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We argue that the shape of the dispersion along the nodal and antinodal directions in the cuprates can be
understood as a consequence of the interaction of the electrons with collective spin excitations. In the normal
state, the dispersion displays a crossover at an energy where the decay into spin fluctuations becomes relevant.
In the superconducting state, the antinodal dispersion is strongly affected by thesp ,pd spin resonance and
displays anS shape whose magnitude scales with the resonance intensity. For nodal fermions, relevant spin
excitations do not have resonance behavior, rather they are better characterized as a gapped continuum. As a
consequence, theS shape becomes a kink, and superconductivity does not affect the dispersion as strongly.
Finally, we note that optical phonons typically lead to a temperature-independentSshape, in disagreement with
the observed dispersion.
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I. INTRODUCTION

Angle resolved photoemission(ARPES) experiments are
valuable sources of information about the shape of the Fermi
surface in the cuprates and the frequency, momentum, and
temperature dependence of the electron self-energy. The sub-
ject of this paper is an analysis of the dispersion along vari-
ous momentum cuts. These dispersions have been obtained
by several groups1–10via high-precision measurements of the
momentum distribution curves(MDCs), by which the spec-
tral function is obtained at a given energy by making scans
along directions normal to the Fermi surface. The spectral
function Ask ,vd=s1/pduIm Gsk ,vdu is related to the self-
energySksvd as

Ask,vd =
1

p

Sk9svd
fv − ek − Sk8svdg2 + fSk9svdg2 . s1d

Near the Fermi surface,ek <vFskFdsk'−kFd, wherevFskFd is
the bare value of the velocity. There are several reasons(both
theoretical and experimental) to believe that the self-energy
weakly depends on the value ofk' normal to the Fermi
surface, and can be approximated asSksvd<SkF

svd. For a
given kF specified by a cut, the MDC spectral function
Ask' ,v=constd is then a Lorentzian centered atvFskFdsk'

−kFd=v−SkF
svd with a half width at half maximum

(HWHM) equal to SkF
9 svd /vFskFd (Ref. 3). In a generic

Fermi liquid, the self-energy is linear inv at the lowest
energies:SkF

8 svd=−lkF
v. The position of the MDC peak

then determines the renormalized Fermi velocityvF
* =vF / s1

+lkF
d. At higher energies,l becomes frequency dependent,

and the dispersion deviates from the linear form.
The MDC data have revealed several characteristic fea-

tures of the dispersion that need to be explained:
(a) In the normal state, the dispersion along both the nodal

and antinodal directions shows a relatively smooth crossover
from a linear behavior at small binding energies to a more

steep behavior above roughly 50-70 meV. This effect has
been observed in Bi2212,1–5,8 Bi2201,4,8 Bi2223,8

NaxCCOC,6 and LSCO.4,7 In the last case, the crossover is
sharper and more resembles a kink.

(b) The renormalized Fermi velocityvF
* along the nodal

direction weakly depends on doping7 and in Bi2212 equals
1.6 eV Å.3,7 At the same time, at high energies, the disper-
sion is strongly doping dependent, becoming steeper with
underdoping.5,7

(c) In the superconducting state, the dispersion along the
antinodal direction develops anS shape,11 with a “negative”
dispersion between 60 and 80 meV. This feature develops
with decreasing temperature in an order-parameter-like fash-
ion, with an onset temperature atTc for overdoped samples,
and somewhat aboveTc for underdoped samples.8,10

(d) The dispersion along the nodal direction does not de-
velop anS shape belowTc. Instead, in the superconducting
state the crossover gets sharper, with a kinklike feature near
70 meV developing in Bi2212(Refs. 2–5 and 8) and Bi2223
(Ref. 8). This extra “sharpness” has a temperature depen-
dence similar to that of the antinodal dispersion mentioned
above.5 In Bi2201 and LSCO, on the other hand, the nodal
dispersion does not change much between the normal and
superconducting states.4,8

(e) The high-energy nodal dispersion never recovers to the
bare dispersion. It remains linear to the highest binding en-
ergy studied,6 with an interpolation to ak point at zero en-
ergy displaced well inside the Fermi surface.

Theoretical scenarios proposed to explain the data differ
primarily on whether the electron-electron or the electron-
phonon interaction is responsible for the observed behavior.
In the electron-electron scenario, the crossover from a linear
dispersion at the lowest energies to a more steep dispersion
at higher energies has been identified12 with the crossover
from Fermi-liquid to non-Fermi-liquid behavior. In the su-
perconducting state, theS-shape dispersion along the antin-
odal direction has been associated11,13–15with the interaction
with the sp ,pd spin exciton, which belowTc emerges at a
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frequencyvres,2D due to a feedback of the pairing on the
spin susceptibility. The interaction with the exciton gives rise
to a S8svd that strongly increases and then rapidly drops as
v approachesv0=D+vres. This gives rise to the observed
S-shape dispersion. In optimally doped Bi2212, bothD and
vres are close to 40 meV,16 i.e., v0,80 meV. The magni-
tude of theS-shape piece is stronger foruvu,v0, since for
uvu.v0, S9 rapidly increases. Both the value ofv0 and the
asymmetry of the S-shape dispersion agree with the
data.8,10,11

For nodal fermions, scattering byq0=sp ,pd shifts the
nodal Fermi point to an energy about 0.7 eV aboveEF. This
energy is too high to expect any appreciable effect on the
low-energy dispersion. Still, Eschrig and Norman15 argued
that the kink near 70 meV can be explained by the interac-
tion with the spin resonance, as the resonance has a finite
momentum width aroundsp ,pd.17 They used a phenomeno-
logical form of the spin susceptibility with a sharpd function
in frequency atvres and a Lorentzian in momentum space
with a width of 2 lattice constants, with the momentum
smearing giving rise to resonance scattering between the
node and other Fermi surface points. But a good description
of the nodal fermion spectrum required the inclusion of a
gapped continuum in the spin excitation spectrum, which
acts to smear theS shape into a kink, and also gives rise to
the linear v behavior in ImS observed at higher binding
energies.

The electron-phonon scenario for the dispersion was put
forward in Ref. 4. The key difference with the electron-
electron scenario is in the interpretation of the normal state
ARPES data: Ref. 4 argued that there is a sharp kink(rather
than a crossover) in the dispersion in the normal state, and
that the kink energy is about the same in all materials studied
(LSCO, Bi2201, and Bi2212). They further argued that the
kink effect is rather isotropic in the Brillouin zone(in dis-
agreement with other work3,8,10). They speculated that this
similarity implies that superconductivity plays a secondary
role in the phenomenon, and that the features in the disper-
sion can be reproduced by coupling an electron to a bosonic
mode unrelated to superconductivity. They suggested a
sp ,0d optical phonon with an energy of 55 meV(Ref. 18) as
the best candidate.

