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We investigate the controversial issue of the existence of universality classes describing critical phenomena
in three-dimensional systems characterized by a matrix order parameter with symmetry Os2d ^ OsNd and
symmetry-breaking pattern Os2d ^ OsNd→Os2d ^ OsN−2d. Physical realizations of these systems are, for
example, frustrated spin models with noncollinear order. Starting from the field-theoretical Landau-Ginzburg-
Wilson Hamiltonian, we consider the massless critical theory and the minimal-subtraction scheme withoute
expansion. The three-dimensional analysis of the corresponding five-loop series shows the existence of a stable
fixed point forN=2 andN=3, confirming recent field-theoretical results based on a six-loop expansion in the
alternative zero-momentum renormalization scheme defined in the massive disordered phase. In addition, we
report numerical Monte Carlo simulations of a class of three-dimensional Os2d ^ Os2d-symmetric lattice mod-
els. The results provide further support to the existence of the Os2d ^ Os2d universality class predicted by the
field-theoretical analyses.
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I. INTRODUCTION

Several interesting critical transitions are effectively de-
scribed by a matrix order parameter with symmetry Os2d
^ OsNd and symmetry-breaking pattern Os2d ^ OsNd
→Os2d ^ OsN−2d. This is the case, forN=2 or N=3, of
multicomponent frustrated magnetic systems with noncol-
linear order, in which frustration may arise either because of
the special geometry of the lattice or from the competition of
different kinds of interactions. Typical examples of systems
of the first type are stacked triangular antiferromagnets
(STA’s), in which the magnetic ions are located at the sites of
a stacked triangular lattice. Frustration due to the competi-
tion of interactions is realized in helimagnets, in which a
magnetic spiral is formed along a certain direction of the
lattice. The nature of the magnetic transition in these mate-
rials has been the object of several studies, see, e.g., Refs.
1–5 for reviews. In particular, the order of the transition is
still controversial, with several contradictory results both on
theoretical and experimental sides.

The Landau-Ginzburg-Wilson(LGW) theory with Os2d
^ OsNd symmetry that is expected to describe these systems
is given by6

HLGW =E ddxH1

2o
a

fs]mfad2 + rfa
2g +

1

4!
u0So

a

fa
2D2

+
1

4!
v0o

a,b
fsfa · fbd2 − fa

2fb
2gJ , s1.1d

wherefa sa=1,2d areN-component vectors. The symmetry-
breaking pattern7 Os2d ^ OsNd→Os2d ^ OsN−2d is obtained
by requiringv0.0. Negative values ofv0 lead to a different
symmetry-breaking pattern: the ground-state configurations
have a ferromagnetic or antiferromagnetic order and corre-

spond to Os2d ^ OsNd→Z2 ^ OsN−1d. For v0,0 the model
is also of interest; it describes magnets with sinusoidal spin
structures8,6 and, for N=3, the superfluid transition of3He
(Refs. 9–11); see, e.g., Refs. 12, 3, 4, and 13 for other appli-
cations. Here, we will only focus on the casev0.0 and thus
whenever we speak of an Os2d ^ OsNd universality class we
refer to the case in which the symmetry-breaking pattern is
Os2d ^ OsNd→Os2d ^ OsN−2d.

The Os2d ^ OsNd theory (1.1) has been much studied us-
ing field-theoretical (FT) methods. Different perturbative
schemes have been exploited, such as thee;4−d
expansion14 and the three-dimensional(3D) massive zero-
momentum (MZM ) renormalization scheme.15 A detailed
discussion of the scenario emerging from thee expansion is
presented in Ref. 3. Near four dimensions, a stable Os2d
^ OsNd fixed point (FP) with v0.0 is found6,16,17 only for
large values ofN, N.Nc=21.80−23.43e+7.09e2+Ose3d.
Resummations of thee expansion ofNc, known toOse4d,17

