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Absence of magnetic order for the spin-half Heisenberg antiferromagnet on the star lattice

J. Richter
Institut fir Theoretische Physik, Universitat Magdeburg, P.O. Box 4120, D-39016 Magdeburg, Germany

J. Schulenburg
Universitatsrechenzentrum, Universitat Magdeburg, P.O. Box 4120, D-39016 Magdeburg, Germany

A. Honecker
Institut fur Theoretische Physik, TU Braunschweig, D-38106 Braunschweig, Germany

D. Schmalful
Institut fir Theoretische Physik, Universitat Magdeburg, P.O. Box 4120, D-39016 Magdeburg, Germany
(Received 8 June 2004; revised manuscript received 14 September 2004; published 29 November 2004

We study the ground-state properties of the spin-half Heisenberg antiferromagnet on the two-dimensional
star lattice by spin-wave theory, exact diagonalization, and a variational mean-field approach. We find evidence
that the star lattice igbesides the kagomé lattica second candidate among the 11 uniform Archimedean
lattices where quantum fluctuations in combination with frustration lead to a quantum paramagnetic ground
state. Although the classical ground state of the Heisenberg antiferromagnet on the star lattice exhibits a huge
nontrivial degeneracy like on the kagomé lattice, its quantum ground state is most likely dimerized with a gap
to all excitations. Finally, we find several candidates for plateaux in the magnetization curve as well as a
macroscopic magnetization jump to saturation due to independent localized magnon states.
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I. INTRODUCTION the square-hexagonal-dodecagonal latf¢€,and the trellis

The spin-half two-dimension&®D) Heisenberg antiferro- lattice** 15 exhibit most likely semiclassical magnetic GS or-
magnet (HAFM) has attracted much attention in recent der. . )
times. In particular, the recent progress in synthesizing In this paper we present another candidate for a quantum
quasi-2D magnetic materials exhibiting exciting quantum ef{aramagnetic GS among the Archimedean lattices, namely,
fects has stimulated much theoretical work. We mention, fothe so-called star lattice, featured by low coordination num-
example, the spin-gap behavior in C@ (Ref. 1) and in  berz=3 and strong frustration due to a triangular arrange-
SrCw(BO;), (Ref. 2), the spin fractionalization in GEuCl,  ment of bondgsee Fig. 1
(Ref. 3 or the plateau structure in the magnetization process
of frustrated quasi-2D magnetic materials like SBDs), Il. MODEL
(Ref. 2) or CsCuBr, (Ref. 4).

While the ground statéGS) of the one-dimensional quan-
tum HAFM does not possess Néel long-range order, for the.. : . . .
spin-half HAFM on 2D lattices the competition between%'gs' 1. and 2 For_ th.'s lattice we consider the spin-half
quantum fluctuations and interactions seems to be well baIHAFNI in a magnetic fielch
anced and magnetically ordered and disordered GS phases N e
may appear. A fine tuning of this competition may lead to H _J% S-S5 -hS, @
zero temperature transitions between semiclassical and quan-
tum phases. The prototypes of 2D arrangements of spins akghere the sum runs over pairs of neighboring sfigs and
the 11 uniform Archimedean latticgslings), see, e.g., Refs. =% The star lattice carries topologically inequivalent
5-7. They present an ideal possibility for a systematic study,earest-neighbaiNN) bondsJp, (dimer bonds, solid lines in
of the interplay of lattice geometry and magnetic interactionsrig. 1) and J; (triangular bonds, dashed lines in Fig. 1, see

in 2D quantum spin systems. also Fig. 3. For the uniform lattice these bonds are of equal
The HAFM on the widely known square, honeycomb, tri- strengthdy = J;=J.