In this paper, we distinguish between these two possibili-
ties and argue in favor of a spin-fluctuation scenario. We first
analyze the spin-fluctuation scenario in more detail. We ar-
gue that the spin resonance scattering is effective in scatter-
ing antinodal fermions near the Fermi energy, but is not ef-
fective for nodal fermions since the bosonic momenta which
connect a nodal point with other points on the Fermi surface
are far removed fromsp ,pd. Rather, the most effective low-
energy scattering for a nodal fermion is to the antinode,
where the density of states has a singularity. This scattering
gives rise to a kink in the self-energy of a nodal fermion at
,2D, which generates a kink in the dispersion at the same
energy. We find that the resonance scattering emerges away
from the nodal direction, and the magnitude of the resulting
S-shape dispersion progressively increases as the antinode is
approached.10

We then argue that the interaction with an Einstein pho-
non gives rise to a temperature-independentS-shape disper-

sion for all cuts normal to the Fermi surface. This is difficult
to reconcile with both the antinodal dispersion, for which the
S shape is present but only emerges belowTc, and the nodal
dispersion, which does not display anS-shape form at any
temperature.

II. MAGNETIC SCATTERING

In the magnetic scenario, the fermionic self-energy origi-
nates from the strong spin component of the electron-
electron interaction in the particle-hole channel and can be
viewed as coming from scattering by collective spin fluctua-
tions. To lowest order, the corresponding self-energy is given
by

SkF
svd = −

3igs
2

8p3 E d2q dV GkF+q
0 sv + Vdxssq,Vd, s2d

where gs is the spin-fermion coupling. HereG0 is the
bare Green’s function(in the normal state,G0sk ,vd
=1/fv−vFskFdsk'−kFdg, andxssq ,vd is the dynamical spin
susceptibility for which one has

xs
−1sq,Vd = xs

−1sqd − PqsVd, s3d

where xssqd is the static part of the susceptibility that is
believed to be peaked at or near the antiferromagnetic mo-
mentum q0=sp ,pd, and PqsVd [subject toPqs0d=0] ac-
counts for the spin dynamics and is proportional to the dy-
namical part of the full particle-hole bubble. For aq that
connects nondiagonal points on the Fermi surface, the polar-
ization operator has the form19

PqsVd = io
m

gq

2
E

−`

`

dvF1 −
D+D− + v+v−

Îv+
2 − D+

2Îv−
2 − D−

2G . s4d

Herev±=v±V /2 andD±=Dskm±q /2d are the values of the
d-wave gap at the pointskm±q /2, which are simultaneously
on the Fermi surface, the summationm being over a discrete
set of these points. The prefactorgq depends on the coupling
gs and the angle between the Fermi velocities atkm±q /2.12

In principle, the pairing gapD depends on frequency, but this
dependence is not essential for our purposes and we neglect
it for clarity.

A. Normal state

1. Polarization operator

In the normal stateD=0, andPqsVd is purely imaginary:
PqsVd= igquVu. This is the expected result as onceq is such
that twok points separated byq can be simultaneously put
on the Fermi surface, the polarization bubble contains a Lan-
dau damping term. This term generally has the form
i uVu /ÎsvFqd2−V2 but in our caseq is finite andvFq well
exceedsV. The true polarization bubble also contains a
frequency-independent piece, but for a finiteq, this piece
comes from fermions with energies comparable to the band-
width and is already incorporated intoxs

−1sqd. Note that this
separation is consistent with a Kramers-Kronig(KK ) analy-
sis: a KK transformation of ImPsVd=gV does not produce

A. V. CHUBUKOV AND M. R. NORMAN PHYSICAL REVIEW B 70, 174505(2004)

174505-2



a universal piece of RePsVd independent of the upper limit
of the frequency integration.

2. Fermionic self-energy

Substituting the relaxationalxssq ,Vd into the self-energy,
introducing a smallq via q→q+q0 and linearizing the fer-
mionic dispersion near the Fermi surface, we obtain from Eq.
(2)

SN,kF
svd = − i

3gs
2

8p3 E dqidq'dV

3
1

v + V − vFskF + q + q0dq' + idv+V

3
1

xs
−1sq + q0d − igq+q0

uVu
, s5d

where N stands for normal state. For consistency with the
assumption that the self-energy weakly depends onek, we
assume that the fermionic propagator changes much faster
with q' than the bosonicxsq ,Vd, i.e., that the Fermi veloc-
ity is much larger than the “spin” velocity. We then integrate
over momentumq' normal to the Fermi surface only in the
fermionic propagator, and setq' in the bosonic propagator
equal to its value at a distance betweenkF and some other
point on the Fermi surface, which is parametrized byqi. The
integration overq' is straightforward, and performing it us-
ing the fact thatxssq ,Vd is an even function of frequency,
we obtain

SN,kF
svd = −

3gs
2

4p2 E dqi

1

vFskF + q0 + qid

3E
0

v dV

xs
−1sq0 + qid − igq0+qi

V
. s6d

The remaining integral overqi depends on the momentum
dispersions inxssqd andvFskFd along the Fermi surface, both
are inputs for the low-energy theory. For a qualitative under-
standing of the crossover in the dispersion, we assume mo-
mentarily thatxssq0+qid is flat nearq0, and thatgq0+qi

and
vFskF+q0+qid are also momentum independent. We then
immediately obtain from Eq.(6)

SN,kF
svd = − ilvsf lnF1 −

i uvu
vsf

Gsgnsvd, s7d

wherel=3gs
2xs/ s2pvFd and vsf=sxsgd−1 (we use the same

notation as in earlier works12,20). Separating real and imagi-
nary parts of the complex logarithm, we obtain from Eq.(6)

ReSN,kF
svd = − lvsf arctan

v

vsf
,

Im SN,kF
svd = − l

vsf

2
lnF1 +

v2

vsf
2 Gsgnsvd. s8d

At low frequencies, one indeed recovers Fermi-liquid
behavior:21

SN,kF
svd = − lSv + i

vuvu
2vsf

D . s9d

On the other hand, at frequencies larger thanvsf, the self-
energy nearly saturates:

SN8 svd < − sp/2dlvsf sgnsvd, SN9 svd ~ lnuvu. s10d

The evolution ofSN8 svd with frequency gives rise to a cross-
over in the normal state dispersionv−SN8 svd=vFsk'−kFd
aroundv=vsf. We illustrate this in Fig. 1. We clearly see
that the dispersion is linear belowvsf, with the effective
velocity vF

* =vF / s1+ld. However, abovevsf, the dispersion
crosses over to a more steep form, which also yields an in-
tercept at a finitek'−kF if extrapolated formally to zero
energy. This crossover behavior is consistent with the one
observed experimentally. Note also thatSN9 svd is almost lin-
ear in frequency in a relatively wide frequency range above
vsf. This quasilinearity seems to be a generic property ofSN9
in the crossover region betweenv2 Fermi liquid behavior at
small frequencies and quantum-critical, non-Fermi-liquid be-
havior at larger frequencies.

