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The title compound is investigated by specific heat measurements in the normal and superconducting states
supplemented by upper critical field transport, susceptibility, and magnetization measurements. From a detailed
analysis including also full potential electronic structure calculations for the Fermi surface sheets, Fermi
velocities, and partial densities of states the presence of both strong electron-phonon interactions and consid-
erable pair breaking has been revealed. The specific heat and the upper critical field data can be described to
a first approximation by an effective single-band model close to the clean limit derived from a strongly coupled
predominant hole subsystem with small Fermi velocities. However, in order to account also for Hall-
conductivity and thermopower data in the literature, an effective general two-band model is proposed. This
two-band model provides a flexible enough frame to describe consistently all available data within a scenario
of phonon mediateds-wave superconductivity somewhat suppressed by a sizable electron-paramagnon or
electron-electron Coulomb interaction. For quantitative details the relevance of soft phonons and of a Van
Hove–type singularity in the electronic density of states near the Fermi energy is suggested.
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I. INTRODUCTION

The recent discovery of superconductivity in the interme-
tallic antiperovskite compound MgCNi3 (Ref. 1) with a su-
perconducting transition temperature ofTc.8 K is rather
surprising considering its high Ni content. Therefore it is
expected that this compound is near a ferromagnetic instabil-
ity which might be reached by hole doping on the Mg sites.2

The possibility of unconventional superconductivity due to
the proximity of these two types of collective order has at-
tracted great interest in the electronic structure and the phys-
ics of the pairing mechanism.

Band structure calculations2–6 for MgCNi3 revealed a
domination of the electronic states at the Fermi surface by
the 3d orbitals of Ni, suggesting the presence of ferromag-
netic spin fluctuations.2,4 13C NMR measurements7 result in
Fermi liquid behavior with an electronic crossover atT
<50 K and a growing formation of spin fluctuations below
T<20 K. Resistivity measurements,1,8,9measurements of the
thermopower, the thermal conductivity and the
magnetoresistance,10 doping experiments,9,11 and magnetiza-
tion measurements11 are consistent with this interpretation.

MgCNi3 has been considered as a structurally related
compound of the layered transition metal borocarbides which
exhibit superconducting transition temperatures up to
<23 K.11,12 In spite of the much lowerTc of MgCNi3, its
upper critical field Hc2 at low temperatures,Hc2s0d
=8–15 T,8,13–16is comparable with that of the borocarbides
or even higher. However, a rather different and unusual
shape, especially nearTc, for the temperature dependence of
Hc2sTd is observed for the latter compounds.17 At variance
theHc2sTd dependence of MgCNi3 is similar to that of usual
superconductors which are described reasonably well within

the isotropic single-band approximation and exhibit a steep
linear slope ofHc2sTd at Tc.

Through analysis of specific heat data, MgCNi3 was char-
acterized in the framework of a conventional, phonon-
mediated pairing both as a moderate1,16 and as a strong14,18

coupling superconductor. Strong coupling is also suggested
by measurements of the thermopower10 and the large energy
gap determined from tunneling experiments.14 The question
of the pairing symmetry is controversially discussed in
the literature. 13C NMR experiments,7 specific heat
measurements,16 and tunneling spectra19 support s-wave
pairing in MgCNi3, whereas earlier tunneling spectra14 and
penetration depth measurements20 have been interpreted in
terms of an unconventional pairing state. Recent measure-
ments of the critical current of MgCNi3 may be interpreted in
the latter sense, too.21

In the present investigation, specific heat data of MgCNi3
in the normal and superconducting states were analyzed in
detail with the aid of a realistic phonon model and strong
coupling corrections as suggested by Carbotte.22 The results
are brought into accordance with the two-band character of
MgCNi3 emerging from band structure calculations and a
parallel analysis of the upper critical fieldHc2s0d, in order to
find out a consistent physical picture explaining at least
qualitatively various available experimental results.

II. ESSENTIALS OF THE THEORETICAL ELECTRONIC
STRUCTURE

Following previous work2 in the present section we re-
mind the reader of some essential features and point out de-
tails of the electronic structure of MgCNi3 which are crucial
for a proper interpretation of the specific heat[total and
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Fermi surface sheet(FSS) related partial densities of states
(DOS)], upper critical field, and transport data(topology of
the Fermi surface and the magnitude of the Fermi velocities).
Among various band structure calculations there is general
consensus about the qualitative topology of the Fermi sur-
face and the presence of a strong peak(Van Hove singular-
ity) in NsEd slightly below the Fermi energy. At the same
time there are clear differences with respect to the magni-
tudes of Ns0d=4.8 states/eV=11 mJ/mol K2 [to be com-
pared with 4.63 states/eV(Ref. 3), 4.99 states/eV(Ref. 4),
5.34 states/eV(Ref. 6)] and especially with respect to the
Stoner factorS=3.3 [compared with 1.75(Ref. 3), 2.78(Ref.
23), to 5 (Ref. 4)] as well as to the distance of the DOS peak
42 meV [compared with 40 meV(Ref. 24) to 80 meV(Ref.
23)] below EF. The peak may be of relevance for a proper
quantitative description of the electronic specific heat, trans-
port data, magnetic properties, and superconductivity. Last
but not least, there is also a sizable variety on the magnitude
of the electron-phonon coupling constantlph (ranging be-
tween 0.8 and 2.0) mainly caused by poor knowledge of the
phonon energies and possible lattice anharmonicities.24

Our results have been obtained by a band structure calcu-
lation code using the full-potential nonorthogonal local-
orbital (FPLO) minimum-basis scheme.25 There are about
0.285 charges per unit cell with exactly equal numbers of
holes and electrons—i.e.,nh=nel—which follows from the
even number of electrons per unit cell[to distinguish both
bands, we will use the index “h” for the hole band(“1” ) and
“el” for the electron band(“2” ) in the following analysis]. In
other words, MgCNi3 is a so-called compensated metal
which must be described in terms of multiband model by
definition. Thus, it makes sense to start with a two-band
model. The generalization to any higher multiband scenario
is straightforward. A standard single-band system with an
even number of electrons per unit cell would be a band in-
sulator. Thus, metallicity is achieved owing to the two-band
character which leads to electron and hole-derived FSS’s.
The total DOSNs0d at the Fermi level can be decomposed
into a roughly 85% and a 15% contribution stemming from
two-hole and two-electron sheets of the Fermi surface, re-
spectively(see Figs. 1 and 2). The two types of hole sheets
are formed by eight droplets(ovoids) oriented along the spa-
tial diagonals of the cube—i.e., along theG-R lines and six
FSS with a “four-leaved-clover”-like shape centered at theX
points in the middle of the faces of the cube(see Fig. 2). The

coordinates of the symmetry points readG=s0,0,0d, R
=s0.5,0.5,0.5d, X=s0.5,0,0d, andM =s0.5,0.5,0d (all given
in units of 2p /a, wherea=0.381 nm is the lattice constant).
The FSS’s with electron character are given by the rounded
cube centered atG and 12 thin jungle gims spanning fromR
to M.

The band structure calculations provide us directly with
several material parameters(total and partial densities of
states, Fermi velocities, etc.) important for the understanding
of superconductivity and electronic transport properties. For
instance the transport properties are described by quadrati-
cally averaged Fermi velocitieskv2lFSS whereas the upper
critical field is described by averages of the typek1/v2lFSS

which yields a smaller effective velocity in general. Using

the general definitions of the local density of states(in kW

space) and those ofmth and the first moments of the Fermi

velocity v= uvWskWdu, respectively, we have

kvmli =
e dSiNiskWduvW iskWdum

e dSiNiskWd
;

e dSiuvW iskWdum−1

e 4p3"Nis0d
,

kvli ; v̄i =
SF,i

4p3"Nis0d
,

FIG. 1. (Color) Partial density of states of the two bands in
MgCNi3 corresponding to the two Fermi surface sheets shown in
Fig. 2. Dotted line: total density of states.

FIG. 2. (Color) Fermi surface sheets of MgCNi3. Fermi veloci-
ties are measured in different colors(see scales below the figure) in
units of 107 cm/s; i.e., blue color stands for slow and red color for
fast quasiparticles. Upper panel and lower left panel: hole sheets
corresponding to “band 1” in Fig. 1. Lower right panel: electron
sheets corresponding to “band 2” in Fig. 1. The right panels present
the Fermi velocity distribution of the two sheets on the same abso-
lute scale to demonstrate the slow(heavy) character of the holes.
Yellow color: sides of filled electrons. The left panel shows the
vF-distribution in the hole sheets on a smaller scale in more detail.
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kvmli =
v̄ie dSiuvWskWdum−1

SF,i
,

wherei =el,h , tot,SF,i denotes the area of theith Fermi sur-
face sheet, and the effective quantity is related to the linearly
averaged valuev̄ adopting a simple estimate as

kv−2li =
v̄ie dSiuvW iskWdu−3

SF,i
; vhc2,i

−2 ,

vhc2< v̄f1 − sdv/v̄d2g,

wheredv is the halfwidth of thev distribution. For the two
above-mentioned subgroups of quasiparticles we estimate
v̄el=3.93107 cm/s and v̄h=1.23107 cm/s, vtr,h=1.11
3107 cm/s, vhc2,h=1.073107 cm/s, and vtr,el=4.89
3107 cm/s, where dvh=43106 cm/s and dvel=1.1
3107 cm/s have been used(compare also Fig. 2).

Finally, in the isotropic single-band(ISB) model realized
in the extreme dirty limit of superconductivity one arrives at

Ns0dvtr,ISB
2 = Nhs0dvtr,h

2 + Nels0dvtr,el
2 ,

which yields vtr,ISB=2.153107 cm/s in accordance with
Ref. 3. The corresponding plasma energy amounts to"vpl
=3.17 eV close to 3.25 eV given in Ref. 4. Naturally, the
total plasma frequencyvpl can be also decomposed into the
plasma frequencies of both subsystems:

vpl
2 = vpl,h

2 + vpl,el
2 = vpl,h

2 S1 +
N2s0dvtr,2

2

N1s0dvtr,1
2 D .