suggest17,18 Nc<6 in three dimensions. Therefore, asmooth
extrapolationof the scenario aroundd=4 to d=3 would in-
dicate that a new Os2d ^ OsNd universality class does not
exist for the physically interesting casesN=2 and 3. On the
other hand, six-loop calculations in the framework of the 3D
MZM scheme provide rather robust evidence for the exis-
tence of a new stable FP forN=2 andN=3 with attraction
domain in the regionv0.0.19,20 This FP was found only in
the analysis of high-order series, starting at four loops, while
earlier lower-order calculations up to three loops12 did not
find it. According to renormalization-group(RG) theory, the
stable FP of the Os2d ^ OsNd theory should describe the criti-
cal behavior of 3D systems undergoing continuous transi-
tions characterized by the symmetry-breaking pattern Os2d
^ OsNd→Os2d ^ OsN−2d. The main problem of the calcula-
tions within the MZM scheme is the fact that, forN=2 and 3,
the Os2d ^ OsNd FP is found in a region of quartic couplings
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in which the perturbative expansions are not Borel sum-
mable. Therefore, a Borel transformation only provides an
asymptotic expansion, and convergence is not guaranteed, at
variance with the case of OsNd theories in which the Borel
summability of the corresponding MZM expansion provides
a solid theoretical basis for the resummation methods. In the
case of the Os2d ^ OsNd theory, the reliability of the results
concerning the new stable FP is essentially verifieda poste-
riori from their stability with respect to the perturbative or-
der. The MZM expansions have also been analyzed by using
the pseudo-e expansion method.17,21 No stable FP is found
for N=2 and 3, but this is not unexpected since this resum-
mation method can only find FPs that are already present at
one loop, similarly to thee expansion. We finally mention
that perturbative studies of the corresponding nonlinears
models near two dimensions have been reported in Refs. 22
and 23.

We mention that there are other physically interesting
cases in which low-ordere-expansion calculations fail to
provide the correct physical picture: for example, the
Ginzburg-Landau model of superconductors, in which a
complex scalar field couples to a gauge field. Although
e-expansion calculations do not find a stable FP,24 thus pre-
dicting first-order transitions, it is now well established(see,
e.g., Refs. 25 and 26) that 3D systems described by the
Ginzburg-Landau model can also undergo a continuous
transition—this implies the presence of a stable FP in the 3D
Ginzburg-Landau theory—in agreement with experiments.27

The Os2d ^ OsNd theory has also been studied by exploit-
ing an alternative FT method based on the analysis of the RG
flow of the so-called effective average action.28–31,5This ap-
proach does not rely on a perturbative expansion around the
Gaussian FP and it is therefore intrinsically nonperturbative.
However, the practical implementation requires approxima-
tions and truncations of the average effective action. For this
purpose, a derivative expansion of the effective average ac-
tion is usually performed. The studies of the Os2d ^ OsNd
theory reported in the literature,29–31,5 based on the zeroth-
and first-order approximations, do not find evidence of stable
Os2d ^ OsNd FPs forN=2 and 3, in contradiction with the
perturbative MZM results. This would imply that phase tran-
sitions characterized by the symmetry-breaking pattern
Os2d ^ OsNd→Os2d ^ OsN−2d with N=2 or 3 are always of
first order.

The issue concerning the existence of Os2d ^ OsNd uni-
versality classes is most important to understand the physics
of STA’s and of magnets with helical order, because the ab-
sence of stable Os2d ^ OsNd FPs implies that none of them
can undergo a continuous transition. On the experimental
side, experiments1,2 have apparently observed continuous
transitions belonging to the Os2d ^ OsNd universality class.
However, as discussed in Ref. 5, experimental results are not
consistent—STA’s and helimagnets show a critical behavior
with apparently different exponents—and, in some cases, do
not satisfy general exponent inequalities, for instanceg
ø2n and 2bùn.

The most recent Monte Carlo(MC) simulations of the
antiferromagneticXY Hamiltonian on a stacked triangular
lattice have observed a first-order transition32–34 with very

small latent heat. Moreover, first-order transitions have been
observed in MC investigations35,34 of modified lattice spin
systems whose transitions are characterized by the same
symmetry-breaking pattern. Therefore, MC simulations of
the models considered up to now do not support the exis-
tence of an Os2d ^ Os2d universality class. On the other
hand, MC simulations of Heisenberg STA models, corre-
sponding toN=3, give results that are substantially consis-
tent with a continuous transition, see, e.g., Ref. 36.

We would like to stress that the existence of a universality
class is not contradicted by the observation of first-order
transitions in some systems sharing the same symmetry-
breaking pattern. The universality class determines the criti-
cal behavior only if the system undergoes a continuous tran-
sition. Instead, first-order transitions are expected for
systems that are outside the attraction domain of the stable
FP. This is evident in mean-field calculations and also within
the FT approach, in which some RG trajectories do not flow
towards the stable FP but run away to infinity. Therefore, the
above-mentioned MC results for theXY STA models are still
compatible with the hypothesis of the existence of an Os2d
^ Os2d universality class;XY STA models may be simply
outside the attraction domain of the stable FP.

