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We investigate the controversial issue of the existence of universality classes describing critical phenomena
in three-dimensional systems characterized by a matrix order parameter with symni2y G@N) and
symmetry-breaking pattern (@) ® O(N) — O(2) ® O(N-2). Physical realizations of these systems are, for
example, frustrated spin models with noncollinear order. Starting from the field-theoretical Landau-Ginzburg-
Wilson Hamiltonian, we consider the massless critical theory and the minimal-subtraction scheme without
expansion. The three-dimensional analysis of the corresponding five-loop series shows the existence of a stable
fixed point forN=2 andN=3, confirming recent field-theoretical results based on a six-loop expansion in the
alternative zero-momentum renormalization scheme defined in the massive disordered phase. In addition, we
report numerical Monte Carlo simulations of a class of three-dimensiof®I€3D(2)-symmetric lattice mod-
els. The results provide further support to the existence of & @O(2) universality class predicted by the
field-theoretical analyses.
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I. INTRODUCTION spond to @2) ® O(N) —Z,® O(N-1). Foruvy<0 the model

S int i itical t iti ffectively d is also of interest; it describes magnets with sinusoidal spin
everal interesting critical transitions are etlectively de-qy,c1re86 and, forN=3, the superfluid transition oiHe

scribed by a matrix order parameter with symmetr{20  Refs 9_17: see, e.g., Refs. 12, 3, 4, and 13 for other appli-
®O(N) and symmetry-breaking pattern (B®O(N)  cations. Here, we will only focus on the casg>0 and thus
—0(2)®O(N-2). This is the case, foN=2 or N=3, of  whenever we speak of an(®) ® O(N) universality class we
multicomponent frustrated magnetic systems with noncolrefer to the case in which the symmetry-breaking pattern is
linear order, in which frustration may arise either because 00(2) ® O(N) — O(2) ® O(N-2).
the special geometry of the lattice or from the competition of The Q(2) ® O(N) theory(1.1) has been much studied us-
different kinds of interactions. Typical examples of systemsing field-theoretical (FT) methods. Different perturbative
of the first type are stacked triangular antiferromagnetschemes have been exploited, such as twe4-d
(STAs), in which the magnetic ions are located at the sites okxpansiof* and the three-dimensiongBD) massive zero-
a stacked triangular lattice. Frustration due to the competimomentum (MZM) renormalization schem@é. A detailed
tion of interactions is realized in helimagnets, in which adiscussion of the scenario emerging from thexpansion is
magnetic spiral is formed along a certain direction of thepresented in Ref. 3. Near four dimensions, a stab(&) O
lattice. The nature of the magnetic transition in these mate® O(N) fixed point (FP) with v,>0 is found1%17 only for
rials has been the object of several studies, see, e.g., Refarge values ofN, N>N,=21.80-23.438+7.092+0(€’).
1-5 for reviews. In particular, the order of the transition isResummations of the expansion oiN,, known to O(e*),'’
still controversial, with several contradictory results both Onsuggest’18 N.~ 6 in three dimensions. Therefore smooth
theoretical and experimental sides. extrapolationof the scenario around=4 to d=3 would in-
The Landau-Ginzburg-WilsolLGW) theory with 02)  dicate that a new )®O(N) universality class does not
® O(N) symmetry that is expected to describe these systemgxist for the physically interesting cashis2 and 3. On the

is given by other hand, six-loop calculations in the framework of the 3D
. L MZM scheme provide rather robust evidence for the exis-

— | qdd = 2 27, ©~ 2\2 tence of a new stable FP fof=2 andN=3 with attraction

Tiow= f d X{ 2% [(Gu”+ 1]+ 4!u0<2a d)a) domain in the regiom,>0.1%20This FP was found only in

1 the analysis of high-order series, starting at four loops, while
= N2 4242 earlier lower-order calculations up to three lobpdid not
" 4|U°§ [(ba- o) ¢a¢b]}’ (4.1 find it. According to renormalization-groufRG) theory, the
stable FP of the @) ® O(N) theory should describe the criti-
where¢, (a=1,2) areN-component vectors. The symmetry- cal behavior of 3D systems undergoing continuous transi-
breaking patterhO(2) ® O(N) — O(2) ® O(N-2) is obtained tions characterized by the symmetry-breaking patte() O
by requiringvy>0. Negative values aof, lead to a different ® O(N)— O(2) ® O(N-2). The main problem of the calcula-
symmetry-breaking pattern: the ground-state configurationsions within the MZM scheme is the fact that, fd=2 and 3,
have a ferromagnetic or antiferromagnetic order and correthe O(2) ® O(N) FP is found in a region of quartic couplings
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in which the perturbative expansions are not Borel sumsmall latent heat. Moreover, first-order transitions have been
mable. Therefore, a Borel transformation only provides arobserved in MC investigatioAs3* of modified lattice spin
asymptotic expansion, and convergence is not guaranteed, sistems whose transitions are characterized by the same
variance with the case of (@) theories in which the Borel symmetry-breaking pattern. Therefore, MC simulations of
summability of the corresponding MZM expansion providesthe models considered up to now do not support the exis-
a solid theoretical basis for the resummation methods. In thtence of an @) ® O(2) universality class. On the other
case of the @) ® O(N) theory, the reliability of the results hand, MC simulations of Heisenberg STA models, corre-
concerning the new stable FP is essentially verifigubste- ~ sponding toN=3, give results that are substantially consis-
riori from their stability with respect to the perturbative or- tent with a continuous transition, see, e.g., Ref. 36. _
der. The MZM expansions have also been analyzed by using e would like to stress that the existence of a universality
the pseudas expansion methof:2! No stable FP is found €lass is not contradicted by the observation of first-order
for N=2 and 3, but this is not unexpected since this resumiransitions in some systems sharing the same symmetry-
mation method can only find FPs that are already present &€aking pattern. The universality class determines the criti-
one loop, similarly to thee expansion. We finally mention €&l behavior only if the system undergoes a continuous tran-
that perturbative studies of the corresponding nonlinear Sition. Instead, first-order transitions are expected for

models near two dimensions have been reported in Refs. 28¥Stems that are outside the attraction domain of the stable
and 23. FP. This is evident in mean-field calculations and also within

We mention that there are other physically interestingth® FT approach, in which some RG trajectories do not flow
cases in which low-ordee-expansion calculations fail to towards the_stable FP but run away to infinity. Therefore_, the
provide the correct physical picture: for example, theabove-r_nenno_ned MC results f_or thxey STA_modeIs are still
Ginzburg-Landau model of superconductors, in which acompatible with the hypothesis of the existence of a)O
complex scalar field couples to a gauge field. Although® O(2) universality classXY STA models may be simply
e-expansion calculations do not find a stable?ff)us pre- outside the attraction domain of the stable FP.
dicting first-order transitions, it is now well establishesge, In this paper, we further investigate the existence of the
e.g., Refs. 25 and 26that 3D systems described by the O(2) ® O(N) universality class foXY (N=2) and Heisenberg
Ginzburg-Landau model can also undergo a continuou$N=3) systems. First, we consider an alternative 3D pertur-
transition—this implies the presence of a stable FP in the 3@bative approach, the so-called minimal-subtractidviS)
Ginzburg-Landau theory—in agreement with experiméhts. scheme without expansior?/~3 for which five-loop series

The O2) ® O(N) theory has also been studied by exploit- have been recently computed in Ref. 17. This scheme is
ing an alternative FT method based on the analysis of the R@Gitrictly related to the: expansion, but, unlike it, ne expan-
flow of the so-called effective average actfén®!°This ap-  sion is performed and is set to the physical value=1,
proach does not rely on a perturbative expansion around thgroviding a 3D scheme. It works within the massless critical
Gaussian FP and it is therefore intrinsically nonperturbativetheory, thus providing a nontrivial check of the results ob-
However, the practical implementation requires approximatained within the MZM scheme, which is defined in the mas-
tions and truncations of the average effective action. For thisive disordered phase. The analysis of the corresponding
purpose, a derivative expansion of the effective average adive-loop expansions shows the existence of a(2)O
tion is usually performed. The studies of thé2pg O(N) ®O(N) FP forN=2 and 3, confirming the conclusions of the
theory reported in the literatuf&31°based on the zeroth- analysis of the six-loop expansions within the MZM scheme.
and first-order approximations, do not find evidence of stablé€Concerning the critical exponents, the analysis of the five-
0O(2) @ O(N) FPs forN=2 and 3, in contradiction with the loop MS series givesyr=0.656) and »=0.094) for N=2,
perturbative MZM results. This would imply that phase tran-and»=0.635) and =0.083) for N=3. These results should
sitions characterized by the symmetry-breaking patteribe compared with the estimates obtained from the six-loop
0(2) ® O(N) — O(2) ® O(N-2) with N=2 or 3 are always of MZM series, which are/=0.5713) and »=0.091) for N=2,
first order. and »=0.553) and »=0.1011) for N=3. It is important to

The issue concerning the existence of2» O(N) uni-  note that, although the availabMS series have one order
versality classes is most important to understand the physidess, the corresponding results are expected to be more reli-
of STA's and of magnets with helical order, because the abable than the MZM ones, because thkS FPs are at the
sence of stable @) ® O(N) FPs implies that none of them boundary of the region in which the expansions are Borel
can undergo a continuous transition. On the experimentaummable, and not outside it as in the MZM case. We finally
side, experimentg have apparently observed continuousmention that theM'S scheme without expansion allows us
transitions belonging to the @) ® O(N) universality class. to obtain fixed-dimension results at any dimensbrThus,
However, as discussed in Ref. 5, experimental results are ngte are able to recover the results of taexpansion suffi-
consistent—STA's and helimagnets show a critical behaviorciently close to four dimensions and to obtain a full picture
with apparently different exponents—and, in some cases, dof the fate of the different FPs abvaries from four to three
not satisfy general exponent inequalities, for instance dimensions.
<2vand B=v. We also address numerically the question of identifying a

The most recent Monte CarlMC) simulations of the 3D lattice model with symmetry @) ® O(2) and with the
antiferromagneticXY Hamiltonian on a stacked triangular expected symmetry-breaking pattern that shows a continuous
lattice have observed a first-order transifoR* with very  transition. This would conclusively show that the(2D
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® O(2) universality class really exists. For this purpose, weof the correlation function®. In the standarde-expansion

consider the following lattice model: schemé* the FPs, i.e., the common zeros of {éunctions,
. are determined perturbatively as expansions in poweks of
H == B2 (P Pxpt U Uha) + 2 (@F+ ) while exponents are obtained by expanding the correspond-
X x ing RG functions, i.e.n,; (see Appendix A computed at
2_1)2 2 _1\2 2,2 the FP in powers oé. TheMS scheme withou¢ expansiof®
+ A4§X: [(e= D7+ (5 - DT+ ZAZZEX: et is strictly related. The RG functions, , and 7, are theMS

functions. However,e is no longer considered as a small
1.2 quantity but it is set to its physical value, i.e., in three dimen-

where ¢ and ¢ are two-component real variables. The sions one simply setg=1. Then, one determines the FP

Hamiltonian describes two identical two-componentap  Valuesu*, v* from the common zeros of the resummgd

symmetric lattice¢* models coupled by an energy-energy functions. Finally, critical exponents are determined by

term. By an appropriate change of variables, see Sec. IV, orevaluating the resummed RG functiong and 7, at u* and

can show that modgll.2) corresponds to a lattice discreti- v*. Notice that the FP values* and v* are different from

zation of the Hamiltonian(1.1) for N=2 with u,~(A, the FP values of the renormalized quartic couplings of the

+Ay,) andvg~ (Ayo—A,). WhenAy,>A,> 0, the critical be-  MZM ren(_)r_mal_ization scheme, sineeandv indicate differ-

havior at the phase transition should be described byNthe €nt quantities in the two schemes. .