Thus we estimate "vpl,h<1.89–1.94 eV and "vpl,el
<2.55–2.61 eV. From these partial plasma energies a useful
relation between the scattering ratesgimp,i and the conduc-
tivities si (with i =h,el) in both subsystems can be obtained:

gimp,el

gimp,h
= 1.816

sh

sel
= 1.816

rel

rh
,

whereri denotes the corresponding resistivity. In the present
case the disorder is expected to be caused mainly by Mg- and
C-related defects such as vacancies and interstitials. There-
fore the ratio of the scattering rates might scale with the ratio
of the non-Ni-derived Mg and C orbital partial densities of
states at the Fermi level and the corresponding Fermi veloci-
ties. As a result we estimate from our local density approxi-
mation (LDA ) FPLO calculations

Sgimp,el

gimp,h
D

LDA
<

Nel,Mg,Cs0dvel

Nh,Mg,Cs0dvh
< 4.81. s1d

Within this approach the corresponding mean free paths dif-
fer by a factor of 0.917 and a conductivity ratio ofsh/sel
=1.403 would be expected.

In the following analysis we usually make use of"=kB
=m0=1 for the sake of simplification.

III. EXPERIMENT

Polycrystalline samples of MgCNi3 have been prepared
by solid-state reaction. In order to obtain samples with high

Tc, we used an excess of carbon as proposed in Ref. 1. To
cover the high volatility of Mg during sintering of the
samples an excess of Mg is used.1 In this study, a sample
with the nominal formula Mg1.2C1.6Ni3 has been investigated
and is denoted as MgC1.6Ni3. To prepare the sample a mix-
ture of Mg, C, and Ni powders was pressed into a pellet. The
pellet was wrapped in a Ta foil and sealed in a quartz am-
poule containing an Ar atmosphere at 180 mbar. The sample
was sintered for half an hour at 600°C followed by one hour
at 900°C. After a cooling process the sample was reground.
This procedure was repeated 2 times in order to lower a
possible impurity phase content. The obtained sample was
investigated by x-ray diffractometry to estimate its quality.
The diffractometer pattern(Fig. 3) shows small impurity
concentrations mainly resulting from MgO and unreacted
carbon crystallized as graphite(<10 vol. %). The lattice
constant of the prepared sample was determined to bea
=0.38107s1d nm using the Rietveld codeFULLPROF.26 This
indicates that the nearly single-phase sample corresponds to
the superconducting modification of MgCxNi3.

27 The super-
conducting transition of the sample was investigated by mea-
surements of electrical resistance, ac susceptibility, and spe-
cific heat. For the electrical resistance measurement a piece
cut from the initially prepared pellet with 5 mm in length
and a cross section of approximately 1 mm2 was measured in
magnetic fields up to 16 T using the standard four-probe
method with current densities between 0.2 and 1 A/cm2. The
ac susceptibility and the specific heat measurements were
performed on other pieces from the same pellet in magnetic
fields up to 9 T.

IV. RESULTS

A. Resistivity

The temperature dependence of the electrical resistance of
the investigated sample is shown in Fig. 4. A superconduct-
ing transition with an onset(midpoint) value of Tc
=7.0 K s6.9 Kd is observed(see inset of Fig. 4) which coin-

FIG. 3. (Color online) Rietveld refinement for the MgC1.6Ni3
sample. The crosses correspond to the experimental data. The solid
line shows the calculated pattern. The vertical bars give the Bragg
positions for the main phase MgCNi3, for graphite and MgO(from
top to bottom). The black line at the bottom of the plot gives the
difference between the experimental and calculated pattern.
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cides with the onset of the superconducting transition ofTc
=7.0 K determined from ac susceptibility. Its residual resis-
tance ratiors300 Kd /rs8 Kd=1.85 and the shape of thersTd
curve are typical for MgCNi3 powder samples.1,8,9 It should
be noted that the sample of Fig. 4 has a resistivity of
r300 K=2.1 mV cm which is much too large in order to be
intrinsic.

The nonintrinsic origin of the corresponding residual re-
sistivity of r0=1.13 mV cm follows from reasonable values
for the mean free path which has to exceed the lattice con-
stanta according to the Joffe-Regel limitl impùa.28,29 Using
vF=vtr,ISB=2.153107 cm/s andvpl=3.17 eV from Sec. II,
the maximal intrinsic residual resistivity is estimated as
r0

max=4pvF/ svpl
2 ad=0.29 mV cm, in the extreme isotropic

single-band dirty limit.
A natural explanation for the high resistivity of the inves-

tigated sample which was not subjected to high-pressure sin-
tering is a relatively large resistance of the grain boundaries.9

This conclusion is supported byHc2s0d and Tc values of
recent low-resistivity thin film data(with r0 down to
20 mV cm) by Younget al.,15 which are comparable to avail-
able powder sample values.

B. Specific heat

Specific heat measurements were performed in order to
get information about the superconducting transition, the up-
per critical field, and the superconducting pairing symmetry
and the strength of the electron-phonon coupling from ther-
modynamic data. In Fig. 5 specific heat datacp/T vs T2 are
shown for applied magnetic fields up to 8 T. The previously
mentioned(see Sec. III) 10 vol. % graphite impurity contri-
bution, corresponding to<0.2% –0.3% of total specific heat
at 2–30 K, was subtracted according to Ref. 30.

The specific heat can be considered as a sum of a lattice
contribution and a linear-in-T term which gives the elec-
tronic contribution withgN

* as the Sommerfeld parameter:

cnsTd = gN
* T + clatticesTd. s2d

To extract the lattice contribution of the normal-state specific
heat the low-temperature limit

clatticesTd = bT3 s3d

of the Debye model is usually applied. A fit of Eq.(2) to the
data is shown in Fig. 5, resulting in the parameters
b=0.39 mJ K2/mol and gN

* =27.0 mJ/mol K2. Notice that
the Sommerfeld parameter is connected to the electron-
phonon coupling strength bygN

* =g0s1+lphd. With g0

=11 mJ/mol K2 (Sec. II), one obtainslph=1.45, in contra-
diction with recently reported medium coupling results.1,16

From the lattice contribution the Debye temperatureQD
*

=292 K was derived. Both parameterssQD
* ,gN

* d are consis-
tent with what has been reported so far.14,16The fit describes
the normal-state data aboveTc but its extrapolation toT
=0 K obviously underestimates the high-field data(see
Fig. 5).

The transition temperatureTc=6.8 K, calculated from en-
tropy conservation criterion, agrees well with the transition
temperaturesTc=6.9 K and Tc=7.0 K derived from resis-
tance and ac susceptibility data, respectively.

The jumpDcsT=Tcd of the specific heat is given by the
difference between the experimental data,cpsTd and the
normal-state specific heat contributioncnsTd. Notice that the
experimental value of the jump,DcsTcd / sgNTcd=2.09 (de-
rived from an entropy conserving construction—see Sec.
V B), is strongly enhanced compared to the BCS value
(1.43), indicating strong electron-phonon coupling.

C. Superconducting transition and upper critical field

The field dependence of the electrical resistance of our
investigated sample is shown in Fig. 6 for several tempera-
tures between 1.9 and 6.0 K. A sharp transition is observed.
It remains sharp down to low temperatures. In Fig. 7, the
field valuesH10, H50, andH90 defined at 10%, 50%, and 90%
of the normal-state resistance are plotted as a function of
temperature. Identical results have been found from
resistance-vs-temperature transition curves measured at dif-
ferent magnetic fields. Additionally, Fig. 7 shows upper criti-
cal field data determined from ac susceptibility measure-
ments,Hc2

sus, determined by an onset criterion.

FIG. 4. (Color online) Resistivity as a function of temperature of
the MgC1.6Ni3 sample up to room temperature. The inset shows the
superconducting transition region.

FIG. 5. (Color online) Specific heat datacp/T vs T2 of
MgC1.6Ni3 measured at various magnetic fields up to 8 T. The
dashed line is a fit of the Debye approximation to the data forH
=0 T aboveTc. Its intersection with thecp/T axis gives the Som-
merfeld parametergN

* =27 mJ/mol K2 (see text).

WÄLTE et al. PHYSICAL REVIEW B 70, 174503(2004)

174503-4



It is clearly seen that for the investigated sampleHc2
sus

agrees approximately withH10. A similar behavior was al-
ready observed for MgB2, whereas in the case of rare-earth
nickel borocarbides the onset of superconductivity deter-
mined from ac susceptibility was typically found to agree
well with the midpoint valuesH50d of the normal-state resis-
tivity. The width DH=H90−H10 of the superconducting tran-
sition curves in Fig. 6(and Fig. 7) remains, with DH
.0.6 T, almost unchanged down to low temperatures. A
nontextured polycrystalline sample of a strongly anisotropic
superconductor shows a gradual broadening of the supercon-
ducting transition with decreasing temperature as was ob-
served, for example, for MgB2.

31 Therefore, the nearly con-
stant transition widthDH observed for the investigated
sample can be considered as an indication of a rather small
anisotropy ofHc2sTd in MgCNi3.

The upper critical fields, Hc2sTd, determined from the spe-
cific heat data, are shown in Fig. 8. The Hc2sTd data obtained
from the specific heat are located in the small field range
between theH90sTd and H10sTd curves determined from re-
sistivity measurements(see Fig. 6).

The extrapolation ofH90sTd to T=0 K yields an upper
critical field of Hc2s0d.11.0 T (see Fig. 7). The observed
temperature dependence of the upper critical field is typical
for Hc2sTd data reported for MgCNi3 so far18 and was
described8,14,16 within the standard Werthammer-Helfand-
Hohenberg(WHH) model32 by conventional superconductiv-
ity. However, a quantitative analysis ofHc2 data presented in
Sec. VI A shows that the magnitude of the upper critical field
Hc2s0d at T=0 K can be understood only if strong electron-
phonon coupling is taken into account.

V. ANALYSIS

A. Specific heat in the normal state

In order to describe the specific heat data in the normal
state in an extended temperature rangeTc,T,30 K, the
Debye low-temperature limit approximation for the lattice
contribution[see Eq.(3)] was replaced by

clatticesTd = cDsTd + cEsTd.