The inclusion of the momentum dependences ofxssqd, gq,
and vFskFd gives rise to somev dependence ofSN8 svd at
high frequencies, and to the angular dependence of the cou-
pling constantl, but the crossover nearvsf still survives. To
illustrate this, in Fig. 2 we plot the the dispersion obtained
for the Ornstein-Zernike form ofxs

−1sqd~1+sqjd2 with con-
stantg andvF. We see that the dispersion is again linear at
small v with vF

* =vF / s1+lkF
d, and crosses over to a more

steep dispersion abovevsfskFd. Observe also thatS9svd is
again nearly linear abovevsfskFd. The crossover frequency
vsfskFd=fgxsskFdg−1 is smallest for an antinodal fermion and
largest for a nodal fermion simply because the node-node
distance is smaller thanq0=sp ,pd, and hence for node-node
scattering xs

−1sqd~ f1+suq−q0ujd2g. For an antinodal fer-
mion, on the other hand, the antinode-antinode scattering
involves momenta very close toq0, hencexs

−1sqd is smaller
as the piecesuq−q0ujd2 is absent. This effect is, however,
partly compensated by the fact thatgq is enhanced around a

FIG. 1. The self-energy and the dispersion in the normal state
for a flat static susceptibilityxssqd nearq0=sp ,pd. (a) ReSN, (b)
and (c) Im SN, with (c) over intermediate frequencies where
Im SNsvd displays a quasilinear behavior.(d) Dispersion v
−ReSsvd=vFDk sDk=k−kFd, with the dashed line the free fermion
dispersion. The coupling isl=2.
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nodal point and formally diverges for node-node scattering
because the Landau damping blows up when the velocities of
the two fermions in the particle-hole bubble become antipar-
allel to each other, as is the case for nodal fermions.22 Pre-
vious calculations show22 that, as an interplay between the
two effects, the variation ofvsf along the Fermi surface near
optimal doping is relatively modest, i.e, the crossover fre-
quency for the normal state does not vary substantially along
the Fermi surface.

B. Superconducting state

1. Polarization operator

We begin with the polarization operator, Eq.(4). Applying
the spectral representation to Eq.(4), one can immediately
see that in the superconducting state, ImPqsVd remains lin-
ear in frequency only forV@D [where ImPqsVd=gV]. At
smaller frequencies, ImPqsVd vanishes below a threshold at
Vth= uD+u+ uD−u, where, we remind,D±=Dskm±q /2d, and
km+q /2 andkm−q /2 are discrete pairs of momenta(speci-
fied by m), which are simultaneously on the Fermi surface.
By the Kramers-Kronig relation, the vanishing of ImPqsVd
below the threshold generates a nonzero RePqsVd, which
comes from frequencies of orderD and is therefore part of
the low-energy theory. This RePqsVd dominates the spin
dynamics below the threshold.

The structure ofPqsVd in a d-wave superconductor has
been previously analyzed forq=q0=sp ,pd.23 For q=q0, dif-
ferent regions specified bym are all equivalent,DskF+q0d
=−DskFd=D, i.e., Vth=2D. At the threshold frequency,
Im Pq0

sVd is discontinuous and jumps from zero topDg. By
the KK relation, RePq0

sVd then diverges logarithmically at
Vth.

14 This divergence ensures that for arbitrary coupling,
xssq ,Vd=fxs

−1sqd−PqsVdg−1 has an excitonic pole at some
vres,2D, wherePq0

svresd=RePq0
svresd=xs

−1. At weak cou-
pling, vres is exponentially close to 2D, and the resonance is
easily washed out by, e.g., disorder. At strong coupling, how-
ever, the pole is located at small frequencies and is weakly
affected by disorder. Furthermore, expanding Eq.(4) in pow-

ers of V, one can easily find that at the lowest frequencies,
Pq0

sVd~V2/D, i.e., at strong coupling, whenvres!2D, the
low-frequency spin susceptibility has a magnonlike form
xssq0,Vd~ svres

2 −V2d−1.
The resonance behavior ofPq0

sVd sets the crossover in
the dispersion of an antinodal fermion, for which the scatter-
ing by q0 is a low-energy process. For a nodal fermion, how-
ever, the scattering byq0 is ineffective, and one should ana-
lyze otherq.15 For a generalqÞq0 connecting two Fermi-
surface points, we find from Eq.(4) that the magnitude of the
jump in ImPqsVd at the threshold frequencyVth= uDskFdu
+ uDskF+qdu is

d„Im PqsVthd… =
pg

2
ÎuDskFdDskF + qdu

3h1 − sgnfDskFdDskF + qdgj. s11d

It then follows that for scattering from a nodal Fermi surface
point kF,n to some other pointkF=kF,n+q along the Fermi
surface, the jump in ImPqsVthd disappears becauseDskF,nd
=0, even thoughDskF,n+qdÞ0. In the absence of a jump in
Im PqsVd at Vth, RePqsVd does not diverge when ap-
proachingVth from below. Indeed, by the KK relation

RePqsVd =
2

p
E

0

` dx Im Pqsxd
x2 − V2 . s12d

NearV=Vth, this reduces to

RePqsVd <
1

pVth
E

0

` dy Im Pqsy + Vthd
y + sVth − Vd

. s13d

When ImPqsVth+0+d has a nonzero value[which is the case
when ImPqsVd jumps at the threshold], it can be pulled out
from the integral overy, and RePqsVthd diverges logarith-
mically. Without the jump, ImPqsy+Vthd vanishes aty=0+,
and the integral overy in relation(13) does not diverge. We
find from Eq. (4) that for scattering that involves a nodal
fermion, ImPqsy+Vthd~y1/2, hence forV,Vth we have
from Eq. (13),

RePqsVd = − gÎVth
2 − V2. s14d

The minus sign in front of the square-root implies that
RePqsVd is negative, i.e.,x−1sq ,Vd=xs