In this paper, we further investigate the existence of the
Os2d ^ OsNd universality class forXY sN=2d and Heisenberg
sN=3d systems. First, we consider an alternative 3D pertur-
bative approach, the so-called minimal-subtractionsMSd
scheme withoute expansion,37–39 for which five-loop series
have been recently computed in Ref. 17. This scheme is
strictly related to thee expansion, but, unlike it, noe expan-
sion is performed ande is set to the physical valuee=1,
providing a 3D scheme. It works within the massless critical
theory, thus providing a nontrivial check of the results ob-
tained within the MZM scheme, which is defined in the mas-
sive disordered phase. The analysis of the corresponding
five-loop expansions shows the existence of an Os2d
^ OsNd FP forN=2 and 3, confirming the conclusions of the
analysis of the six-loop expansions within the MZM scheme.
Concerning the critical exponents, the analysis of the five-
loop MS series givesn=0.65s6d and h=0.09s4d for N=2,
andn=0.63s5d andh=0.08s3d for N=3. These results should
be compared with the estimates obtained from the six-loop
MZM series, which aren=0.57s3d andh=0.09s1d for N=2,
and n=0.55s3d and h=0.10s1d for N=3. It is important to
note that, although the availableMS series have one order
less, the corresponding results are expected to be more reli-
able than the MZM ones, because theMS FPs are at the
boundary of the region in which the expansions are Borel
summable, and not outside it as in the MZM case. We finally
mention that theMS scheme withoute expansion allows us
to obtain fixed-dimension results at any dimensiond. Thus,
we are able to recover the results of thee expansion suffi-
ciently close to four dimensions and to obtain a full picture
of the fate of the different FPs asd varies from four to three
dimensions.

We also address numerically the question of identifying a
3D lattice model with symmetry Os2d ^ Os2d and with the
expected symmetry-breaking pattern that shows a continuous
transition. This would conclusively show that the Os2d
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^ Os2d universality class really exists. For this purpose, we
consider the following lattice model:

H = − bo
x,m

swx · wx+m + cx · cx+md + o
x

swx
2 + cx

2d

+ A4o
x

fswx
2 − 1d2 + scx

2 − 1d2g + 2A22o
x

wx
2cx

2,

s1.2d

where w and c are two-component real variables. The
HamiltonianH describes two identical two-component O(2)-
symmetric latticef4 models coupled by an energy-energy
term. By an appropriate change of variables, see Sec. IV, one
can show that model(1.2) corresponds to a lattice discreti-
zation of the Hamiltonian(1.1) for N=2 with u0,sA4

+A22d andv0,sA22−A4d. WhenA22.A4.0, the critical be-
havior at the phase transition should be described by theN
=2 Hamiltonian (1.1) with v0.0. Therefore, a region of
continuous transitions in the quartic parameter space with
A22.A4 would imply the existence of the Os2d ^ Os2d uni-
versality class. In order to investigate this point, we present
MC simulations forA4=1 and several values ofA22. The
phase diagram emerging from the simulations is character-
ized by a line of first-order transitions extending from large
values ofA22 down to a tricritical point atA22=A22

* .A4=1,
where the latent heat vanishes, and, for 1=A4,A22,A22

* , by
a line of continuous transitions that should belong to the
Os2d ^ Os2d universality class identified by the perturbative
FT approaches. The possible extension of the first-order tran-
sition line up toA22=A4, i.e., up to the 4-vector theory, is
apparently incompatible with the theoretically predicted be-
havior of the latent heat near an O(4) tricritical point.

The paper is organized as follows. In Sec. II, we present
the analysis of the five-loopMS expansions, providing evi-
dence for the existence of a stable FP with attraction domain
in the regionv0.0, in the two- and three-component cases.
There, we also show that ford→4, the results of thee ex-
pansion are recovered. In Sec. III, we discuss the crossover
behaviors predicted by the FT approach and their relation
with those that may be observed in realistic models. In Sec.
IV, we report the results of the MC simulations for the model
defined by Hamiltonian(1.2), determining its phase diagram
in the region of quartic parametersA22.A4=1. We investi-
gate the finite-size scaling(FSS) behavior using cubic lat-
tices of sizeLø120. In Sec. V, we report some conclusive
remarks. In Appendix A, we provide some details on the
perturbative expansions in theMS scheme. In Appendix B,
we discuss some properties of OsMd ^ OsNd-symmetric
medium-range models.

