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Dispersion anomalies in cuprate superconductors
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We argue that the shape of the dispersion along the nodal and antinodal directions in the cuprates can be
understood as a consequence of the interaction of the electrons with collective spin excitations. In the normal
state, the dispersion displays a crossover at an energy where the decay into spin fluctuations becomes relevant.
In the superconducting state, the antinodal dispersion is strongly affected loyr th¢ spin resonance and
displays anS shape whose magnitude scales with the resonance intensity. For nodal fermions, relevant spin
excitations do not have resonance behavior, rather they are better characterized as a gapped continuum. As a
consequence, th® shape becomes a kink, and superconductivity does not affect the dispersion as strongly.
Finally, we note that optical phonons typically lead to a temperature-indepeBdbape, in disagreement with
the observed dispersion.
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I. INTRODUCTION steep behavior above roughly 50-70 meV. This effect has

. . been observed in Bi2212>8 Bi2201*® Bi22238
Angle resolved photoemissiaARPES experiments are Na,CCOCS and LSCO*” In the last case, the crossover is

valuable sources of information about the shape of the Fern’gharper and more resembles a kink.

surface in the cuprates and the frequency, momentum, and ) The renormalized Fermi velocity;- along the nodal
temperature dependence of the electron self-energy. The sufirection weakly depends on dopihgnd in Bi2212 equals
ject of this paper is an analysis of the dispersion along vari1 g ey A37 At the same time, at high energies, the disper-
ous momentum cuts. These dispersions have been obtaing@n is strongly doping dependent, becoming steeper with
by several grougs*®via high-precision measurements of the underdoping:’

momentum distribution curve@DCs), by which the spec- (c) In the superconducting state, the dispersion along the
tral function is obtained at a given energy by making scan@antinodal direction develops éhshape'! with a “negative”
along directions normal to the Fermi surface. The spectratlispersion between 60 and 80 meV. This feature develops
function A(k,w)=(1/)|Im G(k,w)| is related to the self- with decreasing temperature in an order-parameter-like fash-

energy2,(w) as ion, with an onset temperature gt for overdoped samples,
and somewhat abovE, for underdoped samplég?
AK. o) 1 (o) B (d) The dispersion along the nodal direction does not de-
)= ’ " ' i i
mlw- & - S RP+[3(w) velop anS shape belowT,. Instead, in the superconducting

state the crossover gets sharper, with a kinklike feature near
Near the Fermi surface, ~ve(kg)(k, —kg), whereve(kg) is 70 meV deyeloping in Bi221PRefs. 2-5 and Band Bi2223
the bare value of the velocity. There are several reagmts ~ (Ref. 8. This extra “sharpness” has a temperature depen-
theoretical and experimenjab believe that the self-energy dence similar to that of the antinodal dispersion mentioned
surface, and can be approximated¥agw) ~3, (w). For a  dispersion does not change much between the normal and

) [= * .
given kq specified by a cut, the MDC spectral function SUPerconducting statés. _ _
Ak, ,o=cons} is then a Lorentzian centered at(kp)(k, (e) The high-energy nodal dispersion never recovers to the
~ke)=w-3, (w) with a half width at half maximum bare dispersion. It remains linear to the highest binding en-
F

(HWHM) equal oS (w)/ve(ke) (Ref. 3. In a generic ergy studied, with an interpolation to & point at zero en-
F

S o , ergy displaced well inside the Fermi surface.
Fermi liquid, the self-energy is linear i at the lowest Theoretical scenarios proposed to explain the data differ
energles:EkF(w)=—)\ka. The position of the MDC peak

3 : ) . primarily on whether the electron-electron or the electron-
then determines the renormalized Fermi velogif=ve/(1  phonon interaction is responsible for the observed behavior.
+\,)- At higher energies) becomes frequency dependent, In the electron-electron scenario, the crossover from a linear

and the dispersion deviates from the linear form. dispersion at the lowest energies to a more steep dispersion
The MDC data have revealed several characteristic feaat higher energies has been identiffedith the crossover
tures of the dispersion that need to be explained: from Fermi-liquid to non-Fermi-liquid behavior. In the su-

(@) In the normal state, the dispersion along both the nodaperconducting state, th&-shape dispersion along the antin-
and antinodal directions shows a relatively smooth crossovesdal direction has been associdfed-°with the interaction
from a linear behavior at small binding energies to a morewith the (ar, ) spin exciton, which belovl, emerges at a
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frequencyw,s<2A due to a feedback of the pairing on the sion for all cuts normal to the Fermi surface. This is difficult

spin susceptibility. The interaction with the exciton gives riseto reconcile with both the antinodal dispersion, for which the

to aX'(w) that strongly increases and then rapidly drops ass shape is present but only emerges belgwand the nodal

w approachesy,=A+w.s This gives rise to the observed dispersion, which does not display &shape form at any

Sshape dispersion. In optimally doped Bi2212, battand  temperature.

wres are close to 40 meVf i.e., wy~80 meV. The magni-

tude of theS-shape piece is stronger fap| < wg, since for

|w|> wg, 2" rapid[I)y ir?creases. Botg theh\b/[alueoot, and the Il. MAGNETIC SCATTERING

asymmetry of the Sshape dispersion agree with the | the magnetic scenario, the fermionic self-energy origi-

data™ i ) , nates from the strong spin component of the electron-
For nodal fermions, scattering byo=(,m) shifts the  glactron interaction in the particle-hole channel and can be

nodal Fermi point to an energy about 0.7 eV ab&eThis  yiewed as coming from scattering by collective spin fluctua-

energy is too high to expect any appreciable effect on th : 3 P
low-energy dispersion. Still, Eschrig and Norf&rgued ‘Egns. To lowest order, the corresponding self-energy is given

that the kink near 70 meV can be explained by the interac-
tion with the spin resonance, as the resonance has a finite 3ig?
momentum width aroundr, 7).1” They used a phenomeno- Sy (@)=~ 8 3
logical form of the spin susceptibility with a shafdunction .
in frequency atw,s and a Lorentzian in momentum space where g, is the spin-fermion coupling. Her&° is the
with a width of 2 lattice constants, with the momentum pare Green's function(in the normal state, Gk, w)
smearing giving rise to resonance scattering between they /[, -y (kg)(k, —ke)], and x<(q, ) is the dynamical spin
node and other Fermi surface points. But a good descriptiogusceptibility for which one has

of the nodal fermion spectrum required the inclusion of a
gapped continuum in the spin excitation spectrum, which Xgl(q,Q):Xgl(q)—Hq(Q), (3)
acts to smear th8 shape into a kink, and also gives rise to , ) o ,
the linear » behavior in InE observed at higher binding WNeré xs(@) is the static part of the susceptibility that is
energies. believed to be peaked at or near the antiferromagnetic mo-

