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Monte Carlo(MC) simulations on the square planar rotator model with small fourfold symmetry-breaking
field h4 points out the existence of a Berezinskii-Kosterlitz-Thouless phase at intermediate temperatures be-
tween the low-temperature ferromagnetic phase and the high-temperature paramagnetic phase. This result
contrasts with the expectation of a single order-disorer phase transition characterized by nonuniversal critical
exponents for anyh4 as suggested by a renormalization group analysis and confirmed by MC simulations for
intermediate and large symmetry-breaking fields.
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The phase diagram of the two-dimensional(2D) planar
model with symmetry-breaking fields is characterized by a
low-temperature ferromagnetic phase and a high-temperature
paramagnetic phase. When the order of the symmetry-
breaking fieldhp is pø4 only an order-disorder phase tran-
sition is expected.1 For p=4 the phase transition is charac-
terized by nonuniversal critical exponents. On the contrary,
when p.4 a Berezinskii-Kosterlitz-Thouless(BKT) phase2

is believed to occur between the low-temperature ferromag-
netic phase and the high-temperature paramagnetic phase.
The phenomenology of the planar rotator model is strongly
affected by the presence of symmetry-breaking fields which
are alwaysrelevantat low temperature, destroying the BKT
phase. However, the occurrence of a BKT phase at interme-
diate temperatures is determined by the orderp of the
symmetry-breaking field. Indeed forp.4 two critical tem-
peratures are suggested by a RG analysis on a generalized
Villain model believed to be in the same universality class of
the planar rotator model with symmetry-breaking fields:1

one—say,T1—at which the symmetry-breaking field be-
comes irrelevant and one—say,T2—at which the vortices
break free. The BKT phase that occurs in the range
0,T,T2 for hp=0 (planar rotator model) survives in a re-
stricted rangeT1,T,T2 only if p.4.

Monte Carlo(MC) simulations were performed on mod-
els with hp→` ( p-state clock models).3,4 For p=4 a single
phase transition was found with a critical temperature and
critical exponents that agree with the Ising exponents as it
must since the four-state clock model on a square lattice is
equivalent to two decoupled Ising models.5 For the
five-state3 and six-state3,4 clock models two successive phase
transitions are found: the former corresponding to the
ferromagnetic-BKT phase transition, the latter to the BKT-
paramagnetic phase transition.

Only recently have MC simulations on the planar model
with finite symmetry-breaking fieldhp been performed6 on
square and triangular lattices with symmetry-breaking fields
of fourth and sixth order, respectively. For the fields at which
MC simulations were performedshpù1d the results con-
firmed the RG expectation according to which a BKT phase
is found for p=6 and a second-order phase transition with
nonuniversal critical exponents is found forp=4. MC simu-

lations agree with thep-state clock model results of Refs. 3
and 4 in the limithp→`.

Here we show results of MC simulations on a planar
model with small fourfold symmetry-breaking fields
sh4&0.5d and we find, unexpectedly, that the scenario is very
similar to that found in theh6 case. Indeed abubbleof BKT
phase occurs also for the fourfold symmetry-breaking field at
odds with the RG expectation.1 The BKT bubble shrinks to a
second-order transition line forh4.0.5 so that the transition
characterized by nonuniversal critical exponents is recovered
only for h4*0.5.

The Hamiltonian of the model reads

H/J = − o
ki,jl

cossui − u jd − h4o
i

coss4uid, s1d

where the first sum is restricted to couples of nearest neigh-
bors, i and j run over a square lattice,ui is the angle the
classical two-component unit vector, located on the sitei,
makes with thex axis, J.0 is the ferromagnetic exchange
coupling, andh4.0 is the fourth-order symmetry-breaking
field.

We have performed MC simulations on lattices of size
L3L with periodic boundary conditions, whereL=16, 24,
32, 48, and 64. The most part of the data points are obtained
by an average of 8 independent runs of 105–106 MC steps
taking a configuration every 10 MC steps and disregarding
1000 MC steps for equilibration. The data points are ob-
tained by raising the temperature byDT=0.01 (in units of
J/kB) and assuming as starting configuration the last configu-
ration of the previous temperature. In our simulation we
evaluate the specific heat

CL = fkHL
2l − kHLl2g/sL2kBT2d, s2d

the order parameter

mL = s1/L2dkuMLul, s3d

where

PHYSICAL REVIEW B 70, 174447(2004)

1098-0121/2004/70(17)/174447(5)/$22.50 ©2004 The American Physical Society70 174447-1



ML = So
i=1

L2

cosui,o
i=1

L2

sin uiD , s4d

the susceptibility

xL = fkML
2l − kuMLul2g/sL2kBTd, s5d

and the fourth-order cumulant7

UL = 1 − kML
4l/f3kML

2l2g. s6d

As discussed in Ref. 6 the analysis ofUL8 as a function ofUL
allows us to distinguish between a continuous and a BKT
phase transition and one can obtain the critical exponentn by
means of the relationship

s] UL8/] ULdT=Tc
= sL8/Ld1/n, s7d

where 1/n is finite for continuous phase transitions and zero
for a BKT transition.