Here,

cDsTd = o
i=1

3

3RS T

QDi
D3E

0

QDi/T

dx
exx4

sex − 1d2

stands for the Debye model33,34 describing the three acoustic
phonon branches, whereas the Einstein model33,34

cEsTd = o
i=4

15

RSQEi

T
D2 expsQEi/Td

fexpsQEi/Td − 1g2

describes the 12 optical branches.
We found that the nine energetically lowest phonons

(three acoustic and six optical modes) are sufficient to de-
scribe the normal-state specific heat up toT=30 K. To fit the
model to the data, we started in the low-temperature region
where the contribution of the Einstein-like modes are negli-
gible and the specific heat is mainly determined by the

FIG. 6. (Color online) Resistivity of the MgC1.6Ni3 sample as a
function of the applied magnetic field for various fixed temperatures
as labeled.

FIG. 7. (Color online) The upper critical field as a function of
temperature. The circles show the midpoint of the transitionsH50d.
The two lines labeledH10 and H90 denote 10% and 90% of the
normal-state resistivity. The triangles represent the upper critical
field from susceptibility measurements(onset values). The dashed
line illustrates the extrapolation of the resistivity data toT=0 K.

FIG. 8. (Color online) Comparison of upper critical field data
determined from specific heat(P) and resistance measurements.
H10 andH90 were determined at 10% and 90% of the normal-state
resistivity, respectively. An entropy conserving construction was
used to determine the upper critical field from the specific heat data
of Fig. 5.
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Debye-like modes. Starting parameters for the Sommerfeld
parameter and the Debye temperature were taken from Sec.
IV B. The contribution of the remaining Einstein modes was
carefully estimated by stepwise increasing the temperature
limit of the fit. The fitting procedure was performed using the
ROOT program package.35 It takes into account parameter
correlations and non-linearities to calculate parameter errors.
For the five parameters used, the standard deviations ob-
tained from the least-squares fit amount tos<0.1 K for D1,
D2, E1, and E2 ands<10 K for E3. The result of the fit is
shown in Fig. 9. The Sommerfeld parameter converged to
gN

* =31.4 mJ/mol K2, greater than determined from Fig. 5.
Specific heat measurements up toT=300 K on another piece
from the initially prepared sample(which are not presented
here) give the remaining six optical mode temperatures
(where all other parameters were fixed). The obtained Debye
and Einstein temperatures and the belonging grouping pa-
rametersni are summarized in Table I. The phonon energies
are in good agreement with recent calculations.24

The corresponding phonon spectrum has the form34

Fphsvd = 3v2FnD1
usVD1 − vd

VD1
3 + nD2

usVD2 − vd
VD2

3 G
+ o

i=1

5
nEi

Î2psi
2
expF−

sv − VEid2

2si
2 G ,

whereusxd is the well-known step function andV denotes

the corresponding cutoff temperatures in meV. The result
including higher optical modes is shown in Fig. 10. Our
model parameters even reproduce the rather complex phonon
dispersion along theG-X direction in the first Brillouin zone
at low phonon energies, as can be seen from Fig. 11, where
the used model is compared with calculations reported by
Ignatov et al.24 Even though our model only involves con-
stant and linear dispersion by the Einstein and Debye mod-
els, respectively, the calculated phonon dispersion(right
panel) is well reproduced(left panel), by means of superpo-
sitions of acoustic and optic phonon modes. The unusual
low-temperature behavior of the Debye modes, seen in Fig.

FIG. 9. Specific heat datacpsTd /T vs T2 for zero magnetic field
in the temperature range up to 30 K. The solid line is a fit of the
lattice model(see text for details), showing very good agreement
with the data forTc,T,30 K.

TABLE I. Debye and Einstein temperatures with corresponding
occupation numbers. Di denote the acoustic phonons and Ei the
optical phonons.Q gives the corresponding temperature andni is
the grouping parameter, giving the number of modes found to have
the same temperature.

Acoustic modes Optical modes

D1 D2 E1 E2 E3 E4a E5a

Q fKg 129 316 86 163 256 472 661

ni 1 2 0.33 2.67 3 3 3

aDerived from measurements up toT=300 K.

FIG. 10. Schematic phonon model spectrumFphsvd for
MgC1.6Ni3 derived from fit parameters according to Table I(dashed
lines mark high-energy modes). The peak width of the optical
modes was chosen arbitrarily assi

2=1.

FIG. 11. (Color online) Phonon dispersion along theG-X direc-
tion in the first Brillouin zone.(a) Our model with acoustic phonons
(solid lines) and optic phonons(dashed lines) according to Table I.
(b) Calculations reported by Ignatovet al. after Ref. 24.
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11(b), is simulated within our model by the degeneracy of
the Einstein modes E1 and E2[Fig. 11(a)]. The high-energy
optic phonons obtained from the model are shifted to lower
energies than predicted by the calculations. The shift is most
probably caused by anharmonic effects, which usually in-
crease specific heat data at higher temperatures.24

To investigate the electron-phonon coupling strength, the
electron-phonon interaction functiona2Fphsvd is of interest.
The coupling functiona2svd is usually extracted from tun-
neling measurements. In the case of A15 compounds36 and
some borocarbides,37 a2svd is found to be of the form
a2svd=d /Îv, with a scaling parameterd. Within this ap-
proach the logarithmically averaged mean phonon frequency
vln was determined from

vln = expS 2

lph
E

0

`

dv
a2svdFsvd

v
ln vD ,

lph = 2E
0

`

dv
a2svdFsvd

v
s4d

as vln=143 K. Note that shifting the high-energy modes to
E4<580 K and E5<850 K, which would better reproduce
the calculations from Ignatovet al.,24 would shift vln to
140 K. This shows that these high-energy modes have a mi-
nor influence on the further analysis.vln is used in the well-
known McMillan formula(refined by Allen and Dynes38)

Tc <
vln

1.2
expF−

1 + lph

lph − m*s1 + 0.6lphd
G s5d

to estimate the electron-phonon coupling constantlph. Here
m* denotes the usually weak Coulomb pseudopotential which
has been chosen asm* =0.13 in this case. WithTc=6.8 K the
electron-phonon coupling constant amountslph=0.84, sug-
gesting moderate coupling as proposed, for instance, in Refs.
1 and 16. However, the low value oflph estimated from Eq.
(5) is in contradiction with our specific heat data as already
mentioned in Sec. IV B. In particular,lph=1.45 was derived
from the ratiogN

* /g0 and also the high value of the super-
conducting jump DcsTcd / sgNTcd=2.09 indicates strong
electron-phonon coupling. Strong electron-phonon coupling
was also predicted by Ignatovet al.24 slph=1.51d on the
basis of the calculations mentioned above.

In this context a more precise analysis of the low-
temperature normal-state specific heat data is required. As
can be seen from the dashed line in Fig. 12, the extended
lattice model does not describe the magnetic field data. Even
larger deviations are observed if the experimental data are
described within the low-temperature limit of the Debye
model(see Fig. 5). Lin et al.,16 who found a similar upturn of
the experimental data at low temperatures, tried to explain
this behavior by the presence of Ni impurities. However, our
x-ray analysis(see Fig. 3) shows no indication for Ni impu-
rities in our sample. Recently, Shanet al.18 found that the
upturn mentioned can be easily reduced by lowering the car-
bon content. They attributed the observed upturn to some
kind of boson mediated electron-electron interactions in

MgCxNi3. This argument motivated us to search for other
possible sources to explain the low-temperature upturn of the
normal-state specific heat data.

The easiest explanation is an additional electron-boson
interaction which may be(i) an electron-phonon interaction
originating from additional phonon-softening of the lowest
acoustic mode(suggested by Ignatovet al.24 and verified
experimentally by Heidet al.39) and/or (ii ) an electron-
paramagnon interaction(see Sec. I).

Specific heat measurements do not let one clearly distin-
guish between these possible origins, but since magnetiza-
tion measurements on our sample(not presented here) show
increasing spin fluctuations below,30 K in accordance with
previous statements(see Sec. I), the focus in this paper lies
on the electron-paramagnon interaction scenario. This is ad-
ditionally supported by a small magnetic field dependence of
the specific heat data, typically found in the presence of fer-
romagnetic spin fluctuations.

Within Eliashberg theory the renormalized normal-state
specific heat is described by the temperature-dependent ther-
mal massDm*sTd /mband. Its contribution to the specific heat
is given by

DgsfsTd =
Dm*sTd
mband

g0,

with40

Dm*sTd
mband

=
6

pkBT
E

0

`

dva2Fsvdh− z− 2z2Imfc8sizdg

− z3Refc9sizdgj,

wherecsizd is the digamma function andz=v / s2pkBTd. The
additional electron-paramagnon interaction function is of the
form

FIG. 12. Low-temperature normal state total and electronic spe-
cific heat including field measurements[ 0.5 T (.), 2 T (.), 4 T
(j), 6 T (m), and 8 T(P)]. Left panel: specific heat datacpsTd /T
vs T2. Dotted line: extended lattice model describing the zero field
data(see Fig. 9). Solid line: fit of the model(including lattice and
paramagnon contribution) to the data. Right panel: electronic spe-
cific heatgNsTd vs T in the normal state. Solid line: Sommerfeld
parametergNsTd of the model(see text for details), describing the
observed upturn of the specific heat at low temperatures. Dotted
line: qualitative model for spin fluctuations according to Eq.(7).
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a2Fsf = avusVP − vd +
b

v3usv − VPd. s6d

This model does not include the slight dependence on the
applied magnetic field(which in addition can be temperature
dependent). Therefore the parameters were chosen to give a
consistent description of the low-temperature upturn on the
one hand and the superconducting phase including the en-
tropy conservation of the electronic specific heat in the su-
perconducting state on the other hand(see Sec. V B). The
chosen paramagnon-model temperature amounts toVP
<2.15 meV⇒QP<25 K. The corresponding thermal mass
Dm*sT=0d /m<0.43 is of the same order of magnitude as
determined by Shanet al.18 Since this low-energy excitation
concerns the electronic part of the specific heat, we add it to
the Sommerfeld parameter which then becomes temperature
dependent. The electronic contribution to the specific heat
increases from initially gN

* =31.4 mJ/mol K2 to gNs0d
=36.0 mJ/mol K2. This is understandable since the para-
magnon interaction dominates in the temperature range be-
low 10 K. The solid line in Fig. 12 shows the good agree-
ment of this extended model with the experimental data in
the low-temperature region. In the followinggNsTd is de-
noted asgN for the sake of simplicity.