The electron-phonon scenario for the dispersion was puf€ntumdo=(m, ), and I14(Q2) [subject tolly(0)=0] ac-
forward in Ref. 4. The key difference with the electron- counts for the spin dynamics and is proportional to the dy-
electron scenario is in the interpretation of the normal stat@amical part of the full particle-hole bubble. Forcathat
ARPES data: Ref. 4 argued that there is a sharp kiather ~ connects nondiagonal points on the Fermi surface, the polar-
than a crossoverin the dispersion in the normal state, and ization operator has the fofth
that the kink energy is about the same in all materials studied o
(LSCO, Bi2201, and Bi221)2 They further argued that the I14(Q) = i> Ef dw[l -
kink effect is rather isotropic in the Brillouin zongn dis- m 2

. 1 .
agreement W'Fh other wofR . They §pecu|ated that this Here w,.=wxQ/2 andA,=A(k,xq/2) are the values of the
similarity implies that superconductivity plays a secondary . K .

) : . “d-wave gap at the points,,£q/2, which are simultaneously
role in the phenomenon, and that the features in the dlspe{)-n the Fermi surface. the summatiorbeing over a discrete
sion can be reproduced by coupling an electron to a bosonic t of th int T’h facter d dg th i
mode unrelated to superconductivity. They suggested oL 0! INese points. 'he pretactay depends on e couping

. , g and the angle between the Fermi velocitiekatq/2.12
,E;]Te %&?Zﬁ:dﬁggpeon with an energy of 55 meRef. 18 as In principle, the pairing gap depends on frequency, but this

. ndence is n ntial for our pur nd we negl
In this paper, we distinguish between these two p055|b|I|-depe dence is not essential for our purposes and we neglect

ties and argue in favor of a spin-fluctuation scenario. We firs{t for clarity.

analyze the spin-fluctuation scenario in more detail. We ar-

gue that the spin resonance scattering is effective in scatter- A. Normal state

ing antinodal fermions near the Fermi energy, but is not ef-

fective for nodal fermions since the bosonic momenta which ] ) )

connect a nodal point with other points on the Fermi surface N the normal staté =0, andIl,({) is purely imaginary:

are far removed fronim, ). Rather, the most effective low- q(Q)=iv,/Q|. This is the expected result as orgés such

energy scattering for a nodal fermion is to the antinodethat twok points separated by can be simultaneously put

where the density of states has a singularity. This scatteringn the Fermi surface, the polarization bubble contains a Lan-

gives rise to a kink in the self-energy of a nodal fermion atdau damping term. This term generally has the form

~2A, which generates a kink in the dispersion at the samé&l€|/\(ve@)*~Q? but in our caseq is finite andveq well

energy. We find that the resonance scattering emerges awgyceeds(). The true polarization bubble also contains a

from the nodal direction, and the magnitude of the resultingrequency-independent piece, but for a fingg this piece

S-shape dispersion progressively increases as the antinodedgmes from fermions with energies comparable to the band-

approached?® width and is already incorporated inj@*(q). Note that this
We then argue that the interaction with an Einstein pho-separation is consistent with a Kramers-Kro#) analy-

non gives rise to a temperature-independeshape disper- sis: a KK transformation of InbiI(€2) =y} does not produce

| a0 60w+ a0, @

A A+ w0
22 A2 |" (4)
AZ

T
\J’wi — A+\"w_ —

—00

1. Polarization operator
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a universal piece of RH()) independent of the upper limit

' : 2| ol Im Z(w)/osf
of the frequency integration. ; ReZ(@ost
a ! b
2. Fermionic self-energy Oy -5 o 0 -5 3
© / Ogf o/ Ogf

Substituting the relaxationalk(q, ) into the self-energy,

introducing a smallj via g—q+qg and linearizing the fer- iz (@) ogt
mionic dispersion near the Fermi surface, we obtain from Eq. 2y ®
(3]
1L [+
32 -3 15
EN,kF((’)) == |8_gz J ququdQ o/ ogf
T
1 FIG. 1. The self-energy and the dispersion in the normal state

for a flat static susceptibilitys(q) neargqo=(m, ). (a) ReXy, (b)
and (c) ImXy, with (c) over intermediate frequencies where
1 5) Im 3\ (w) displays a quasilinear behaviokd) Dispersion o
X— . ) -Re3(w)=veAk (Ak=k—-kg), with the dashed line the free fermion
Xsl(q + CIo) _ I'Yq+qo|Q| (w) = ( F)

dispersion. The coupling is=2.
where N stands for normal state. For consistency with the
assumption that the self-energy weakly dependsegnwve o]
assume that the fermionic propagator changes much faster EN,kF(w) =-Mo+ti 5 . 9
with g, than the bosonig(q,(2), i.e., that the Fermi veloc- st
ity is much larger than the “spin” velocity. We then integrate On the other hand, at frequencies larger thap the self-
over momentuny, normal to the Fermi surface only in the energy nearly saturates:
fermionic propagator, and set, in the bosonic propagator
equal to its value at a distance betwdenand some other SN() = - (T2 wst sgnw), (@) = Info].  (10)
point on the Fermi surface, which is parametrizedipyThe
integration ovelg, is straightforward, and performing it us-
ing the fact thaty(q,Q) is an even function of frequency,

X B
w+Q-ve(ke+q+0Qg)q, +18,40

The evolution of%|(w) with frequency gives rise to a cross-
over in the normal state dispersian—3.\(w)=ve(k, —kg)
around w=wg;. We illustrate this in Fig. 1. We clearly see

we obtain that the dispersion is linear belowg;, with the effective
~ 3g? 1 velocity v-=ve/(1+\). However, abovaos;, the dispersion
EN,kF(")) T a2 do— K crosses over to a more steep form, which also yields an in-
4 ve(kKg+do+q)) s -
tercept at a finitek, —kg if extrapolated formally to zero
Xf“’ dQ ©) energy. This crossover behavior is consistent with the one
0 Xs'(Go+ 0y - i7q0+qHQ' observed experimentally. Note also tRj(w) is almost lin-

ear in frequency in a relatively wide frequency range above
The remaining integral oveg, depends on the momentum ;. This quasilinearity seems to be a generic property. of
dispersions irys(q) andve(kg) along the Fermi surface, both in the crossover region betweert Fermi liquid behavior at
are inputs for the low-energy theory. For a qualitative undersmall frequencies and quantum-critical, non-Fermi-liquid be-
standing of the crossover in the dispersion, we assume mdravior at larger frequencies.