angular, and kagomé lattices has been studied in numerous

The geometric unit cell of the star lattice contains six sites
nd the underlying Bravais lattice is a triangular asee

papers over the last decade. While for the square, honey- IIl. SEMICLASSICAL GROUND STATE
comb, and triangular lattices the existence of semiclassical
magnetic order seems to be well-establistszk, e.g., Refs. In the classical GS foh=0 the two nonequivalent NN

7-9 the spin-half HAFM on the kagomé lattice is a candi- bonds of the star lattice carry different NN spin correlations:
date for a magnetic system with a quantum paramagnetic GBhe angle between neighboring spins on dimer bakss
(see the reviews, Refs. 7-10 and references ther€iher 7, whereas the angle on triangular bongisis 27/3. Its
less known Archimedean lattices like the maple-leaf lattice, energy per bond i85®=-1/6. The classical GS for the star

1098-0121/2004/4Q.7)/1744546)/$22.50 70 174454-1 ©2004 The American Physical Society



RICHTER et al. PHYSICAL REVIEW B 70, 174454(2004)

ST NG LG T e TG0 FIG. 1. The star lattic witiN=42 sites.

lattice has a great similarity to that of the kagomé lattice. Ita singlet and has an energy per boeg-0.312 479N
also exhibits a nontrivial infinite degeneracy. Moreover, there=18); —0.311 342 (24); —0.310 808 (30); —0.310 348
are also the two variants of the classical GS, namely, th€36A); —0.310 657(36B); —0.309 918(42). The first exci-
so-calledy3x \3 andq=0 stategsee Fig. 2, often used for tation is a triplet and has a gap=0.578 710(N=18);
discussing possible order in the kagomé lattice. Hence these531 822(24); 0.498 564(30); 0.480 343(36A); 0.483 112
two particular planar states can also be considered as variar@@6B) (no result available foN=42).
of possible GS ordering for the star lattice. In the following ~We present in Table | the spin-spin correlation for the
we discuss the influence of quantum fluctuations on the G$rgest finite lattice considered. Note that the two nonequiva-
properties. lent NN correlation functions differ drastically, we have
First, we perform a linear spin-wave thedtySWT) start- () ~3.5FS) indicating a tendency to form local sin-
ing from the planar classical GSs. The LSWT for the stargjets on the dimer bonds.
lattice is more ambitious than for the kagomé lattice, since | et us compare the spin correlations with those for

we hg“’lg to consider six types of magnons. As in the kagomghe HAFM on triangular and kagomé lattices. We consider
caseé®" the spin-wave spectra are equivalent for all copla-the strongest correlations as a measure for magnetic order
nar configurations satisfying the classical GS constraint. Wegng present in Fig. 3 the maximal absolute corre-
obtain six spin-wave branches. Two dispersionless modes afgtions|<§é§>|max for a certain separatioR=|Ry—R;| versus

found, namely,wq =0, wzq:Js\@. Thus also a flat zero As expected we have very rapidly decaying correlations
mode appears as it is observed for the kagomé case. In ag* P y rapidly ying

dition there are two acoustical and two optical branches or the disordered kagomé case, whereas the correlations for

There is noorder-by-disorderselection among the coplanar tgre el\rledeilstg:]c(i:zrseintgz%%l\ﬂ/a; llfil::jc%fasr:turpalﬁhn ?(t)rroll;geérfor
classical GSs due to the equivalence of the spin-wav g R

branches obtained from LSWT, exactly like for the kagoméI Ithoughh th?} corrilart]lorlls for t,hle star rl]atnce are s.,][!ghtlyi
lattice 107 The GS energy per bond fe=1/2 in LSWT is arger than those of the kagomé lattice they are significantly
ey/J=-0.296 759. Due to the flat zero mode the integral for B3 q=0

the sublattice magnetization diverdgsvhich might be un-
derstood as another hint for the absence of the classical or-
der. Although on the semiclassical LSWT level both the
kagomé and the star lattice exhibit almost identical proper-
ties, the situation might be changed taking into account the
guantum fluctuations more properly.

