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We study the ground-state properties of the spin-half Heisenberg antiferromagnet on the two-dimensional
star lattice by spin-wave theory, exact diagonalization, and a variational mean-field approach. We find evidence
that the star lattice is(besides the kagomé lattice) a second candidate among the 11 uniform Archimedean
lattices where quantum fluctuations in combination with frustration lead to a quantum paramagnetic ground
state. Although the classical ground state of the Heisenberg antiferromagnet on the star lattice exhibits a huge
nontrivial degeneracy like on the kagomé lattice, its quantum ground state is most likely dimerized with a gap
to all excitations. Finally, we find several candidates for plateaux in the magnetization curve as well as a
macroscopic magnetization jump to saturation due to independent localized magnon states.
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I. INTRODUCTION

The spin-half two-dimensional(2D) Heisenberg antiferro-
magnet (HAFM) has attracted much attention in recent
times. In particular, the recent progress in synthesizing
quasi-2D magnetic materials exhibiting exciting quantum ef-
fects has stimulated much theoretical work. We mention, for
example, the spin-gap behavior in CaV4O9 (Ref. 1) and in
SrCu2sBO3d2 (Ref. 2), the spin fractionalization in Cs2CuCl4
(Ref. 3) or the plateau structure in the magnetization process
of frustrated quasi-2D magnetic materials like SrCu2sBO3d2

(Ref. 2) or Cs2CuBr4 (Ref. 4).
While the ground state(GS) of the one-dimensional quan-

tum HAFM does not possess Néel long-range order, for the
spin-half HAFM on 2D lattices the competition between
quantum fluctuations and interactions seems to be well bal-
anced and magnetically ordered and disordered GS phases
may appear. A fine tuning of this competition may lead to
zero temperature transitions between semiclassical and quan-
tum phases. The prototypes of 2D arrangements of spins are
the 11 uniform Archimedean lattices(tilings), see, e.g., Refs.
5–7. They present an ideal possibility for a systematic study
of the interplay of lattice geometry and magnetic interactions
in 2D quantum spin systems.

The HAFM on the widely known square, honeycomb, tri-
angular, and kagomé lattices has been studied in numerous
papers over the last decade. While for the square, honey-
comb, and triangular lattices the existence of semiclassical
magnetic order seems to be well-established(see, e.g., Refs.
7–9) the spin-half HAFM on the kagomé lattice is a candi-
date for a magnetic system with a quantum paramagnetic GS
(see the reviews, Refs. 7–10 and references therein). Other
less known Archimedean lattices like the maple-leaf lattice,11

the square-hexagonal-dodecagonal lattice,12,13 and the trellis
lattice14,15 exhibit most likely semiclassical magnetic GS or-
der.

In this paper we present another candidate for a quantum
paramagnetic GS among the Archimedean lattices, namely,
the so-called star lattice, featured by low coordination num-
ber z=3 and strong frustration due to a triangular arrange-
ment of bonds(see Fig. 1).

II. MODEL

The geometric unit cell of the star lattice contains six sites
and the underlying Bravais lattice is a triangular one(see
Figs. 1 and 2). For this lattice we consider the spin-half
HAFM in a magnetic fieldh

Ĥ = Jo
ki j l

Si ·Sj − hŜz, s1d

where the sum runs over pairs of neighboring siteski j l and

Ŝz=oiŜi
z. The star lattice carries topologically inequivalent

nearest-neighbor(NN) bondsJD (dimer bonds, solid lines in
Fig. 1) andJT (triangular bonds, dashed lines in Fig. 1, see
also Fig. 2). For the uniform lattice these bonds are of equal
strengthJD=JT=J.

III. SEMICLASSICAL GROUND STATE

In the classical GS forh=0 the two nonequivalent NN
bonds of the star lattice carry different NN spin correlations:
The angle between neighboring spins on dimer bondsJD is
p, whereas the angle on triangular bondsJT is 2p /3. Its
energy per bond ise0

class=−1/6. The classical GS for the star
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lattice has a great similarity to that of the kagomé lattice. It
also exhibits a nontrivial infinite degeneracy. Moreover, there
are also the two variants of the classical GS, namely, the
so-calledÎ33Î3 andq=0 states(see Fig. 2), often used for
discussing possible order in the kagomé lattice. Hence these
two particular planar states can also be considered as variants
of possible GS ordering for the star lattice. In the following
we discuss the influence of quantum fluctuations on the GS
properties.