mentarily thatys(go+q,) is flat nearqo, and thatyqu,qH and The inclusion of the momentum dependenceg(d), vq,
ve(kgtgotq)) are also momentum independent. We thenand ve(kg) gives rise to someo dependence oE|(w) at
immediately obtain from Eq.6) high frequencies, and to the angular dependence of the cou-
, pling constani, but the crossover neai;; still survives. To
Sk (@) = - istfln{l —M}sgr(w), 7) illustrate this, in Fig. 2 we plot the the dispersion obtained
TF Wsf for the Ornstein-Zernike form oj;l(q) = 1+(gé)? with con-

stanty andvg. We see that the dispersion is again linear at
small w with v*F:vF/(1+)\kF), and crosses over to a more
steep dispersion abowes{kg). Observe also that”(w) is
again nearly linear aboves(kg). The crossover frequency
_ ) wsi(kp) =[ yx<(kp) ™t is smallest for an antinodal fermion and
RezN:kF(“’) =~ N arctanw—sf, Iasrfge;t fo)r/Xasl nFodaI fermion simply because the node-node
distance is smaller thagqy=(, 7), and hence for node-node
et w2 scattering xs1(q) <[1+(]q-qolé)?]. For an antinodal fer-
IM Zpke(@) = -A=7In| 1+ |sgriw). (8 mion, on the other hand, the antinode-antinode scattering
@st involves momenta very close tp, hencex;(q) is smaller
At low frequencies, one indeed recovers Fermi-liquidas the piece|q-qgl£)? is absent. This effect is, however,
behavior? partly compensated by the fact thgf is enhanced around a

where\ =392,/ (27vg) and wg=(xsy) "t (we use the same
notation as in earlier work$29. Separating real and imagi-
nary parts of the complex logarithm, we obtain from Eg).
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5l ReZ(0)/ogf 4T Im S (@)/ogt ers of ), one can easily find that at the lowest frequencies,
qu(Q)ocQZ/A, i.e., at strong coupling, whe,.s<2A, the
b a b low-frequency spin susceptibility has a magnonlike form
0 -2 0 iy 73 3 Xs(0o0, Q) = (wimg— Q) 7L,
® / ogf o/ og The resonance behavior ﬁfqo(ﬂ) sets the crossover in
0 the dispersion of an antinodal fermion, for which the scatter-
1t Im E(osf ) ing by qq is a low-energy process. For a nodal fermion, how-
, ever, the scattering by, is ineffective, and one should ana-
08 ¢ | 6L lyze otherq.!® For a general # gy connecting two Fermi-
s /'(if 15 -4 W2 f 0 surface points, we find from E¢4) that the magnitude of the
§

jump in ImIL,(Q) at the threshold frequencf2y=|A(kg)|

FIG. 2. Same as Fig. 1, but for the Ornstein-Zernike form of thet|A(ke+q)| is
static spin susceptibility and=1. In both cases, the crossover oc-

curs aroundw=wgs. The dashed line id) is the free-fermion dis- S(Im I (Qy)) = ﬂ\”A(kF)A(kF +q)|
persion. The dashed-dotted line(i is an extrapolation from high 2
frequencies. The extrapolated dispersion crosses the vertical axis at x{1 - sgiAkp)Ake + )]}, (1)

a negativeAk, i.e., fork inside the Fermi surface.
It then follows that for scattering from a nodal Fermi surface

nodal point and formally diverges for node-node scattering®0int ke, to some other poinkg=kg,+q along the Fermi
because the Landau damping blows up when the velocities gurface, the jump in Inbl,({y) disappears becauseke )
the two fermions in the particle-hole bubble become antipar=0, even though (kg ,+q) # 0. In the absence of a jump in
allel to each other, as is the case for nodal fermférere-  Im () at Qy, Relly(2) does not diverge when ap-
vious calculations shof® that, as an interplay between the proaching(ly, from below. Indeed, by the KK relation

two effects, the variation abg; along the Fermi surface near -

optimal doping is relatively modest, i.e, the crossover fre- Rell (Q)zgf dX|_qu@ (12)
quency for the normal state does not vary substantially along a mly X-02

the Fermi surface. .
NearQ =0y, this reduces to

1 f”dylqu(y+ch)
™l Y+ Qp-Q)

B. Superconducting state Rell,(Q) = (13

1. Polarization operator

When ImIl,(Q,+0%) has a nonzero valyavhich is the case
when ImII,(£2) jumps at the thresho]dit can be pulled out
from the integral ovey, and Rel({2y,) diverges logarith-
mically. Without the jump, Il (y+(Qy,) vanishes ay=0",
and the integral ovey in relation(13) does not diverge. We
find from Eq. (4) that for scattering that involves a nodal

i 112

km+0/2 andk,,—q/2 are discrete pairs of momentspeci- fermion, Imllq(y+Qy) *y™, hence forQ <y, we have
fied by m), which are simultaneously on the Fermi surface.from Eq.(13),
By the Kramers-Kronig relation, the vanishing of m(_ﬂ) Relly(Q) = - W’W- (14)
below the threshold generates a nonzerolR&2), which
comes from frequencies of orddr and is therefore part of The minus sign in front of the square-root implies that
the low-energy theory. This Ré,()) dominates the spin Rellq(Q) is negative, i.e.x %a,0)=x;'(a)-11,(Q) does
dynamics below the threshold. not change sign belof,,, and the resonance mode does not