In Fig. 1 we give the susceptibility versus temperature for
several lattice sizes forh4=0.01, 0.05, 0.1, 0.2, 0.5 and for
h4→`. Notice the similarity of the figures withh4,0.5 with
Fig. 8 of Ref. 6 where the size scaling of the susceptibility
for the sixfold symmetry-breaking fieldh6=1 is shown. In
that case the existence of a BKT phase was supported by
both analytic renormalization group(RG) calculations and
MC simulations. The size dependence of the susceptibility
observed forh4,0.5 is a strong indication of the occurrence
of the BKT phase also in this case. The shoulder in the sus-
ceptibility for h4,0.5 increases asL increases and it is ex-
pected to diverge forL→` so that afinite range of tempera-
ture with divergent susceptibility, typical of the BKT phase,
is expected in the thermodynamic limit. Note that the size-
dependent shoulder appears at lower temperature ash4 de-
creases.

For vanishing h4 the specific heat shows a size-
independent peak aroundT.1, in agreement with the pure
planar rotator model. Ash4 goes from 0.05 to 0.5 a size-
independent shoulder develops in the specific heat moving
from T.0.5 to T.1 and it merges into the BKT peak at
h4.0.5. Forh4.0.5 the peak of the specific heat becomes
size dependent as shown in Fig. 1 of Ref. 6 forh4=1 and
h4=2, eventually leading to a logarithmic divergence for
h4→` (four-state clock model). We recall that a two-peak
structure of the specific heat was found for a sixfold aniso-
tropy h6 where the presence of the BKT phase is assured for
anyh6. Obviously, the two-peak structure is expected to meet
the one-peak structure of the pure planar model for vanishing
symmetry-breaking fields, so that it is not surprising that for
h4,0.5 only a vague recollection of the two-peak structure
is found.

The order parameter for 0.01,h4,0.5 shows three dif-
ferent behaviors: it is size independent at low temperature
(ferromagnetic phase) and shows a different size dependence
at intermediate(BKT phase) or high temperature(paramag-
netic phase). This behavior is similar to that found for a
sixfold anisotropy as shown in Fig. 7 of Ref. 6 where the
occurrence of the BKT phase is confirmed by both MC simu-
lations and RG analysis. Forh4.0.5 the typical behavior of
a continuous order-disorder phase transition is recovered un-

til the 2D Ising model behavior is reached in the limit
h4→`.

It is well known that in the BKT phase the finite-size
scaling of the order parameter ismL.L−h/2 where h is a
function of the temperature. For sixfold symmetry-breaking
fields1,6 h increases fromh.0.10 atT1 to h.0.25 atT2. In
Fig. 2 the log-log plot of the order parameter versus lattice
size for several temperatures withh4=0, 0.01, 0.05, 0.1, 0.2,
and 0.5 shows curves with upward concavity(ferromagnetic
phase), straight lines(BKT phase), and curves with down-
ward concavity(paramagnetic phase). We have located the
temperature region where the BKT phase occurs, fitting data
points with a straight line and looking at the error on its
slope h. The error is minimum for true straight lines(less
than 0.1%). Following this criterion we determineT1 andT2
within 1%–2%. This temperature regionsT1,T,T2d
shrinks going fromh4=0, whereT1=0 andT2=TBKT.0.9, to
h4=0.5, whereT1=T2.0.95, pointing out that a second-
order phase transition replaces the BKT phase. The critical
exponenth at T=T2 is h.0.25 for anyh4.

In Fig. 3 we show the fourth-order cumulantU64 as func-
tion of U32. For h4=0.5 a single crossing of the data points
with the straight lineU64=U32 is clearly seen, in agreement
with the occurrence of a continuous phase transition as ob-
tained in Ref. 6 forh4ù1, whereas forh4=0.2, 0.1, 0.05,
0.01 the data points make a bump at low temperatures and
fall on the straight lineU64=U32 at intermediate tempera-
tures. This behavior is the signature of the existence of the
BKT phase as discussed in Ref. 6 forp=6. Finally, the para-
magnetic phase is pointed out by the shifting of the data
points from the straight line. The range of the BKT phase
shrinks at increasingh4 in agreement with the range of tem-
perature where the size dependence of the susceptibility is
observed in Fig. 1 and the linear behavior of the order pa-
rameter versus size is shown in Fig. 2. The finite-size scaling
equations of the magnetization and the susceptibility ex-
pected for a BKT phase are given by4

mLLb = f1sL−1eat−1/2
d, s8d

xLL−c = f2sL−1eat−1/2
d, s9d

where b=hsT1d /2 with t=sT1−Td /T1 in Eq. (8) and c=2
−hsT2d with t=sT−T2d /T2 in Eq. (9). The critical exponent
hsTd, related to the algebraic decaying of the correlation
function, is obtained atT1 andT2 from Fig. 2 by the slope of
the straight lines lnsmLd vs lnsLd. For example, forh4=0.1
one hasT1=0.85 with hsT1d=0.18 andT2=0.91 with hsT2d
=0.25. The susceptibility appearing in Eq.(9) is evaluated
as4 xL=kML

2l / sL2kBTd. In Fig. 4 we show the universal be-
havior of the magnetization forT1=0.85 and of the suscep-
tibility for T2=0.91 withh4=0.1. Note that the choice ofT1,
T2, hsT1d, and hsT2d, obtained by the finite-size scaling of
the order parametermL.L−h/2, is crucial to get the universal
curves of Fig. 4.