II. ANALYSIS OF THE FIVE-LOOP
MINIMAL-SUBTRACTION SERIES

A. The minimal-subtraction scheme withoute expansion

The FT approach is based on the Hamiltonian(1.1). In the
MS scheme, one considers the massless critical theory in
dimensional regularization and determines the RG functions
from the divergences appearing in the perturbative expansion

of the correlation functions.37 In the standarde-expansion
scheme,14 the FPs, i.e., the common zeros of theb functions,
are determined perturbatively as expansions in powers ofe,
while exponents are obtained by expanding the correspond-
ing RG functions, i.e.,hf,t (see Appendix A), computed at
the FP in powers ofe. TheMS scheme withoute expansion39

is strictly related. The RG functionsbu,v andhf,t are theMS
functions. However,e is no longer considered as a small
quantity but it is set to its physical value, i.e., in three dimen-
sions one simply setse=1. Then, one determines the FP
valuesu*, v* from the common zeros of the resummedb
functions. Finally, critical exponents are determined by
evaluating the resummed RG functionshf andht at u* and
v*. Notice that the FP valuesu* and v* are different from
the FP values of the renormalized quartic couplings of the
MZM renormalization scheme, sinceu andv indicate differ-
ent quantities in the two schemes.

The MS RG functions have been computed to five loops
in Ref. 17. In Appendix A, we report the series forN=2 and
N=3. We also consider the critical exponents associated with
the chiral degrees of freedom. They can be determined from
the RG dimension of the chiral operator6

Cckdlsxd = fcksxdfdlsxd − fclsxdfdksxd. s2.1d

We computed theMS RG functionhcsu,vd associated with
the chiral operatorCckdl to five loops. The series are reported
in Appendix A.

B. The resummation

Since perturbative expansions are divergent, resummation
methods must be used to obtain meaningful results. Given a
generic quantitySsu,vd with perturbative expansionSsu,vd
=oi j ciju

iv j, we consider

Ssxu,xvd = o
k

sksu,vdxk, s2.2d

which must be evaluated atx=1. The expansion(2.2) in
powers ofx is resummed by using the conformal-mapping
method40,41 that exploits the knowledge of the large-order
behavior of the coefficients, generically given by

sksu,vd , k!f− Asu,vdgkkbf1 + Osk−1dg. s2.3d

The quantityAsu,vd is related to the singularityts of the
Borel transform Bstd that is nearest to the origin:ts
=−1/Asu,vd. The series is Borel summable forx.0 if Bstd
does not have singularities on the positive real axis, and, in
particular, ifAsu,vd.0. Using semiclassical arguments, one
can argue that19 the expansion is Borel summable when(see
Appendix A for the precise definition ofu andv)

u ù 0, u − 1
2v ù 0. s2.4d

In this region, we have

Asu,vd = 1
2 maxsu,u − v/2d. s2.5d

Under the additional assumption that the Borel-transform
singularities lie only in the negative axis, the conformal-
mapping method40 turns the original expansion into a con-
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vergent one in the region(2.4). Outside, the expansion is not
Borel summable. However, if the condition

u − 1
4v . 0 s2.6d

holds, then the Borel-transform singularity closest to the ori-
gin is still in the negative axis, and therefore the large-order
behavior is still given by Eq.(2.3) with Asu,vd given by Eq.
(2.5). Thus, by using this value ofAsu,vd and the conformal-
mapping method, one still takes into account the leading
large-order behavior. One may therefore hope to get an
asymptotic expansion with a milder behavior, which may
still provide reliable results.

We should mention that theMS series are essentially four-
dimensional, so that they may be affected by renormalons
that make the expansion non-Borel summable for anyu and
v, and are not detected by a semiclassical analysis; see, e.g.,
Ref. 42. The same problem should also affect theMS series
of OsNd models. However, the good agreement between the
results obtained from the FT analyses39 and those obtained
by other methods indicates that renormalon effects are either
very small or absent(note that, as shown in Ref. 43, this may
occur in some renormalization schemes). For example, the
analysis of the five-loop perturbative series39 gives n
=0.629s5d for the Ising model andn=0.667s5d for the XY
model, which are in good agreement with the most precise
estimates obtained by lattice techniques, such asn
=0.630 12s16d (Ref. 44) and n=0.630 20s12d (Ref. 45) for
the Ising model, andn=0.671 55s27d (Ref. 46) for the XY
universality class. On the basis of these results, we will as-
sume renormalon effects to be negligible in the analysis of
the two-variable series of the Os2d ^ OsNd theory.