First, we perform a linear spin-wave theory(LSWT) start-
ing from the planar classical GSs. The LSWT for the star
lattice is more ambitious than for the kagomé lattice, since
we have to consider six types of magnons. As in the kagomé
case16–18 the spin-wave spectra are equivalent for all copla-
nar configurations satisfying the classical GS constraint. We
obtain six spin-wave branches. Two dispersionless modes are
found, namely,v1q=0, v2q=JsÎ3. Thus also a flat zero
mode appears as it is observed for the kagomé case. In ad-
dition there are two acoustical and two optical branches.
There is noorder-by-disorderselection among the coplanar
classical GSs due to the equivalence of the spin-wave
branches obtained from LSWT, exactly like for the kagomé
lattice.10,17 The GS energy per bond fors=1/2 in LSWT is
e0/J=−0.296 759. Due to the flat zero mode the integral for
the sublattice magnetization diverges18 which might be un-
derstood as another hint for the absence of the classical or-
der. Although on the semiclassical LSWT level both the
kagomé and the star lattice exhibit almost identical proper-
ties, the situation might be changed taking into account the
quantum fluctuations more properly.

IV. LANCZOS EXACT DIAGONALIZATION

We consider now the extreme quantum limits=1/2 by
direct numerical calculation of the GS and the low-lying ex-
citations ath=0 for finite lattices ofN=18,24,30,36,42 sites.
For each sizeN we have chosen only lattices having good
geometric properties using the criteria given in Ref. 19. The
largest latticesN=42d is shown in Fig. 1 and required a
Lanczos diagonalization in dimension 801 258 898 for the
computation of GS properties. The GS for all these lattices is

a singlet and has an energy per bonde0=−0.312 479sN
=18d; 20.311 342 (24); 20.310 808 (30); 20.310 348
(36A); 20.310 657(36B); 20.309 918(42). The first exci-
tation is a triplet and has a gapD=0.578 710sN=18d;
0.531 822(24); 0.498 564(30); 0.480 343(36A); 0.483 112
(36B) (no result available forN=42).

We present in Table I the spin-spin correlation for the
largest finite lattice considered. Note that the two nonequiva-
lent NN correlation functions differ drastically, we have

kŜ0
zŜ28

z l,3.5kŜ0
zŜ1

zl indicating a tendency to form local sin-
glets on the dimer bonds.

Let us compare the spin correlations with those for
the HAFM on triangular and kagomé lattices. We consider
the strongest correlations as a measure for magnetic order
and present in Fig. 3 the maximal absolute corre-

lations ukŜ0
zŜi

zlumax for a certain separationR= uR0−Riu versus
R. As expected we have very rapidly decaying correlations
for the disordered kagomé case, whereas the correlations for
the Néel ordered triangular lattice are much stronger for
larger distances and show a kind of saturation for largerR.
Although the correlations for the star lattice are slightly
larger than those of the kagomé lattice they are significantly

FIG. 1. The star lattic withN=42 sites.

FIG. 2. (Color online) Two variants of the GS of the classical
HAFM on the star lattice: theÎ33Î3 state(left) and theq=0 state
(right). The dotted ellipses show further degrees of freedom of the
highly degenerate classical GS. Different shades of the triangles
symbolize different chiralities.
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weaker for separationsRù3 than those of the triangular lat-
tice. The large NN correlation for the star lattice corresponds
to a NN dimer bond.

Next we consider the low-lying spectrum of the star lat-
tice (see Fig. 4), following the lines of the discussion of the
spectrum for the triangular21 and the kagomé lattice.22,23 It is
obvious that the lowest statesEminsSd are not well described
by the effective low-energy HamiltonianHeff,E0
+S2/2Nx0 of a semiclassically ordered system:(i) The Emin
versusSsS+1d curve deviates significantly from a straight
line (cf. the dashed line in Fig. 4). (ii ) We do not see well
separated lowest states in the different sectors ofS (so-called
quasi-degenerate joint states21) which could collapse onto a
Néel-like state in the thermodynamic limit.(iii ) The symme-
tries of the lowest states in each sector ofS cannot be attrib-
uted to the classicalÎ33Î3 or q=0 GSs in general. These
features are similar to the kagomé lattice.22,23However, there
is one striking difference. In contrast to the kagomé lattice
we do not have nonmagnetic singlets filling the singlet-triplet
gap (spin gap) commonly interpreted as a remnant of the
huge classical GS degeneracy. Rather we have a particularly
large singlet-singlet gap. This basic difference to the kagomé
lattice can be attributed to the special property of the quan-
tum GS of the star lattice to have strongly enhanced antifer-
romagnetic correlations on theJD bonds. As a consequence