The structure ofl(Q) in a d-wave superconductor has emerge. We recall that a constantindependent term, has
been previously analyzed for=qqo=(, 7).22 Forq=q, dif-  been already pulled out from R&,({), hence the negative
ferent regions specified by are all equivalentA(k.+q,)  Vvalue is with respect to the normal stdtes x;'(q) >0 in a
=-A(kp)=A, i.e., Qn=2A. At the threshold frequency, Paramagnety;'(q)-Il4(() is positive for allQ<Qy,].
Im IT, (©2) is discontinuous and jumps from zero#d.y. By Equation(14) can be easily extended to the full complex
the KK relation, Rdl, (€2) then diverges logarithmically at I14(€2), which takes the form
Ot This divergence ensures that for arbitrary coupling, A a2 2
xs(d, Q) =[xs*(a)-114(2)]™* has an excitonic pole at some () =iV Q +19)7= Qg (19
Wres< 24, Wherquo(wreS):RquO(wres): Xgl. Atweak cou-  Note that the square-root functional formIdf,({2) survives
pling, w5 is exponentially close to&, and the resonance is even when the scattering is between a nodal fermion and a
easily washed out by, e.g., disorder. At strong coupling, howpoint not exactly on the Fermi surface. Indeed, as long as
ever, the pole is located at small frequencies and is weaklis not directed along the zone diagonal, one can set, without
affected by disorder. Furthermore, expanding @&gin pow-  loss of generality, the velocity of a nodal fermion to be along

We begin with the polarization operator, Ed). Applying
the spectral representation to Hg), one can immediately
see that in the superconducting state Ilgt(2) remains lin-
ear in frequency only fof)> A [where ImII,()=0]. At
smaller frequencies, Ifl,(2) vanishes below a threshold at
Qn=|A+|A_|, where, we remindA,=A(k,tq/2), and
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a
q, g,
) 9 !
5» 0 FIG. 3. (a) Different pairs of Fermi surface
-4 N f points separated by a momentumequal to the
q, node-antinode distance. Solid points mark the
node (N) and antinode(AN). In addition, the
AN other node-antinode wavevect(,) is shown.
-‘_1 5 ; (b) The imaginary and real parts of the particle-
k. (n/a) hole bubble x¢(q4,Q2). The spin polarization
. s * . operator TI(q,Q)=x5%q,0)-x,X(q,Q). Note
b T ' c T near discontinuities in Iny, at Q/,~1.07A and
] 1.6A. Here, A, =40 meV, 6=0.5 meV, andT
2.6 1.2 =0.5 meV. (c) Im xs(q;,Q) for two values of
~ 1§27 J@) [ @ =x5"a,0-J(@)]. Here, J(do) was
%22 0.8 i chosen so as to yield a resonance at 40 meV
= ' ; for g=qo, and Jqy is -J(dolcodaya)
) S o1t +codqy,a)]/2.
1.8 0.4
1.4 e e 0 0
20 30 40 50 60 70 80 20

Q (meV)

they axis, i.e.,e =y, and the velocity of a fermion &+qto  antinode process at th&)l=A,, is the threshold for
be alongx: €.q=€x+X Whereeo=ekF+q. Substituting this ex- Im qu(Q) (an=antinode. There are, though, two other in-

pansion intoll,(Q) = [ Gy ,+0Gk+q, WE Obtain equivalent pairs of vectors for whidhandk +q, are both on
the Fermi surface, andi(k) and A(k+q;) have opposite
dxdy signs. For these processes, () is discontinuous at cor-

114(Q) = f dww+Q Y +i0u responding threshold frequenci€g,~1.07A and 1.6\. We

illustrate this in Fig. 3. We found, however, that these extra
processes do not give rise to a resonance in the spin suscep-
tibility for two reasons. First, the dynamic responsejais
weaker than that ao, and the divergence in Hé,_ is fur-
Elementary analysis shows that the singular contribution taher weakened at the lower enerfdy, of the two since one
I14(©2) comes fromw=-(, y=0, andx=-¢,, i.e., from the  of the twok vectors is near the node in this case. Thus, the
internal momentum range when both fermions are back ofnclusion of any dampingdue to impurities or finiteT) is
the Fermi surface. Furthermore, as typigahre infinitesi- ~ enough to remove the divergence altogether. Second, even in
ma”y Sma”’ one can neg|ect ﬂ}ajependence of the gap, in an idealized Situa‘;ion with zero fermionic damping, . the
which case the momentum integral is factorized. Integratinghreshold frequencie€y, for both of these extra scattering
over y, then overw, and finally overx, one immediately ~Processes exceed,, hence neafy, Im I, () is already
recovers Eq(15) with Q,=A(~¢y,0), that is, the gap at the nonzero. As a consequence, we find no resonance for
Fermi surface point obtained by projectifig-q onto the M xs(d1, () (thgugh there can be a peak associated with the
Fermi surface along the direction. higher energyy,). _

The square-root behavior d1,(Q) is not the full story, Summarizing, we argue that fog, which connects nodal
however, as the same incommensurgteshich connects a ﬁgﬁczmi'ﬂofhﬂ Z%rir:' sSllJJsrfcaeCpiitl))i(l)i'lc?/tslraheer?mlzgri]r?ara;u;)e;rtrec?fo_
nodal Fermi surface point with some othlgr may also con- 1o(0.Q) emerges afy=A., as (Q—A,)¥2 and has extra

nect other pairs of Fermi surface points for which the supers . . : i
conducting gap is nonzero for both points. If the signs of th bumps at higher energies near threshold frequencies for ad

e..: . . .
) ) ditional scattering processes with the sameéAlternatively
;\’t"ﬁ ?]ngd"’,‘gioonpﬁ]os,’?g’stgf%:?gfégg;ﬁﬁ; lmgs?](é% (- SPeaking, the excitonic resonance in the dynamical spin sus-
i i inuiti i ~anfihili ; ;
quencies 0. hence Rdl (/) diverges, and y-Xq ceptibility exists forq nearqg but gradually vanishes a
thy q\*“th ' s approacheg);. The boundary between these two regions is
~Rell (Q) crosses zero at some frequency bel@y. We  youghly set by the diagonal node-node scattering vector,

checked this possibility for the Fermi surface of optimally which has a length intermediate betwegnanddq;.
doped Bi22123 For node-antinode scattering, there are two

inequivalentq vectors. The smaller of the two, which we 2. Fermionic self-energy
label g,, has a dynamic response that is small relative to the We next compute the fermionic self-energy, £8). For
larger of the two, which we labef|;. For q;, the node- an antinodal fermion, botk andk+q, are near the Fermi

60+X+ w
w? = (g +X)2—A%(x,y) +i6’

(16)
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surface, and the resonance mode has a strong effect on the

self-energy. Assuming thag(q,) has a magnonlike form
x<(4,Q)=xo/[02dq)-Q?], adding a small damping terié

to Q for continuity, and neglecting the momentum depen-

dence ofw,s both for simplicity and because experimentally,
the resonance dispersion is rather #fatye obtain from Eq.
(2) in the superconducting state

s ()_3ig§X0f dxdQ(w + Q +X)
SCan\®) = 42p | X+ A2— (w+Q)2—i5
1
X —————. 17
wi—O?-i6 17
The subscript for the self-energy implies SC