=2 Hamiltonian (1.1) with vo>0. Therefore, a region of _ TheMS RG functions have been computed to five loops

continuous transitions in the quartic parameter space witH) Ref. 17.In Appendix A, we report the series f8=2 and

Ay,>A, would imply the existence of the @) ® O(2) uni- N=3. We also consider the critical exponents assoc[ated with

versality class. In order to investigate this point, we presentn€ chiral degrees of freedom. They can be determined from

MC simulations forA,=1 and several values ok, The the RG dimension of the chiral operator

phase diagram emerging from thg simulatior)s is character- Cora(X) = ¥ g(X) = et(X) bg(X) - (2.1)

ized by a line of first-order transitions extending from large _

values ofA,, down to a tricritical point aAZZ:A;2> A=1, We computed theMS RG function#.(u,v) associated with

where the latent heat vanishes, and, forAl = A,,< A;Z, by the chiral operato€.q to five loops. The series are reported

a line of continuous transitions that should belong to then Appendix A.

0O(2) ® O(2) universality class identified by the perturbative

FT approaches. The possible extension of the first-order tran- B. The resummation

sition line up toA,,=A,, i.e., up to the 4-vector theory, is

apparently incompatible with the theoretically predicted be- Since perturbative expansions are dllvergent, resummation
havior of the latent heat near an(4p tricritical point. methods must be used to obtain meaningful results. Given a

The paper is organized as follows. In Sec. I, we presengene”ci q_uantltyS(u,.v) with perturbative expansioiu,v)
the analysis of the five-looMS expansions, providing evi- —=iCjU'v’, we consider
dence for the existence of a stable FP with attraction domain _ k
in the regionvy>0, in the two- and three-component cases. Sxuxw) = % SdU)X, 22
There, we also show that fat— 4, the results of the ex-
pansion are recovered. In Sec. lll, we discuss the crossovéyhich must be evaluated at=1. The expansion2.2) in
behaviors predicted by the FT approach and their relatiofpowers ofx is resummed by using the conformal-mapping
with those that may be observed in realistic models. In Sednethod®“! that exploits the knowledge of the large-order
IV, we report the results of the MC simulations for the modelbehavior of the coefficients, generically given by
defined by Hamiltoniarn1.2), determining its phase diagram Kib -1
in the region of quartic parametefs,>A,=1. We investi- SdU,p) ~ KL= AU KL +O(k)]. 23
gate the finite-size scalingSS behavior using cubic lat- The quantityA(u,v) is related to the singularitys of the
tices of sizeL <120. In Sec. V, we report some conclusive Borel transform B(t) that is nearest to the origint,
remarks. In Appendix A, we provide some details on the=—1/A(u,v). The series is Borel summable for-0 if B(t)
perturbative expansions in thS scheme. In Appendix B, does not have singularities on the positive real axis, and, in
we discuss some properties of (M) ® O(N)-symmetric  particular, if A(u,v) > 0. Using semiclassical arguments, one
medium-range models. can argue tha? the expansion is Borel summable whesee

Appendix A for the precise definition af andv)

Il. ANALYSIS OF THE FIVE-LOOP u=0,u-3v=0. (2.9

MINIMAL-SUBTRACTION SERIES . .
In this region, we have

A. The minimal-subtraction scheme without e expansion .
A(u,v) = 3 maxu,u—uv/2). (2.5

___The FT approach is based on the Hamiltonjarl). In the
MS scheme, one considers the massless critical theory idnder the additional assumption that the Borel-transform
dimensional regularization and determines the RG functionsingularities lie only in the negative axis, the conformal-
from the divergences appearing in the perturbative expansiomapping methotf turns the original expansion into a con-
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vergent one in the regiof2.4). Outside, the expansion is not 3 =
Borel summable. However, if the condition | —— Zerosof B, B

— = Zerosof B,

u—%v>0 (2.6 VvV

holds, then the Borel-transform singularity closest to the ori- 1
gin is still in the negative axis, and therefore the large-order 1 N=2
behavior is still given by Eq(2.3) with A(u,v) given by Eq. 0 —
(2.5). Thus, by using this value @(u,v) and the conformal-
mapping method, one still takes into account the leading 2+
large-order behavior. One may therefore hope to get ary |
asymptotic expansion with a milder behavior, which may
still provide reliable results. ,
We should mention that thdS series are essentially four- 1 N=3

dimensional, so that they may be affected by renormalons |

that make the expansion non-Borel summable for amaynd 0 0.2 0.4

v, and are not detected by a semiclassical analysis; see, e.g.,

Ref. 42. The same problem should also affect series FIG. 1. Zeros of thes functions in the regiom >0 for N=2 and

of O(N) models. However, the good agreement between thg for a particular approximant, see text. The three colored regions
results obtained from the FT analyd®and those obtained correspond(from below to (1) u—%v>0 (domain in which the

by other methods indicates that renormalon effects are eithgierturbative series are Borel summablé2) u—iv>0 and u
very small or absennote that, as shown in Ref. 43, this may —%v<0 (domain in which the perturbative series are not Borel
occur in some renormalization schemeSor example, the summable but one can take into account the leading large-order
analysis of the five-loop perturbative sefiesgives v behavioy, (3) u—iu<0. The full lines at the @) ® O(N) FP show
=0.6295) for the Ising model and=0.6675) for the XY the final estimatg2.7) with its uncertainty.

?s?i(:szlit ;\'/smc;]bgii in gggd ;?trligmfgéh"r‘l’:;huéze ”;Sith P> 15Will be confirmed by the analysis of ttéS five-loop series.

“0.6301216) (Re. 4 ndv=05302012) (Ref 45 for " 009 0 Mesigate e RC fow n e egion 0 v
the Ising model, and'=0.671 5%27) (Ref. 46 for the XY

i . ’ ) 50 (we refer to these references for detpid/e resum the
universality class. On the basis of th_e_se r(_asults, we W|I_I aSperturbative series by means of the conformal-mapping
sume renormalon effects to be negligible in the analysis 0Enethod and, in order to understand the systematic errors, we
the two-variable series of the(® ® O(N) theory. vary two different parametets and « (see Ref. 50 for defi-
nitions). We also apply this method for those valuesiaind
v for which the series are not Borel summable but still sat-
isfy u—%v >0. As already discussed, the conformal-mapping
method should still provide reasonable estimates since we
The RG flow of the theory is determined by the FPs. Twoare taking into account the leading large-order behavior.
FPs are easily identified: the Gaussian FP, which is always In order to find the zeros of th@ functions, we first
unstable, and the @N) FP located along the axis. The resummed the expansionsBf(u,v) andB,(u,v) defined in
results of Refs. 48 and 49 on the stability of the three-Eq. (A4). More precisely, we considered the functions
dimensional @M)-symmetric FP under generic perturba- Ruvu(u,v,x)zBujv(ux,vx)/xz. For each functiofiR, , we con-
tions can be used to prove that also th@K) FP is unstable sidered several approximants corresponding to different val-
for any N=247 Indeed, the Hamiltonian terni¢,-¢,)>  ues of the resummation parametersindb, see, e.g., Refs.
-¢§¢§, which acts as a perturbation at thé2®) FP, is a 50 ar_1d 19 for detai_ls. In Fig. 1, we shpw the_ Zeros of/ﬁ_1e
particular combination of quartic operators transforming agunctions in the regiom >0. The figure is obtained by using
the spin-0 and spin-4 representations of the@M) group, & single approximant, the one witl,=a,=1, b,=b,=10,
and any spin-4 quartic perturbation is relevdat the M)  but others give qualitatively similar results. A common zero
FP for M =3, since its RG dimensiow, 4 is positive forM (u*,v*) with v* >0 is clearly observed an* ~1.1, v*

=3. In particular,y, ,~0.11 at the ©4) FP andy, ,~0.27 ~~2.3 forN=2, and au* ~0.9,v* ~1.7 for N=3. In order
at the 06) FP* Note that these values are rather small [0 give an estimate of the FP, we considered resummations of

By(u,v) and B,(u,v) with parametersy,, b, «,, andb,,

C. Three-dimensional analysis of the five-loop series
for N=2, 3

especially in the @) case. Theu axis plays the role of a S :
separatrix and thus the RG flow correspondingdo-0 can- ~ 2SSuming integer values in the range<é,,<3 and 4
not cross theu axis. Therefore, since models with the =Pu,=16. Most combinations, approximately 90% fisr

symmetry-breaking pattern (@) ® O(N)— O(2) ® O(N-2) =2 and 97% forN=3, havc_a a common zero in the region
havev,> 0, the relevant FPs lie in the region>0. v>0 (these percentages increase if we only consider ap-

: e i ts withey,= , andb,=b,, becoming approximately
The analyses of the six-loop series in the MZM schemgroximan > u v u” v
reported in Refs. 19 and 20 provided rather robust evidencgél(y"ltforN_Zf_an(lj 99:/0 f(ch_at;)t. \_N_e take the average of the
for the presence of a stable FP with attraction domain in th&ESU'tS as a final esimate, obtaining
regionvy>0 for N=2 andN=3. In the following, this result u* =1.10(13), v * =2.30(21) for N=2,

174439-4



CRITICAL BEHAVIOR OF O(2) ® O(N) SYMMETRIC MODELS PHYSICAL REVIEW B70, 174439(2004

u* =0.90(8), v* =1.72(15) for N=3. 2.7 2

The errors are related to the variation of the results with , |
respect to changes of the resummation parameigts,, «,, v
andb, in the considered range of values, and correspond tc
one standard deviation. As a check, we also tried a different | e
method. We determined optimal values@findb by mini- e =T=
mizing the difference between the results of the four- and R
five-loop resummations of the functioflg , (independently N3
close to the @) ® O(N) FP. The results are consistent with ' ‘
those reported in Eq(2.7). Notice that in the cas&=3,
sincev*/u* =1.9, the FP is substantially within the region 14
in which the perturbative expansions should be Borel sum- ‘
mable, while forN=2, sincev*/u* =2.1, the FP is slightly
above its boundary/u=2. Therefore, Borel resummations
are expected to be effective. In this respect, M scheme
seems to behave better than the MZM scheme, in which the
FPs are in the non-Borel summable regi®ajthough still in
the region in which the conformal-mapping resummation
method should be able to take into account the leading large-
order behavior. The analysis of the stability matrix showsRef. 52 for the relevant definitions. In Fig. 2, we show the
that the FP is stable, i.e., its eigenvalues have a positive reRG flow in the quartic-coupling, v plane corresponding to
part. Most approximants give complex eigenvalues, supportdifferent values of the ratle vo/ Ug for ve>0. All trajecto—
ing the hypothesis that the FP is a focus, as discussed in Refes corresponding to< 3 > belong to the reg|ou——v =0, in
20. We obtain w=1.05)%i0.85) for N=2 and «  which the resummation should be reliable, and appear to be
=0.94)+i0.7(3) for N=3, in rough agreement with the attracted by the stable FP.
MZM scheme resultd®® We finally mention that consistent
results are obtained by resumming the series using the Padé-
Borel technique, which does not exploit the knowledge of o
the large-order behavior of the series. The fixed-dimensionMS scheme allows us to obtain

Critical exponents are obtained by evaluating the RGixed-dimension results for any dimensidn Since in three
functions 7, and 7, or appropriate combinations at the FP. dimensions and foN=2, 3 this scheme provides results that
We found are substantially different from those of the strictly related

expansion, it is interesting to compare the two perturbative
v=0652+4), n=0.092+2), mepthods for generic valuegs dfandﬁ P
Using the five-loop series of tH&S B functions, we in-

N2

0

0

FIG. 2. The RG flow in the quartic-coupling plane f8~2, 3 in
the MS scheme fod=3.