C. Three-dimensional analysis of the five-loop series
for N=2, 3

The RG flow of the theory is determined by the FPs. Two
FPs are easily identified: the Gaussian FP, which is always
unstable, and the Os2Nd FP located along theu axis. The
results of Refs. 48 and 49 on the stability of the three-
dimensional OsMd-symmetric FP under generic perturba-
tions can be used to prove that also the Os2Nd FP is unstable
for any Nù2.47 Indeed, the Hamiltonian termsfa·fbd2

−fa
2fb

2, which acts as a perturbation at the Os2Nd FP, is a
particular combination of quartic operators transforming as
the spin-0 and spin-4 representations of the Os2Nd group,
and any spin-4 quartic perturbation is relevant48 at the OsMd
FP for M ù3, since its RG dimensiony4,4 is positive forM
ù3. In particular,y4,4<0.11 at the Os4d FP andy4,4<0.27
at the Os6d FP.48 Note that these values are rather small,
especially in the Os4d case. Theu axis plays the role of a
separatrix and thus the RG flow corresponding tov0.0 can-
not cross theu axis. Therefore, since models with the
symmetry-breaking pattern Os2d ^ OsNd→Os2d ^ OsN−2d
havev0.0, the relevant FPs lie in the regionv.0.

The analyses of the six-loop series in the MZM scheme
reported in Refs. 19 and 20 provided rather robust evidence
for the presence of a stable FP with attraction domain in the
regionv0.0 for N=2 andN=3. In the following, this result

will be confirmed by the analysis of theMS five-loop series.
In order to investigate the RG flow in the regionv0.0, we
apply essentially the same analysis method of Refs. 19 and
50 (we refer to these references for details). We resum the
perturbative series by means of the conformal-mapping
method and, in order to understand the systematic errors, we
vary two different parametersb anda (see Ref. 50 for defi-
nitions). We also apply this method for those values ofu and
v for which the series are not Borel summable but still sat-
isfy u− 1

4v.0. As already discussed, the conformal-mapping
method should still provide reasonable estimates since we
are taking into account the leading large-order behavior.

In order to find the zeros of theb functions, we first
resummed the expansions ofBusu,vd andBvsu,vd defined in
Eq. (A4). More precisely, we considered the functions
Ru,vsu,v ,xd;Bu,vsux,vxd /x2. For each functionRu,v we con-
sidered several approximants corresponding to different val-
ues of the resummation parametersa andb, see, e.g., Refs.
50 and 19 for details. In Fig. 1, we show the zeros of theb
functions in the regionv.0. The figure is obtained by using
a single approximant, the one withau=av=1, bu=bv=10,
but others give qualitatively similar results. A common zero
su* , v* d with v* .0 is clearly observed atu* <1.1, v*
<2.3 for N=2, and atu* <0.9, v* <1.7 for N=3. In order
to give an estimate of the FP, we considered resummations of
Busu,vd and Bvsu,vd with parametersau, bu, av, and bv,
assuming integer values in the range −1øau,vø3 and 4
øbu,vø16. Most combinations, approximately 90% forN
=2 and 97% forN=3, have a common zero in the region
v.0 (these percentages increase if we only consider ap-
proximants withau=av andbu=bv, becoming approximately
94% forN=2 and 99% forN=3). We take the average of the
results as a final estimate, obtaining

u * = 1.10s13d, v * = 2.30s21d for N = 2,

FIG. 1. Zeros of theb functions in the regionv.0 for N=2 and
3 for a particular approximant, see text. The three colored regions
correspond(from below) to (1) u− 1

2v.0 (domain in which the
perturbative series are Borel summable), (2) u− 1

4v.0 and u
− 1

2v,0 (domain in which the perturbative series are not Borel
summable but one can take into account the leading large-order
behavior), (3) u− 1

4v,0. The full lines at the Os2d ^ OsNd FP show
the final estimate(2.7) with its uncertainty.