=superconducting state, an=antinode. We also defixed
=veq, and used the superconducting Green’s function fo
free fermions:

w+ €

Go(K,w)= —— .
sdk,) w2+i5—A2—e§

(18)

The integration ovek is straightforward, and performing it
dQ
Wi~ Q26

we obtain
f res

» w+ )
Viw+ Q)2 -A2+i8

395)(0
4’7TU|:

Escan(w) ==

(19

This integral is singular neaw=-wy=—(A+w,g). TO See
this, introducew=-wy+ €, andQ =ws+Yy. Substituting these
expansions into Eq.19) and restricting to only linear terms
in y and e, we obtain after simple algebra

—
392xoVA f

2
8T\ 2weF

Splitting the integration ovey into integrals over positive

and negativey and evaluating them separately, we obtain

dy 1
y+id\-e-y+is

Escan(é) == (20)

e}

d 1 2
J L —=- T (2
e Ytioy-e-y+id Ve-id
Substituting this into Eq(20) we obtain
302, \J’Z V‘E
Sscan(€) = oo (22)

| M )
Bwrer Ve—id

Separating real and imaginary parts ofy&#ié and replac-
ing € back byw+ wy we finally obtain

N
2@+ wp+ (wp+ ) + &)1

Shca(®) = NgpAY , (23
SCan( ) eff \e“’(a)0+(1))2+ 52 ( )
where
3gix0 A
Neff = —_—. 24
eff SUFAZ Ores ( )

Note thathg¢; is dimensionlesgwith the above definition of
Xo)-

r
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1| ReZ(w)rey

o/ o

FIG. 4. The self-energy and the dispersion near an antinodal
point. The coupling is\(g;)=2. We also sef\ =w,eg i.€., wg=2A,
and use a broadeningr0.3A. Note theS-shape dispersion neax,

We see from Eq(23) that the real part of the self-energy
has a near one-sided singularity. It almost diverges as
1/\wy+w as w approaches m, from above(|w| < wy), and
then rapidly drops beyondwy, reducing toO(8%/ (w+ wp))
when|w| > w,. The relation between this self-energy and the
dispersion is somewhat complicated in a superconductor, as
the MDC line shape does not have a simple Lorentzian form
because the Green'’s function hasvg(k, —kg) both in the
numerator and the denominator:

w=2(w)+ g

[0-3(0) - PXkj,0) — &

G(k,w) = (25

Here®d(k,, w) is the pairing vertex. It is related to the pairing
gap A(k,w) by Pk, w)=A(k,w)Z(w), where Z(w)=1
-3 (w)/ 0.2>1925For simplicity, we neglect the frequency de-
pendence ofA(kj,w), i.e., approximateA(k,w) by a
frequency-independent gay(k). Near the antinodal points,
the gap is near its maximum, i.e., is rather flat as a function
of k;, and can be approximated by a constantStill, the
presence o, in the numerator of Eq25) implies that the
maximum of ImG(k,w) is shifted somewhat inv from
where the real part of the the denominator in E2b) van-
ishes(in the BCS limit, this effect can be attributed to tke
dependence of the coherence factorbhis complication,
however, affects the form of the dispersion mainly for
|o| <A, and is less relevant neas=-w, where the self-
energy is nearly singular. To avoid this complication, we
neglect thek dependence of the numerator of the Green'’s
function, and extract the dispersion from

Rew—3(w) + V®%(w) +vi(k, —k)2=0.  (26)
Substituting®(w) in terms of A, and neglecting InZ(w)
(which vanishes fotw|<w, anyway, we obtain from Eq.
(26)

2

2

[0 35cai(@)]Re velk, —ke).  (2D)

Substituting2 55, from Eq.(23), we find that the dispersion
develops arS shape for|w| < wq, precisely as seen in the
experiments. We illustrate this in Fig. 4. We also recall that a
near divergence of RE,(wy) implies, by KK transform, a
near discontinuity in InX,(wp), both of which give rise to
the experimentally observed peak/dip/hump behavior of the
ARPES intensity316
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For a nodal fermion, the situation is different. A shift by
(o moves a nodal Fermi surface point to a point where the do

energy is very large;-0.7 eV for optimally doped Bi2212.
The (7, ) scattering is then ineffective. However, fgithat

we analyzed in the preceding section, a nodal fermion can
still scatter along the Fermi surface, which gives rise to a

much larger self-energy.
The computation of the self-ener@cn(w) requires ex-
tra care, as we will have to average overcpthat connect a

PHYSICAL REVIEW™, 174505(2004)

do’
V(@)= A (w+ w')? - A?
o' (w+o)
[1-iV(0+ )= Aoy
Near w=+2A, the dominant contribution to the integral

comes fromw’ =-A sgnw), when the two branch-cut sin-
gularities merge. In this regiony’ (w+w') =~-A2?, (w+w')?

dscn(w) _ iNgy
Zwsf(ch)

(31

nodal point with other points on the Fermi surface. Besides=A?, and

even for the integration near a particutgrthe dispersion of

thed-wave gap is essential as it affects the functional form of
Im Zscn(w) via the softening of the singularity in the fermi-
onic density of states at fermionic frequencies near the gap at

dZscn(w) - i)\(ch)Azf do’
do 20¢(dy) V()2 =A% (0+ o')2- A%
(32

ke+q. As our goal is to demonstrate that the self-energy at . . ]
the nodal point does not have the sharp features of the anfFvaluating the integral, we find that at, e.gy=-2A,

nodal self-energy, we assume for simplicity t(iathe domi-
nant contribution toXscn(w) comes from node-antinode

scattering, because of the presence of the density of states

singularity associated with the antinode, aigl that the su-

perconducting gap has a flat dispersion in the antinode re-

gion.
Substituting the spin susceptibility witH given by Eqg.

dIm X(w)/dw undergoes a finite jump

d%[lm ESCH(_ 2A - 6) -Im ESCH(_ 2A + 6)]

€ dX 1
o ] =2
0 VXVe—X 0

dz
V1-2

. (33

(15) into Eq. (2) and neglecting momentarily the dispersion By the KK relation,d ReX(w)/dw diverges logarithmically

in xs(q) aroundq,, we obtain after integrating over momen-

tum near the Fermi surfadé)y,=A)