−1sqd−PqsVd does
not change sign belowVth, and the resonance mode does not
emerge. We recall that a constant,D independent term, has
been already pulled out from RePqsVd, hence the negative
value is with respect to the normal state[as xs

−1sqd.0 in a
paramagnet,xs

−1sqd−PqsVd is positive for allV,Vth].
Equation(14) can be easily extended to the full complex

PqsVd, which takes the form

PqsVd = igÎsV + idd2 − Vth
2 . s15d

Note that the square-root functional form ofPqsVd survives
even when the scattering is between a nodal fermion and a
point not exactly on the Fermi surface. Indeed, as long asq
is not directed along the zone diagonal, one can set, without
loss of generality, the velocity of a nodal fermion to be along

FIG. 2. Same as Fig. 1, but for the Ornstein-Zernike form of the
static spin susceptibility andl=1. In both cases, the crossover oc-
curs aroundv=vsf. The dashed line in(d) is the free-fermion dis-
persion. The dashed-dotted line in(d) is an extrapolation from high
frequencies. The extrapolated dispersion crosses the vertical axis at
a negativeDk, i.e., for k inside the Fermi surface.
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they axis, i.e.,ek =y, and the velocity of a fermion atk +q to
be alongx: ek+q=e0+x wheree0=ekF+q. Substituting this ex-
pansion intoPqsVd~eGk,v+VGk+q,v we obtain

PqsVd ~E dv
dxdy

v + V − y + idv+V

3
e0 + x + v

v2 − se0 + xd2 − D2sx,yd + id
. s16d

Elementary analysis shows that the singular contribution to
PqsVd comes fromv=−V, y=0, andx=−e0, i.e., from the
internal momentum range when both fermions are back on
the Fermi surface. Furthermore, as typicaly are infinitesi-
mally small, one can neglect they dependence of the gap, in
which case the momentum integral is factorized. Integrating
over y, then overv, and finally overx, one immediately
recovers Eq.(15) with Vth=Ds−e0,0d, that is, the gap at the
Fermi surface point obtained by projectingk +q onto the
Fermi surface along thex direction.

The square-root behavior ofPqsVd is not the full story,
however, as the same incommensurateq which connects a
nodal Fermi surface point with some otherkF may also con-
nect other pairs of Fermi surface points for which the super-
conducting gap is nonzero for both points. If the signs of the
two gaps are opposite, then, according to Eq.(11), Im PqsVd
still has discontinuities at the corresponding threshold fre-
quencies Vth8 , hence RePqsVth8 d diverges, and xs

−1sqd
−RePqsVd crosses zero at some frequency belowVth8 . We
checked this possibility for the Fermi surface of optimally
doped Bi2212.23 For node-antinode scattering, there are two
inequivalentq vectors. The smaller of the two, which we
label q2, has a dynamic response that is small relative to the
larger of the two, which we labelq1. For q1, the node-

antinode process at theV=Dan is the threshold for
Im Pq1

sVd san=antinoded. There are, though, two other in-
equivalent pairs of vectors for whichk andk +q1 are both on
the Fermi surface, andDskd and Dsk +q1d have opposite
signs. For these processes, ImPqsVd is discontinuous at cor-
responding threshold frequenciesVth8 <1.07D and 1.6D. We
illustrate this in Fig. 3. We found, however, that these extra
processes do not give rise to a resonance in the spin suscep-
tibility for two reasons. First, the dynamic response atq1 is
weaker than that atq0, and the divergence in RePq1

is fur-
ther weakened at the lower energyVth8 of the two since one
of the twok vectors is near the node in this case. Thus, the
inclusion of any damping(due to impurities or finiteT) is
enough to remove the divergence altogether. Second, even in
an idealized situation with zero fermionic damping, the
threshold frequenciesVth8 for both of these extra scattering
processes exceedVth, hence nearVth8 , Im Pq1

sVd is already
nonzero. As a consequence, we find no resonance for
Im xssq1,Vd (though there can be a peak associated with the
higher energyVth8 ).

Summarizing, we argue that forq1, which connects nodal
and antinodal Fermi surface points, there is no actual reso-
nance in the spin susceptibility. The imaginary part of
xssq ,Vd emerges atVth=Dan as sV−Dand1/2 and has extra
bumps at higher energies near threshold frequencies for ad-
ditional scattering processes with the sameq. Alternatively
speaking, the excitonic resonance in the dynamical spin sus-
ceptibility exists forq nearq0 but gradually vanishes asq
approachesq1. The boundary between these two regions is
roughly set by the diagonal node-node scattering vector,
which has a length intermediate betweenq0 andq1.

2. Fermionic self-energy

We next compute the fermionic self-energy, Eq.(2). For
an antinodal fermion, bothk and k +q0 are near the Fermi

FIG. 3. (a) Different pairs of Fermi surface
points separated by a momentumq1 equal to the
node-antinode distance. Solid points mark the
node (N) and antinode(AN). In addition, the
other node-antinode wavevectorsq2d is shown.
(b) The imaginary and real parts of the particle-
hole bubble x0sq1,Vd. The spin polarization
operator Psq ,Vd=x0

−1sq ,0d−x0
−1sq ,Vd. Note

near discontinuities in Imx0 at Vth8 <1.07D and
1.6D. Here,Dsp,0d=40 meV,d=0.5 meV, andT
=0.5 meV. (c) Im xssq1,Vd for two values of
Jsqd fxs

−1sqd=x0
−1sq ,0d−Jsqdg. Here, Jsq0d was

chosen so as to yield a resonance at 40 meV
for q=q0, and Jsq1d is −Jsq0dfcossq1xad
+cossq1yadg /2.
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surface, and the resonance mode has a strong effect on the
self-energy. Assuming thatxssq ,Vd has a magnonlike form
xssq ,Vd=x0/ fvres

2 sqd−V2g, adding a small damping termid
to V for continuity, and neglecting the momentum depen-
dence ofvres both for simplicity and because experimentally,
the resonance dispersion is rather flat,24 we obtain from Eq.
(2) in the superconducting state

SSC,ansvd =
3igs

2x0

4p2vF
E dxdVsv + V + xd

x2 + D2 − sv + Vd2 − id

3
1

vres
2 − V2 − id

. s17d

The subscript for the self-energy implies SC
=superconducting state, an=antinode. We also definedx
=vFq' and used the superconducting Green’s function for
free fermions:

GSC
0 sk,vd =

v + ek

v2 + id − D2 − ek
2 . s18d

The integration overx is straightforward, and performing it
we obtain

SSC,ansvd = −
3gs

2x0

4pvF
E dV

vres
2 − V2 − id

3
v + V

Îsv + Vd2 − D2 + id
. s19d

This integral is singular nearv=−v0=−sD+vresd. To see
this, introducev=−v0+e, andV=vres+y. Substituting these
expansions into Eq.(19) and restricting to only linear terms
in y ande, we obtain after simple algebra

SSC,ansed = −
3gs

2x0
ÎD

8pÎ2vresvF
E dy

y + id

1
Î− e − y + id

. s20d

Splitting the integration overy into integrals over positive
and negativey and evaluating them separately, we obtain

E
−`

` dy

y + id

1
Î− e − y + id

= −
2p

Îe − id
. s21d

Substituting this into Eq.(20) we obtain

SSC,ansed =
3gs

2x0
ÎD

8vresvF

Î2
Îe − id

. s22d

Separating real and imaginary parts of 1/Îe− id and replac-
ing e back byv+v0 we finally obtain

SSC,an8 svd = lef fD
3/2sv + v0 + Îsv0 + vd2 + d2d1/2

Îsv0 + vd2 + d2
, s23d

where

lef f =
3gs

2x0

8vFD2

D

vres
. s24d

Note thatlef f is dimensionless(with the above definition of
x0).

We see from Eq.(23) that the real part of the self-energy
has a near one-sided singularity. It almost diverges as
1/Îv0+v as v approaches −v0 from abovesuvu,v0d, and
then rapidly drops beyond −v0, reducing toO(d2/ sv+v0d)
when uvu.v0. The relation between this self-energy and the
dispersion is somewhat complicated in a superconductor, as
the MDC line shape does not have a simple Lorentzian form
because the Green’s function hasek =vFsk'−kFd both in the
numerator and the denominator:

Gsk,vd =
v − Ssvd + ek

fv − Ssvdg2 − F2ski,vd − ek
2 . s25d

HereFski ,vd is the pairing vertex. It is related to the pairing
gap Dski ,vd by Fski ,vd=Dski ,vdZsvd, where Zsvd=1
−Ssvd /v.15,19,25For simplicity, we neglect the frequency de-
pendence of Dski ,vd, i.e., approximateDski ,vd by a
frequency-independent gapDskid. Near the antinodal points,
the gap is near its maximum, i.e., is rather flat as a function
of ki, and can be approximated by a constantD. Still, the
presence ofek in the numerator of Eq.(25) implies that the
maximum of ImGsk ,vd is shifted somewhat inv from
where the real part of the the denominator in Eq.(25) van-
ishes(in the BCS limit, this effect can be attributed to thek
dependence of the coherence factors). This complication,
however, affects the form of the dispersion mainly for
uvu,D, and is less relevant nearv=−v0 where the self-
energy is nearly singular. To avoid this complication, we
neglect thek dependence of the numerator of the Green’s
function, and extract the dispersion from

Refv − Ssvd + ÎF2svd + vF
2sk' − kFd2g = 0. s26d

SubstitutingFsvd in terms of D, and neglecting ImZsvd
(which vanishes foruvu,v0 anyway), we obtain from Eq.
(26)

fv − SSC,an8 svdgReÎv2 − D2

v2 = vFsk' − kFd. s27d

SubstitutingSSC,an8 from Eq.(23), we find that the dispersion
develops anS shape foruvu,v0, precisely as seen in the
experiments. We illustrate this in Fig. 4. We also recall that a
near divergence of ReSansv0d implies, by KK transform, a
near discontinuity in ImSansv0d, both of which give rise to
the experimentally observed peak/dip/hump behavior of the
ARPES intensity.13,16

FIG. 4. The self-energy and the dispersion near an antinodal
point. The coupling islsq1d=2. We also setD=vres, i.e., v0=2D,
and use a broadeningd=0.3D. Note theS-shape dispersion nearv0.
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For a nodal fermion, the situation is different. A shift by
q0 moves a nodal Fermi surface point to a point where the
energy is very large,,0.7 eV for optimally doped Bi2212.
The sp ,pd scattering is then ineffective. However, forq that
we analyzed in the preceding section, a nodal fermion can
still scatter along the Fermi surface, which gives rise to a
much larger self-energy.

The computation of the self-energySSC,nsvd requires ex-
tra care, as we will have to average over allq that connect a
nodal point with other points on the Fermi surface. Besides,
even for the integration near a particularq, the dispersion of
thed-wave gap is essential as it affects the functional form of
Im SSC,nsvd via the softening of the singularity in the fermi-
onic density of states at fermionic frequencies near the gap at
kF+q. As our goal is to demonstrate that the self-energy at
the nodal point does not have the sharp features of the anti-
nodal self-energy, we assume for simplicity that(i) the domi-
nant contribution toSSC,nsvd comes from node-antinode
scattering, because of the presence of the density of states
singularity associated with the antinode, and(ii ) that the su-
perconducting gap has a flat dispersion in the antinode re-
gion.

Substituting the spin susceptibility withP given by Eq.
(15) into Eq. (2) and neglecting momentarily the dispersion
in xssqd aroundq1, we obtain after integrating over momen-
tum near the Fermi surfacesVth=Dd

SSC,nsvd =
lsq1d

2
E

−`

`

dv8
v8

Îsv8d2 − D2

3
1

1 − iÎsv + v8d2 − D2/vsfsq1d
, s28d

wherevsfsq1d=fgq1
xssq1dg−1. At the lowest frequencies, ex-

panding to linear order inv and collecting the prefactor, we
obtain

ReSSC,nsvd = − lscsq1dv, s29d

wherelscsq1d=lsq1dc(D /vsfsq1d), and

csxd =E
0

` dz

sz2 + 1d3/2

1

1 + xÎz2 + 1
s30d

such thatcsxdøcs0d=1. This implies that the coupling con-
stant in the superconducting state is somewhat smaller than
in the normal state. This is in agreement with earlier work.12

At larger frequencies, ReSSC,nsvd is continuous and reduces
to its nearly flat normal state form, Eq.(10), at uvu@D ,v0.
The limiting behavior resembles that in the normal state;
however, the crossover in Eq.(28) is not analytic, and the
self-energy develops a kink atv=−2D. This can be most
easily seen by evaluating the derivative of the self-energy.
Indeed, differentiating with respect tov in Eq. (28), we ob-
tain

dSSC,nsvd
dv

=
ilsq1d

2vsfsq1d E dv8
Îsv8d2 − D2Îsv + v8d2 − D2

3
v8sv + v8d

f1 − iÎsv + v8d2 − D2/vsfsq1dg2
. s31d

Near v= ±2D, the dominant contribution to the integral
comes fromv8<−D sgnsvd, when the two branch-cut sin-
gularities merge. In this region,v8sv+v8d<−D2, sv+v8d2