CALABRESE et al. PHYSICAL REVIEW B 70, 174439(2004)

174439-4



u * = 0.90s8d, v * = 1.72s15d for N = 3. s2.7d

The errors are related to the variation of the results with
respect to changes of the resummation parametersau, bu, av,
andbv in the considered range of values, and correspond to
one standard deviation. As a check, we also tried a different
method. We determined optimal values ofa andb by mini-
mizing the difference between the results of the four- and
five-loop resummations of the functionsBu,v (independently)
close to the Os2d ^ OsNd FP. The results are consistent with
those reported in Eq.(2.7). Notice that in the caseN=3,
sincev* / u* <1.9, the FP is substantially within the region
in which the perturbative expansions should be Borel sum-
mable, while forN=2, sincev* / u* <2.1, the FP is slightly
above its boundaryv /u=2. Therefore, Borel resummations
are expected to be effective. In this respect, theMS scheme
seems to behave better than the MZM scheme, in which the
FPs are in the non-Borel summable region,19 although still in
the region in which the conformal-mapping resummation
method should be able to take into account the leading large-
order behavior. The analysis of the stability matrix shows
that the FP is stable, i.e., its eigenvalues have a positive real
part. Most approximants give complex eigenvalues, support-
ing the hypothesis that the FP is a focus, as discussed in Ref.
20. We obtain v=1.0s5d± i0.8s5d for N=2 and v
=0.9s4d± i0.7s3d for N=3, in rough agreement with the
MZM scheme results.20 We finally mention that consistent
results are obtained by resumming the series using the Padé-
Borel technique, which does not exploit the knowledge of
the large-order behavior of the series.

Critical exponents are obtained by evaluating the RG
functionshf and ht or appropriate combinations at the FP.
We found

n = 0.65s2 + 4d, h = 0.09s2 + 2d,

g = 1.24s3 + 8d, fc = 1.42s6 + 10d s2.8d

for N=2, and

n = 0.63s1 + 4d, h = 0.08s2 + 1d,

g = 1.20s1 + 7d, fc = 1.35s2 + 7d s2.9d

for N=3. The errors are reported as the sum of two terms,
related, respectively, to the dependence onb anda and to the
uncertainty of the FP coordinates. For comparison, we report
the corresponding results obtained from the analysis of the
six-loop series in the MZM scheme:19,51 n=0.57s3d, h
=0.09s1d, and fc=1.43s4d for N=2, and n=0.55s3d, h
=0.10s1d, and fc=1.27s4d for N=3. We note that theMS
estimates ofn and g are larger than those obtained in the
MZM scheme, but still substantially compatible with them
taking into account their relatively large errors. We stress
again that this comparison represents a nontrivial consistency
check since the two schemes are quite different: in the MZM
scheme, one works in the massive high-temperature phase,
while in theMS scheme one considers the massless critical
theory.

Finally, we computed the RG flow, in order to determine
the attraction domain of the stable FP. We refer the reader to

Ref. 52 for the relevant definitions. In Fig. 2, we show the
RG flow in the quartic-couplingu, v plane corresponding to
different values of the ratios;v0/u0 for v0.0. All trajecto-
ries corresponding tos&

3
2 belong to the regionu− 1

2v*0, in
which the resummation should be reliable, and appear to be
attracted by the stable FP.

D. Results for generic values ofN and dimensiond

The fixed-dimensionMS scheme allows us to obtain
fixed-dimension results for any dimensiond. Since in three
dimensions and forN=2, 3 this scheme provides results that
are substantially different from those of the strictly relatede
expansion, it is interesting to compare the two perturbative
methods for generic values ofd andN.

Using the five-loop series of theMS b functions, we in-
vestigate the presence of FPs in the region 0øv,4u, where
resummations seem to be under control, for genericd andN.
In any d, or e;4−d, and for sufficiently large values ofN,
we find a stable Os2d ^ OsNd FP. If we decreaseN at fixede,
for e smaller than a critical valueec,max, we find a value
Ncsed such that, forN=Ncsed, the stable FP disappears. In
Fig. 3, we plot the results for the inverse quantityecsNd;4
−dcsNd, wheredcsNd represents the dimension below which
one finds a stable FP in the regionv.0 at fixed N. This
quantity may be estimated by averaging the values of the
largest dimensiond (smallest value ofe) for which each pair
of approximants of theb functions(we use the same set as in
the three-dimensional analysis reported in Sec. II C) has a
stable Os2d ^ OsNd FP. The reported error corresponds to one
standard deviation. Unfortunately, for 4&N&5 the stable FP
moves outside the regionu− 1

4v.0, in which we are able to
resum reliably the perturbative series(if this condition is
satisfied we can take into account the leading large-order
behavior). Therefore, forNø4 we are unable to compute
ecsNd. In this case, we can compute a conservative upper
bound by finding the smallest value ofe such that at least
95% of the approximants still present a stable FP in the re-
gion 0,v,4u. The bounds corresponding toN=2, 3, and 4