A * !
(%)f do’ w

2 \’,(wr)Z_AZ

1
>< 1
1-iV(w+ ') = Awy(ay)

Esc:n(w) =

(28)

wherewsf(ql):[yqlxs(ql)]‘l. At the lowest frequencies, ex-
panding to linear order i and collecting the prefactor, we
obtain

ReZscn(w) = = NsdA) o, (29
wherehs{(a;) =N\(ay) (Al wsi(dy)), and
* dz 1
W) = JO Z+ D21 (30

at w=-2A. This behavior is analogous to the behavior of the
polarization operator wittg=(7,7) near the threshold fre-
quency{=2A. Evaluatingd2¢(w)/dw explicitly, intro-
ducing w=-2A+¢€ and o' =A+x, and expanding to first or-
der inx and in € in the two terms in the denominator, we
obtain nearw=-2A

d¥gen(@) _ Mad | fA dx
do 4ws(dy) AVX+iOV-e-x+id|
(34
HereA~ A is the upper cutoff for the linear expansion. Split-
ting the integral into the integrals over positixeand over

negativex, and evaluating them separately, we obtain, to
logarithmical accuracy

dX5cn(w) .
dw

where K=\(q1)A/[2ws(q4)]. Integrating this formula, we
obtain

N o+ 2a] (35)

Séen(@) = 25en(=2A) = K(w + 2A) In

A
|w+2A] (36)

such thaty(x) < (0)=1. This implies that the coupling con- Note that, contrary to E¢23), the singularity in%g. () is
stant in the superconducting state is somewhat smaller thawo-sided, i.e., is symmetric with respect éo+ 2A. Substi-

in the normal state. This is in agreement with earlier wark.

tuting this self-energy into the dispersion of a nodal fermion

At larger frequencies, REscq(w) is continuous and reduces w—x'(w)=ve(k, —kg), we find that the kink ir%." gives rise

to its nearly flat normal state form, E@LO), at |w|> A, w,.

to a kink in the dispersion ab=-2A, but theS-shape form

The limiting behavior resembles that in the normal statedoes not emerg&Ve plot ReX(w) and the dispersion in Figs.

however, the crossover in ER8) is not analytic, and the
self-energy develops a kink at=-2A. This can be most

5(a) and %b).
The inclusion of the momentum dispersion ®f(q)

easily seen by evaluating the derivative of the self-energyaroundq, affects the prefactor, but the logarithmical singu-

Indeed, differentiating with respect to in Eq. (28), we ob-
tain

larity near —2\ survives. Indeed, this singularity is just the
consequence of the square-root nonanalyticity in the spin

174505-7
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E ReX(®) g ~ (" dz 1
2| ¥x) Jo Z+ D21 +x 2+ )2 (39
ol . Near w=-2A, we obtain from Eq(37) the same functional
-6 -3 0 .
o/ osf form as in Eq.(36),
Rez(@ost Sten(@) = S5cq(- 24) = K(w + 24)In A (40)
3 SCn SCn |w + 2A| )
ol ‘ where nowK=\(q;)A/[4ws(q,)]. We plot the self-energy
-6 -3 0 . . . . . -
o/ o and the dispersion for the Ornstein-Zernike static susceptibil-
ity in Figs. 5c) and %d). We see that the dispersion does not
6 ReZ(@)g change much from that for a flag(q), namely, there is a
al kink near 2\, but there is n&-shape dispersion as occurs for
e an antinodal fermion.
0% 73 0 Finally, to verify that the nodal dispersion is not an arti-
o/ o o/ osf fact of our computational procedure, we also computed
p: of 2.5cn(w) with the Ornstein-Zernikgs(q) in a different(anti-
Re Z(@)/og VFw—“: Eliashberg computational scheme: we assumed that the
3r ot ° / Fermi velocity of an antinodal fermion nearly vanishes, and
ol ® . ‘ integrated over momenta normal to the Fermi surface in the
-10 -5 0 -10 -5 bosonic rather than the fermionic propagator. In this situa-
@/ ogf o / ogf tion,
FIG. 5. ReX and the dispersion along the nodal directi¢a- —iANqy) 7 o'
(f) are obtained witl1,(w) given by Eq.(14). (&) and(b) are for a ESGn(‘”) = —1] dw’?
flat static spin susceptibilitys(q) nearqgy, (c)=(h) for the Ornstein- 2 -0 ()= A
Zernike form.(c) and(d) are obtained within Eliashberg theotg) 3
and (f) assuming a vanishing Fermi velocity @ (anti-Eliashberg % In wsf(dy) —IV(w+ 0)* - A (41)

approximatiof. (g) and(h) are obtained using the spin polarization
operator, Eq(47), with an extra threshold d®;,. In all cases, the
dispersion shows a kink arounad\2and does not have tt&shape
form typical for the antinodal dispersiqsee Fig. 4. Dashed lines
are extrapolations from high frequencies; the extrapolated disper- ReZscn(w) = = Asddp o, (42)

sion ?twi? h)a_sza nedgAa;[ivAI(g ije_.,zk inside the Fermi surface. The where now )\sc:)\(ch) J* (M wg(qy), and ¥* (x< 1)
coUplingAtqy =< anda/ wsfdy=<. =x/Inx|, and ¢* (x>1)=m/4. Nearo=+2A, the derivative

o o i _ d3scn(w)/dw is again singular, but now
polarization operator, which is confined to bosonic frequen-

wsfdy) = V(= w')?= A

Again, at low frequencies, the self-energy is linear,

cies nearA. At these frequencied], (w) is small, and the d3scn(w) * o' (w+w')
ical Spi il . : S S AN@Y) | o'
dynamical spin susceptibility can be expanded in powers of do = [(w')?-A2+i5]
qu(w). The momentum dependence xf(q) then just af-
fects the prefactor of thew+2A)In(w+2A) term in Eq.(36). % 1
To verify this, we computed the self-energy and the disper- Vw+ o' )2-A2+i5
sion for the Ornstein-Zernike form gf(q). In this situation, 1
. 2 2' (43)
. , o) ~ V(o +0')2 = A
— )\(ql) ’ w . . .
Sscn(w) = > dw o -a? Expanding, as before neaw=-2A and introducing
™ V@ w=-2A+e and o’ =A+X, we obtain from Eq(43)
1
X . (37 d> A2\ “ dx 1
[1 —i \’((1) + (1),)2 _ AZ/wsf(ql)]llz ( ) SCI’]((U) - = (ql) f - ’ — .
do 2V2Awsf(Q1) J o X 10— e=x+id
; - (44)
Again, at low frequencies
Evaluating the integral using E€R1) we obtain
ReZscn(w) = = Asddd o, (38) d2senlw) _ 732)\(%) 1 (45)
do V2Awg(dy) Voo + 20