D. Results for generic values oN and dimensiond

y=1243+8), ¢.=1.426+10 (2.8 \estigate the presence of FPs in the regishu0< 4u, where
for N=2, and resummations seem to be under control, for gengaadN.
B B In anyd, or e=4-d, and for sufficiently large values &,
v=0.631+4), »n=0.082+1), we find a stable @) ® O(N) FP. If we decreash at fixede,
for e smaller than a critical value. ., we find a value
vy=1.201+7), $.=1.352+7) 2.9 Nc(e) such that, forN=N.(e), the stable FP disappears. In

for N=3. The errors are reported as the sum of two termsfig. 3, we plot the results for the inverse quanttyN) =4
related, respectively, to the dependencé@mda and to the ~ —dc(N), whered,(N) represents the dimension below which
uncertainty of the FP coordinates. For comparison, we repoene finds a stable FP in the region>0 at fixedN. This
the corresponding results obtained from the analysis of thguantity may be estimated by averaging the values of the
six-loop series in the MZM schem&3! »=0.573),  largest dimension (smallest value o) for which each pair
=0.091), and ¢.=1.434) for N=2, and »=0.553), of approximants of thg functions(we use the same set as in
=0.101), and ¢,=1.274) for N=3. We note that theviS the three-dimensional analysis reported in Sec.)lh@s a
estimates ofv and y are larger than those obtained in the Stable @2)® O(N) FP. The reported error corresponds to one
MZM scheme, but still substantially compatible with them Standard deviation. Unfortunately, forN =<5 the stable FP
taking into account their relatively large errors. We stresgnoves outside the regicun— 4v>0 in which we are able to
again that this comparison represents a nontrivial consistendggsum reliably the perturbative seri¢i§ this condition is
check since the two schemes are quite different: in the MzMsatisfied we can take into account the leading large-order
scheme, one works in the massive high-temperature phase¢havioy. Therefore, forN<4 we are unable to compute
while in the MS scheme one considers the massless criticaé:(N). In this case, we can compute a conservative upper
theory. bound by finding the smallest value efsuch that at least
Finally, we computed the RG flow, in order to determine 95% of the approximants still present a stable FP in the re-
the attraction domain of the stable FP. We refer the reader tgion 0<v <4u. The bounds corresponding k=2, 3, and 4
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find clear evidence of stable FPs fo=s™N =7, which would
\ imply that e; ma=1. This conclusion was also in contrast
with the MC results of Ref. 53, which apparently found a
continuous transition foN=6. On the basis of the present
¥ analysis, we are now inclined to believe that this may be
only a resummation problem, in some sense connected to the
N fact that in the extended spa@,d), N=6 andd=3 is close
0.4 N
e to the lined=d.(N). L
02 N Although in the three-dimensiondS calculationN=6
) ~ does not represent a special point for the existence of the FP,
N such a value still plays a special role. th=3, the FP is
topologically different for small and large values Mfsince
N the stability eigenvalues are real for larfe while for N
=2 and 3 they are complex. Therefore, there should be a
__FIG. 3. Results fore(N) as obtained from the fixed-dimension value Ng, that separates the two behaviors. We find that
MS analysis and from the expansion(dashed ling The thick  Ng,~6.
segments aN=2, 3, 4 represent conservative upper bounds on For large values ofi, the stability eigenvalues are real. As
&(N). N decreases, the difference betwegnand w, decreases and
for N=Ngq we havew;=w,. Then, forN <N, the eigenval-
are represented by thick segments in Fig. 3. There, we als¢es become complex and the FP is a focus. As can be seen
compare these results with the curve obtained by resumminiom the results reported in Table No,=~6. In this case,
the O(e*) expansiof’ of N (e) [we actually report the curve =~50% of the approximants give real estimates &grand
obtained by resumming N.(e)]. A nice agreement is ob- @, while =50% give complex estimates with a small imagi-
served for sufficiently large values df, down toN~=8. For ~ nary part. In all cases, the real part satisfies<OR3aw; <0.8.
smaller values oN, the fixed-dimensiorMS results differ Beside the stability eigenvalues in Table I, we also report
from the e-expansion curve. In particular, unlike te@xpan-  the critical exponents and the FP coordinates for several val-
sion, the fixed-dimensioMS series provides estimates for ues of N. These results are in agreement with the MZM
e.(2) and &,(3) that are definitely smaller than 1, leading to estimates of Ref. 20. We also note that #& results for
the boundse,(2) <0.7 ande,(3) <0.8. As Fig. 3 shows, the N=6 are in substantial agreemeent with the MC results of
results fore,(N) are nonmonotonic, with a maximum value Ref. 53, ?:0-70(111) and y=1.38336), and with the non-
~0.8 forN=8. Thus, fore< e, naxthere exists another perturbative RG results of Ref. 5~0.707 andy=1.377.

084 —

€c,max
limiting value of N, Ng,(e€), such that folN.,(€) <N<N(e)

no stable FP exists in the regior= 0, while for N<N,(€)

the O2)®O(N) FP is again present. Note that while for
N>N.(e) the stable FP has real stability eigenvalues, for
N<Ng(e) it is a stable focus, i.e., the stability eigenvalues The perturbative analysis presented in Sec. Il as well as
are complex with a positive real part. the analyses in the MZM scheme of Ref. 19 predict the pres-

The MS results are qualitatively consistent with the MZM ence of a stable FP for the physically interesting cases

ones, although the estimate &f., €: max=0.8, apparently =2 andN=3. However, this FP has a quite unusual feature:
contradicts the conclusions of Ref. 19. Indeed, from thethe stability eigenvalues are apparenly complex with a posi-
analysis of the MZM scheme expansions, Ref. 19 did notive real part:®2°In this section, we wish to understand the

IIl. CROSSOVER BEHAVIOR

A. Effective exponents

TABLE |. Results obtained from the analysis of the five-loop series iriﬁeperturbative scheme. No
values ofw; , are reported foN=6: in this case it is not clear whether the eigenvalues of the stability matrix
are complex or real.

N u* v* W ) v b7 7

2 1.1q13) 2.3021) 1.05) +i0.8(5) 0.656) 1.2411) 0.094)

3 0.908) 1.7215) 0.94) +i0.7(3) 0.635) 1.2Q8) 0.083)

4 0.743) 1.298) 0.72) +i0.4(2) 0.644) 1.246) 0.07310)
5 0.633) 1.047) 0.72) +i0.3(2) 0.644) 1.256) 0.06110)
6 0.564) 0.867) 0.664) 1.298) 0.05214)
7 0.515) 0.735) 0.82) 0.52) 0.684) 1.349) 0.04715)
8 0.474) 0.644) 0.82) 0.52) 0705  1.3710)  0.04210)
10 0.414) 0.51(1) 0.92) 0.52) 0.745)  1.4411) 0.0348)
16 0.30014) 0.3348) 0.92) 0.7412) 0.824) 1.628) 0.0254)
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consequences on experimental and numerical determinations 80
of the critical exponents and, in general, of RG-invariant ] -
quantities. g /L,’
The presence of complex stability eigenvalues changes 607 s2i= g:if-g "
the approach to criticality. 10 is a generic critical quantity, {1 ==l |i-|\
we expect close to the critical point vaod mm =L Y
1
O~ C&1 +a& “Rcodw, log £+ b)], (3.1 H :"|
Al
whereé is the correlation length and the stability eigenvalues 20+ VA
are written aswg*iw,. Scaling corrections oscillate and the | A |
approach to the asymptotic behavior is nonmonotonic. ﬂ_,_=_—_j:; i ;1’0(4)
In order to characterize the behavior of critical quantities 0 T — @ .
. " S ) . 0 5 10 15 20 25
outside the critical point, it is useful to introduce effective u
exponents. From the susceptibility and the correlation
length &, one can define the effective exponents FIG. 4. RG flow in the MZM scheme for several valuessaind
In ¢ | N=2. The Q2)®0O(2) FP corresponds tau*=23.91.3), v*
dln dln x =68.712.5 (Ref. 19
Verl(t) == ——, yer() = - ——, e -
ef(t) aint Yerr(t) Jlnt
relation length. In particular, if=r-r_ is the reduced tem-
dln x erature and= 7/u3, we have
Ner(t) =2 = e £ (3.2 P 0

wheret=(T-T,)/T, is the reduced temperature. One can X=F(19). £2F(n9). 39
easily check thatyes=2—7yer/ verr. The effective exponents The functionsF, andF, can be expressed in terms of RG
are not universal and depend on the specific model. Nondunctions—in the present case they are known to six loops—
theless, it is usually assumébut there are notable excep- and can be computed rather accurately, as we shall show
tions; for instance, the 3D Ising model and the correspondindpelow.
scalar ¢* theory behave differently near the critical In Fig. 4, we show the RG trajectories for several values
point4-59 that the qualitative features are similar in all mod- of s with 0<s<1.5° For larger values of, trajectories run in
els belonging to the same universality class. For this reasoihe regionu—%v<0, where we are not able to resum the
in the following we shall compute the effective exponents inperturbative series. Correspondingly, in Fig. 5 we report the
the FT model. We shall present numerical resultsNe2, in -~ behavior of the four-point couplingsandv as a function of
order to be able to compare them with the.MC.: resul;s Qf Sec%_ The corresponding FP valul8$® are u*=23.9(1.3) and
IV. For N=3, effective exponents are qualitatively similar. *=68.7(2.5). Considering firsv (). it is i . b-

We shall consider the MZM scheme since all necessary _ >°: (2.5 -onsidenng |rs_b(§)_, ILis nteresting to o
formulas have already been presented in Ref. 52, althougﬂerve that oscﬂlaﬂogs are significant only fer=1. For
the same analysis could have been done inMiS&escheme smaller values 0§, v(£) increases essentially monotonically
by generalizing to the present case the results of Ref. &7. If with & More peculiar is the behavior ai(é). Indeed, for all
andv are the zero-momentum renormalized couplings nors<Z 'y flattens first at a value around 18 and then suddenly

mqlized SO tha‘uxuolm andvxvol_m at tree IeveF,B_ RG  increases towards the asymptotic value. This is due to the
trajectories are determined by solving the differential equa-

tions 20
A= B w00 @
dn O V40
RPN (33 "
i B,(U(\),v , .
where\ €[0,%), with the initial conditions
u(0)=v(0) =0,
du dv =
awl =L oo =S (3.4 0 1 2 23 4 5
A =0 A [ x=0 Log, &

where s=vy/uy parametrizes the different models. The re-
sults of Ref. 52 allow us to derive general scaling formulas FIG. 5. The four-point couplings andv as a function of for

for the rescaled)?z)(ug andzzguo, where y and £ are,  several values of andN=2. For é—, u andv converge tou*
respectively, the susceptibility and the second-moment cor=23.91.3) andv*=68.7(2.5 (Ref. 19.
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the minimum value ob is 0.49 and it is expected to further
decrease i§ increases. These oscillations show how difficult
is the determination of the critical exponents: extrapolations
may provide completely incorrect estimates. The effective
exponenty.s has a behavior similar to that ofy. On the
other hand . shows an approximately monotonic behavior
without detectable oscillations, although the crossover ef-
fects due to the presence of th¢4DFP [74=0.036%10),

Ref. 61 are clearly visible fos= 3.

B. Crossover behavior in lattice systems

In Sec. Ill A, we computed the FT crossover curves. It is
of course of interest to relate them to the results obtained in

FIG. 6. The ratiov/u of the four-point couplingsi andv as a  lattice models and in experimental systems. Strictly speak-
function of  for several values o andN=2. Asymptotically, the ~ iNg, the mapping cannot go beyond the leading correction
ratio converges to*/ u*=2.9(2) (Ref. 19. term appearing in Eq3.1) (see the discussion in Sec. IV A
of Ref. 52. In some cases, even the leading critical behavior
cannot be reproduced ¢ this happens in the nearest-
neighbor Ising model and in the lattice self-avoiding walk.
However, there are limiting cases in which the FT results
O(4) theory®® ug(4)z17.4. Thus, unless=1, the flow first exa}ctly describe the.lgttice model: this is t.he case of the

. critical crossover limit in weakly coupled lattice models and

feels the presence of the(@ FP, so thau~ug,), and then iy medium-range modef&-%4 Consider, for instance, a
goes towards the @) ® O(2) FP. In Fig. 6, we also show the d-dimensional hypercubic lattice and the lattice discretiza-
ratio v/u. Note that for smalls, such a ratio is very small, tion of the FT Hamiltonian(1.1),
while for s=3 the behavior is nonmonotonic with a pro-

nounced peak. H=- gE IX=Y)D xa @yat > Vg, (3.6
X,y a X

presence of the unstable(4) FP that gives rise to strong
crossover effects, even wherns as large a%. Indeed, the
plateau observed in corresponds to the FP value win the

Finally, we determine the effective exponents. In Fig. 7,
we report the effective exponenig; and 7 as a function
of the rescaled reduced tempera’[ﬁ[eThe exponentyes where the sums ovex andy are extended over all lattice
shows quite large oscillations, especially for snellThey ~ Points,J(x) is a generic short-range coupling, and
are not only due to the complex stability eigenvalues but also
to crossover effects related to the presence of i EP. As V(p)=r> g2+ %(2 @5)2 + ﬁE [(¢a- @b
we already remarked above, for smalthe trajectories are a 4\ 40
close to the @) FP and thusye is close torg,) [the best (3.7)
available estimate isg4=0.7492), Ref. 6. For instance,
for s:% (%) the maximum value of is 0.71(0.67). Fors  1he parameter is irrelevant and can be made equal to £1 by
close to 1, crossover effects are less relevantigpdoes not ~ changing the normalization of the fields.
increase much. However, in this case there is a large down- The first interesting case corresponds to weakly coupled
ward oscillation. The exponent.; decreases below the theories in whichr=>0 andUo, Vo— 0. Let B(Uo, Vo) be the

temperature. Then, consider the lirhit:0, Uy, Vy— 0 keep-

ing fixed s =Vo/U, andi=t/U3“. In this limit,

2 2
)%= oaenl.