The usually applied model

gN ~ dT2lnsT/T0d, s7d

to describe spin fluctuation behavior, is shown in the right
panel of Fig. 12 for comparison.

At this point the question of the strength of the coupling
may be rechecked. Including the additional electron-
paramagnon interaction, the Allen-Dynes formula, Eq.(5),
becomes

Tc <
vln

1.2
expF−

1 + l

lph − lsf − m*s1 + 0.6ldG , s8d

with l=lph+lsf.
41,42 Using vln=143 K, Tc=6.8 K, m*

=0.13, andlsf=0.43, the electron-phonon coupling constant
rises tolph=1.91. Using this value, the electron-phonon in-
teraction function based on the approachasvd=d /Îv can
now be determined by scaling the factord according to Eq.
(4). The electron-boson interaction functionsa2Fphsvd and
a2Fsfsvd are shown in Fig. 13.

The reliability of the model approach for the electron-
phonon coupling functionasvd=d /Îv can directly be
checked from the band structure, using the ratio between the
Sommerfeld parametergNs0d=36.0 mJ/mol K2 and the free
electron parameterg0=p2kB

2NsEFd /3=11.0 mJ/mol K2:

gNs0d
g0

= s1 + lph + lsfd. s9d

With lsf<0.43, the electron-phonon coupling constant be-
comeslph<1.84, showing good agreement between both ap-
proaches.

In the next section, the analysis of the specific heat in the
normal state will be extended to the superconducting state.

B. Specific heat in the superconducting state

Figure 14 shows the superconducting part of the elec-
tronic specific heatDcsTd=cpsTd−cnsTd, obtained from the
zero-field data. The superconducting transition temperature
Tc=6.8 K has been estimated by an entropy conserving con-
struction(dashed line in Fig. 14). This value agrees well with
the transition temperaturesTc=6.9 K andTc=7.0 K, derived
from resistance and from ac susceptibility data, respectively.
The conservation of entropy,DSsTd=e0

TcsDc/TddT, is shown
in the inset of Fig. 14. It was already mentioned that the high
value of the jump,DcsTcd / sgNTcd=2.09, found for the inves-
tigated sample can be explained by strong electron-phonon
coupling. Nevertheless, we will start to analyzeDcsTd for
T,Tc/2 within the BCS theory, since the deviation from the
weak coupling temperature dependence of the gap is mainly
restricted to the vicinity of the jump. The temperature depen-
dence of DcsTd=cpsTd−cnsTd in the weak coupling BCS
theory sTc!vlnd is given by an approximative formula

FIG. 13. (Color online) Electron-phonon interaction function
a2Fphsvd for MgC1.6Ni3. Phonon energies are marked by “Ei” and
“D i,” respectively (see Fig. 10 and Table I). Inset: electron-
paramagnon interaction functiona2Fsfsvd according to Eq.(6). The
paramagnon energy is marked by “P.”

FIG. 14. (Color online) Electronic specific heat dataDc/T vs T
in the superconducting state(solid circles). The solid line in the
temperature range 0,T,3.4 K corresponds to Eq.(10). Dotted
line: entropy conserving construction to get the idealized jump. In-
set: entropy conservation for the electronic specific heat in the tem-
perature range 0,T,Tc.
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DcsTd = 8.5gNTcexpS− 0.82
DBCSs0d

kBT
D − gNT, s10d

valid in the temperature range of 2,Tc/T,6 corresponding
in this case to 1 K,T,3.4 K. Equation(10) can be fitted to
the data by using the phenomenological gap 2Dexp/kBTc
=3.75, slightly exceeding the BCS weak coupling prediction
2DBCSs0d /kBTc=3.52. The fit, which is shown as the solid
line in Fig. 14, describes the experimental data in the range
of 2 K,T,3.5 K quite well.

To examine the temperature dependence of the electronic
specific heat,

cel = cpsTd − clatticesTd = DcsTd + gNTc,

at H=0 in detail,celsTd /gNTc is plotted logarithmically ver-
susTc/T (Fig. 15). The corresponding formula to Eq.(10)
reads

celsTd
gNTc

= 8.5 expS− 0.82
Dexp

kBT
D , s11d

if DBCSs0d is replaced byDexp. The solid line in Fig. 15 is a
fit of Eq. (11) to the experimental data, which show an ex-
ponential temperature dependence at low temperatures
sTc/Tù2d. This is a strong indication fors-wave supercon-
ductivity in MgC1.6Ni3.

The discrepancy between the values of the experimentally
found and the BCS gap as well as the strongly enhanced
specific heat jumpDcsTcd are clear indications of strong
electron-phonon coupling which is in accordance with our
normal-state specific heat analysis. Thus it is now straight-
forward to investigate the electron-phonon coupling strength
and thus the characteristic phonon frequencyvln, introduced
in Sec. V A, from the superconducting state characteristics.
The Eliashberg theory provides the following approximate
formulas, which includes strong coupling corrections within
an isotropic single-band model and linksx=vln /Tc to experi-
mental thermodynamic quantities:22

2Ds0d
kBTc

= 3.53B0sxd, s12ad

DcsTcd
gNTc

= 1.43B1sxd, s12bd

DcsTd − DcsTcd
gNTc − gNT

= − 3.77B2sxd, s12cd

gNTc
2

Hc
2s0d

= 0.168B3sxd, s12dd

Hcs0d

UdHc

dT
U

Tc

Tc

= 0.576B4sxd. s12ed

The corresponding logarithmic correction terms are given by

B0sxd = 1 + 12.5x−2ln
x

2
, s13ad

B1sxd = 1 + 53x−2ln
x

3
, s13bd

B2sxd = 1 + 117x−2ln
x

2.9
, s13cd

B3sxd = 1 – 12.2x−2ln
x

3
, s13dd

B4sxd = 1 – 13.4x−2ln
x

3.5
. s13ed

Now, using Eq. (12a), Tc=6.8 K, and the gap value
Dexps2 Kd=1.10 meV, one arrives atvln=149 K.

Using the value of the idealized jump of the specific heat,
DcsTcd / sgNTcd=2.09 in Eq. (12b) with Tc=6.8 K, vln

=88 K is derived.
Comparing the linear slope of the idealized specific heat

in the superconducting state of −6.7, obtained from Fig. 14
with Eq. (12c), one getsvln=109 K.

In view of strong coupling effects the ratiogNTc
2/Hc

2s0d,
implying again only thermodynamic quantities, is of interest.
Known superconductors show values between 0.17 and 0.12
ranging from weak to strong coupling, respectively(see, for
example, Ref. 22, p. 1086). The thermodynamic critical field
HcsTd can be determined with the help of the Gibbs free
energy dF=−SdT−MdB as

HcsTd = Î− 8pDF. s14d

DF is to be extracted from the specific heat in the supercon-
ducting state,DcsTd=−Td2sDFd /dT2. The temperature de-
pendence ofHcsTd is shown in Fig. 16. With Hcs0d
=179.6 mT we foundgNTc

2/Hc
2s0d=0.155. From Eq.(12d)

we getvln=110 K (with Tc=6.8 K).
Next, from the derivative of the thermodynamic critical

field at zero temperature, dHc/dT, the ratio
Hcs0d / fdHcsTd /dTuTc

Tcg can be estimated. The value atT
=Tc (of the idealized jump construction) amounts to

FIG. 15. Normalized electronic specific heat contribution vs
Tc/T. The solid line is a fit of Eq.(11) to the experimental data.
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dHcsTd /dTuTc
=50.236 (see the dashed line in the inset of

Fig. 16). Using the experimental value ofHcs0d /
fdHcsTd /dTuTc

Tcg=0.525 in Eq. (12e), a value of vln

=102 K is extracted.
It should be noted that Eqs.(12a) and(12e) can be used to

estimate the value of the gapDs0d from the thermodynamic
critical field Hcs0d, due to similar dependences on strong
coupling corrections:43

US T

Hcs0d
dHcsTd

dT
DU

T=Tc

<
Ds0d
kBTc

.

Using dHcsTd /dTuTc
=50.236, we get 2Ds0d /kBTc<3.80,

agreeing well with the single-band result 2Dexp/kBTc=3.75
of Eq. (11).

In summary,vln was estimated from five different ther-
modynamic relations, only involving experimental results.
The mean valuevln=s111±23d K is in good agreement with
calculations of Ignativet al.24 An overview of the results is
given in Fig. 17. Note that a similar analysis was already
successfully used to describe some borocarbide super-
conductors.37,44

The mean valuevln, derived from the superconducting
state is somewhat smaller than the normal-state result,vln
=143 K. This may be attributed to an additional phonon soft-
ening contribution or the approximative approach of the
electron-phonon coupling functiona2svd (see Sec. V A).
Nevertheless, by checking Eq.(8) with vln=s111±23d K,
Tc=6.8 K, m* =0.13, andlsf=0.43 the electron-phonon cou-
pling constant becomeslph=1.95–2.38, whereaslph=1.91
was derived fromvln=143 K for the same parameters. It
should be noted here that Eqs.(12) were derived assuming a
small value for the Coulomb pseudopotentialm* , which is
oversimplified considering enhanced electron-paramagnon
coupling found in this analysis. A rough correction would
shift the characteristic phonon frequencyvln to slightly

higher values and a coupling constant oflph<1.9 seems to
be most likely.