where now)\sc(ql):)\(ql)ZI/(A/wa(ql)), and i.e., nearo=-2A,

174505-8
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01— T Oor——T—— T T FIG. 6. (a) ReX and(b) nodal dispersion gen-
a b erated from the model of Ref. 15. Circles are the
0.08 - iy -0.05 experimental data of Ref. 3 for optimal doped
Bi2212 atT=40 K. TheS shape is replaced by a
0.06 - 1 kink due to(1) dominance of the continuum con-
0.1 r ] tribution to the self-energy relative to that of the
0.04 T resonance an(?) a strong energy broadening of
015 ] 40 meV, which was assumed when deriving the
0.02 - b p self-energy. For these calculations,wes

S =40 meV, A, =40 meV, and the continuum

0-0.2 -o.l1s -ol.1 -o.los 0 '0'2-0.1 -c;.oe -ojos -o.lo4 -o.loz 0 has a Qap_Of 6_5 meV and a cutoff _Of 500_me_\/.

E (eV) Ak (A For this direction, the bare Fermi velocity is

3.37eVA.

E (eV)

S4en(@) =S&cn(— 24) - K* Re\2A(w +24),  (46) form of 1, () [see Fig. f)]. There is still a cusp near\2
. ) and a nonS-shape dispersion. The only new effect is the
whereK* = m\(qy)A/[ws(dy)]. As a result, the kink at ®®  gytension of the crossover region above the kink. This is

survives, andsc,(~2A) still does not diverge, i.e., there is jndeed expected as the new term in relatidi) affects the
no S-shape, antinodal-type dispersion. At the same time, thg|arization operator at higher frequencies.

functional form of the nonanalytic piece changes-ttieix| To summarize this section, we see that the result of vari-

singularity in the real part of the self-energy in E@) and 4,5 computational procedures is virtually the same: the self-
(40), wherex=w+2A, gets replaced by a one-sided sin-  gnergy of a nodal fermion is much less affected by supercon-
gularity. We plot the self-energy, E¢41), and the resulting  qyctivity than the self-energy of an antinodal fermion. The
dispersion in Figs. @) and ). As the two expressions for g4 self-energy roughly displays the same crossover as in
the self-energy for the Ornstein-Zemike(q), Eqs.(37) and  the normal state, from a linear in frequency behavior at small
(41), represent two extremes of large and small fermionigrequencies, to a more flat behavior at higher frequencies.
dispersion compared to the bosonic dispersion, the aCtU@uperconductivity only sharpens the crossover neariit

ger than that in Eq(36) for |w|<2A, and weaker for

|w|>2A. Still, we emphasize that both computational
schemes yield a kink in the dispersion, but no divergence of C. A comparison with Ref. 15
ReX(-2A) and noS-shape dispersion.

The actual behavior of the dispersion is more involved, as It is instructive to compare our results for nodal fermions
one has to average over g|lfor scattering from a node to with the earlier study by Eschrig and Norm&nThese au-
some other Fermi surface point. This obviously weakens théhors also argued that the dominant scattering process for a
2A singularity roughly in the same way as the singularity innodal fermion is node-antinode scatteringdyy{though they
the density of states ak is weakened by the momentum included a second process due to néded) scattering.
dependence of the gap indawave superconductor. Further- They used a phenomenological form of the spin susceptibil-
more, even if by geometrical reasons, node-antinode scatteity at g, with the resonance piece taken as a Lorenztian of
ing atg, dominates the nodal self-energy, the actual form ofwidth 2a aboutq,. The resulting value af, is about 8% of
2sgn(w) is more complex than in Eq&28), (37), or (41). As  that atq,. Added to this is a gapped continuumith a gap
we already discussed in Sec. Il B 1, the square-root behaviafqual to the threshold value of |tho) modeled as a step
of I14(€2) persists only in a small region near the threshold function with an ultraviolet cutoff. This form of4(q;,Q) is
while at larger(, additional features il (1), associated not exactly the one we used abate our analysis, the reso-
with the existence of two extra pairs of Fermi surface pointsnance piece is completely absentga, but nevertheless is
separated by; become relevantsee Fig. 3. rather similar in the sense that a large part of the magnetic

To qualitatively estimate the relevance of this effect, weexcitation spectrum is incoherent. Not surprisingly, the two
model Il (Q) in Fig. 3 by a combination of a square-root forms for x(q;, w) yield similar results for the dispersion of

behavior above)=A and a near discontinuity & =1.6A: a nodal electron. In Fig. 6, we plot the self-energy and nodal
) ) dispersion obtained with their susceptibility. We see that this
" _ [h2_r2, 2 0°-(1.64) dispersion has a kink, but ®shape. This was achieved by
I (Q) = y| VO = A+ —| 1 +tanh . o N .
R 2 putting in a significantly large amount of damping that acts

(47) to smear out thé-function singularity in energy of the reso-
nance. AnS shape would still be present, though, if the con-
For consistency with Fig. 3a~1.2A, and we seb~0.1A  tinuum piece is ignored. This result shows that even when
(b=0 would correspond to a true discontingitin Figs. 5g)  the resonance is present, tl& shape of the dispersion
and h), we plot the self-energy and the dispersion for thisemerges only when the resonance contributionZtdw)
form of I1,(€2) and flatyy(q). We see that the dispersion does overshadows the one from the incoherent piecgdq, ).
not change much compared to that with just a square-rocthis implies, in particular, that th8 shape dispersion does
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not emerge immediately away from the nodal direction, i.e., 0.3 | Rex (@)/a

it appears somewhere between the nodal and antinodal 0 R

points. e -7
-0.3°F a

IIl. PHONON SCATTERING

We now perform the same analysis for phonon scattering.
Consider a system of electrons interacting with an optical
phonon with a frequencyo,, and momentung=qp, The
optical phonon propagator can be reasonably approximated

-7 =2

by o/ o,
Xph(q!w) = qu) (48) FIG. 7. (a) ReX and(b) antinodal andc) nodal dispersion for
(w+iy)*- Wph the electron-phonon interaction. We used E49) for the self-