<D2, and

dSSC,nsvd
dv

<
− ilsq1dD2

2vsfsq1d E dv8
Îsv8d2 − D2Îsv + v8d2 − D2

.

s32d

Evaluating the integral, we find that at, e.g.,v=−2D,
d Im Ssvd /dv undergoes a finite jump

d

dv
fIm SSC,ns− 2D − ed − Im SSC,ns− 2D + edg

~ E
0

e dx
ÎxÎe − x

= 2E
0

1 dz
Î1 − z2

= p. s33d

By the KK relation,d ReSsvd /dv diverges logarithmically
at v=−2D. This behavior is analogous to the behavior of the
polarization operator withq=sp ,pd near the threshold fre-
quencyVth=2D. EvaluatingdSSC,n8 svd /dv explicitly, intro-
ducing v=−2D+e and v8=D+x, and expanding to first or-
der in x and in e in the two terms in the denominator, we
obtain nearv=−2D

dSSC,n8 svd
dv

<
lsq1dD
4vsfsq1d

ImFE
−A

A dx
Îx + idÎ− e − x + id

G .

s34d

HereA,D is the upper cutoff for the linear expansion. Split-
ting the integral into the integrals over positivex and over
negativex, and evaluating them separately, we obtain, to
logarithmical accuracy

dSSC,n8 svd
dv

< − K ln
D

uv + 2Du
, s35d

where K=lsq1dD / f2vsfsq1dg. Integrating this formula, we
obtain

SSC,n8 svd = SSC,n8 s− 2Dd − Ksv + 2Dd ln
D

uv + 2Du
. s36d

Note that, contrary to Eq.(23), the singularity inSSC,n8 svd is
two-sided, i.e., is symmetric with respect tov+2D. Substi-
tuting this self-energy into the dispersion of a nodal fermion
v−S8svd=vFsk'−kFd, we find that the kink inS8 gives rise
to a kink in the dispersion atv=−2D, but theS-shape form
does not emerge. We plot ReSsvd and the dispersion in Figs.
5(a) and 5(b).

The inclusion of the momentum dispersion ofxssqd
aroundq1 affects the prefactor, but the logarithmical singu-
larity near −2D survives. Indeed, this singularity is just the
consequence of the square-root nonanalyticity in the spin
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polarization operator, which is confined to bosonic frequen-
cies nearD. At these frequencies;Pq1

svd is small, and the
dynamical spin susceptibility can be expanded in powers of
Pq1

svd. The momentum dependence ofxssqd then just af-
fects the prefactor of thesv+2Ddlnsv+2Dd term in Eq.(36).
To verify this, we computed the self-energy and the disper-
sion for the Ornstein-Zernike form ofxssqd. In this situation,

SSC,nsvd =
lsq1d

2
E

−`

`

dv8
v8

Îsv8d2 − D2

3
1

f1 − iÎsv + v8d2 − D2/vsfsq1dg1/2
. s37d

Again, at low frequencies

ReSSC,nsvd = − lscsq1dv, s38d

where nowlSCsq1d=lsq1dc̃(D /vsfsq1d), and

c̃sxd =E
0

` dz

sz2 + 1d3/2

1

s1 + xÎz2 + 1d1/2
. s39d

Nearv=−2D, we obtain from Eq.(37) the same functional
form as in Eq.(36),

SSC,n8 svd = SSC,n8 s− 2Dd − K̃sv + 2Ddln
D

uv + 2Du
, s40d

where nowK̃=lsq1dD / f4vsfsq1dg. We plot the self-energy
and the dispersion for the Ornstein-Zernike static susceptibil-
ity in Figs. 5(c) and 5(d). We see that the dispersion does not
change much from that for a flatxssqd, namely, there is a
kink near 2D, but there is noS-shape dispersion as occurs for
an antinodal fermion.

Finally, to verify that the nodal dispersion is not an arti-
fact of our computational procedure, we also computed
SSC,n8 svd with the Ornstein-Zernikexssqd in a different(anti-
Eliashberg) computational scheme: we assumed that the
Fermi velocity of an antinodal fermion nearly vanishes, and
integrated over momenta normal to the Fermi surface in the
bosonic rather than the fermionic propagator. In this situa-
tion,

SSC,nsvd =
− iDlsq1d

2
E

−`

`

dv8
v8

sv8d2 − D2

3 ln
vsfsq1d − iÎsv + v8d2 − D2

vsfsq1d − iÎsv − v8d2 − D2
. s41d

Again, at low frequencies, the self-energy is linear,

ReSSC,nsvd = − lscsq1dv, s42d

where now lSC=lsq1dc* (D /vsfsq1d), and c* sx!1d
=xuln xu, andc* sx@1d=p /4. Nearv= ±2D, the derivative
dSSC,nsvd /dv is again singular, but now

dSSC,nsvd
dv

= − Dlsq1dE
−`

`

dv8
v8sv + v8d

fsv8d2 − D2 + idg

3
1

Îsv + v8d2 − D2 + id

3
1

vsfsq1d − iÎsv + v8d2 − D2
. s43d

Expanding, as before nearv=−2D and introducing
v=−2D+e andv8=D+x, we obtain from Eq.(43)

dSSC,nsvd
dv

=
D2lsq1d

2Î2Dvsfsq1d
E

−`

` dx

x + id

1
Î− e − x + id

.

s44d

Evaluating the integral using Eq.(21) we obtain

dSSC,nsvd
dv

= −
pD2lsq1d

Î2Dvsfsq1d
1

Îv + 2D
, s45d

i.e., nearv=−2D,

FIG. 5. ReS and the dispersion along the nodal direction.(a)–
(f) are obtained withPqsvd given by Eq.(14). (a) and(b) are for a
flat static spin susceptibilityxssqd nearq1, (c)–(h) for the Ornstein-
Zernike form.(c) and(d) are obtained within Eliashberg theory,(e)
and (f) assuming a vanishing Fermi velocity atq1 (anti-Eliashberg
approximation). (g) and(h) are obtained using the spin polarization
operator, Eq.(47), with an extra threshold atVth8 . In all cases, the
dispersion shows a kink around 2D, and does not have theS-shape
form typical for the antinodal dispersion(see Fig. 4). Dashed lines
are extrapolations from high frequencies; the extrapolated disper-
sion atv=0 has a negativeDk, i.e.,k inside the Fermi surface. The
couplinglsq1d=2 andD /vsfsq1d=2.
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SSC,n8 svd = SSC,n8 s− 2Dd − K* Re Î2Dsv + 2Dd, s46d