The analysis of the thermodynamic properties of MgCNi3
presented so far clearly points to strong electron-phonon
coupling. However, the temperature dependence of the ther-
modynamic critical fieldHcsTd shown in Fig. 16 strongly
deviates from analogous data for well-known strong cou-
pling superconductors such as Hg or Pb.HcsTd is usually
analyzed in terms of the deviation functionDstd
=HcsTd /Hcs0d−s1−t2d with t=T/Tc. The deviation function
of the above-mentioned strong coupling superconductors is
positive and goes through a maximum att2<0.5. The devia-
tion function of MgCNi3 is shown in Fig. 18. Instead of the
expected positive sign,Dst2d of MgCNi3 becomes negative
already above about 0.3Tc. The shape of the deviation func-
tion of MgCNi3 closely resembles that one of Nb having an
electron-phonon coupling strength oflph<1.0. We remind
the reader that the weak coupling BCS model yields a nega-
tive maximum deviation of<3.8% (see Fig. 18). Thus, at
first glance, our result seems to be in contradiction with the
strong electron-phonon coupling suggested above. It turns
out that this contradiction can be resolved, taking into ac-
count a splitting of the electron-phonon interaction function
into a high and a low(soft) energy part. This is illustrated in
Fig. 19, where a two-phonon peak spectrum with equal cou-
pling strengths of both peaks located atv1 andv2 has been
analyzed in the strong coupling case oflph<2 under consid-
eration. The theoretical curves calculated within the ISB are
shown for different frequency ratiosv1/v2. For v1/v2<8,
the “standard” strong coupling behavior—namely, a positive

FIG. 16. (Color online) Temperature dependence of the thermo-
dynamic critical fieldHcsTd (solid circles) derived from the elec-
tronic specific heat in the superconducting state using Eq.(14).
Solid line s0,T,3.4 Kd: single-band model according to Eq.(11).
Dotted line: idealized jump construction(see Fig. 15). Inset: deriva-
tive dHc/dT vs T (solid circles) and idealized jump(dotted line).

FIG. 17. (Color online) Several thermodynamic quantities in
dependence on the characteristic phonon frequencyvln according to
Eqs. (12) and (13). Solid circles: thermodynamic quantities esti-
mated for MgC1.6Ni3 from experimental data. Strong discrepancies
are found within the low-temperature Debye limit(solid squares).
Note that the weak coupling limit is reached in the asymptotic ex-
trapolationvln→`.
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deviation function—is completely removed and the deviation
function becomes negative. Considering the low-energy
modes E1 and D1, found in the analysis of the specific heat
in the normal state(see Figs. 10 and 13), this situation is
easily imaginable to be valid in the case of MgCNi3.

In the superconducting state a linear-in-T electronic spe-
cific heat contributiongsHdT arises from the normal con-
ducting cores of the flux lines for applied magnetic fields
H.Hc1.

This contribution can be expressed asgsHdT=cpsT,Hd
−cpsT,0d,46 wherecpsT,0d is the specific heat in the Meiss-
ner state. Specific heat data for MgC1.6Ni3 at T=2 K were
analyzed in order to derive the field dependence ofgsHd. In
Fig. 20, the obtainedgsHd /gN is plotted againstH /Hc2s0d
usingHc2s0d=11.0 T.

The field data ofcp/T shown in Fig. 20 can be described
in accord with results from Ref. 16 by the expressiong /gN

=fH /Hc2s0dg0.7 which differs from the lineargsHd law ex-
pected for isotropics-wave superconductors in the dirty
limit.

A nonlinear field dependence close togsHd~H0.5 has
been reported for some unconventional superconductors with
gap nodes in the quasiparticle spectrum of the vortex state as
YBa2Cu3O7 (Ref. 47) and in the heavy fermion supercon-
ductor UPt3 (Ref. 48), but also in some cleans-wave super-
conductors as CeRu2 (Ref. 49), NbSe2 (Refs. 46 and 50), and
the borocarbidesRNi2B2C sR=Y,Lud (Refs. 51 and 52). De-
localized quasiparticle states around the vortex cores, similar
as ind-wave superconductors, seem to be responsible for the
nonlineargsHd dependence in the borocarbides.53,54

C. Main superconducting and thermodynamic parameters

In this subsection we collect the values of the main physi-
cal parameters we have found experimentally and compare
them with available data in the literature. In order to make
this comparison as complete as possible we estimate(calcu-
late), from our data and from those of Ref. 14, the lower
critical field Hc1s0d and the penetration depthlLs0d at zero
temperature adopting the applicability of the standard
Ginzburg-Landau(GL) theory. Within this theory the pen-
etration depth is given by the relation

lLs0d = ks0djGLs0d, s15d

where the Ginzburg-Landau coherence lengthjGLs0d and the
Ginzburg-Landau parameterk are related to the upper and
the thermodynamic critical fields as

jGLs0d = ÎF0/2pHc2s0d,

ks0d =
Hc2s0d

Î2Hcs0d
,

with the flux quantumF0. With Hc2s0d=11 T and Hcs0d
=180 mT (see Sec. V B), jGLs0d=5.47 nm andks0d=43.3
are obtained. Using theses values in Eq.(15), the penetration
depth is estimated to belLs0d=237 nm. Our calculated value

FIG. 18. (Color online) Deviation function of the thermody-
namic critical field of MgC1.6Ni3 (solid circles) as function of
sT/Tcd2. The solid line for 0,T,0.34 K corresponds to Eq.(11);
the dotted line corresponds to the idealized jump construction(see
Fig. 14). For comparison, the weak coupling BCS(Ref. 45) is
shown.

FIG. 19. (Color online) Normalized deviation function calcu-
lated within the Eliashberg theory for an idealized two-peak phonon
spectrum located atv1 andv2 with equal electron-phonon coupling
parametersl1=l2=1 and strong total coupling parameter of
lph,tot=2. Shown are results forv1/v2=2, 4, and 8.

FIG. 20. Normalized field-dependent Sommerfeld parameter
gsHd /gN plotted against H /Hc2s0d. Solid circles: gsHd /gN

=fcpsT,Hd−cpsT,0dg /gN at T=2 K for different applied magnetic
fields. The solid line is a fit ofgsHd /gN=fH /Hc2s0dg0.7 using
Hc2s0d=11 T andgN at T=2 K.
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agrees well with measurements performed by Prozorovet
al.20 resulting in lLs0d=s250±20d nm. It should be noted
that Lin et al.16 measured a penetration depth oflLs0d
=s128–180d nm for their sample(see also Ref. 55); possible
consequences will be discussed in Sec. VI A. To complete
the critical field analysis, the lower critical fieldHc1s0d can
be estimated using

Hc1s0dHc2s0d = Hc
2s0dfln ks0d + 0.08g.

With Hc2s0d=11 T andks0d=43.3 we getHc1s0d=11.3 mT,
agreeing well withHc1s0d=12.6 mT, measured by Jinet al.56

The results are shown in Table II, where for comparison
results of Refs. 14, 55, and 56 have been included. Compar-
ing these sets one finds a general qualitative accord.

VI. THEORETICAL ANALYSIS AND DISCUSSION

Naturally, any microscopic parameter set containing vari-
ous coupling constants, etc., to reproduce the measured
quantities reported above is strongly model dependent. In
this context even the case of relatively simple Fermi surfaces
provides a difficult task to solve the full three-(four-) dimen-

sional Eliashberg problem with a givenvFskWd and

a2FskW ,k8W ,vd for all physical quantities of interest. However,
the solution of this problem can be sufficiently simplified for
three practically important cases:(i) the relatively simple

standard ISB model, wherevFskWd is constant and the spectral
functiona2F depends only on the boson(phonon) frequency,
(ii ) a separable anisotropic single-band model which exploits
the so-called first-order Fermi surface harmonic approxima-
tion, and(iii ) the isotropic two-band(ITB) model.

Due to the present lack of single-crystal samples, we will
ignore the second issue, completely.

The ITB model is a straightforward generalization of the
ISB with respect to two coupling constants and two order

parameters, two Fermi velocities, two partial densities of
states, two intraband and one interband scattering rate(s), etc.
In particular, the different order parameters may be important
for the specific heat and related properties whereas the upper
critical field and the penetration depth are affected also by
the different Fermi velocities(see below). Multiband (two-
band) (and similar anisotropy) effects for several physical
properties in the superconducting state have been in principle
well known for a long time,57 especially for weakly coupled
superconductors in the clean limit. To the best of our knowl-
edge, their interplay with disorder and strong coupling ef-
fects is less systematically studied. In particular this is
caused by the increased number of input parameters and the
necessity of a large amount of numerical calculations.

Most experimental quantities of MgCNi3 are consistently
described within an ISB model. From the specific heat alone,
there is no conclusive evidence for the need of an ITB ap-
proach; thus, we focus mainly on the ISB model. However,
in view of thermopower10 and Hall data,8,15 which cannot be
described within the ISB model intrinsically, the ITB model
deserves more attention. Therefore, in the end of this section,
we will briefly mention to which extent the ITB model modi-
fies the derived results. The interested reader is referred to a
more detailed analysis, which is partly shown in Ref. 58 and
will be published elsewhere.

A. Isotropic single-band analysis

In the following section the electron-phonon coupling
strengthlph is extracted from a simultaneous analysis of the
upper critical field and the penetration depth in terms of the
unknown impurity scattering rategimpfKg. Since the specific
heat measurements do not clearly characterize MgCNi3 as a
one-band or multiband superconductor, the analysis starts
within an ISB model. Within this model the upper critical
field Hc2s0d is given by59

TABLE II. Main superconducting and thermodynamic electronic parameters for MgCNi3.