IV. LANCZOS EXACT DIAGONALIZATION _
t o=0 ' o=n

B=2n/3 ~ B=5m/3
y=4m/3 ~ /3

We consider now the extreme quantum lireit1/2 by
direct numerical calculation of the GS and the low-lying ex- <
citations ath=0 for finite lattices 0N=18,24,30,36,42 sites.

For each sizeN we have chosen only lattices having good g, 2. (Color onling Two variants of the GS of the classical
geometric properties using the criteria given in Ref. 19. The4arFMm on the star lattice: the3 x \3 state(left) and theq=0 state
largest lattice(N=42) is shown in Fig. 1 and required a (right). The dotted ellipses show further degrees of freedom of the
Lanczos diagonalization in dimension 801 258 898 for thenhighly degenerate classical GS. Different shades of the triangles
computation of GS properties. The GS for all these lattices isymbolize different chiralities.

\

174454-2



ABSENCE OF MAGNETIC ORDER FOR THE SPIN- PHYSICAL REVIEW B 70, 174454(2004)

TABLE I. All nonequivalent GS spin-spin correlatio@éééZ):%(SoS) for the HAFM on the star lattice
with N=42 sites. In addition to the site indéxwe give the separatioR=|R,—R;| between sites 0 anidin
units of NN separation.

i (R) 1(1) 3(1.932 4(2.909
(€555 ~0.05643 0.03559 ~0.01058
i (R) 6(3.732 7 (3.346 9(5.279
S ~0.00451 0.01066 0.00439
i (R) 10 (4.625 26(2.732 28(1)
(D ~0.01173 —0.03875 ~0.19707

weaker for separatiorR= 3 than those of the triangular lat- the quantum GS of the star lattice has an exceptionally low
tice. The large NN correlation for the star lattice correspondsGS energye, (see Table I} and is well separated from all
to a NN dimer bond. excitations.

Next we consider the low-lying spectrum of the star lat- For finite systems the order parameter is based on the
tice (see Fig. 4, following the lines of the discussion of the spin-spin correlation functions. For systems with well-
spectrum for the triangul&rand the kagomé latticg:231tis  defined semiclassical long-range order usually the square of
obvious that the lowest stat&s,;,(S) are not well described the staggered magnetization is used. However, this definition
by the effective low-energy HamiltonianH.z~E,  of the order parameter is problematic in the present situation:
+S%/2Ny, of a semiclassically ordered syste(): The E,,,,  Due to the huge nontrivial degeneracy of the classical GS it
versusS(S+1) curve deviates significantly from a straight remains unclear which type of ordering might be favored in
line (cf. the dashed line in Fig.)4(ii) We do not see well the quantum system. Therefore we use a definition of an
separated lowest states in the different sectoS(gb-called order parameter
quasi-degenerate joint stat§swhich could collapse onto a
Néel-like state in the thermodynamic limitii) The symme- 1 1/2
tries of the lowest states in each sectoSafannot be attrib- m" = (—22 |<$Sj>|) , (2
uted to the classical3x V3 or =0 GSs in general. These N5
features are similar to the kagomé lattiéé3However, there

is one striking difference. In contrast to the kagomé latticewhich is independent of any assumption on classical drder.
we do not have nonmagnetic singlets filling the singlet-tripletror bipartite systems like the square lattice this definition is
gap (spin gap commonly interpreted as a remnant of thedentical to the staggered magnetizatiom and for the
huge classical GS degeneracy. Rather we have a particulariyAFM on the triangular latticém*)? is by 1/3 larger than

large singlet-singlet gap. This basic difference to the kagoméhe usual definitiod. For the two planar classical3 x V3
lattice can be attributed to the special property of the quangq g=0 GSs we get m