FIG. 2. The RG flow in the quartic-coupling plane forN=2, 3 in
the MS scheme ford=3.
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are represented by thick segments in Fig. 3. There, we also
compare these results with the curve obtained by resumming
the Ose4d expansion17 of Ncsed [we actually report the curve
obtained by resumming 1/Ncsed]. A nice agreement is ob-
served for sufficiently large values ofN, down toN<8. For
smaller values ofN, the fixed-dimensionMS results differ
from thee-expansion curve. In particular, unlike thee expan-
sion, the fixed-dimensionMS series provides estimates for
ecs2d andecs3d that are definitely smaller than 1, leading to
the boundsecs2d,0.7 andecs3d,0.8. As Fig. 3 shows, the
results forecsNd are nonmonotonic, with a maximum value
ec,max<0.8 forN<8. Thus, fore&ec,max there exists another
limiting value of N, Nc2sed, such that forNc2sed,N,Ncsed
no stable FP exists in the regionvù0, while for N,Nc2sed
the Os2d ^ OsNd FP is again present. Note that while for
N.Ncsed the stable FP has real stability eigenvalues, for
N,Nc2sed it is a stable focus, i.e., the stability eigenvalues
are complex with a positive real part.

TheMS results are qualitatively consistent with the MZM
ones, although the estimate ofec,max, ec,max<0.8, apparently
contradicts the conclusions of Ref. 19. Indeed, from the
analysis of the MZM scheme expansions, Ref. 19 did not

find clear evidence of stable FPs for 5&N&7, which would
imply that ec,max*1. This conclusion was also in contrast
with the MC results of Ref. 53, which apparently found a
continuous transition forN=6. On the basis of the present
analysis, we are now inclined to believe that this may be
only a resummation problem, in some sense connected to the
fact that in the extended spacesN,dd, N=6 andd=3 is close
to the lined=dcsNd.

Although in the three-dimensionalMS calculationN=6
does not represent a special point for the existence of the FP,
such a value still plays a special role. Ind=3, the FP is
topologically different for small and large values ofN since
the stability eigenvalues are real for largeN, while for N
=2 and 3 they are complex. Therefore, there should be a
value Neq that separates the two behaviors. We find that
Neq<6.

For large values ofN, the stability eigenvalues are real. As
N decreases, the difference betweenv1 andv2 decreases and
for N=Neq we havev1=v2. Then, forN,Neq the eigenval-
ues become complex and the FP is a focus. As can be seen
from the results reported in Table I,Neq<6. In this case,
<50% of the approximants give real estimates forv1 and
v2, while <50% give complex estimates with a small imagi-
nary part. In all cases, the real part satisfies 0.3,Revi ,0.8.

Beside the stability eigenvalues in Table I, we also report
the critical exponents and the FP coordinates for several val-
ues of N. These results are in agreement with the MZM
estimates of Ref. 20. We also note that theMS results for
N=6 are in substantial agreemeent with the MC results of
Ref. 53,n=0.700s11d and g=1.383s36d, and with the non-
perturbative RG results of Ref. 5,n<0.707 andg<1.377.

III. CROSSOVER BEHAVIOR

A. Effective exponents

The perturbative analysis presented in Sec. II as well as
the analyses in the MZM scheme of Ref. 19 predict the pres-
ence of a stable FP for the physically interesting casesN
=2 andN=3. However, this FP has a quite unusual feature:
the stability eigenvalues are apparenly complex with a posi-
tive real part.19,20 In this section, we wish to understand the

FIG. 3. Results forecsNd as obtained from the fixed-dimension
MS analysis and from thee expansion(dashed line). The thick
segments atN=2, 3, 4 represent conservative upper bounds on
ecsNd.

TABLE I. Results obtained from the analysis of the five-loop series in theMS perturbative scheme. No
values ofv1,2 are reported forN=6: in this case it is not clear whether the eigenvalues of the stability matrix
are complex or real.