—_——

Veff 5 -t - e s ___1'}'\\. X(B!UO!VO)U(Z) - MXF)((aNtISL)a

s P — §(,& UO!VO)UO - MgFg(&i,SL), (38)

whereF,(t,s) andF(t,s) are exactly the FT functions de-
fined in Eq.(3.5). The constantg,, u;, anda can be easily
computed by comparing the perturbative expansi@hne
loop) for the continuum and the lattice model. The additive
mass renormalization—it requires a nonperturbative match-
ing, see Ref. 63—also fixes the first terms of the expansion
of B.(Ug,Vp) in powers ofU, and V,,.

The second interesting case corresponds to medium-range

FIG. 7. Effective exponents as a function of the rescaled remmodels. In this case, we assume that the couplixy de-
duced temperature for several values of andN=2. pends on a parametgr For instance, one may take

0084
T’lf:ff
0044
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(3.9 tice ¢* models coupled by an energy-energy term. Note that
if Ayo=A,, the symmetry is enlarged to(@ and we have the

This specific form is not necessary for the discussion thastandard four-component lattie&* model. By applying the

will be presented below, and indeed one can consider morgansformation

general families of couplings, as discussed in Sec. Il of Ref.

63. The relevant property is thak(x) couples all lattice ¢11:L_‘/’2, ¢12:_‘PZ;_‘/’1,

points for p— o, i.e., that forp— one recovers a mean- 2 V2

field theory. The interaction range is characterizedRoge-

fined by + +
21~ (pz——i/,l, 22 = £ rwz, (4.2)
> 1 EXXZJP(X)

V2 V2
R™= 2d ‘2 ] . (3.10 one can easily see that modél1) corresponds to the Hamil-
X ) tonian (3.6) with nearest-neighbor coupling and potential

1 if x| <p, Hamiltonian/ describes two identical two-component lat-
J,(X) = .
P 0 otherwise.

These models are called medium-range models and admit 5%7) with

interesting scaling limit called critical crossover lirfft.541f Up=12A0n+A,),
B:(R) is the critical temperature as a functionRf(hereU,
andV, are fixed and do not play any role in the lippithen - -
for R—, t=[B(R)- B8]/ B(R)—0 at fixed T=R2d/4-d), Vo= 24z = Ad).
critical quantities show a scaling behavior. For instance, the r=1-2A,. (4.3
susceptibilityy(8,R) and the correlation lengtf( 3,R) scale
as Therefore, model(4.1) is a lattice discretization of the
0(2) ® O(2) Hamiltonian(1.1). According to the FT results
X=XBRR 2D < ¢ ({), presented in Sec. Il continuous transitions in models with
As,»>A, should be controlled by the (@ ® O(2) FP. For
E= &(B,RR 4D ~ f(©). (3.1) A=Ay the symmetry is enlarged to(9 and the transition

is controlled by the @) FP. If A,,<<A,, continuous transi-
The functionsf (f) andf,(f) are directly related to the cross- tions should belong to th¥Y universality class, because the
over functionsF (7,s) andF.(7,s) computed in field theory, O(2) ® O(2) theory has a stablXY FP with attraction do-
cf. Eq.(3.5. Indeed, main in the regiorvy<O0, see, e.g., Ref. 4.

f (0 = uF (aks), _ _
B. Monte Carlo simulations
fg(f) = ,ugFg(aNt, 9), (3.12 We present the results of MC simulations for several val-
ues of the quartic Hamiltonian parameters. WeAgtl and

where u,, ug @, ands are nonuniversal constants that de—vary A,, consideringAy,=3, 11/4, 5/2, 9/4, 2, 5/3, and
pend on the modéf54Therefore, the FT crossover functions 7,5 |t we define ' ' ’ t ’

are expected to describe accurately the crossover behavior

for largeR: in practice, numerical simulations show that, for Vo An-A

p=~3, one already obtains a good agreement. All constants L= U_o - 2A22+A4' (4.4)
appearing in Eq(3.12 can be exactly computed by perform-

ing a one-loop calculation. The relevant formulas are rethey correspond ts =1, 14/15, 6/7, 10/13, 2/3, 1/2, and

ported in Appendix B. 1/3, respectively. Note that foA,,>A,>0, we have
0<g <2.
IV. NUMERICAL RESULTS FROM MONTE CARLO We simulate mode{4.1) by using two different types of
SIMULATIONS local movesi(i) a Metropolis update in whickp, and ¢, are

both varied by adding a random term to each component in
such a way to obtain a 50% acceptan@g;an Q4) updaté®

In order to investigate the existence of thé2D» O(2)  in which ¢, and, are both changed keeping fixed thé4p
universality class by numerical MC simulations, we consid-symmetric part of the Hamiltonian, while the(4)-breaking
ered a simple cubic lattice® and the following Hamiltonian:  term 2A,,—A,)=, @242 is taken into account by performing a
standard Metropolis acceptance té$te acceptance of this

A. The lattice model

H== B2 (@ Peept U hea) + 2 (@F+ 1) move is rather large, varying from approximately 78% for
Xt X A,,=3 to 94% forA,,=7/5). In the simulations, we use a
A 2_ 12+ (42— 12+ 2A 22 mixed algorithm in which we performed an(4) sweep and
4% [~ 1%+ (5~ 17] 22% el a standard Metropolis sweep with probability 1/4 and 3/4,

(4.1) respectively. A rough investigation of the autocorrelation
' times shows that this is an optimal combination. The mixed
where ¢ and ¢ are two-component real variables. The algorithm is substantially fast&for s . =1/3, theautocorre-
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lation time of the magnetic susceptibilifydecreases by ap- unique. The definition used here has the advantage of a fast

proximately a factor of 10than the algorithm in which only convergence to the infinite-volume linfit.

the Metropolis update is used. In our FSS study, we shall consider three RG-invariant
We perform a FSS study using lattices with<i6<120 ratios®

for values of B close toB.. The integrated autocorrelation

time 7, of the magnetic susceptibiligestimated by using the le= &L, (4.12
blocking methodl increases approximately a§ch2 at 3.

with c=~0.2 for A,,=7/5 andc= 0.5 for A,,=5/3,where the C(uE+ pd)?)

time unit is an update of all spin variables. For larger values B, = (2 + u2)? (4.13
of A,,, the transition becomes of first order and the dynamics Fo™ Ky

becomes very slow ds increases. The large autocorrelation - )

time, i.e., the difficulty of the updating algorithm to provide B, = (omy = (g - 1y)°) (4.14

independent configurations, represents the main limitation to
the study of the critical behavior g and for large volumes.
For each value of3 we typically performed runs of a few Note thatBl (By) is equal to (é) at 8=0 and to 1(0) at
million iterations for the smallest values bf and of 20-40 S=«

million iterations for the largest lattice sizes. The total CPU

2 2
<Iu’(p + lu’z//>2

time was approximately 5 CPU years of a single 64-bit

Opteron 2462 Gh2 processor.

C. Definitions and notations

D. First-order transitions: Summary of theoretical results

In the case of a first-order transition, the probability dis-
tributions of the energy and of the magnetization are ex-
pected to show a double peak for large valued oThere-

In order to investigate the phase diagram, it is useful td‘ore as a first indication, one usually looks for a double peak

study the FSS of quantities related to the energy

E= —<H> (4.9
(V=L2is the volumg, such as the specific heat
1
C= (A=), (4.6)
and the energy cumuldit
B-=1 ﬂ (4 7)
-0 3(HA? '
We also define a quantitiyl related to the magnetization,
M = \ul+ uj, (4.9
where
1 1w -
=D ¢y fy=— . 4.9
Vg Pxs Moy V% Uy (4.9
The two-point correlation functios(x) is defined as
G(X) = (@0 @x+ o - (4.10

The corresponding susceptibilifyand second-moment cor-

relation lengthé are given by

xX=> G(x),

1 'G(0) - G(OI)
4Sinz(Qmin 2) G(q)

whereE(q) is the Fourier transform o&(x), q=(qmin,0,0),
and g,i,=27/L. The finite-volume definition of¢ is not

& (4.11)

in the distribution of the energy and of the magnetization.
However, as discussed in the literature, see, e.g., Refs. 69
and 70 and references therein, the observation of a double
peak in the distribution of the energy for a few finite values
of L is not sufficient to conclude that the transition is a first-
order one. For instance, in the two-dimensional Potts model
with g=3 and q=4,""? double-peak distributions are ob-
served for relatively large lattice sizes even if the transition is
known to be continuous. In order to identify definitely a
first-order transition, it is necessary to perform a more care-
ful analysis of the largé- scaling properties of the distribu-
tions or, equivalently, of the specific heat, the energy cumu-
lant, and the Binder cumulants, see, e.g., Refs. 66, 73, and
74.

The difference of the two maximum valués andE_ of
the energy-density distribution gives the latent heat. Alterna-
tive estimates of the latent heat can be obtained from the
lattice-size scaling of the specific he@tand of the energy
cumulantBg. According to the phenomenological the#frpf
first-order transitions based on the two-Gaussian ansatz, for a
lattice of sizel there exists a valug,,,, of B8 whereC has a
maximum,C,,., and

Bmax— B = O(1N),
1 2
Chax=V ZAh +O(1NV) |, (4.15
whereA,, is the (rescalegl latent heat
An=E,-E.. (4.1

Note that, since the temperature paramegias included in

the Hamiltonian(4.1), A, should be identified with the di-
mensionless ratio between the latent heat and the critical
temperature. We recall that in the case of a continuous tran-
sition, one expects
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Bumax— Be = aL™, Crnax ™= bL¥" + c. (4.17 try is continuous; thus, one may wonder if it can be also
applied to the present case. The numerical results that we
will present below in Sec. IV E show that no changes are
needed and that all predictions hold irrespective of the sym-
metry group. This can be understood on the basis of a simple

aérgument. Imagine we introduce a magnetic fieldn the
model. The first-order transition should be robust with re-

Bumin— Be = O(1IV), spect toH, since we expect here the transition to be tempera-
ture driven. In other words, we expect the behavior to be
2 1 1 unchanged ifH is switched on, as long &ad is small. For
Bg min= —{1 —EAZ— éA“} +O(1N), (4.18 H+# 0 we have a discrete system, thus all previous scalings

The energy cumulanBg can also be used to identify first-
order transitions. Indeed, a careful anal§&sishows that
there is a valugB, whereBg has a minimumpBg ,i,, and
which is related to the latent heat. The phenomenologic
theory giveg®

3 apply. If the behavior is continuous iH, all results also
where apply for H=0. Note that, forH #0, B, is expected to be
noncritical, sinceB, vanishes in a system magnetized in a
A= E+‘_E-_ (4.19 specific fixed direction. Thud3, should have no discontinu-
VE,E_ ity at the transition and its derivative g=p. should be

finite, at variance with the behavior Bf, cf. Eq.(4.20. This
fact will also be verified by the MC results that we shall
present in Sec. IV E.

In continuous transitiond =0—there is only one peak in the
energy distribution—and the infinite-volume limit & i,
is trivial: lim_., Bg min=3-.