+ 1/
; PP class;“§><\“§:mclassq=0:§V2/3
tum GS o_f the star I_att|ce to have strongly enhanced antifer 0.408 25(note that for the kagomé lattice one obtains the
romagnetic correlations on thl bonds. As a consequence

same valug For the quantum model one findgn*)?
=0.149 113(N=18); 0.114 822 (24); 0.094 831 (30);

024 " starN=42 —2—
kagome N=36 —o— 0.082 29936A); 0.079 351(36B); 0.073 251(42). For com-
triangular N=36 —&— parison we quote the values for tiN=36 kagomé lattice:
. 015t .
E T T T T T
® 01t 1
NS e
] -10 | i .
l ) E I % I »}/4,,,
0.05 | 1 fosg g A .
41 B AN
# N\,
0 ) ) n 1 i ) 5 <’\ o % o /\/‘
c . L . 4
1 15 2 25 3 3.5R 4 45 5 b5f 11.5 N=36 \ /
L 0 5 10 15 20
FIG. 3. Maximal spin-spin correlatiodSS)|max versus separa- S(S+1)
tion R=|Ry—R;| for the star lattice(N=42), the kagomé&N=36),
and the triangular latticeN=236) (the lines are guides for the eyes FIG. 4. Low-energy spectrum for the HAFM on the star lattice

The data for the kagomé lattice coincide with those from Ref. 20. (N=36B) (the inset shows thk points in the Brillouin zong
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TABLE II. Results of the finite-size extrapolation of the GS

tar &
energy per bond, and the order parameten* [eq. (2)] of the kagosmaer °
spin-half HAFM for the star(N=18,24,30,36,42 the kagomé triangular ©

(N=12,18,24,30,3% and the triangulafN=24,30,36 lattices. To
see the effect of quantum fluctuations we scal®e by its corre-
sponding classical valuey,

A
Lattice Triangular Kagomé Star
€ —0.1842 -0.2172 —0.3091
M/ Mass 0.386 0.000 0.122
24 18
0 I 1 1 1
0 0.02 0.04 0.06 0.08

(m*)?=0.059 128, and theN=36 triangular lattice:(m")?
=0.124 802.

We have performed finite-size extrapolations based on the FIG. 5. Finite-size behavior of the spin gdy i.e., the gap to
standard formulas for 2D spin-half Heisenberg antiferromags=1 excitations versus inverse system siz&l1Results are shown
nets (see, e.g., Refs. 7, 24, and )25amely, ey(L)=Ag for the star lattice(triangleg in comparison with those for the
+A3/ L3+(9(L‘4) for the GS energy per bondn*(L)=B, kagomé latticecircles, compare Ref. 33&nd the triangular lattice
+B,/L+O(L™?) for the order parameter, and(L)=G, (squares
+G,/L?2+0O(L™3) for the spin gap, wheredy=ey(«), By
=m* (), Gy=A(%) andL=N¥2. We present the results of the interpolates between a rotationally invariant dimer product
extrapolation for, andm* in comparison with the triangular state fort=1 and an uncorrelated plana8xy3 or g=0
and the kagome lattice in Table Il. The HAFM on the starstate fort=0. Optimizing(¥|H|¥) with respect tat we get
lattice has I'O\_/vest GS energy; the extrapolated order pa- Eg/bond=~J3+JpJ+J%)/12);. For the sublattice magne-
rameter is finite but very small. _ _ tization we obtain

Figure 5 shows the finite-size behavior of the spin gap of
the star lattice in comparison to the kagomé and triangular A , - v %—J%
lattices. We extrapolate a quite big spin g&p0.380 for the M = (¥|cog0,)S + sin(6,)S|¥) = To3 (4)
star lattice. For the triangular lattice, the data w36 T
seem to suggest a finite spin gap which is, however, spuriou$or Jp < Jr. M vanishes with a mean-field critical exponent at
This illustrates that the extrapolation of the spin gap may béhe symmetric poind,=Jr. Since such an approach tends to
most affected by systematic errdrevertheless, the spin overestimate the region of the semiclassically ordered
gap of the star lattice in Fig. 5 exhibits only comparably state?®?” we may interpret the above result as a further in-
small finite-size effects. Hence, the estimation of a nonzerglication of a dimerized GS.
spin gap for the star lattice seems to be reliable. The spin gap
extrapolated for the kagomé lattfces more than six times VI. MAGNETIZATION PROCESS
smaller, but note that the existence of a gap for the kagomé

