$ K exp $(-N_0/0.053N(E_F))$ where $N_0=1$ state/eV.

=11 K exp $(-N_0/0.053N(E_F))$] where N_0 =1 state/eV. All these results suggest that the density of states at the Fermi energy $N(E_F)$ governs the drastic enhancement of T_c under pressure in Ba₆Ge₂₅ and that the structural transition results in a large reduction of $N(E_F)$. Other factors have minor effect on the superconductivity of Ba₆Ge₂₅.

The inverse relationship of $\rho_0 \sim 1/N(E_F)$ can be qualitatively understood by considering a sharp structure in the density of states near E_F with a width ΔW . Actually, recent band-structure calculations have revealed a peak of $N(E_F)$ in Ba₆Ge₂₅.¹² Sharp structures at the Fermi level may effectively be broadened by the strong scattering present in the bad metals such as Ba₆Ge₂₅. It is argued¹⁵ that N(E) must be averaged over ΔE , which becomes important when the uncertainty in energy ΔE approaches ΔW . ΔE is related to the quasiparticle lifetime. According to the uncertainty principle, one has

$$\Delta E \Delta t = \Delta E \cdot l/v_F = \hbar, \qquad (8)$$

where v_F refers to the Fermi velocity. In the dirty limit as observed in our compounds, l is quite small and hence ΔE becomes large. Therefore, the smearing of $N(E_F)$ becomes very important, leading to a significant decrease of $N(E_F)$. Since ΔE goes as 1/l, it means $\Delta E \sim \rho_0$. If one assumes a constant number of states near E_F , i.e., $\Delta E \cdot N(E_F)$ = constant, then one has $\rho_0 \sim 1/N(E_F)$.

Measurements of the thermopower⁹ and the optical reflectivity¹⁶ at ambient pressure appear to contradict this interpretation, revealing that below the structural phase transition the effective mass of electrons increases by a factor of about 4, but the relaxation time remains constant. These results are incompatible with the superconducting properties, the reason of which is still unclear. One possibility may arise from the charge-carrier concentration n(T). Very recently, single-crystal x-ray diffraction measurements suggest that the number of excess electrons is reduced by $1.8e^{-}$ per formula unit at the structural phase transition due to the modification of the Ge bonds.¹⁰ In the initial analysis of the thermopower⁹ and the optical reflectivity,¹⁶ it was assumed that n(T) decreases monotonically upon cooling down. The stepwise reduction of the charge-carrier concentration at the structural phase transition would now make the analysis of the thermopower9 and the optical reflectivity16 consistent with our results.

IV. CONCLUSION

The remarkable pressure dependences of the structural phase transition and superconductivity observed in Ba₆Ge₂₅ are discussed in comparison with its isostructural variant $Na_2Ba_4Ge_{25}$. To understand the huge enhancement of T_c in Ba₆Ge₂₅ when its structural distortion is prevented by pressure, we have investigated the pressure dependence of the density of states $N(E_F)$ by measuring the upper critical magnetic field. It is shown that both compounds are in the dirty limit even under pressure and that the slope of the upper critical field H'_{c2} hardly depends on pressure. In Ba₆Ge₂₅ the density of states $N(E_F)$ increases with increasing pressure (by a factor of about 4 up to $p \sim p_c$), but Na₂Ba₄Ge₂₅ shows a slight decrease of $N(E_F)$ under pressure. Moreover, we found a relationship of $\rho_0 \sim 1/N(E_F)$ for Ba₆Ge₂₅. All these suggest that the structural phase transition in Ba_6Ge_{25} , caused by the breaking of some Ge-Ge bonds, results in a significant reduction of $N(E_F)$. The pressure dependence of T_c is found to be governed by $N(E_F)$, providing a physical picture to describe the unusual behavior observed in Ba_6Ge_{25} .

ACKNOWLEDGMENTS

The authors acknowledge the helpful discussions with J. Mydosh, S. Paschen, J. Sichelschmidt, S. Yamanaka, and I. Zerec.