Present worka Ref. 55a Ref. 14b Ref. 56b

Tc fKg 6.8 6.4 7.63 7.3

Hc2s0d fTg 11 11.5 14.4 16

Hcs0d fTg 0.18 0.29±0.04 0.19 0.22f

Hc1s0d fmTg 11.3c 23±7c 10.0c 12.6d

jGLs0d fnmg 5.47 5.3 4.8 4.5

ks0d 43.3 29.0±5.0 54.0 51

lLs0d fnmg 237c 154±26d 248c 230.0c

gN fmJ/mol K2g 31.4 33.6 30.1

Dc/ gNTc 2.09 1.97 2.1

QD
* fKg 292 287 284

vln fKg 143 135e 161e

aUsing a parabolically extrapolatedHc2s0d value.
bAdopting the WHH(dirty limit ) estimate forHc2s0d.
cCalculated.
dMeasured.
eCalculated[Eq. (8) usinglph=1.85,lsf=0.43,m* =0.13].
fRecalculated instead of 0.6 T in Ref. 56.
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Hc2s0dfTg = Hc2
cl s0dF1 +

0.13gimpfKg
Tcs1 + lphd

G , s16d

where

Hc2
cl s0dfTg = 0.0237

s1 + lphd2.2Tc
2fKg

vF
2f105 m/sg

, s17d

andgimp=vF/ l imp is the scattering rate which determines the
intrinsic resistivity(l imp denotes the corresponding mean free
path andvF the effective Fermi velocity). The London pen-
etration depth including the unknown impurity scattering rate
gimp is given by an approximative formula

lLs0d < l̃Ls0dÎs1 + lphdS1 + 0.7
gimp

2Dexp
D

; l̃Ls0dÎs1 + lphdS1 + 0.7
gimp

Tc

Tc

2Dexp
D , s18d

valid for lph,2.5 (see the Appendix for the exact numerical
expression), with the bare clean limit London penetration
depth

l̃Ls0d =
c

vpl
<

197.3 nm

vplfeVg
. s19d

Using Eqs.(16) and (18), gN
* =g0s1+lphd, and the experi-

mentally determined quantities from Table II, we now will
check the applicability of the ISB model. For this aim we
consider the ratio

R=
6.773 10−3 3 gN

* fmJ/mol K2g 3 lL
2s0dfnm2g 3 Tc

2fK2g
Hc2s0dfTg 3 Vfnm3g

,

s20d

which includes the values of six experimentally readily ac-
cessible quantities: the Sommerfeld coefficientgN

* , Hc2s0d,
Tc, lLs0d, and the volume of the unit cell. The dependence of
R on the parametergimp/Tc can be expressed as

R=
1 + 0.35gimp/Ds0d

s1 + lphd0.2h1 + 0.13gimp/fTcs1 + lphdgj
. s21d

In Fig. 21, the theoreticalRsgimp/Tcd curves obtained from
Eq. (21) for severallph values are compared with the value
of R derived from our experimental data which is represented
in Fig. 21 as a horizontal line. Crossing points between the
theoretical prediction and the experimental result, which
confirm the applicability of the ISB, are found forlphù0.8
at low scattering rates. Even in the case of higher electron-
phonon coupling constants oflph<2, a clean limit scenario
with gimp/Tc<1 is favored within the ISB analysis. The dirty
limit (with weak or medium coupling) as proposed in Ref. 16
can be excluded from theR check in Fig. 21. In this context
it is interesting to compare theHc2s0d data of sintered
samples with those of low-resistivity films reported by
Young et al.15 From Hc2s0d=12.8 T in this case,jGLs0d
=4.5 nm is derived, far exceeding the mean free pathl imp
=0.14 nm, estimated from theirr0 (see Sec. IV A). Conse-
quently, one would classify these films to be in the extreme
dirty limit. However, sinceTc and Hc2s0d are comparable

with results of the sintered samples(see Table II), it can be
concluded that for the thin film samples, like in the case of
sintered samples, the measured residual resistivity is not in-
trinsic. Hence, these films are expected to be also near to the
clean limit. From this point of view, neutron-irradiated
samples reported by Karkinet al. are most interesting.60

It is noteworthy that the proposedR check is much more
convenient than the similarQ check, proposed recently by
two of the present authors,59 since the dependence onlph is
considerably weaker forR and, which is more important,R
does not depend on the band structure calculation. Thus com-
paring the results derived above with the expectations from
these calculations, additional information on the nature of
superconductivity in MgCNi3 may be extracted. From Eqs.
(16) and (17), the effective Fermi velocity(in 107 cm/s)

vF = 0.154s1 + lphd1.1TcfKg

3Î1 + 0.13gimpfKg/fTcfKgs1 + lphdg
Hc2s0dfTg

s22d

is obtained. Using the very weak scattering ratesgimp/Tc
ø1 derived above and the experimental valuesHc2s0d
=11 T and Tc=6.8 K, one estimates from Eq.(22) vF
<s0.60–1.08d3107 cm/s for electron-phonon coupling
constants in the range of 0.8ølphø2.0. Comparing this re-
sult with our band structure calculations(see Sec. II), one
realizes consistence with the averagedvhc2,h=1.07
3107 cm/s from the two-hole Fermi surface sheets(Sec. II)
for strong electron-phonon coupling oflph<2.0. Thus, the
relatively high value of the upper critical field ofHc2s0d
=11 T can be attributed to strong electron-phonon coupling
for the hole subsystem. The second electron band plays a
minor role forHc2s0d due to its much faster Fermi velocities
and the much lower partial density of states.

Having adopted the dominant hole picture, we also can
start from the band structure results, using the Fermi velocity
vF,h and the plasma frequencyvpl,h of the hole band. Then
we have to find consistent values oflph,h and gimp, which
describe theHc2s0d andlLs0d data.

FIG. 21. (Color online) ParameterR vs gimp/Tc according to Eq.
(21) in the range of electron-phonon coupling constants 0.8ølph

ø2.0. Horizontal dash-dotted line: experimental result for
MgC1.6Ni3 derived from Eq.(20).
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From the plasma frequency of band 1,"vpl,1

=1.89–1.94 eV (see Sec. II), we get l̃Ls0d
=s101.7–104.4d nm, using Eq.(19). With the empirical val-
ues of lLs0d=237 nm and 2Ds0d<2Dexp=2.2 meV
825.5 K for the superconducting gap(see Sec. V B), Eq.
(18) depends only ongimp andlph,h (of the hole band). The
same applies to Eq.(16), using the experimental values
Hc2s0d=11 T, Tc=6.8 K and the calculated average Fermi
velocity of the hole band,vhc2,h=1.073107 cm/s. The cor-
relation betweengimp and lph,h, emerging from these two
equations, is shown in the left panel of Fig. 22. The intersec-
tion of both graphs giveslph,h=1.74–1.78 andgimp
=s31.0–36.0d K. Thus, we arrive at a higher, more realistic
scattering rate compared withgimp<Tc obtained from theR
check in Fig. 21. The corresponding ratio(fHc2s0d /Hc2

cl s0dg
−1), giving the deviation ofHc2s0d from the clean limit
valueHc2

cl s0d, is plotted in the right panel of Fig. 22. One gets
Hc2

cl s0d<s8.79–9.07d T.
To summarize this part, already in the simplest possible

approach two general properties of MgCNi3 are derived:(i)
strong electron-phonon coupling and(ii ) intrinsic clean limit
at least for the hole subsystem.

Nevertheless, it should be noted that recent preliminary
measurements of the penetration depth by Linet al.,16 result-
ing in lLs0d=s128–180d nm, are not compatible with the
presented effective single-band analysis(see also Ref. 55).
Especially theR check [Eqs. (20) and (21)] results in un-
physical solutions(lph=30 as a lower limit), using the values
presented in Refs. 16 and 55(see as well Table II). The
consequences, if these measurements could be verified, re-
main unclear.

As stated above, the contribution of the second band is
expected to be small due to the much smaller partial density
of states. Nevertheless, it is necessary to check its influence
on the penetration depth to estimate an error of the derived

coupling constantlph,h. Using a two-band approach, the pen-
etration depth attributed to the hole band is found to be re-
duced compared to the value derived from Eq.(15). The
result is plotted in Fig. 23. From this analysis we estimate an
error of about<10% for lph,h (see Ref. 58 for the detailed
analysis).

B. Strong coupling and enhanced depairing

Several results of our analysis of the experimental data
are summarized in Table III. The comparison of the esti-
mated lph values clearly points to strong electron-phonon
coupling. Nevertheless, the strong coupling scenario realized
in MgCNi3 has been questioned.1,16 The strong electron-
phonon coupling found for MgCNi3 requires a sizable de-
pairing contribution to explain the lowTc value; otherwise,
at least a twice as largeTc would be expected. It is illustra-
tive to compare different approaches for the calculation ofTc
to analyze the electron-phonon coupling strength under con-
sideration of the low-temperature upturn of the specific heat
in the normal state(see Sec. V A).

In a first approach usually the low-temperature Debye ap-
proximation is used to extract the Debye temperature which
we did in Sec. IV B for comparison. Our result ofQD

*

=292 K is in agreement with previous measurements of Lin
et al.16 and Maoet al.14 and calculations of Ignatovet al.24

[It should be noted that our specific heat data were corrected
by carbon contribution(see Fig. 3), without this correction

FIG. 22. (Color online) Left panel: correlation between impurity
scattering rategimp and electron-phonon coupling constantlph,h de-
rived from Eqs.(16) and (18) using Hc2s0d=11 T, Tc=6.8 K, vF

=1.073107 cm/s, lLs0d=237 nm, and 2Ds0d<2.2 meV. The
point of intersection of both curves marked by a solid square points
to an electron-phonon coupling constant oflph,h=1.74–1.78 in the
investigated MgC1.6Ni3 sample. Right panel: ratio
(fHc2s0d /Hc2

cl s0dg−1) plotted againstlph,h. The solid square again
corresponds tolph,h=1.74–1.78. FromHc2s0d=11 T one estimates
Hc2

cl s0d<s8.79–9.07d T for the upper critical field in the clean limit.

FIG. 23. Penetration depth at zero temperature vs scattering rate
in the hole band, usinggimp,el/gimp,h<4.81 from Eq.(1).

TABLE III. Characteristic phonon frequency and coupling pa-
rameters derived by analyzing the experimental data of the present
MgC1.6Ni3 sample.

cp analysis Hc2 analysis

Normal state sl state

(Sec. V A) (Sec. V B) (Sec. VI A)

vln fKg 143 88–134

lph 1.91 1.95–2.38 1.74–1.78a

lsf 0.43

aLimited to band “1”8lph,h.
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we arrive atQD
* =285 K]. In this analysis the McMillan for-

mula

Tc =
vD

1.45
expF− 1.04

1 + lph

lph − m*s1 + 0.62lphd
G s23d

is usually applied. This approximation is only useful for a
special phonon spectrum withvln /vD<0.6. In the case of
MgCNi3 we found <0.30–0.49 (corresponding tovln
<88–143 K) and the Allen-Dynes formula[Eq. (5)] should
be applied instead.

Figure 24 compares both equations usingQD
* ;vD

=292 K (dotted line) and vln=143 K (dash-dotted line), re-
spectively. In both cases the Coulomb pseudopotential was
fixed tom* =0.13. Apart from the deviation between Eqs.(5)
and(23) due to the ratiovln /vDø0.49, both equations seem
to result in a moderate electron-phonon coupling oflph
=0.67–0.82 if no additional pair breaking effects are consid-
ered.