the quantum GS of the star lattice has an exceptionally low
GS energye0 (see Table II) and is well separated from all
excitations.

For finite systems the order parameter is based on the
spin-spin correlation functions. For systems with well-
defined semiclassical long-range order usually the square of
the staggered magnetization is used. However, this definition
of the order parameter is problematic in the present situation:
Due to the huge nontrivial degeneracy of the classical GS it
remains unclear which type of ordering might be favored in
the quantum system. Therefore we use a definition of an
order parameter

m+ = S 1

N2o
i,j

ukSiSjluD1/2

, s2d

which is independent of any assumption on classical order.7

For bipartite systems like the square lattice this definition is
identical to the staggered magnetizationm and for the
HAFM on the triangular latticesm+d2 is by 1/3 larger than
the usual definition.7 For the two planar classicalÎ33Î3
and q=0 GSs we get mclass,Î33Î3

+ =mclass,q=0
+ = 1

2
Î2/3

<0.408 25(note that for the kagomé lattice one obtains the
same value). For the quantum model one findssm+d2

=0.149 113sN=18d; 0.114 822 (24); 0.094 831 (30);
0.082 299(36A); 0.079 351(36B); 0.073 251(42). For com-
parison we quote the values for theN=36 kagomé lattice:

FIG. 3. Maximal spin-spin correlationukŜ0
zŜi

zlumax versus separa-
tion R= uR0−Riu for the star latticesN=42d, the kagomésN=36d,
and the triangular latticesN=36d (the lines are guides for the eyes).
The data for the kagomé lattice coincide with those from Ref. 20.

FIG. 4. Low-energy spectrum for the HAFM on the star lattice
sN=36Bd (the inset shows thek points in the Brillouin zone).

TABLE I. All nonequivalent GS spin-spin correlationskŜ0
zŜi

zl= 1
3kS0Sil for the HAFM on the star lattice

with N=42 sites. In addition to the site indexi, we give the separationR= uR0−Riu between sites 0 andi in
units of NN separation.

i sRd 1 (1) 3 (1.932) 4 (2.909)

kŜ0
zŜi

zl 20.05643 0.03559 20.01058

i sRd 6 (3.732) 7 (3.346) 9 (5.278)

kŜ0
zŜi

zl 20.00451 0.01066 0.00439

i sRd 10 (4.625) 26 (2.732) 28 (1)

kŜ0
zŜi

zl 20.01173 20.03875 20.19707
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sm+d2=0.059 128, and theN=36 triangular lattice:sm+d2

=0.124 802.
We have performed finite-size extrapolations based on the

standard formulas for 2D spin-half Heisenberg antiferromag-
nets (see, e.g., Refs. 7, 24, and 25), namely, e0sLd=A0

+A3/L3+OsL−4d for the GS energy per bond,m+sLd=B0

+B1/L+OsL−2d for the order parameter, andDsLd=G0

+G2/L2+OsL−3d for the spin gap, whereA0=e0s`d, B0

=m+s`d, G0=Ds`d andL=N1/2. We present the results of the
extrapolation fore0 andm+ in comparison with the triangular
and the kagomé lattice in Table II. The HAFM on the star
lattice has lowest GS energye0; the extrapolated order pa-
rameter is finite but very small.

Figure 5 shows the finite-size behavior of the spin gap of
the star lattice in comparison to the kagomé and triangular
lattices. We extrapolate a quite big spin gapD=0.380 for the
star lattice. For the triangular lattice, the data withNø36
seem to suggest a finite spin gap which is, however, spurious.
This illustrates that the extrapolation of the spin gap may be
most affected by systematic errors.7 Nevertheless, the spin
gap of the star lattice in Fig. 5 exhibits only comparably
small finite-size effects. Hence, the estimation of a nonzero
spin gap for the star lattice seems to be reliable. The spin gap
extrapolated for the kagomé lattice8 is more than six times
smaller, but note that the existence of a gap for the kagomé
lattice at all is not fully clear, as is also evident from Fig. 5.