. - . energy with wy,=2A and coupling constanh’=2. Solid and
whereg(q) rapldly. decays at deVIatI(.)ns. fronpph, andy is dashed lines atlre foy/ w,=0.6 and 2, respectiflcely. For moderate
the phonon damping ra’Fe' The _ferm'omc Self-energ)é que t%lamping, the dispersion along both directions haSahape form.
electron-phogon scattering is given by K@), only 3gs iS  Note that the extrapolated dispersion crosses the vertical axis at a
replaced byg, To simplify the discussion, we consider a positive Ak, i.e., fork outside the Fermi surfaa®ef. 26. For the
nodal fermion and assume that the Fermi velocitykat  spin-fermion interaction, this crossing always occurs at negative
+Qpn can be neglected. Substituting E@8) into the self-  for the nodal direction.

energy, we obtain

7Bw (thh_ w?) from a linear to a more steep dispersion at aroung (ii)
Y 5, (49 below T, the antinodal dispersion develops &shape form

wpn (0~ ©°)* + 490 due to interaction with the spin resonance with a character-

where ,3=9§pfg(Q)d2q and wm2:(wph+A)2+ ¥2. Solving  istic energy 9fA+wreS, (iii) the nodal dispersic_m beI_oWC

now for the dispersion, we find that at low energies, thedevelops a kink at 2, but there is ndS-shape dispersion as

dispersion is linear with v;:vp/(lﬂ\g@ and AP thgre is no spin resonance for momenta that connect a nodal

:Wﬂ/(wphwtzh)- Near wy, the real part of the self-energy for point with other points on the Fermi surface.

small y nearly diverges as approachesyy,, giving rise to an A. A comparison with experiments

S-shape dispersioff.We illustrate this in Fig. 7. Th& shape

could in principle be eliminated if is very large, i.e., the

bosonic mode is almost overdamp&dHowever, one can

easily make sure that to avoid tiSeshape, one requires

Y 1
— > 5)\22 (50)
Wih

R[Sl @)] = -

Qualitatively, our picture of ais-shape dispersion in the
antinodal region below,, and a kink dispersion in the nodal
region, which is similar above and beloW,, agrees well
with the data®® Quantitatively,w¢f(qo) and ws(q;) relevant
for the antinodal and nodal dispersion, respectively, were es-
timated to bawg{(qg) ~20 meV andws(q;) ~40—-50 meV in
_ _ _ _ _ Bi221222 Experimentally, this scale has been detected for
This can be relatively easily achieved at weak coupling, buthe nodal dispersion and is around 50 meV. The resonance
izaton, theS shape is eliminated only at nonphysical  poth near 40 meV® hence the termination of tf®shape in
> wy,. Furthermore, foh2'>2, theS shape cannot be elimi- the antinodal dispersion and the kink in the nodal dispersion
nated for anyy. If we do not neglect the Fermi velocity at photh occur near 80 meV. Experimentally, this scale is
Ke+0dpn then at the lowest frequencies we obtain qualita-go meV along the antinodal direction and 50-70 meV along
tively the same result as E@23), i.e., a nearly one-sided the nodal directiof. Both of these gap-related scales are
square-root singularity. Again, it is very difficult to get rid of smaller in LSCO, but for that material, there are no notice-
the S-shape form of the dispersion at strong coupling withoutaple differences between the normal and superconducting
requiring that the bosonic mode is totally overdamped. It isstate dispersions. This implies that the effect of the supercon-
therefore Very Unlikely that the intel’action W|th an Optica| duct|v|ty on the dispersion is Very Sm&though it should be
phonon can simultaneously account for a strong Fermi venoted that most of the “normal state” data for LSCO were
locity renormalization and give rise to a n@shape form of  actyally taken in the pseudogap state, the pseudogap provid-
the dispersiort? ing a sizable antinodal energy scije We note in passing

that the same smallness was cited as a reason for the nonob-
IV. CONCLUSIONS AND EXPERIMENTAL COMPARISONS servation of the_ resonance peak in LSé?G_MIoreo_ver, recent
neutron scattering studi®dind that the spin excitation spec-

We conclude therefore that the spin fluctuation scenariarum in LSCO is remarkably similar to that in YBCO. The
more likely explains the observed features in the electromniversality observed in the spin dynamics and that observed
dispersion than the phonon scenario. Within the spin fluctuain the photoemissiofiwe would argue, supports a magnetic
tion scenario:(i) in the normal state, there is a crossoverinterpretation of the dispersion anomalies.
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B. The doping dependence Agow
. . . . 2spwlk, w) = —>—— (52
Finally, we discuss the doping dependence of the disper- W = €k,

sion. There are few systematic studies of the doping depen-
dence along the antinodal directi®#3 Our study shows Where Agpye g5 d?qdQx«(q, Q) increases with underdop-
that the magnitude of thg-shape dispersion should increaseing. This form is valid for|w|> wo. Substituting this self-
with underdoping ags(qg) increases, and the coupling con- energy into the dispersion relation, we find after simple al-
stant gets larger. Along the nodal direction, the low-energygebra that for the negative energies probed in ARPES
Fermi velocity UF~1 6eVA is relatively doping measurements, the maximum of the MDC dispersion shifts
independent.In constrast, the slope of the high-energy dis-from w=e to w=e-Afpy/ (6sq,~€)- As <0 and
persion monotonically increases with underdopingithin €k+q, > 0, the correction to the velocny is positive, i.e., the
our theory, the low-energy Fermi velocity is given bj} diagonal scattering enhances the value of the velocity com-
=ve/[1+\(qy)], and the coupling constainfq,) depends on pared tovg. As Agpyy increases, this effect gives rise to a
the spin-fermion couplings and xs(q;). The coupling con- progressively steeper dispersion, in agreement with the data.
stant is weakly doping dependent. The susceptibility does A simple way to appreciate the doping dependence of the
depend on doping via the magnetic correlation lengthut  high-energy dispersion is to realize that the MDC dispersion
this dependence is nonsingular for the node-antingge for a gapped state is almost vertical fas| <Agpyw with
# go. Once|q;— ol > &%, the doping dependence disappears some weak dispersion due to coherence facfofus, as
and the nodal coupliny(q,) saturates at a fixed value. Pre- the doping is decreased, and a Mott-Hubbard pseudogap be-
vious studies by both us and others yielddd;) ~1. This  gins to develop, the high-energy dispersion is expected to
yields a bare velocityyr~3 eV A consistent with band become increasingly steep.
theory.
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