As discussed in Ref. 73, the distribution of the order pa-
rameter is also expected to show two peak$latand M_, E. The phase diagram forAz>A,=1

M_<M,, with M_—0 as L—= since in the high-  nthjs subsection we investigate the phase diagram of the
temperature phase there is no spontaneous magnetizatiQgtice model(4.1) for Ay,>A,=1 with the purpose of iden-

The phenomenological theory predicts that the Binder patifying the regions in which the model shows a first-order or
rameter can still be used to identify the critical po[thhe 5 second-order phase transition.

analysis shows thgeros{ L1, Lo) = Be~ min(Ly, Lp) ™, where The distributions ofE and M show two peaks for,,

BerosdL1,L2) is the value of at which By(L1)=By(Lo)]. =2 whenL is large enough. FoA,,=3 two peaks are al-

Moreover, it predicts ready observed fot.=16, while for A,,=2 two peaks are
dBl/dB|3=pC” cLd. (4.20 observed only fol. =100, cf. Fig. 8. Thus, the model with

A,=1 has apparently a relatively strong first-order transition

for sufficiently large lattice sizes, whexkis the space di- for A»=3 that gradually weakens a,, is decreased. In
mension. More generally, close f§ the phenomenological order to check that we are really in the presence of a first-

theory predict& 74 order transition, we check the scaling behavior of the differ-
q ent observables fdr — . The predictions folC andBg are
B.(B,L) = f[(B - BIL"]. (4.2 well verified. For instance, in Fig. 9 we sho®/V for A,,

Such a relation is valid only sufficiently close @ since the =3 for several values ot. In agreement with Eqe4.15),
scaling functionf(x) diverges forx=Xpea Wherexpeqcis re-  Cma/ V has a finite limit ad. — . In Fig. 10, we show the
lated to the position of the peak presenBipfor L— . Ref. ~ €nergy cumulanBe for the same value oho,; Be min is dif-

73 indeed shows thaB;(B,L) at fixed L has a maximum ferent from3, confirming the first-order nature of the transi-

B1 maL) at B=BpeadL) < B. With tion. FromBg ., we can determine the latent heat. For each
Lma pea § ¢ » L we determineA , which is obtained fromBg (L) by
Bimax~ L Bpeak™ Bc = Cpl . (4.22  using Eq.(4.18 and neglecting the M corrections. The

Thus, for (B-B,)L¢ close to (Bpeak_,gc)l-d:xpeak:cpv the latent heat is obtained by extrapolatidg assuming 1V
scaling behavio(4.21) breaks dowr{f(x,e.) divergeg and coréeitmnts. ot | val o andL

subleading terms of ordér? must be included. In the region stimateés ol for several values oRg, andL are re-
in which Eq. (4.21) holds, we havedB,/dg~L%[(8 ported in Fig. 11. They show the expected/Idehavior and

o d . o d allow a precise determination of the latent heat in the
teﬁCT)]I; (])fBB yoltj)?:iri]r?inzqiatzrgfa\t/;fncan expresss—fc)L in infinite-volume limit. The results of the extrapolations are
1

reported in Table Il. They are in perfect agreement with those

dB; _ Ld B 4.23 obtained from the maxim_um of the specif[c heat, using Eg.
dg - (B, (4.23 (4.15), and from the position of the peaks in the energy dis-
R tributions.
with a suitable scaling functiof(x). In practice this means We have also performed MC simulations ffé)gzzg and%
that L™dB,/dB converges to a universal function Bf as on lattices of sizeL <120, without observing evidence for
L— oo, first-order transitions. The histograms Bfand M do not

It should be noted that the phenomenological theory hashow any evidence of two peaks and are not significantly
been developed for systems with a discrete symmetry groufroad, as, for instance, the distribution Bffor L=80 and
for instance for the Potts mod&/3In our case, the symme- A;,=2, cf. Fig. 8, which would indicate the onset of two
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T T T . H T T
0'04_—L=80 543-81973 - 2/3 "'t ...........................
— L=100 B=0.81977 & -
— L=120 =0.81979 0.6666 o T, 7
3 .. s
B g et
E ® 57
0.02} - 0.6664 - 3 Eiﬂ E .
EY3e o
oo =24 - ¢ *
| oo =32 {
L=40 S
0.6662 a..a =48 33 4
1 L 1 L 1 | 1 | 1 . 1 | 1 | 1
L 1 L 1 L |
0.0p 5> T BT = 0.847 0848 0.849 0.850 B0.851 0852 0.853 0.854
E
: - : - . -5
80 p-0s1968 T FIG. 10. Energy cumulanBg for Ay=7 and several values
—— L=100 B=0.81970 of L.

— L=120 B=0.81977
sl i width of the energy distribution a8, i.e., A,<0.003.

Let us now discuss the behavior of the variables related to
the magnetization. In particular, we focus on the derivatives
with respect tgB of B; andB,. Predictiong4.22) and(4.23
are well verified by our data with,,=2. We observe the
presence of a peak B, at fixedL that becomes sharper bs
increases and we also verify that far from this peak Eqg.
(4.23 holds. Of course, corrections increase &g de-
creases, as expected. On the other h8gds monotonically
B L ., 4, decreasing withg at fixedL for Ay=% andAy,=2, providing

%00 0.05 0.10 0.15 020 025 no evidence that the transition is of first order for these two
M values ofA,,.
We have repeated the same analysisBer Its behavior

FIG. 8. Histograms of the energy densitgbove and of the  |ooks quite different with respect tB,. First of all, we ob-
magnetizatior(below) for A»,=2 and lattice size& =80, 100, and  serve a monotonic behavior without peaks for all the consid-
120. For each., we report the data for the value gfat which the  gred values of\,,, including the largest ones for which the

two peaks have approximately the same height. These results ha}ff‘eak inB, is rather sharp. Moreover, the data are reasonably
been obtained by reweighting the MC datgBat0.89170, 0.89175, well described by assuming

and 0.81980.
dB,

peaks. In the caseszzzg,g, C and B¢ on lattices of size E =1(By), (4.24

L =120 do not show the behavior predicted by the phenom- _ ) -
enological theory of first-order transitiof$.In particular, ~suggesting thaB, does not have a jump at the transition, as
Be min CONtinuously increases towarésand we can only put €xpected on the basis of the argument presented at the end of

upper bounds om\,. For A22:§, we obtain, for instance, C , | , | ' |

0.02 - -

Ap<0.005. A more stringent bound is suggested by the | SE— ETT— $.
006 T _
I 7 L\ T T T T i T T ! T
A =04
o -0 =32 } EI} ......... "
" .L=36 T [ PO Ll
L=40 : 4 } 0,04 ps wwmmesar o= ® et
0.001 | v--v L=48 B ] o epiiil
EEEE I | .........-l """ . * A22= |
Qi : ? N 002_‘” v o A,=11/4 |
¢ ¥ ' e n A,,=52
i 2 >V
FEY L i e
i st i -1‘ t 8 & | | IA22=2
s Poww . %0000 0.00002 0.00004 0.00006
1. L | L b ¥ L 1 L | L | L 1 1/V
8847 0848 0849 0850 0851 0852 0853 084
B FIG. 11. Values ofA| for Ap=2, 2, 3, &, and 3, as obtained
from Bg min by using Eq.(4.18). The lines represent the infinite-
FIG. 9. Specific heat foAzzzg and several values df. volume extrapolations assuming aVlasymptotic correction.
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TABLE Il. For the model withA,=1 and several values @f,,
we reports,, B, the average energy densky=(E,+E_)/2, A, cf.
Eqg. (4.19, and the latent heal,,. For 8. andE, all reported digits
are exact. 00
Az S Be Ec A Ay A
3 1 0.8733 1.98 0.0608) 0.119812) i
11/4 14/15 0.8627 1.98 0.033®) 0.078324) 005
5/2 6/7 0.8504 1.97 0.0289  0.04718)
9/4 10/13 0.8364 1.96 0.01@2) 0.0235%8)
2 213 0.8198 1.94  0.0043 0.00934) .
5/3 1/2 0.7927 1.92 <0.0015 <0.003 0095
Sec. IV D. Asimilar analysis can also be performedlfdior ~ FIG. 12. Latent heahy, vs A,. The line corresponds to the best
which we have no prediction. Our data are roughly consisfit, A,=0.049A5,-1.52%%°. We also report the estimate &}, with
tent with a behavior of the form the corresponding erroA,,=1.526).
ﬂi 0% (CRALZIN= * [(d=yply.
gp =LY (4.25 E. — E- = a|uy| 28R~ [g— g * [z,

(4.28

In the model, we consideg=A,,, so that we predict that
sufficiently close to the tricritical poind,,

with 3.2=< §=<3.7. It is quite difficult to intepret such a value
of ¢ that could well bed or d+1 depending on the size of the
corrections.

The results forA,, reported in Fig. 12 suggest therefore a A= AO(AZZ—A’;z)a, (4.29

phase diagram characterized by a line of first-order transi- _ i —
tions extending from large values 8, down toA;2 where whered is an exponent defined by the tricritical theory. If we

A, vanishes. In order to compuﬁéz, we should first discuss fit our data for the latent heat with this expression, we obtain

the expected behavior df}, close to the tricritical poimﬂ\;2 A*22: 1.526), Ag=0.0497), #=2.2915), (4.30

(see, e.g., Ref. j6We consider a generic model depending . ) o
on two parameterg andg with a tricritical point atg*, g, ~ With a x° per degree of freedonDOF) of 0.24. The fit is
= B.(g*). The critical behavior can be parametrized in termsStable W|t_h respect to the_numbe_r of points that are _mtiluded:
of two linear scaling fields, andu, with RG dimensiong, T the point with Ay,=3 is not included, we obtair,,
andy,, satisfyingy;>Y,. In the absence of any symmetry, =1.5012) and #=2.3536), in fu!l agre_ement with the_rc_e_sult
the linear scaling fields are combinations(gf-g*) and of rgported abovg. We havg also investigated the pQ§S|b|I|ty that
(B-.). The scaling fieldl, is completely defined, while, ~ A22=A4+=1, which would imply the absence of critical tran-
can be arbitrarily chosen as long as it is independent, of sitions in the @2) ® O(2) universality class. A fit of fche data
Therefore. we write for the latent heat of the form\,=Aq(A,—1)? gives 6
' =3.494) with x*/DOF=9. If the point withA,,=3 is not
u;=ay(B- ,3;) +ay(g-g*), included, we obtairg=3.874) (x*/DOF=11), while if the
two points with largestA,, are discarded, we obtai@
U=g-g*. (4.26 =4.003) (x*/DOF=9). These fits are signific_antly worse
than that presented above. Moreover, the estimate difes

The first-order transition line is characterized by the equatio'0t agree with the theoretical prediction that can be obtained

uzzclu’l'zlyl with, by a proper choice of the scaling field, @ssuming the tricritical point to be #,=1. Indeed, ifA,,

u, > 0. Analogously, the second-order transition line is given=1. the tricritical theory coincides with the (@ theory.
by u,=c,(sw)¥?Y1, wheres may be either 1 or -1 anft;| There are two relevant perturbations, the thermal perturba-

£|c,|. Note that both lines are tangentug=0, but that the tion with RG dimension 1# and the perturbation that breaks

nonanalytic deviations are parametrized differently. the Q4) symmetry down to @) ® O(2), which is associated

The free energy can be written as in field theory with the spin-4 quartic operator, with RG di-
mensiong/ v. For the @4) universality classe=-0.2476)

F =~ Freg8,9) + [Ug| VY2F ging L(Ug|uy ¥1¥2),  (4.27)  (Ref. 61) and¢=0.081) (Ref. 48. Since¢<1 in this case,

we havey,=1/v andy,=¢/ v, so that we should ha{é
whereFgjng + (Fsing ) applies to the case,>0 (u,<0), and (1-a)lb 1642
Fred8,0) is a regular function. By hypothesis, assuming An~ (Az—1) ~ (A= D™, (4.31)
¢;>0 without loss of generalityFg;ng «(X) is continuous but  which is not compatible with the MC results. Thus, our re-
has a discontinuous derivative at the first-order transitiorsults are incompatible with,,=1, unless the limiting behav-
line, i.e., forx=c¥Y2, It follows ior sets in for even smaller values &f. This seems unlikely,
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: . a, . 111 L (yve
27 e ﬁc_ﬁcx__(A22_A22)+_|:_(A22_A22):| )
a | Cy

Vg | (4.32
5 while, along the second-order transition line, we have simi-
. larly
7

*

ay Lo 1)1 .Y
Be=Bc=~— a_l(Azz Ay + 5‘1 C_Z(Azz_ Ay .