V. VARIATIONAL MEAN FIELD APPROACH

We discuss briefly a variational approach which was suc-
cessfully applied to describe a quantum phase transition be-
tween Néel phases and a dimer phase.7,26,27Let us consider a
model with different NN bondsJT andJD. The GS shall be
approximately described by a variational wave function

uCl = p
a

uf+
i suadluf−

j suadl − tuf−
i suadluf+

j suadl
Î1 + t2

, s3d

wherea represents a pair of sitesi,j corresponding to aJD
bond. Thus the product in Eq.(3) is effectively taken over all
JD bonds of the star lattice. In Eq.(3) the vectorsuf±

i suadl
are spin up(down) states at sitei with a quantization axis
corresponding to the classical planar GS considered, i.e.,

fsinsuadŜi
x+cossuadŜi

zguf±
i suadl= ± 1

2uf±
i suadl, where the

anglesua correspond to the respective classicalÎ33Î3 or
q=0 state.uCl depends on the variational parametert and

interpolates between a rotationally invariant dimer product
state for t=1 and an uncorrelated planarÎ33Î3 or q=0

state fort=0. OptimizingkCuĤuCl with respect tot we get
E0

var/bond=−sJD
2 +JDJT+JT

2d /12JT. For the sublattice magne-
tization we obtain

M = kCucossuadŜi
z + sinsuadŜi

xuCl =
ÎJT

2 − JD
2

2JT
s4d

for JDøJT. M vanishes with a mean-field critical exponent at
the symmetric pointJD=JT. Since such an approach tends to
overestimate the region of the semiclassically ordered
state,26,27 we may interpret the above result as a further in-
dication of a dimerized GS.

VI. MAGNETIZATION PROCESS

Finally, Fig. 6 shows magnetization curves of several
finite star lattices, where the magnetizationm is defined

TABLE II. Results of the finite-size extrapolation of the GS
energy per bonde0 and the order parameterm+ [eq. (2)] of the
spin-half HAFM for the star(N=18,24,30,36,42), the kagomé
(N=12,18,24,30,36), and the triangular(N=24,30,36) lattices. To
see the effect of quantum fluctuations we scalem+ by its corre-
sponding classical valuemclass

+ .

Lattice Triangular Kagomé Star

e0 20.1842 20.2172 20.3091

m+/mclass
+ 0.386 0.000 0.122

FIG. 5. Finite-size behavior of the spin gapD, i.e., the gap to
s=1 excitations versus inverse system size 1/N. Results are shown
for the star lattice(triangles) in comparison with those for the
kagomé lattice(circles, compare Ref. 23) and the triangular lattice
(squares).

FIG. 6. Magnetization curves for star lattices withN=18, 36A,
and 36B(complete) and N=42, 54, and 72(partial). Inset: High-
field part of the magnetization curves forN=36A, 36B, 54, and 72
sites.

RICHTER et al. PHYSICAL REVIEW B 70, 174454(2004)

174454-4



as m=2kŜzl /N. Due to computational limitations, only the
high-field region can be studied forN.36. For example for
N=42, reliable data are available only formù1/3 (and of
coursem=0, see Sec. IV). Furthermore, the lowest parts of
the curves forN=54 s17/27øm,19/27d and N=72 s3/4
øm,5/6d are based on assumptions concerning the sym-
metry of the GS.

First, one observes a pronounced zero-field plateau in Fig.
6 corresponding to the spin gap discussed in Sec. IV. Candi-
dates for further plateaux emerge, e.g., atm=1/3, 7/9, and
8/9. The finite-size effects at the boundaries of these candi-
date plateaux are comparably weak form=7/9 (see inset of
Fig. 6) such that the numerical evidence in favor of a plateau
with mÞ0 is strongest in this case.