A comparison with the expectations of Ref. 1 is in order.
Indeed a RG analysis of a generalized Villain model which is
believed to have the same symmetry properties of the planar
rotator model with the symmetry-breaking fields leads to the
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recursion equations given by Eqs.(5.17) of Ref. 1 which are
expected to be correct to the the leading order iny0 (a pa-
rameter related to the presence of unbound vortices) and yp
(a parameter related to the symmetry-breaking fields). Note
that the Villain model8 is recovered fory0=1 andyp=0. It is

direct to obtain the asymptotic solutionsl →`d of Eqs.
(5.17). Two kinds of solutions are found forpø4. For initial
conditions T,T2shpd, y0=1, and yp=2hp with T2s0d
=1.362 80 one finds thatT→0, y0→0 and yp→` for
l →`. This is the signature of the ferromagnetic phase where

FIG. 1. Susceptibility forh4=0.01, 0.05, 0.1, 0.2, 0.5,̀ (four-state clock model) for different lattice sizesL=16, 24, 32, 48, 64.
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the symmetry-breaking fields are relevant and the unbinding
of vortices does not occur. For initial conditionsT.T2shpd,
y0=1, andyp=2hp one finds thatT→`, y0→`, andyp→0
for l →`, corresponding to the paramagnetic phase in which
the symmetry-breaking fields become irrelevant and the un-
binding of vortices occurs. Forp.4 a third region appears.

Indeed for initial conditionsT1shpd,T,T2shpd, y0=1, and
yp=2hp one findsT→T`, y0→0, andyp→0 for l →` with
8p /p2,T`,p /2. This scenario corresponds to the BKT
phase since the symmetry-breaking fields are irrelevant and
vortices are bound so that the planar rotator model properties
are recovered. As one can see the BKT phase is limited be-

FIG. 2. Log-log plot of the order parameter vs lattice size for several temperatures forh4=0, 0.01, 0.05, 0.1, 0.2, 0.5.
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tweenT1 and T2. For h6→0 the BKT phase is restricted to
0.698 12,T,1.362 80. For p=4 only one transition is
found at T2=1.362 80 for h4=0 increasing with the
symmetry-breaking field—i.e., T2=1.403 46, 1.448 26,
1.491 60, andp /2 for h4=0.2, 0.4, 0.6, and 1, respectively.
As one can see from the nature of the differential equations
(5.17) of Ref. 1 a bubble of BKT phase is prevented by
uniqueness of the solution. Indeed the existence of a bubble
would imply that the same initial condition for the tempera-
ture leads to two different asymptotic solutionsT`=8p /p2

andT`=p /2. On the other hand, MC simulations on the true
model indicate the presence of a BKT phase forh4&0.5
extending from 0 toT2.0.90 forh4→0. The region shrinks
at increasingh4 until a line is found forh4*0.5 where the
RG scenario is recovered. The MC simulations of the present
paper confirm the merits of the generalized Villain model
and of the RG analysis performed in Ref. 1 to guess the
critical behavior of the planar rotator model with symmetry-
breaking fields(true model). However, some peculiarities of
the true model seem to escape the generalized Villain model
studied in Ref. 1. In particular, the casep=4 gives correct
results only for intermediate values of the symmetry-
breaking fieldsh4*0.5d. Indeed the critical behavior of the
true model seems to be richer than the corresponding gener-

alized Villain model. Another property of the true model es-
caped the generalized Villain model is the limit ofT1shpd for
hp→0 when pù4. Indeed Eqs.(5.17) of Ref. 1 give
T1shpd→TpÞ0 for hp→0 (for instance,T4=1.362 80,T5
=1.003 82,T6=0.698 12, andT8=0.392 70) while MC simu-
lations on models withp=4 andp=6 lead to the conclusion
that T1shpd→0 for hp→0.
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FIG. 3. Fourth-order cumulantU64 vs U32 for several h4:
h4=0.01 (squares), h4=0.05 (circles), h4=0.1 (diamonds), h4=0.2
(crosses), andh4=0.5 (vertical crosses).

FIG. 4. Finite-size scaling of the magnetization(left) and sus-
ceptibility (right) for h4=0.1: L=16 (crosses), L=24 (squares),
L=32 (vertical crosses), L=48 (circles), andL=64 (stars).
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