(4.33

1
1
075F 1k .
o
1
|

- T L ! , , ! Equations(4.32 and (4.33 strictly hold only if y;/y,<2,
0 ! 2 otherwise one should also include additional integer powers
22 "4 (A22—A;2)”, n<y/y,, with coefficients that are identical for
the first-order and second-order transition line.
The linear dependence g8, on Ay, for Ap=A,, is

FIG. 13. The inverse critical temperatysg vs A,,. The vertical

lines indicate the estimate ohy, with its error. The data for clearly observed in Fig. 13. A linear fit of the three points
A22>A22'1'5.12). are d'gd'cated by circles, while tT]e Onﬁs f(;]r that are closest t@\,, and satisfyA,,>A,, gives a,/a; ~
Aoy Ay, are indicated by a square. Errors are much smaller than , g iy 5 reasonablg. Note that the deviations from a
the size of the symbols. The dashed line shows the linear fit of th%tr;ai ht line are ver smaill indicating that the corrections
three data for,,> A, that are closest té,.. g . y o 9 . . i
and in particular the nonanalytic ones, are tiny. Figure 13
also shows the value o, for A,,=7/5<A,,, i.e., B
=0.766 1%15), which will be determined in the next subsec-
tion, and for the @) ¢* model obtained by setting,,
=A,=1, which is given by8,=0.71541).”® Both values, and
in particular the one foA,,=7/5, differ significantly from
the linear extrapolation of the data 85,> A,,. This behav-

ior of B; as a function ofA,, is naturally explained by the

since for A,,<3 we are already in a region in which,

< 1. Thus, our simulations provide nice evidence in favor of
the existence of a tricritical point a&;2>1 separating the
first-order transition line from a continuous transition line for
1<A,<A,, Notice that a phase transition is always ex-
pected due to the qualitative difference of the minimum Ofpresence of a tricritical point aq\;2:1.52(6), and is more

the free energy in the.h|gr.1- and Iow-tempesrature regIoNS. - avidence of the fact that the poiR,=7/5 belongs to the
The estimatg(4.30 implies that, forAy,=3, one should second-order transition region. Indeed, in this scenario the
observe a first-order transition. As we have already Q'S_honanalytic corrections are differefit,| # |c;|) from those
cussed, our data do not show any evidence for that. This ighserved in the first-order transition region. Thus, the ob-
hardly surprising, since the fit of the estimatesigfpredicts  served value fol,,=7/5 can beexplained by the presence
A,=0.86) x 1073 for Agf%, which is smaller than the of nonanalytic corrections to the linear behavior that are sub-
bound A, <3Xx 1072 obtained on latticed <100. A poste- stantially larger(|c,| <|c,|) than those observed on the side
riori, however, one can convince oneself of the first-orderof the first-order transition line. The data shown in Fig. 13
nature of the transition by considering the estimated valuesan hardly be explained by assumifg=1, i.e., a first-order
of ». For instance, the derivative of the Binder param@&gr transition line extending down to the(® point A,,=A,=1.
with respect toB is expected to scale at the critical point as Indeed, in this case the linear behavior should extend down
B; ~ L for a first-order transition. In our analyses of the datato the G4) point, but this is clearly contradicted by the val-
with A,,=2, we find that, if one estimatéd; with Bj~L?  ues of 3. obtained forA,,=7/5 andA,,=1. Note also that
the effectived rapidly increases towardsas the considered the same RG arguments leading to E@s26), (4.27), and
set of sizes increases, even when a double peak in the dist(4.33 tell us that the values g8, along the continuous tran-
butions is not yet evident. Fakzz:g, if we use the data with  sition line must approach linearly thg4) point A,,=A,, but
L =60 we obtain 1#=0.472), while including only the data with a slope different from the one observed at the tricritical
with L=80 gives 19=0.424): the exponen® is increasing  point A,,=1.562).
towards the expected valu=d=3. At a second-order tran-  In conclusion, we have shown that, in the quartic param-
sition, one expect®] ~ L', and thus the previous results eter space with,,>A,, there is a region in which the tran-
would give a quite small value far, definitely incompatible sition is continuous and therefore belongs to th€2)O
with the FT predictions. Therefore, even if we do not have® O(2) universality class controlled by the(® ® O(2) FP
direct evidence, the data f@rzzzg are better explained by a found in the FT approach of Sec. II.
very weak first-order transition than by a second-order one. Finally, we should note that, in the FT studies, the basin
The presence of a tricritical point m;2:1.52(6) is fur- of attraction of the @) ® O(2) FP includes all theories with
ther supported by the results f@ reported in Table Il and s<s* and s* =1, while heres =0.41(4). As we have al-
plotted in Fig. 13 versug\,,—A,. Equation(4.26) implies  ready discussed before, in spite of the similar definitign,
that, sufficiently close to the tricritical poim*zz, the values should not be identified witk and we haves, — s only for a
of B; along the first-order transition line behave as weakly coupled theory, i.e., foA;,—0 and A,,— 0. Here,
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A,=1, so that we are far from this limiting case. In any case, ' L
the FT results imply thas_ increases ifA, decreases. The ‘,‘. .
critical valuesi is also expected to increase if longer-range 0.6/ S =
interactions are added. Indeed, as shown in Appendix B, we .
expect 0.7155*L< 1.23 for medium-range models with o - |
A4:1. l | pow d - :
5 le . a-al=20
041 g oo =40
F. Determination of the critical quantities for Azzzé L - = won| =60 |
) ) = s o =
In this section, we analyze the results ﬂb&:%. On the 031~ Sl - :: L=?80 A
basis of the analysis presented in the previous section, in this [ v «-<4L=120
case the transition should be of second order. In the FSS T P P
|Im|t, we expect the foIIowing behavior: 7640  0.7645 0.7650 0.7655 0.7660 0.7665 0.7670
R=fel(B~ BIL™"], (4.3 B 3 sy
_ [ so[ =40 |
X = L2 [(B= B, (4.35 L = a[=60 |
i g -2 Z500
M = Ly [(B~ BL™], (4.39 5 *I=120]
whereR is any RG invariant quantitywe will take R to be 1o v Mo 9 % .
By, By, or I,). These scaling forms are valid f@— g, L * P, .t
— at fixed argumentB-B,)LY". From Eq.(4.34 we ob- e ... . 28
tain moreover e e !"i‘"’*g;; ........ o
: *
dR vgr 1/v (O S (N S (N PR R T
a-), ~L fR[(B - BC)L ] (437) 0.7640 0.7645 0.7650 0.7655 0.7660 0.7665 0.7670
Equations(4.35—4.37) can be used to determing, B/v, 012 e NI
andv. It is also possible to avoid the use of the two unknown & T ool =40 ]
quantities, 8. and v. We use Eq.(4.34 to express(B oi0f, @ g mm ||:=gg i
_ v i ; _ G, o 0| =
BJLM" in terms ofR, and rewrite all equations as 3 . x vy =100 -
X~ L2779, (R, (4.38) e L
2 [* : .. -
M = L Bgy o(R) (4.39 e
MR, . 0.06 | -8 *
.
dR S
d_,Bl =~ Lll"gRl,Rz(Rz), (4.40 0.04 = .z

whereR is a RG-invariant quantity.

Let us begin by performing a direct analysis&f B,, and
le. We fit our results corresponding to 20.<120 and
0.755< 8=<0.767(see Fig. 14 by using Eq.(4.349. For this
purpose, we must somehow parametrize the scaling functio
fr(X). We use a simple polynomial expression, writing

p
fr(X) = >, ax". (4.41)
n=0

PHYSICAL REVIEW B70, 174439(2004

| L 1
0.7640  0.7645

L | L | L
0.7650  0.7655

B

| L 1 L |
0.7660  0.7665  0.7670

FIG. 14. Plots ofl;, B;, andB, for Azzzé. The lines are drawn
tﬁ’ guide the eye.

results withL,;,=20 and 40. As far as the estimatesuadire

concerned, we observe in all cases a systematic drift. The

The orderp is chosen in the following way. For a given set analyses oB, andl, give first v~0.69-0.71 and then, by

of data we perform a nonlinear fit, increasing each time using only the data withL,=80, one obtainsv

until the x> changes by approximately 1 by going frgmto ~ =~0.66-0.67. On the other hand, fits & give first v

p+1. Of course, one should also worry about scaling correc=0.66 and then, fok,;,=80, »=0.59, although with a large

tions and crossover effects. In order to detect them, we peerror of +0.03. Clearly the data are affected by large scaling

form the fit several times, each time including only the datacorrections and, apparently, even on these relatively large

corresponding to lattice sizéslarger than some value,;,. lattices one is not able to obtain a precise estimate, diut

The corresponding results are reported in Table IlI. only an upper boun@=<0.67. In any case, if we assume that
The quality of the fits ofB; and |, is reasonably good the observed discrepancies give a reasonable estimate of the

(x*/DOF=1), while for B, one should certainly discard the systematic error, the results with,,=80 give
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TABLE lll. Analysis of the RG-invariant quantitieR, R=B,, B,, andl,, by using Eq.(4.34). We report
v, Be, andR* = R(Bc)~

R Linin X2/ DOF v Be R*
B, 20 78/70 0.728)) 0.7662848) 1.11116)
40 63/54 0.71@7) 0.76627811) 1.11219)
60 40/38 0.71(14) 0.76628117) 1.112116)
80 24120 0.66827) 0.76626025) 1.114830)
B, 20 305/69 0.660) 0.7658907) 0.06432)
40 92/54 0.63®) 0.76599210) 0.06044)
60 51/38 0.65QL7) 0.76604415) 0.058Q7)
80 25/21 0.58@3) 0.76603819) 0.058%9)
l¢ 20 117/71 0.68®2) 0.7661533) 0.56926)
40 61/55 0.69Q) 0.7661685) 0.572610)
60 29/37 0.69¢b) 0.7661818) 0.577Q19)
80 9/18 0.67813) 0.76616812) 0.574139)
v=0.637), (4.42 systematic error, an estimate g8f that includes all results is
which includes the estimates froBy, B,, andl, with their Bc=0.766 1%815). (4.43

errors. This is fully compatible with the FT estimates. We finally computer and 8/ v from the analysis of andM.