whereK* = plsq1dD / fvsfsq1dg. As a result, the kink at −2D
survives, andSSC,ns−2Dd still does not diverge, i.e., there is
no S-shape, antinodal-type dispersion. At the same time, the
functional form of the nonanalytic piece changes–thex lnuxu
singularity in the real part of the self-energy in Eqs.(36) and
(40), wherex=v+2D, gets replaced by a one-sidedÎx sin-
gularity. We plot the self-energy, Eq.(41), and the resulting
dispersion in Figs. 5(e) and 5(f). As the two expressions for
the self-energy for the Ornstein-Zernikexssqd, Eqs.(37) and
(41), represent two extremes of large and small fermionic
dispersion compared to the bosonic dispersion, the actual
self-energy should be somewhere in between, i.e., it is stron-
ger than that in Eq.(36) for uvu,2D, and weaker for
uvu.2D. Still, we emphasize that both computational
schemes yield a kink in the dispersion, but no divergence of
ReSs−2Dd and noS-shape dispersion.

The actual behavior of the dispersion is more involved, as
one has to average over allq for scattering from a node to
some other Fermi surface point. This obviously weakens the
2D singularity roughly in the same way as the singularity in
the density of states atD is weakened by the momentum
dependence of the gap in ad-wave superconductor. Further-
more, even if by geometrical reasons, node-antinode scatter-
ing atq1 dominates the nodal self-energy, the actual form of
SSC,nsvd is more complex than in Eqs.(28), (37), or (41). As
we already discussed in Sec. II B 1, the square-root behavior
of PqsVd persists only in a small region near the threshold,
while at largerV, additional features inPq1

sVd, associated
with the existence of two extra pairs of Fermi surface points
separated byq1 become relevant(see Fig. 3).

To qualitatively estimate the relevance of this effect, we
model Pq1

sVd in Fig. 3 by a combination of a square-root
behavior aboveV=D and a near discontinuity atV=1.6D:

Pq1
9 sVd < gFÎV2 − D2 +

a

2
S1 + tanh

V2 − s1.6Dd2

b
DG .

s47d

For consistency with Fig. 3,a,1.2D, and we setb,0.1D
(b=0 would correspond to a true discontinuity). In Figs. 5(g)
and 5(h), we plot the self-energy and the dispersion for this
form of PqsVd and flatxssqd. We see that the dispersion does
not change much compared to that with just a square-root

form of Pq1
sVd [see Fig. 5(b)]. There is still a cusp near 2D

and a non-S-shape dispersion. The only new effect is the
extension of the crossover region above the kink. This is
indeed expected as the new term in relation(47) affects the
polarization operator at higher frequencies.

To summarize this section, we see that the result of vari-
ous computational procedures is virtually the same: the self-
energy of a nodal fermion is much less affected by supercon-
ductivity than the self-energy of an antinodal fermion. The
nodal self-energy roughly displays the same crossover as in
the normal state, from a linear in frequency behavior at small
frequencies, to a more flat behavior at higher frequencies.
Superconductivity only sharpens the crossover near 2D, but
does not give rise to anyS-shape features in the dispersion.

C. A comparison with Ref. 15

It is instructive to compare our results for nodal fermions
with the earlier study by Eschrig and Norman.15 These au-
thors also argued that the dominant scattering process for a
nodal fermion is node-antinode scattering byq1 [though they
included a second process due to node-sp ,0d scattering].
They used a phenomenological form of the spin susceptibil-
ity at q1 with the resonance piece taken as a Lorenztian of
width 2a aboutq0. The resulting value atq1 is about 8% of
that atq0. Added to this is a gapped continuum(with a gap
equal to the threshold value of ImPq0

) modeled as a step
function with an ultraviolet cutoff. This form ofxssq1,Vd is
not exactly the one we used above(in our analysis, the reso-
nance piece is completely absent atq1), but nevertheless is
rather similar in the sense that a large part of the magnetic
excitation spectrum is incoherent. Not surprisingly, the two
forms for xssq1,vd yield similar results for the dispersion of
a nodal electron. In Fig. 6, we plot the self-energy and nodal
dispersion obtained with their susceptibility. We see that this
dispersion has a kink, but noS shape. This was achieved by
putting in a significantly large amount of damping that acts
to smear out thed-function singularity in energy of the reso-
nance. AnS shape would still be present, though, if the con-
tinuum piece is ignored. This result shows that even when
the resonance is present, theS shape of the dispersion
emerges only when the resonance contribution toS8svd
overshadows the one from the incoherent piece inxssq ,Vd.
This implies, in particular, that theS shape dispersion does

FIG. 6. (a) ReS and(b) nodal dispersion gen-
erated from the model of Ref. 15. Circles are the
experimental data of Ref. 3 for optimal doped
Bi2212 atT=40 K. TheS shape is replaced by a
kink due to(1) dominance of the continuum con-
tribution to the self-energy relative to that of the
resonance and(2) a strong energy broadening of
40 meV, which was assumed when deriving the
self-energy. For these calculations,vres

=40 meV, Dsp,0d=40 meV, and the continuum
has a gap of 65 meV and a cutoff of 500 meV.
For this direction, the bare Fermi velocity is
3.37 eV Å.
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not emerge immediately away from the nodal direction, i.e.,
it appears somewhere between the nodal and antinodal
points.

III. PHONON SCATTERING

We now perform the same analysis for phonon scattering.
Consider a system of electrons interacting with an optical
phonon with a frequencyvph and momentumq=qph. The
optical phonon propagator can be reasonably approximated
by

xphsq,vd =
gsqd

sv + igd2 − vph
2 , s48d

wheregsqd rapidly decays at deviations fromqph, andg is
the phonon damping rate. The fermionic self-energy due to
electron-phonon scattering is given by Eq.(2), only 3gs

2 is
replaced bygep

2 . To simplify the discussion, we consider a
nodal fermion and assume that the Fermi velocity atkF
+qph can be neglected. Substituting Eq.(48) into the self-
energy, we obtain

RefSnodal
ph svdg = −

pbv

vph

svth
2 − v2d

svth
2 − v2d2 + 4g2v2 , s49d

where b=gep
2 egsqdd2q and vth

2=svph+Dd2+g2. Solving
now for the dispersion, we find that at low energies, the
dispersion is linear with vF

* =vF / s1+lSC
epd and lsc

ep

=pb / svphvth
2 d. Nearvth, the real part of the self-energy for

smallg nearly diverges asv approachesvth, giving rise to an
S-shape dispersion.27 We illustrate this in Fig. 7. TheSshape
could in principle be eliminated ifg is very large, i.e., the
bosonic mode is almost overdamped.28 However, one can
easily make sure that to avoid theS shape, one requires

g2

vth
2 .