lattice at all is not fully clear, as is also evident from Fig. 5.  Finally, Fig. 6 shows magnetization curves of several
finite star lattices, where the magnetizatiom is defined

1/N

V. VARIATIONAL MEAN FIELD APPROACH 1

We discuss briefly a variational approach which was suc- 89 r
cessfully applied to describe a quantum phase transition be- 719 |
tween Néel phases and a dimer pha&&?’Let us consider a o3 |
model with different NN bondsg; andJp. The GS shall be
approximately described by a variational wave function m T
49 |
| | _ |
|‘*I"> — H |¢+(0a)>|¢—(0a)’> t|¢—(9a)>|¢J+(0a)>, (3) 1/3 }
(3 \1 +t2 2/9 5
where a represents a pair of siteg corresponding to dp 19 |
bond. Thus the product in E(B) is effectively taken over all 0 s ' - : .
Jp bonds of the star lattice. In E@3) the vectors ¢.(6,)) 0 0.5 1 1.5 2 2.5
are spin up(down) states at sité with a quantization axis h

corresponding to the classical planar GS considered, i.e., FIG. 6. Magnetization curves for star lattices witk 18, 36A,

. o o i 1 i
[Sln(ga)Sx-'-Coiaa)sz]|¢li(6a)>:ii|¢;(.0a)>1 where _the  and 36B(complet¢ and N=42, 54, and 7partial). Inset: High-
angleséd, correspond to the respective classig8lX V3 or  field part of the magnetization curves fid=36A, 36B, 54, and 72
q=0 state.|¥) depends on the variational parameteand sites.
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as m=2($)/N. Due to computational limitations, only the the fact that on the classical and semiclassical I&/8WT)
high-field region can be studied fo¢>36. For example for W€ have very similar physics as for the kagomé lattice.,
N=42, reliable data are available only for=1/3 (and of ~ ON€ zero mode, the classical GS degeneracy is not liftex
coursem=0, see Sec. IY Furthermore, the lowest parts of guantum paramagnetic GS for t,he star lattice is of a different
the curves forN=54 (17/27<m<19/27 and N=72(3/4 hature than that for the kagome lattice. The quantum GS for

<m<5/6) are based on assumptions concerning the Symt_he star lattice is characterized by extremely strong NN cor-
metry of the GS. relation on the dimer bondsnore than 60% larger than the

First, one observes a pronounced zero-field plateau in FigFN correlation of the honeycomb lattice having the same

. - ; ; dination numbez=3) and a weak NN correlation on the
6 corresponding to the spin gap discussed in Sec. IV. Cand oor ;
riangular bondgonly about 30% of the NN dimer correla-
dates for further plateaux emerge, e.g.jrat1/3, 7/9, and ion and significantly less than the triangular NN correlation

8/9. The finite-size effects at the boundaries of these candf— . s . X .
date plateaux are comparably weak for7/9 (see inset of of the kagomé and the triangular lattigeShe singlet-triplet

; : - - i i ticularly larg@bout six times larger than that
Fig. 6) such that the numerical evidence in favor of a platea Pin gap 1S particut: : _
with m+ 0 is strongest in this case. LJfsor the kagomé lattice Although the classical GS exhibits a

The presence of a plateau at=1/3 is also plausible huge nontrivial degeneracy remarkably one does not find

since the star lattice consists of triangles. More precisel))ow'Iylng singlets within this large spin gap, rather the first

Ising-like anisotropies can be argued to give rise to a plateaﬁingle.t excitation is well above the lowest triplet state. The
atm=1/3 due toup-up-down configurations on the triangles. ow-lying spectrum as a whole resembles the spectrum of

The numbet\V,, of such Ising configurations can be deter- weakly coupled dimer§All these features support the con-
mined by e;)[gl'icit enumeration, yielding, €.gMaon clusion that the quantum GS of the HAFM on the star lattice
] ’ . wv.cont.