The results obtained from the analysis can be interpretewe have performed the analyses by using Eés38 and

in terms of a crossover due to th? presence of a nga(by 0 ﬁ4.39. The analyses usinB=1; are well behaved and show
FP. Indeed, the observed behavior rensembles quite close")(tle dependence oh, Ieadigng to the estimates
miny

what is observed in field theory for, say;%. The effective
exponentv is first close to the @) value and then decreases B
towards its asymptotic value. This interpretation is somehow 7=0.04510), - =0.052%10). (4.44
supported by the observed values Bif and I;, where R* _ _ o
=R(B,). They are close to the corresponding4Pones®®  The corresponding scaling plots are reported in Fig. 15. On
|;xo_54775’;:1_09452)_ Only for B, do we observe a rela- the other hand, we observe systematic dev_iations if we use
tively large difference since in the (@ case By=—B; R=B10rB,. The goodness of the fi§?/DOF, is a factor of
=0.091 212). This may explain why the estimates ofrom 10 Iarger. 'ghan for the analysis wiR=I,, and the estimates
B, are those that most differ from the(4) ones. Of course, V@' significantly, between -0.1 and 0.#) and 0.45 and 0.6
one may not exclude that the asymptotic vaIBéandI; are (BIv). ) ) )
close to the @) estimates. The_ results_(4.44) satisfy the scaling relathn[ﬂvzl

As a check, we have also considered the derivativeg of +7 duite precisely. They can be compared with the FT re-
B,, andl; and we have used E@¢4.40. We find that in all sults: 7=0.091) (MZM scheme, Ref. 1pand 5=0.094)
cases the best fismallesty?/DOF) is obtained by taking (MS schemg Although larger, theMS estimate is compat-
R,=R, with results that argnot surprisingly fully compat-  ible within error bars. A discrepancy is observed for the
ible with those obtained in the previous analysis. Fits withMZM result, whose error might have been underestimated
R, # R, are somewhat worse but always show the same paf@fter all, the MZM series are not Borel summabl©f
tern. While for small values o, v varies between 0.64 COUrSe, it is also possible that scaling corrections play an
and 0.70, depending on the choice Rf and R, for L., importantrole, as is the case in the analyseB,0B,, andl,.
=80 the analyses indicate a smaller value, fully compatibldn this case, we expect the MC result to be influenced by the
with the result reported above. presence of the nearby(4 FP. Such an interpretation is

The analyses oBj, B, andl, also provide estimates of Supported by the fact that the estimatets close to the G1)
B.. There is a clear upward trend in the estimates obtainefesult 7=0.036510) (Ref. 61.
from B,, as can be also understood from Fig. 14: the value at Finally, we analyzed the specific heat by using
which the linesB,(8,L) at fixedL cross moves significantly C=LY(R) (4.45
towards higher values oB as L increases. The estimates ' '
obtained fromB, andl, are apparently stable, but not com- which is valid as long as>0. We do not expect this fit to
patible within the tiny statistical errors, indicating that therebe very precise since we are neglecting the analytic contri-
are strong(compared to the statistical errprsrossover ef-  bution that gives rise to corrections of order”, which are
fects, as observed far. If we assume that the discrepancies expected to be sizeable sinags small. All fits have a poor
among the estimates obtained from the analyses of the thrgg. Only the fit withR=I, andL,;,=80 hasy?*/ DOF of order
RG-invariant quantities give a reasonable estimate of thd. Fits usingl, give estimates ofr/ v that decrease sy,

174439-16



CRITICAL BEHAVIOR OF O(2) ® O(N) SYMMETRIC MODELS PHYSICAL REVIEW B70, 174439(2004
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Lo——7 1 — — T T L FIG. 16. Plot ofC/L” vs &/L. Here a/ v=0.16.
s =20 T
+ L=40 P : , ,
= L=60 - values ofL is too small to disentangle the analytic back-
12 o =80 '.I' 7 ground from the singular behavior. This probably means that
| v L=100 e | the error reported in Eq4.46) should not be taken too seri-
m? L=120 o ously and is most likely underestimated.
0.8 "‘.‘ _
’f i V. CONCLUSIONS
04k -" B/v=0.525 - In this paper, we investigated the critical behavior of
. three-dimensional models with symmetry(Zp® O(N) de-
ol om 05 - oF 95 - oe 07 scribed by the FT Hamiltonia¢i.1) in the case,>0, which
E/L corresponds to the symmetry-breaking patter(2)® O(N)

—0(2) ® O(N-2) (the casay<0 has been discussed in de-

FIG. 15. Plots ofy/L2™7 (above and of MLA" (below) vs ¢/L.  tail in Ref. 11).

Here 7=0.045 andB/»=0.525. First, we considered the FT perturbative approach. The
analysis of the five-loop series in tiMS scheme withoug
expansion provides strong evidence for the presence of a
stable FP withv >0 for N=2 andN=3, and therefore for the
B,—they have a very largey?, x?/DOF=14 for existence_ of th_e correspond_ing three—dimensiona(lZ)O
L,..,=80—show a more erratic behavior with,, and give @O(N) unlversallt.y clagses. This result c.onflrms the conclu-
0.14< a/v=0.18. We quote as a final result that obtained bySions of Ref. 19, in which a stable FP wigh>0 was found
usingl, andL ,;,=80: in the three-dimensional MZM scheme. Note that these FT
¢ min . . . .
perturbative analyses disagree with the conclusions of Refs.
5, 30, and 31, in which no FP was found by using a nonper-
turbative RG approach. Moreover, tMS scheme withoug
o _ expansion allowed us to obtain fixed-dimension results at
The error has been chosen such that it includes all estimategy 4. We recovered thes-expansion results sufficiently
with Lp,=80. Using hyperscaling, Eq(4.46 gives v  close to four dimensions and obtained a full picture of the
=0.631), in good agreement with the result reported abovefate of the different FPs abvaries from four to three dimen-
and @=0.102). A scaling plot is reported in Fig. 16. sions.

The very largex?/ DOF of the above-reported analysis is  |n order to confirm the existence of a new universality
probably due to the fact that the analytic contribution to theclass, we have performed a MC study of a lattice discretiza-
specific heat is neglected. We have thus performed a secofiién of Hamiltonian(1.1) for N=2. The purpose is to identify
set of analyses using a parameter region in which the transition is of second order

v with the expect symmetry-breaking pattern (2P O(2)

C=L"(R) +1:(B) (4.47) —0O(2). A detailed analysis of the critical behavior of the

andR=¢/L. As before, we have used polynomials fatx)  model (1.2) for A,=1 and A,,>A, shows the following
and f,(x). Fifth-order polynomials allow us to obtain phase diagram. Fak,,> A,,=1.526), the model has a first-
X?/DOF=1 even forL,,=20. We obtaina/v=-0.106), order transition. Such a transition is easily identified for
0.01(9), and 0.1625) for L,,,=20, 40, and 60, respectively. A,,=3—the energy and the magnetization show two peaks
The results for the largedt,,, are compatible with the esti- already forL =10 with reduced latent he&tE/ T, larger than
mates reported above. However, the very large errors indi©.1. The first-order transition becomes weaker/Ags de-
cate that our data are not precise enough and that our set ofeases, the latent heat vanishing at the tricritical paint

increases, varying between 0.20 and 0.16. Fits uBinghow
the same decreasing trend with 018/»=<0.20. Fits using

£-0163). (4.46)

14
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=A,,. For 1=A,<A,,<A,,, the transition is continuous. Its = »/2 that is expected on the basis of unitafity.Of course,
critical behavior is expected to belong to the three-this could be explained by the presence of a weak first-order
dimensional @2) ® O(2) universality class and therefore to transition. A second possibility is that the experimental sys-
be controlled by the stable FP of the(ZD® O(2) theory tems are in the basin of attrz_;\ction _of the st_ab_le FP, but close
found within the FT methods. We have also performed simul0 the boundary of the stability region. If this is the case, on
lations of the lattice model foAzzzé in order to identify the the basis of the FT crossover analysis, one expects strong

s . - : ... crossover effects; see, for example, the results presented in
critical behavior. All results are definitely compatible with Fig. 7 for s~1. Thus, the exponenig and » that are mea-

the expected behavior at a second-order transition. We ar$ured experimentally may well differ from their asymptotic

however, ungble to provide precise estimates of the Critical1ue. For what concerns helimagnets, their critical behavior
exponents since we observe strong crossover effects, pro 5 somewhat different from that observed in STAs. The ex-

ably due to the presence of the nengIFP. The effective onent is always very close to the @) value, while «
exponents computed in the MC simulation resemble thosgaries between 0.1 and 0.3. These results are strongly remi-
observed in the FT model for sma=vo/uo, €€ Fig. 7. piscent of our MC ones withy,=2. In that case /v was
indicating that crossover effects play an important role inggse to the @) value ande~0.10. Thus, the helimagnetic
these systems and make difficult, both numerically and exeqyits can be explained by the presence of the neatdy O
perimentally, a precise determination of the asymptotic criti-gp that controls the critical behavior flit= 1073,
cal behavior. . , Finally, we would like to conclude with some remarks on
The FT Hamiltonian(1.1) is supposed to describe the ihe experimental relevance of the@® O(3) universality

critical behavior of STAs and ?\f helr:mag_rr_?slnelasnc dﬁiass. Such a critical behavior is expected in some easy-axis
heutron-scattering experiments show that STAS can be MoGs, aierials that have a small uniaxial anisotrégyy instance

eled by three-component spin variablésassociated with in RbNiCl;, VCl, and VBp. However, the reduced-
each site of a stacked triangular lattice and by the Ham"‘temperature region in which @) ® O(3) behavior might be

tonian observed is usually very small, i.e., for102 because
_ 20 & 2N & 2 these systems are expected to crossover to<drcritical
Hsta J”<U%;‘ S(v) S(W)+JL<UEM S() S(W)+D§ S3(0)% behavior for t<10213 Therefore, the asymptotic (@)
Xy z

51 ® O(3) critical behavior can be hardly observed in these ma-
(5.2) terials and significant differences between theoretical predic-

The first sum is over nearest-neighbor pairs within the trianiions and experimental results should not be unexpected. As
gu|ar |aye|’3(xy p|ane$ with an antiferromagnetic Coup”ng argued in Ref. 79, and usually assumed in the Iiterature, the
J,>0; the second one is over orthogonal interlayer nearesP(2) ® O(3) critical behavior should also be experimentally
neighbors. If the uniaxial term is positive, one has an effecrealized in easy-axis STAS, such as CsNi@hd CsNiBg, at
tive two-component theory. Numerically, Hamiltonigh.1)  the multicritical point observed in the presence of an external
has been much studied in the limiting cages +o and D magnetic field along the easy axis, or at the critical concen-
=0. In the first case, the spins are confined to a plane, i.etration of mixtures of easy-axis and easy-plane materials, for
one is effectively considering(Y spins. There is now evi- instance in CsM(Br,l;_,)3.5° We note that the identification
dence thaiXY STAs undergo first-order transitions, at least of the multicritical point with the @) ® O(3) universality
for |3,/J, not too small. Indeed, first-order behavior hasclass is not obvious and should be theoretically analyzed.
been observed fQ]‘L/‘]H:—‘—?; (Ref. 33, J,/J,=-1(Ref. 349,  The critical behavior at the multicritical point in a magnetic
andJ, /J,=-10(Ref. 32. The numerical results indicate that field should be described by the stable FP of the most general
the first-order transition becomes stronger |as/J| in- LGW theory with symmetry @)®[Z,®0(2)].8" In Ref.
creases, and thus we can conclude that all these models ha¥®, only the quadratic terms have been considered and dis-
first-order transitions, at least far, /J, 2;31, It should, how- cussed, but the relevant LGW Hamiltonian has also addi-
ever, be noted that the latent heat is very small. FotJ,  tional quartic terms beside those appearing in the)O
=-2 andJ, /3=-1, AE/T,~7x 1033334 This means that ©®O(3) Hamiltonian. As a consequence, th€2D2 O(3) FP,
small modifications of the lattice model may turn the first- describing a critical behavior with an enlarged2p= O(3)
order transition into a second-order one. In particular, it issymmetry, determines the asymptotic behavior at the multi-
not clear whether, on the basis of these numerical simulaeritical point only if it remains stable with respect to the
tions of theXY STAs, we should expect first-order transi- additional quartic terms breaking (8 ® O(3) to O(2)
tions also for experimental easy-plane systems, which do nab[Z,® O(2)]. The critical behavior at the multicritical point
satisfy the conditioD>J,,|J, |. For instance, in the case of is determined by the stable FP of the RG flow of the com-
CsMnBr; we havé J;~0.0018 meV,J, =0.88 meV, andd  plete LGW theory with symmetry @) ®[7Z,® O(2)]. This
=0.013 meV, while in other compounds such as 8VX issue was recently investigated in Ref. 81 by a FT analysis
=Cl,Br,1) one observésD~J,<J,. O(2)®O(2) critical  based on five-loop calculations within thdS and MZM
behavior is also expected in easy-axis mater{@ls<0) in schemes. Unfortunately, this study was unable to establish
the presence of darge) magnetic field along the easy direc- the stability properties of the @) ® O(3) FP. In any case, it
tion. did not provide evidence for any other stable FP. Thus, on
Experiments on STA's favor a second-order transition, althe basis of these FT results, the transition at the multicritical
though the estimates g8 do not satisfy the inequality3  point is expected to be either continuous and controlled by
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the (2) ® O(3) fixed point or to be of first order. Similar Z4(u,v)=1, Z,(u,v) =u, andZ,(u,v) =v at tree level. Here
arguments can be applied to the multicritical point in mix- Ay is a d-dependent constant given I#y,=29"17921"(d/2).
tures of easy-axis and easy-plane materials, such &doreover, one defines a mass renormalization constant
CsMn(Br,l;-,)3. We believe that the identification of the z(f,g) by requiringZI'®? to be finite when expressed in
multicritical behavior with the @) ® O(3) universality class terms ofu andv. HereI'™? is the one-particle irreducible

is even more questionable in this case, since, beside the ativo-point function with an insertion 0§¢2. The B functions
ditional quartic terms considered above, there are other peare computed from
turbations related to the quenched randomness.