1

2
lsc

ph. s50d

This can be relatively easily achieved at weak coupling, but
for lSC

ep ù1, which is required to fit the low-energy renormal-
izaton, the S shape is eliminated only at nonphysicalg
@vth. Furthermore, forlsc

ph.2, theS shape cannot be elimi-
nated for anyg. If we do not neglect the Fermi velocity at
kF+qph, then at the lowest frequencies we obtain qualita-
tively the same result as Eq.(23), i.e., a nearly one-sided
square-root singularity. Again, it is very difficult to get rid of
theS-shape form of the dispersion at strong coupling without
requiring that the bosonic mode is totally overdamped. It is
therefore very unlikely that the interaction with an optical
phonon can simultaneously account for a strong Fermi ve-
locity renormalization and give rise to a non-S-shape form of
the dispersion.29

IV. CONCLUSIONS AND EXPERIMENTAL COMPARISONS

We conclude therefore that the spin fluctuation scenario
more likely explains the observed features in the electron
dispersion than the phonon scenario. Within the spin fluctua-
tion scenario:(i) in the normal state, there is a crossover

from a linear to a more steep dispersion at aroundvsf, (ii )
below Tc the antinodal dispersion develops anS-shape form
due to interaction with the spin resonance with a character-
istic energy ofD+vres, (iii ) the nodal dispersion belowTc
develops a kink at 2D, but there is noS-shape dispersion as
there is no spin resonance for momenta that connect a nodal
point with other points on the Fermi surface.

A. A comparison with experiments

Qualitatively, our picture of anS-shape dispersion in the
antinodal region belowTc, and a kink dispersion in the nodal
region, which is similar above and belowTc, agrees well
with the data.30 Quantitatively,vsfsq0d and vsfsq1d relevant
for the antinodal and nodal dispersion, respectively, were es-
timated to bevsfsq0d,20 meV andvsfsq1d,40–50 meV in
Bi2212.22 Experimentally, this scale has been detected for
the nodal dispersion and is around 50 meV. The resonance
frequencyvres and the gapD in optimally doped Bi2212 are
both near 40 meV;16 hence the termination of theS shape in
the antinodal dispersion and the kink in the nodal dispersion
both occur near 80 meV. Experimentally, this scale is
80 meV along the antinodal direction and 50−70 meV along
the nodal direction.8 Both of these gap-related scales are
smaller in LSCO, but for that material, there are no notice-
able differences between the normal and superconducting
state dispersions. This implies that the effect of the supercon-
ductivity on the dispersion is very small(though it should be
noted that most of the “normal state” data for LSCO were
actually taken in the pseudogap state, the pseudogap provid-
ing a sizable antinodal energy scale31). We note in passing
that the same smallness was cited as a reason for the nonob-
servation of the resonance peak in LSCO.32 Moreover, recent
neutron scattering studies33 find that the spin excitation spec-
trum in LSCO is remarkably similar to that in YBCO. The
universality observed in the spin dynamics and that observed
in the photoemission,4 we would argue, supports a magnetic
interpretation of the dispersion anomalies.

FIG. 7. (a) ReS and (b) antinodal and(c) nodal dispersion for
the electron-phonon interaction. We used Eq.(49) for the self-
energy with vth=2D and coupling constantlsc

ep=2. Solid and
dashed lines are forg /vth=0.6 and 2, respectively. For moderate
damping, the dispersion along both directions has anS-shape form.
Note that the extrapolated dispersion crosses the vertical axis at a
positiveDk, i.e., for k outside the Fermi surface(Ref. 26). For the
spin-fermion interaction, this crossing always occurs at negativeDk
for the nodal direction.
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B. The doping dependence

Finally, we discuss the doping dependence of the disper-
sion. There are few systematic studies of the doping depen-
dence along the antinodal direction.9,10,34 Our study shows
that the magnitude of theS-shape dispersion should increase
with underdoping asxssq0d increases, and the coupling con-
stant gets larger. Along the nodal direction, the low-energy
Fermi velocity vF

* ,1.6 eV Å is relatively doping
independent.7 In constrast, the slope of the high-energy dis-
persion monotonically increases with underdoping.7 Within
our theory, the low-energy Fermi velocity is given byvF

*

=vF / f1+lsq1dg, and the coupling constantlsq1d depends on
the spin-fermion couplinggs and xssq1d. The coupling con-
stant is weakly doping dependent. The susceptibility does
depend on doping via the magnetic correlation lengthj, but
this dependence is nonsingular for the node-antinodeq1
Þq0. Onceuq1−q0u.j−1, the doping dependence disappears,
and the nodal couplinglsq1d saturates at a fixed value. Pre-
vious studies by both us and others yieldedlsq1d,1. This
yields a bare velocityvF,3 eV Å consistent with band
theory.

We believe that the increase of the high-energy slope with
underdoping is a separate effect associated with the fact that
at high energies, the system progressively develops spin-
density wave(SDW) precursors. Indeed, at high energies, the
diagonal scattering by the resonance mode atq0 cannot be
neglected. The argument is simple—at high energies, the
Green’s function of an intermediate fermion can be pulled
out from the momentum and frequency integral in Eq.(2),
and the fermionic self-energy acquires the same functional
form as in the SDW ordered state:

SSDWsk,vd <
DSDW

2

v − ek+q0

s51d

where DSDW~gs
2ed2qdVxssq ,Vd increases with underdop-

ing. This form is valid for uvu@v0. Substituting this self-
energy into the dispersion relation, we find after simple al-
gebra that for the negative energies probed in ARPES
measurements, the maximum of the MDC dispersion shifts
from v<ek to v<ek −DSDW

2 / sek+q0
−ekd. As ek ,0 and

ek+q0
.0, the correction to the velocity is positive, i.e., the

diagonal scattering enhances the value of the velocity com-
pared tovF. As DSDW increases, this effect gives rise to a
progressively steeper dispersion, in agreement with the data.

A simple way to appreciate the doping dependence of the
high-energy dispersion is to realize that the MDC dispersion
for a gapped state is almost vertical foruvu,DSDW, with
some weak dispersion due to coherence factors.11 Thus, as
the doping is decreased, and a Mott-Hubbard pseudogap be-
gins to develop, the high-energy dispersion is expected to
become increasingly steep.
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