—123528 3508392. and 531 606 684 for the=42 54 is dominated by local singlet pairing. This dimerized GS
and 72 lattices, respectively. This number grows asymptoti[er‘]).rehs’entS a ts%calllegxpllcn valetnce-bond crystal stafe
cally approximately asVion;e(1.322..)N. The number of which respects the fatlice symmetry.

; : : : : . Although we could expect a gapped quantum paramag-
Ising configurations is much bigger than the corresponding .. - o
number on the kagomé lattice at=1/3 (see Ref. 28 and %etic explicit valence-bond crystal GS for the star lattice in

references therejnindicating that the tendency towards a case of strong dimer bondg > Jr, this should be contrasted

disordered GS ath=1/3 may bestronger on the star lattice \;Vr';tge(;t?ne:hn;?idnfiltsovagtergenan die,;iglrl%L\ézlsenés;t;?(giqc?ésﬁl t?u?
than on the kagomé lattice. 9 | P'e,

Just below saturation, we see a jump in the magnetizatioﬁImple $=1/2 He|_senbe_rg bllayer_ model, the picture of
curve(see inset of Fig. 6 Indeed, the presence of this jump yveakly coupled dimers IS qual!tat!\{ely correct only for an
follows from a general construction of independent Iocalizecm:rea::gyg: i)é%higgﬁ cgughg%}sgggfmst;iy I;légg:]éhgg tz:r?d
magnons for strongly frustrated lattice®} which in the case Y pling (J, =2.5J, :

of the star lattice live on the dodecagons. The expecte&eferences there)'nBecau;e the bilayer Heisenbgrg model is
height Sm=1/9 of thejump for sufficiently IarQeN is con- not frustrated, the classical GS does not exhibit any non-

firmed for N=54 and 72(see inset of Fig. § Note that the trivial degeneracy and the GS remains the semiclassical Néel

~ 32 ;
existence of localized magnon states also leads to a finit Ljizepf;rgr;agi:t?g gg\ggzzéﬁh ﬂ?e}/l?ggtt;\arsréttt?cz qeL\J/er]]
residualT=0 entropy at the saturation fiett=5J/2 (Refs. 7 in the uniform caseJp=J1. This difference can be attributed

and 30 and may favor a tendency toward a st_Pe'erlSEo the strong frustration present in the star lattice.

a1 i
deformatior®! On general grounds one expects a plateau jus The magnetization curve of the=1/2 HAFM on the star

below the jump, i.e., at the candidate vaioe8/9 men- lattice shows a jump just below saturation and several can-

tioned beforéd, although the available data do not allow un- didates f | tJ P ai=1/3 7/9 and 8/9

ambiguous confirmation of this plateau. \dales Tor plateaux, €.g., ai=1/3, 179, an as some
typical features of strongly frustrated quantum spin lattices.

Furthermore, low-energy excitations present for certain mag-

netic fields promise large magnetocaloric effe€ts.

Similar as for the kagomé lattice the results reported in
this paper yield indications for a quantum paramagnetic GS ACKNOWLEDGMENTS
for the star lattice, too. Whereas this statement is well known
for the kagomé lattice, the star lattice represents an example The authors are indebted to H.-U. Everts for valuable dis-
for a quantum HAFM on a uniform 2D lattice without semi- cussions. This work was partly supported by the DFG
classical GS ordering. However, we emphasize that despit@roject No Ri615/12-11

VII. DISCUSSION AND CONCLUSION
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