. (A2)

Yovo

» By(uv)=p X

Uo:Yo

au
ﬂu(ua U) = /‘L o
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“O'UO
APPENDIX A: THE FIVE-LOOP SERIES

OF THE MS SCHEME The B functions have a simple dependencedyrindeed

In the MS schem#& one sets Bu=(d=4)u+By(u,v),

(b = [Z¢(U,U)]1/2¢)R, (Al) IBU = (d - 4)1) + BU(U,U), (A4)
_ . where the function8,(u,v) andB,(u,v) are independent of
Uo = AquZy(U,0), d. Also the RG functionsy,, are independent ofl. The
standard critical exponents are relatediig; by
UOZAd/vLEZU(UHU)! —_ * * = * * * * -1
7]—7]¢(U U )! V_[2+7]t(u U )_77¢(u U )] .

where the renormalization functiors,, Z,, andZ, are de- (A5)
termined from the divergent part of the two- and four-point

one-particle irreducible correlation functions computed in di-We report the five-loop seri&sfor the case®N=2 and 3. The
mensional regularization. They are normalized so thateries forN=2 are

By(U,0) = 20 - uv + 202 - 2u® + U - Shuv? + 20° + 6.95758 - 2.9597@°% + 3.490361%? - 1.4508Qw°
+0.0939364% - 33.3119° + 18.9022% — 25.33121%? + 14.58441%° — 3.31596* + 0.260717° + 197.421°
- 140.525°% + 211.453*? — 152.781°%° + 56.2903%* — 10.879Qw°> + 0.767937°,

B,(U,v) = 2uv — 502 - iy + Zup? - 2% + 10.0721% - 8.381861%02 + 2.7323%w° - 0.272799* - 53.14661%
+56.7468°%0° — 29.2643°°% + 7.15431v* — 0.598922° + 341.4141% — 444.234/%° + 311.112°%°
- 120.254i%* + 22.457%1° — 1.52571,,

76(U,0) = 1502 = 35U + 2507 — 3503 + 35020 — 5o5U0? + 0 + 0.11284T - 0.0752316% + 0.0998264%2 - 0.0419560°
+0.00126592* - 0.41016”° + 0.3418% — 0.46648T%? + 0.27178T%> - 0.0630416v* + 0.00479535°,

(U,0) = — U+ g0+ U7 — Fuv + 302 — U+ 2P — 1o Uv? + v + 4.13719% - 2.75818°% + 2.95416%0% - 1.185341°
+0.121022% - 18.2814° + 15.234%* — 19.087L%2 + 10.7601L7%° - 2.6959%w* + 0.244579°.

The series foN=3 are

By(u,v) = 212 - Zuv + 0% - U3 + TP — Puv? + v°+ 9.07446" - 6.285141% + 7.35688°%02 - 2.9802%w° + 0.149100*
— 46.7683° + 42.82641* — 56.828@°%2 + 32.0271%° - 6.9224Tw* + 0.503549° + 296.166:° - 338.62°
+506.7081*? - 362.36@1%°3 + 131.029%* — 24.708%1° + 1.71145°,
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B, (u,v) = 2uv — 302 - 20y + Fuv? - 550° + 11.1573°% — 8.36791%2 + 2.439341° - 0.264816" - 62.535T%

+62.5357%2 - 30.81961%° + 7.5950310* — 0.660444° + 422.235°y — 527.7941*2 + 364.748°%°
- 141.636%0* + 25.755%1° - 1.6393%°,

7p(U,0) = U2 = 15U0 + 2307 = T6U% + 153U — 555Uv” + T3ogv° + 0.1658981* - 0.165895° + 0.228588%2 — 0.093557 v
-0.0010850%* - 0.709208° + 0.88651% - 1.19506:°y2 + 0.674671%° — 0.1446460* + 0.00961788°,

m(U,v) == 3u+ 2o + 202 - Tup + Fu? - S0t + PuPu - Juw? + sav®+ 7.00211* - 7.0021 1% + 7.32279%% - 2.7861210°
+0.227593% - 33.6900° + 42.112%% - 51.842&8°%2 + 28.3540%° - 6.77118w* + 0.599424°.

The critical exponents associated with the chiral degrees of freedom can be determined from the RG dimension of the chiral
operatorCeg(X) = de(X) gi(X) — de(X) pai(X). For this purpose, we computed the renormalization funcfign,v) by requir-

ing ZJI'®? to be finite when expressed in termswéndv. HereI'®? s the one-particle irreducible two-point functidi:?

with an insertion of the operatd®., 4. Then, one defines the RG function
dlog Z,

A
dlog u (A6)

77c(U1U) = .
UgWo

The resulting series fok=2 andN=3 cases are, respectively,

7(U,0) = = 2u+ 2u + 5U? - Fuw + 202 - To® + Sty - Buv?+ 224% + 1.51008" - 3.99379% + 3.36615%2

- 1.05138w°3 + 0.0947443% - 6.3293%1° + 19.26541* — 21.2441%02% + 10.7984/%° - 2.47513w* + 0.197296°,
and
7(U,0) = = U+ 30 + 3UP - fuv + 1502 — T + 2U% — S3U0? + 155:0° + 1.934361" — 5.12306°% + 4.249561%2

-1.2605%0° + 0.105233% - 8.73201L° + 26.6393* — 29.198°v? + 14.5119%° — 3.1834Tw* + 0.246754°.

The chiral crossover exponedt can be determined by using property is thatl (x) couples all lattice points fgs—, i.e.,
the RG scaling relation that for p— o one recovers a mean-field theory.
Models like Eq.(B1l) are called medium-range models
Po= 2+ 77U, v ™) = 740U, 0 7)) (A7) and admit an inct]e(rest)ing scaling limit called %he critical
We have computed;(u,v) for generic values of\. Thus, crossover limit. IfR parametrizes the range of the interac-
we have been able to compute the expansionah powers  tions, cf. Eq(3.10, andB.(R) is the critical temperature as a
of e for any N. We have compared the result with the large-function of R, then forR— o, t=[B.(R)-8]/B(R)—0 at

N expression of Ref. 82, finding full agreement. fixedT=R2¥“dt critical quantities show a scaling behavior.
For instance, the susceptibility(8,R) and the correlation
APPENDIX B: MEDIUM-RANGE MODELS length &(8,R) scalé? according to Eq(3.11). The functions

fXG) andfgﬁ) are directly related to the crossover functions
F,(t,s) and Ft,s) computed in field theory, cf. Eq.
(3.12.%384The purpose of this section is the computation of
the nonuniversal constanys,, u:; a, ands. Interestingly
H=- '[_232 Jp(x = V> ‘Pib‘P;bJr 2 Vig), (BY enough, if the rang® is defineé according to Eq3.10),

Y ab X they do not depend on the explicit form of the couplilg),
where <p§§ are M X N matrices,V(¢,) is an QM) ® O(N) but only on the potentiaV/(¢). The dependence a#(x) is
invariant function, and the sums overandy are extended effectively encoded in the variabR
over all lattice points. The coupling,(x) depends on a pa- The calculation can be done by a straightforward gener-
rameterp. For instance, one may take the explicit fogg9),  alization of the results of Ref. 63. Following Sec. 4.1 of Ref.
but this is not necessary for the discussion that will be pre63, we first perform a transformati$if4—we use matrix
sented below. Indeed, one can consider more general familig®tation and drop the subscriptfrom J,(x) to simplify the
of couplings, as discussed in Sec. Il of Ref. 63. The relevannotation—rewriting®

In this Appendix, we consider @dimensional theory on
a hypercubic lattice with general Hamiltonian
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dNM¢)

B _ vz [ 9P
exp( 2cpJ<p) = (detpJ) (2m)M2

1
><exp<— ngﬂ‘ltb + d)qo) , (B2

where ¢ is an NX M matrix. Then, we define a function

A(¢) by requiring
7M@) = f dNM(Pe‘V(<P)+¢<P, (B3)

wherez is a normalization factor ensuring(0)=0. We need

to compute the small> expansion ofA(¢). For this purpose,

we define the integrals

lon1= J d"Mpe VO (A", (B4)
N M
|2n,2 — f dNM<pe"V(‘P)(<p2)”"2 % 2 Z gDachad(pbc(pbd,
ab cd
(BS)

andf, =1, n/lo 1. Then, a straightforward calculation gives

A(@) = 22+ 2P

— N M
+ %Z[ (E > ¢a°¢ad¢b°¢bd> - (W] +0(¢),

ab cd
(B6)
where
_ 1

a1 = mfz,l, (B7)

— 3(fa1t+2f4)
f2 , B8
4.1 ~MN(M +2)(N+2) N2|\/|2 2.1 (B8)
R _ (MN+2)f4yz_(M +N+1)f4’1 (Bg)

B42T O UNM - DHIN= )M + 2)(N+2)”

The expansion of\(¢) is all we need to compute the critical

crossover limit. Indeed, it is possible to show thatorrela-
tions are directly related tg correlations’® For instance,

(¢x (Py> == E(J E (‘] 1)xw 1)yz<¢w b2

(B10)

PHYSICAL REVIEW B70, 174439(2004

1 1 ay
H :f d’ Eaz,lRZE (9,¢)%+ Eaz,ltfﬁz‘ %1(9252)2

[(ZE&%M&%M)—(#)} , (B11)

4' ab cd

with a proper mass renormalization that is discussed in detail
in Ref. 63. This identification gives necessary conditions in
order to observe a second-ordeMD ® O(N) transition. The
bare parameters should belong to the stability region, which
implies a; ;<0 and§4,1—§54]2< 0, and should be in the at-
traction domain of the QVI) ® O(N) FP (assuming it exisis
which implies(at leas} a; ,<O0.

The above-reported results allow us to compute the non-
universal constants appearing in £8.12).86 We obtain

—5

B
Iy =85 uf = =2, (B12)
1
—
a1
a==-, (B13)
1
5= 242 (B14)
g1

In Sec. IV we will be interested in the specific potential7)
for N=M=2. In this case

o 1
lon1 = 772f y”*ldyf dx X exp(— ry - —y
0 0

while I, , can be obtained by taking derivativeslgf; with
respect toVy and Uy. Exact results can be obtained fdg,
Up—0 at fixed 5 =Vy/U,. It is easy to verify thats
~f(s)/Uy—0 if r<0 ands—s_ if r>0, as expected in a
weakly coupled system. We can also compute the nonuniver-
sal constants and, in particula,for the parameter values
used in the MC simulation. For instance, we can consider
two casesi(a) A,,=2, which corresponds to=-1, Uy=36,

and Vo=24 [cf. Eq. (4.3]; (b) Ap=t, i.e, r=—1, U,
=144/5, andV,=48/5. For case(a), we obtain a, =
-0.037 043 8 and, ,=-0.033 648 3, which satisfy the nec-
essary conditions reported above. Correspondingly,
=0.908 337,a=2.514 97,1, =0.609 569, andu,=3.221 22.

For case (b), we obtain a,;=-0.0412887, a,,
=-0.017 552 1,s=0.425 106,a=2.823 53, u,=0.743 715,
and u=3.274 08. It is interesting to note that for the family
of Hamiltonians considered in Sec. IV—those with

Yo X2y2>

(B15)

In the critical crossover limit, the first term on the right-hand A,=1—we always have>s, the differences—s_decreas-
side represents a subleadlng correction and can be neglectéalg ass. — 0. The exact mapping between the lattice model
This equation implies thag,= a5 Ao where we have used and the FT one also allows us to determine boundagffior

the fact thatB[=,J(x)]=1/ay, 1+O(R d),

A,=1. Sinces=1 corresponds té\,,~2.13(s =0.72 and

Moreover, ¢ correlations can be computed by using thes=2 to A»~4.17(s ~1.23, the FT bound £s* <2 im-

following continuum theory:

plies 2.13< A,,<4.17 or, equivalently, 0.72 5 <1.23.
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