The presence of a plateau atm=1/3 is also plausible
since the star lattice consists of triangles. More precisely,
Ising-like anisotropies can be argued to give rise to a plateau
at m=1/3 due toup-up-down configurations on the triangles.
The numberNconf. of such Ising configurations can be deter-
mined by explicit enumeration, yielding, e.g.,Nconf.
=123 528, 3 508 392, and 531 606 684 for theN=42, 54,
and 72 lattices, respectively. This number grows asymptoti-
cally approximately asNconf.~ s1.322…dN. The number of
Ising configurations is much bigger than the corresponding
number on the kagomé lattice atm=1/3 (see Ref. 28 and
references therein), indicating that the tendency towards a
disordered GS atm=1/3 may bestronger on the star lattice
than on the kagomé lattice.

Just below saturation, we see a jump in the magnetization
curve(see inset of Fig. 6). Indeed, the presence of this jump
follows from a general construction of independent localized
magnons for strongly frustrated lattices,7,29 which in the case
of the star lattice live on the dodecagons. The expected
height dm=1/9 of thejump for sufficiently largeN is con-
firmed for N=54 and 72(see inset of Fig. 6). Note that the
existence of localized magnon states also leads to a finite
residualT=0 entropy at the saturation fieldh=5J/2 (Refs. 7
and 30) and may favor a tendency toward a spin-Peierls
deformation.31 On general grounds one expects a plateau just
below the jump, i.e., at the candidate valuem=8/9 men-
tioned before,7 although the available data do not allow un-
ambiguous confirmation of this plateau.

VII. DISCUSSION AND CONCLUSION

Similar as for the kagomé lattice the results reported in
this paper yield indications for a quantum paramagnetic GS
for the star lattice, too. Whereas this statement is well known
for the kagomé lattice, the star lattice represents an example
for a quantum HAFM on a uniform 2D lattice without semi-
classical GS ordering. However, we emphasize that despite

the fact that on the classical and semiclassical level(LSWT)
we have very similar physics as for the kagomé lattice(i.e.,
one zero mode, the classical GS degeneracy is not lifted) the
quantum paramagnetic GS for the star lattice is of a different
nature than that for the kagomé lattice. The quantum GS for
the star lattice is characterized by extremely strong NN cor-
relation on the dimer bonds(more than 60% larger than the
NN correlation of the honeycomb lattice having the same
coordination numberz=3) and a weak NN correlation on the
triangular bonds(only about 30% of the NN dimer correla-
tion and significantly less than the triangular NN correlation
of the kagomé and the triangular lattices). The singlet-triplet
spin gap is particularly large(about six times larger than that
for the kagomé lattice). Although the classical GS exhibits a
huge nontrivial degeneracy remarkably one does not find
low-lying singlets within this large spin gap, rather the first
singlet excitation is well above the lowest triplet state. The
low-lying spectrum as a whole resembles the spectrum of
weakly coupled dimers.6 All these features support the con-
clusion that the quantum GS of the HAFM on the star lattice
is dominated by local singlet pairing. This dimerized GS
represents a so-calledexplicit valence-bond crystal state,8

which respects the lattice symmetry.
Although we could expect a gapped quantum paramag-

netic explicit valence-bond crystal GS for the star lattice in
case of strong dimer bondsJD@JT, this should be contrasted
with other models where an explicit valence-bond crystal GS
arises in the limit of strong dimer bonds. For example, in the
simple s=1/2 Heisenberg bilayer model, the picture of
weakly coupled dimers is qualitatively correct only for an
interlayer exchange couplingJ' significantly larger than the
intralayer couplingJ (J'*2.5J, see Refs. 26 and 32 and
references therein). Because the bilayer Heisenberg model is
not frustrated, the classical GS does not exhibit any non-
trivial degeneracy and the GS remains the semiclassical Néel
state forJ'<J and all values ofs.32 By contrast, the quan-
tum paramagnetic GS appears in thes=1/2 star lattice even
in the uniform caseJD=JT. This difference can be attributed
to the strong frustration present in the star lattice.

The magnetization curve of thes=1/2 HAFM on the star
lattice shows a jump just below saturation and several can-
didates for plateaux, e.g., atm=1/3, 7/9, and 8/9 as some
typical features of strongly frustrated quantum spin lattices.
Furthermore, low-energy excitations present for certain mag-
netic fields promise large magnetocaloric effects.30
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