However, we remind the reader that the experimental and
theoretical picture of MgCNi3 strongly indicates strong
electron-phonon coupling and a spin fluctuation contribution.
The solid line compared to the dash-dotted line in Fig. 24
shows that the dependence ofTc on lph is strongly influenced
by pair-breaking contributions such as the presence of en-
hanced electron-paramagnon couplinglsf=0.43. The same
situation in the imaginable case of purely static pair break-
ing, expressed bym* =0.41 is given by the dotted line. A very
similar result was reported by Ignatovet al.24 who proposed
a phonon-softening scenario withTc=8 K, vln=120 K, lph
=1.51, and an enhancedm* =0.33 due to spin fluctuations. In
any case the superconducting transition temperature is
strongly suppressed by pair-breaking contributions.

Tc of MgCNi3 would rise up to<20 K, if one somehow
could suppress the electron-paramagnon interaction. In that
case the electron-phonon coupling would not be affected and
the dash-dotted line in Fig. 24 would become reality.

Within the phonon-softening scenario,24 which was re-
cently observed in neutron-scattering measurements,39 a part
of the low-temperature specific heat anomaly may be of pho-
non origin (as stated in Sec. V A). In this picture the
electron-paramagnon coupling would be reduced with the
possibility of a paramagnon shift to higher temperatures.
This is consistent withvln<100 K (lower limit of the result
from Sec. V B) and an electron-paramagnon coupling con-
stant of lsf<0.25. Using these numbers in Eq.(8) the
electron-phonon coupling constant amounts tolph<1.7. To
find the composition of the phonon and paramagnon contri-
bution to the upturn, low-temperature neutron-scattering
measurements should be performed. In this context we re-
mind the reader that spin fluctuations are known to show a
dependence on the applied magnetic field, which indeed is
seen in Fig. 12.

It was already mentioned that Hall data8,15 and ther-
mopower measurements10 suggest electronlike charge carri-
ers, whereas band structure calculations suggest holelike
charge carriers. This puzzle can be resolved within an ITB
model. The different gap values indicated from tunneling
measurements14,19 (large gap) and NMR measurements7

(small gap) are also naturally explained by an ITB model,
since in that case tunneling measurements measuring a cur-
rent are most sensitive to large Fermi velocities just present
in the electron band.

In view of this unclear situation, the multiband influence
should not be fully neglected, since measured quantities
would be affected oppositional by strong coupling and multi-
band effects. The aim of this section is to briefly analyze how
multiband effects influence the specific heat, if at all.

Starting from the band structure calculations presented in
Sec. II, the effect of interband scattering in MgCNi3 is ex-
pected to be weak due to the presence of well-disjoint FSS’s
(like in the case of MgB2). However, in contrast to MgB2,
one band dominates the density of states, resulting in a less-
pronounced two-band character of MgCNi3.

The total electron-phonon coupling constant averaged
over all Fermi surface sheets,lph, was estimated by Eq.(9)
aslph=1.84. Considering the band structure calculation, this
value is distributed among the two effective band complexes
according to

lph = lph,h
Nhs0d
Ns0d

+ lph,el
Nels0d
Ns0d

. s24d

With lph,h=1.74–1.78(see Sec. VI A), the coupling in the
second band amounts tolph,el=2.20–2.42 [using Nhs0d
=0.85Ns0d and Nels0d=0.15Ns0d]. Obviously this strong
mass enhancement in both bands is not compatible with the
low value ofTc=6.8 K. So as in the single-band case a con-
siderable pair-breaking contribution in both bands is needed.
In view of two different gaps, as suggested by comparing
results from NMR7 and tunneling14,19 experiments, we intro-
duce the gap ratioz=Dh/Del. Within the BCS model used to

FIG. 24. (Color online) Variation of Tc with lph without
electron-paramagnon interaction and “normal” Coulomb pseudopo-
tential m* =0.13 according to Eq.(23) (dotted line) and Eq. (5)
(dash-dotted line) and with enhanced pair-breaking contribution ac-
cording to Eq.(8) by m* =0.13 andlsf=0.43 (solid line), and m*

=0.41 andlsf=0 (dashed line), respectively. The characteristic pho-
non frequencies are chosen from Sec. IV B(dotted line), Sec. V A
(dash-dotted line), and Sec. V B(solid and dashed line), respec-
tively. The points of intersection of the curves with the horizontal
line at Tc=6.8 K show the electron-phonon coupling strengthslph

resulting in the different approaches.
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describe the electronic specific heat in the superconducting
state(Fig. 15), no deviation from the exponential behavior in
the temperature range of 2,Tc/T,6 was found for
0.8,z,1.0 [agreeing withlph,el.lph,h, derived from Eq.
(24)].

The dependence of the characteristic phonon frequency
vln on the parameterz and the pair breaking, expressed by an
enhanced Coulomb pseudopotential, is shown in Fig. 25. The
right panel indicates that the main difference betweenvln
=143 K (derived from the normal-state analysis) and vln
=88 K (derived from the specific heat jump analysis) is due
to enhanced depairing, not considered by Eq.(12). The error
in vln due to multiband effects can thus be estimated as
<10% for z=0.8.

VII. CONCLUSIONS

Our analysis of MgCNi3 revealed a highly interesting in-
terplay of different, at first glance unexpected adversed
physical features or tendencies all present within one mate-
rial causing a rather complex general behavior. This novel
superconductor has been interpreted so far as standard
s-wave BCS superconductor or as unconventional supercon-
ductor with strong or medium electron-phonon coupling.
Last but not least, a considerable pair-breaking contribution
due to spin fluctuations and/or Coulomb repulsion have been
suggested from theory and experiment.

The present analysis is the first approach to reconcile the
unusual experimental findings within a unified physical pic-
ture. It reveals strong electron-phonon coupling combined
with medium electron-paramagnon coupling. Strong
electron-phonon coupling was derived from specific heat
data in the normal and superconducting states independently.

An unusual upturn of the specific heat in the normal state
observed at low temperatures can be attributed to spin fluc-
tuations and/or a softening of low-frequency phonons. To
specify the contribution of the electron-boson interactions to
the low-temperature specific heat anomaly, low-temperature
neutron measurements are necessary in order to investigate
the evolution of the lattice excitations, which may even be
modified by the transition from the normal to the supercon-
ducting state.

The electronic specific heat data show an exponential
temperature dependence at low temperatures which is a
strong indication fors-wave superconductivity in MgCNi3. It
was shown that a contribution of a second band could not be
excluded but even complies with recent tunneling measure-
ment results. The multiband character of MgCNi3 is proved
by band structure calculations. However, with respect to the
specific heat, the two-band character of MgCNi3 is much less
pronounced than, for instance, compared with the ITB model
compound MgB2. That is due to the predominance of a hole
band with a large density of states in MgCNi3, whereas in
MgB2 the densities of states of both bands are comparable.
Therefore, several properties such as the specific heat or the
upper critical field can be described to first approximation
reasonably well within an effective single-band model. Nev-
ertheless, other properties such as the Hall conductivity and
the thermopower clearly require a multiband description—
i.e., taking into account at least one effective electron and
one effective hole band. Previous theoretical analyses based
on single-band models could describe only few physical
properties. As a consequence of the oversimplified ap-
proaches they blamed the local density approximation to fail
seriously. This is in sharp contrast to our analysis of the
upper critical field yielding an effective Fermi velocity
agreeing well with the LDA hole band prediction. Our pro-
posed effective two-band strong coupling approach explains
the complex behavior observed for MgCNi3 and is expected
to hold for other still not examined physical properties.

The highly interesting interplay of strong electron-phonon
coupling on multiple Fermi surface sheets, softening of lat-
tice excitations, the strong energy dependence of the density
of states near the Fermi energy of one band(Van Hove sin-
gularity), and paramagnons or strong Coulomb repulsion for
a realistic, anisotropic multiband electronic structure with
nesting features in this compound highly motivates further
experimental studies. Investigating the influence of impuri-
ties or slight stoichiometry deviations on the electronic and
bosonic properties would be as helpful as making of purer
samples and single crystals to perform quantum oscillation
studies like de Haas–van Alphen measurements.

Deepened theoretical studies are needed to clarify remain-
ing quantitative details and to extend the present-day strong
coupling Eliashberg theory with all peculiarities of MgCNi3.
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FIG. 25. (Color online) Left panel: dependence of the specific
heat jumpDc/gNTc on the gap ratioDh/Del and the characteristic
phonon frequencyvln within the two-band description form*

=0.13. Right panel: possible solutions forDh/Del andvln to reach
the experimental specific heat jump for the two casesm* =0.13 and
m* =0.41 (enhanced pair breaking). The gray area marks the range
of expectedDh/Del values(see Sec. V B).
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APPENDIX: PENETRATION DEPTH—STRONG
COUPLING AND IMPURITY SCATTERING

We present a simple semianalytic expression for the pen-
etration depth atT=0 K for type-II superconductors valid in

the London limit. Thereby strong coupling and impurity scat-
tering effects are treated on equal footing within standard
Eliashberg theory. In calculatinglLs0d we start from an ex-
pression proposed first by Nam61 and later on frequently
used in the literature:62–64

lL
−2s0d =

pTvpl
2

c2 o
n=1

`
D2sivnd

Zsivdfvn
2 + D2sivndg3/2, sA1d

whereivn= ips2n−1dT, n=0, ±1, ±2, . . ., are theMatsubara
frequencies andZsivnd as well asDsivnd denote the renor-
malization factor and the gaps, respectively. The result of our
numerical calculations of Eq.(A1) compared with the ap-
proximation given by Eq.(18) is shown in Fig. 26.

One realizes only small deviations not exceeding
8% –10% which is sufficient for our qualitative estimate of
large mean free pathsl imp compared with the coherence
lengthjGLs0d.