- *Present address: Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801. Electronic address: yuan@mrl.uiuc.edu
- ¹H. Kawaji, H. O. Horie, S. Yamanaka, and M. Ishikawa, Phys. Rev. Lett. **74**, 1427 (1995).
- [†]Present address: Instituto de Fisica, Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla 72570, México.
- ²B. C. Sales, B. C. Chakoumakos, R. Jin, J. R. Thompson, and D. Mandrus, Phys. Rev. B **63**, 245113 (2001); S. Paschen, W. Carrillo-Cabrera, A. Bentien, V. H. Tran, M. Baenitz, Yu. Grin,

and F. Steglich, ibid. 64, 214404 (2001).

- ³G. S. Nolas, G. A. Slack, and S. B Schujman, in *Semiconductors and Semimetals*, edited by T. M. Tritt (Academic, San Diego, 2001), Vol. 69, p. 255.
- ⁴ A. San-Miguel, P. Kéghélian, X. Blase, P. Mélinon, A. Perez, J. P. Itié, A. Polian, E. Reny, C. Cros, and M. Pouchard, Phys. Rev. Lett. **83**, 5290 (1999).
- ⁵F. M. Grosche, H. Q. Yuan, W. Carrillo-Cabrera, S. Paschen, C. Langhammer, F. Kromer, G. Sparn, M. Baenitz, Yu. Grin, and F. Steglich, Phys. Rev. Lett. **87**, 247003 (2001); H. Q. Yuan, F. M. Grosche, W. Carrillo-Cabrera, S. Paschen, C. Langhammer, G. Sparn, M. Baenitz, Yu. Grin, and F. Steglich, High Press. Res. **22**, 147 (2002).
- ⁶W. Carrillo-Cabrera, J. Curda, H. G. von Schnering, S. Paschen, and Yu. Grin, Z. Kristallogr. - New Cryst. Struct. **215**, 207 (2000).
- ⁷H. Fukuoka, K. Iwai, S. Yamanaka, H. Abe, K. Yoza, and L. Häming, J. Solid State Chem. **151**, 117 (2000); S. J. Kim, S. Hu, C. Uher, T. Hogan, B. Huang, J. D. Corbett, and M. G. Kanatzidis, *ibid.* **153**, 321 (2000).

- ⁸W. Carrillo-Cabrera, J. Curda, K. Peters, S. Paschen, Yu. Grin, and H. G. von Schnering, Z. Kristallogr. - New Cryst. Struct. 216, 183 (2001).
- ⁹S. Paschen, V. H. Tran, M. Baenitz, W. Carrillo-Cabrera, Yu. Grin, and F. Steglich, Phys. Rev. B 65, 134435 (2002).
- ¹⁰W. Carrillo-Cabrera, H. Borrmann, S. Paschen, M. Baenitz, F. Steglich, and Yu. Grin (unpublished).
- ¹¹S. Saito and A. Oshiyama, Phys. Rev. B **51**, 2628 (1995); K. Moriguchi, M. Yonemura, A. Shintani, and S. Yamanaka, *ibid.* **61**, 9859 (2000).
- ¹²I. Zerec, A. Yaresko, P. Thalmeier, and Yu. Grin, Phys. Rev. B 66, 045115 (2002).
- ¹³T. P. Orlando, E. J. McNiff, Jr., S. Foner, and M. R. Beasley, Phys. Rev. B **19**, 4545 (1979).
- ¹⁴N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).
- ¹⁵H. Wiesmann, M. Gurvitch, A. K. Ghosh, H. Lutz, O. F. Kammerer, and M. Strongin, Phys. Rev. B **17**, 122 (1978).
- ¹⁶J. Sichelschmidt, V. Voevodin, S. Paschen, W. Carrillo-Cabrera, Yu. Grin, and F. Steglich, Acta Phys. Pol. B **34**, 613 (2003).