*Electronic address: fuchs@ifw-dresden.de
†On leave from Int. Lab. of High Magn. Fields, Wroclaw, ISSP-

BAS, Sofia, Bulgaria.
‡On leave from Inst. for High Pressure Physics, Troitsk, 142190,

Russia.
§On leave from Inst. of Spectroscopy, Troitsk, 142190, Russia.
1T. He et al., Nature(London) 411, 54 (2001).
2H. Rosner, R. Weht, M. D. Johannes, W. E. Pickett, and E. To-

satti, Phys. Rev. Lett.88, 027001(2002).
3S. B. Dugdale and T. Jarlborg, Phys. Rev. B64, 100508(R)

(2001).
4D. J. Singh and I. I. Mazin, Phys. Rev. B64, 140507(R) (2001).
5A. Szajek, J. Phys.: Condens. Matter13(26), L595 (2001).
6J. H. Shim, S. K. Kwon, and B. I. Min, Phys. Rev. B64,

180510(R) (2001).
7P. M. Singer, T. Imai, T. He, M. A. Hayward, and R. J. Cava,

Phys. Rev. Lett.87, 257601(2001).
8S. Y. Li et al., Phys. Rev. B64, 132505(2001).
9T. G. Kumary, J. Janaki, A. Mani, S. M. Jaya, V. S. Sastry, Y.

Hariharan, T. S. Radhakrishnan, and M. C. Valsakumar, Phys.
Rev. B 66, 064510(2002).

10S. Y. Li et al., Phys. Rev. B65, 064534(2002).
11M. A. Hayward, M. K. Haas, A. P. Ramirez, T. He, K. A. Regan,

N. Rogado, K. Inumaru, and R. J. Cava, Solid State Commun.
119, 491 (2001).

12Q. Huang, T. He, K. A. Regan, N. Rogado, M. Hayward, M. K.
Haas, K. Inumaru, and R. J. Cava, Physica C363, 215 (2001).

13S. Y. Li et al., cond-mat/0104554v1(unpublished).
14Z. Q. Mao, M. M. Rosario, K. D. Nelson, K. Wu, I. G. Deac, P.

Schiffer, Y. Liu, T. He, K. A. Regan, and R. J. Cava, Phys. Rev.
B 67, 094502(2003).

15D. P. Young, M. Moldovan, D. D. Craig, P. W. Adams, and J. Y.
Chan, Phys. Rev. B68, 020501(2003).

16J.-Y. Lin, P. L. Ho, H. L. Huang, P. H. Lin, Y.-L. Zhang, R.-C. Yu,

C.-Q. Jin, and H. D. Yang, Phys. Rev. B67, 052501(2003).
17S. V. Shulga, S.-L. Drechsler, G. Fuchs, K.-H. Müller, K. Winzer,

M. Heinecke, and K. Krug, Phys. Rev. Lett.80, 1730(1998).
18L. Shan, K. Xia, Z. Y. Liu, H. H. Wen, Z. A. Ren, G. C. Che, and

Z. X. Zhao, Phys. Rev. B68, 024523(2003).
19L. Shan, H. J. Tao, H. Gao, Z. Z. Li, Z. A. Ren, G. C. Che, and H.

H. Wen, Phys. Rev. B68, 144510(2003).
20R. Prozorov, A. Snezhko, T. He, and R. J. Cava, Phys. Rev. B68,

180502(R) (2003).
21D. P. Young, M. Moldovan, and P. W. Adams, Phys. Rev. B70,

064508(2004).
22J. P. Carbotte, Rev. Mod. Phys.62, 1027(1990).
23I. R. Shein, A. L. Ivanovskii, E. Z. Kurmaev, A. Moewes, S.

Chiuzbian, L. D. Finkelstein, M. Neumann, Z. A. Ren, and G. C.
Che, Phys. Rev. B66, 024520(2002).

24A. Y. Ignatov, S. Y. Savrasov, and T. A. Tyson, Phys. Rev. B68,
220504(R) (2003).

25K. Koepernik and H. Eschrig, Phys. Rev. B59, 1743(1999).
26Rietveld refinement programFULLPROF 2000.
27Z. A. Ren, G. C. Che, S. L. Jia, H. Chen, Y. M. Ni, G. D. Liu, and

Z. X. Zhao, Physica C371, 1 (2002).
28A. F. Ioffe and A. R. Regel, Prog. Semicond.4, 237 (1960).
29N. F. Mott, Philos. Mag.26, 1015(1972).
30P. H. Keesom and N. Pearlman, Phys. Rev.99, 1119(1955).
31G. Fuchs, K.-H. Müller, A. Handstein, K. Nenkov, V. N. Narozh-

nyi, D. Eckert, M. Wolf, and L. Schultz, Solid State Commun.
118, 497 (2001).

32N. R. Werthammer, E. Helfand, and P. C. Hohenberg, Phys. Rev.
147, 295 (1966).

33C. Kittel, Introduction to Solid State Physics, 7th ed.(Wiley, New
York, 1996).

34G. P. Srivastava,The Physics of Phonons(Adam Hilger, London,
1990).

35ROOT, an object-oriented data analysis framework v3.03, CERN,

FIG. 26. Results of strong coupling calculations for the penetra-
tion depth at zero temperature[Eq. (A1)] for several electron-
phonon coupling constantsl vs impurity scattering rategimp (in
units of the gapDexp=1.1 meV as derived from Sec. V B) in com-
parison with the approximate expression provided by Eq.(18).

EVIDENCE FOR STRONG ELECTRON-PHONON… PHYSICAL REVIEW B 70, 174503(2004)

174503-17



Geneva, 2002.
36A. Junod, T. Jarlborg, and J. Muller, Phys. Rev. B27, 1568

(1983).
37S. Manalo, H. Michor, M. El-Hagary, G. Hilscher, and E. Schach-

inger, Phys. Rev. B63, 104508(2001).
38P. B. Allen and R. C. Dynes, Phys. Rev. B12, 905 (1975).
39R. Heid, B. Renker, H. Schober, P. Adelmann, D. Ernst, and K.-P.

Bohnen, Phys. Rev. B69, 092511(2004).
40D. Rainer, Prog. Low Temp. Phys.10, 371 (1986).
41Strictly speaking, the Coulomb pseudopotential renormalized by

the interaction with both bosons should read asm*f1+0.6slph

−lsfdg. However, the accuracy of the calculated relative change
of Tc is affected by the accuracy of theTc expression used for
the case without paramagnons. As a result, depending on the
concrete parameter sets, either Eq.(8) or the corresponding ex-
pression with the renormalization ofm* mentioned above yields
a slightly better description of our numerical data. Anyhow, for
the case of a strong el-ph interaction considered here, the differ-
ence between both appoximate expressions can be ignored. The
interested reader is referred to a forthcoming paper by S. V.
Shulgaet al.

42S. K. Bose, O. V. Dolgov, J. Kortus, O. Jepsen, and O. K. Ander-
sen, Phys. Rev. B67, 214518(2003).

43G. Gladstone, M. A. Jensen, and J. R. Schrieffer,Superconduc-
tivity (Dekker, New York, 1969).

44H. Michor, R. Krendelsberger, G. Hilscher, E. Bauer, C. Dusek,
R. Hauser, L. Naber, D. Werner, P. Rogl, and H. W. Zandbergen,
Phys. Rev. B54, 9408(1996).

45B. Mühlschlegel, Z. Phys.155, 313 (1959).
46J. E. Sonier, M. F. Hundley, J. D. Thompson, and J. W. Brill,

Phys. Rev. Lett.82, 4914(1998).
47D. A. Wright, J. P. Emerson, B. F. Woodfield, J. E. Gordon, R. A.

Fisher, and N. E. Phillips, Phys. Rev. Lett.82, 1550(1999).
48A. P. Ramirez, N. Stücheli, and E. Bucher, Phys. Rev. Lett.74,

1218 (1995).

49M. Hedo, J. Phys. Soc. Jpn.67, 272 (1998).
50M. Nohara, M. I. F. Sakai, and H. Takagi, J. Phys. Soc. Jpn.68,

1078 (1999).
51M. Nohara, M. Isshiki, H. Takagi, and R. J. Cava, J. Phys. Soc.

Jpn. 66, 1888(1997).
52D. Lipp, M. Schneider, A. Gladun, S.-L. Drechsler, J. Freuden-

berger, G. Fuchs, K. Nenkov, K.-H. Müller, T. Cichorek, and P.
Gegenwart, Europhys. Lett.58, 435 (1998).

53K. Izawa, A. Shibata, Y. Matsuda, Y. Kato, H. Takeya, K. Hirata,
C. J. van der Beek, and M. Konczykowski, Phys. Rev. Lett.86,
1327 (2001).

54E. Boaknin, R. W. Hill, C. Proust, C. Lupien, L. Taillefer, and P.
C. Canfield, Phys. Rev. Lett.87, 237001(2001).

55J.-Y. Lin and H. D. Yang,Superconductivity Research at the
Leading Edge, edited by P. S. Lewis(Nova Science Publishers,
Inc., New York, 2004).

56C. Q. Jin, Y. L. Zhang, Z. X. Liu, F. Y. Li, W. Yu, and R. C. Yu,
Physica C388-389, 561 (2003).

57V. A. Moskalenko and M. E. Palistrant,Statistical Physics and
Quantum Field Theory(Nauka, Moscow, 1973).

58A. Wälte, G. Fuchs, K.-H. Müller, A. Handstein, K. Nenkov, V.
N. Narozhnyi, S.-L. Drechsler, S. V. Shulga, L. Schultz, and H.
Rosner, cond-mat/0402421(unpublished).

59S. V. Shulga and S.-L. Drechsler, J. Low Temp. Phys.129(1-2),
93 (2002).

60A. Karkin, B. Goshchitskii, E. Kurmaev, Z. A. Ren, and G. C.
Che, cond-mat/0209575(unpublished).

61S. B. Nam, Phys. Rev.156, 470 (1967).
62F. Marsiglio, J. P. Carbotte, and J. Blezius, Phys. Rev. B41, 6457

(1990).
63S. D. Adrian, M. E. Reeves, S. A. Wolf, and V. Z. Kresin, Phys.

Rev. B 51, 6800(1995).
64A. A. Golubov, A. Brinkman, O. V. Dolgov, J. Kortus, and O.

Jepsen, Phys. Rev. B66, 054524(2002).

WÄLTE et al. PHYSICAL REVIEW B 70, 174503(2004)

174503-18