N u* v* v1 v2 n g h

2 1.10(13) 2.30(21) 1.0(5) ±i0.8s5d 0.65(6) 1.24(11) 0.09(4)

3 0.90(8) 1.72(15) 0.9(4) ±i0.7s3d 0.63(5) 1.20(8) 0.08(3)

4 0.74(3) 1.29(8) 0.7(2) ±i0.4s2d 0.64(4) 1.24(6) 0.073(10)

5 0.63(3) 1.04(7) 0.7(2) ±i0.3s2d 0.64(4) 1.25(6) 0.061(10)

6 0.56(4) 0.86(7) 0.66(4) 1.29(8) 0.052(14)

7 0.51(5) 0.73(5) 0.8(2) 0.5(2) 0.68(4) 1.34(9) 0.047(15)

8 0.47(4) 0.64(4) 0.8(2) 0.5(2) 0.70(5) 1.37(10) 0.042(10)

10 0.41(4) 0.51(1) 0.9(2) 0.5(2) 0.74(5) 1.46(11) 0.036(8)

16 0.300(14) 0.334(8) 0.9(2) 0.74(12) 0.82(4) 1.62(8) 0.025(4)
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consequences on experimental and numerical determinations
of the critical exponents and, in general, of RG-invariant
quantities.

The presence of complex stability eigenvalues changes
the approach to criticality. IfO is a generic critical quantity,
we expect close to the critical point

O < Cjsf1 + aj−vR cossvI log j + bdg, s3.1d

wherej is the correlation length and the stability eigenvalues
are written asvR± ivI. Scaling corrections oscillate and the
approach to the asymptotic behavior is nonmonotonic.

In order to characterize the behavior of critical quantities
outside the critical point, it is useful to introduce effective
exponents. From the susceptibilityx and the correlation
lengthj, one can define the effective exponents

neffstd ; −
] ln j

] ln t
, geffstd ; −

] ln x

] ln t
,

heffstd ; 2 −
] ln x

] ln j
, s3.2d

where t;sT−Tcd /Tc is the reduced temperature. One can
easily check thatheff=2−geff /neff. The effective exponents
are not universal and depend on the specific model. None-
theless, it is usually assumed(but there are notable excep-
tions; for instance, the 3D Ising model and the corresponding
scalar f4 theory behave differently near the critical
point54–56) that the qualitative features are similar in all mod-
els belonging to the same universality class. For this reason,
in the following we shall compute the effective exponents in
the FT model. We shall present numerical results forN=2, in
order to be able to compare them with the MC results of Sec.
IV. For N=3, effective exponents are qualitatively similar.

We shall consider the MZM scheme since all necessary
formulas have already been presented in Ref. 52, although
the same analysis could have been done in theMS scheme
by generalizing to the present case the results of Ref. 57. Ifu
and v are the zero-momentum renormalized couplings nor-
malized so thatu<u0/m and v<v0/m at tree level,58 RG
trajectories are determined by solving the differential equa-
tions

− l
du

dl
= bu„usld,vsld…,

− l
dv
dl

= bv„usld,vsld…, s3.3d

wherelP f0,`d, with the initial conditions

us0d = vs0d = 0,

U du

dl
U

l=0
= 1, U dv

dl
U

l=0
= s, s3.4d

wheres;v0/u0 parametrizes the different models. The re-
sults of Ref. 52 allow us to derive general scaling formulas

for the rescaledx̃;xu0
2 and j̃;ju0, where x and j are,

respectively, the susceptibility and the second-moment cor-

relation length. In particular, ift; r −rc is the reduced tem-
perature andt̃;t /u0

2, we have

x̃ = Fxst̃,sd, j̃ = Fjst̃,sd. s3.5d

The functionsFx and Fj can be expressed in terms of RG
functions—in the present case they are known to six loops—
and can be computed rather accurately, as we shall show
below.

In Fig. 4, we show the RG trajectories for several values
of s with 0,sø1.59 For larger values ofs, trajectories run in
the regionu− 1

4v,0, where we are not able to resum the
perturbative series. Correspondingly, in Fig. 5 we report the
behavior of the four-point couplingsu andv as a function of

j̃. The corresponding FP values19,58 are u* =23.9s1.3d and

v* =68.7s2.5d. Considering firstvsj̃d, it is interesting to ob-
serve that oscillations are significant only fors<1. For

smaller values ofs, vsj̃d increases essentially monotonically

with j̃. More peculiar is the behavior ofusj̃d. Indeed, for all
s&

2
3, u flattens first at a value around 18 and then suddenly

increases towards the asymptotic value. This is due to the

FIG. 4. RG flow in the MZM scheme for several values ofs and
N=2. The Os2d ^ Os2d FP corresponds tou* =23.9s1.3d, v*
=68.7s2.5d (Ref. 19).

FIG. 5. The four-point couplingsu andv as a function ofj̃ for

several values ofs and N=2. For j̃→`, u and v converge tou*
=23.9s1.3d andv* =68.7s2.5d (Ref. 19).
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presence of the unstable O(4) FP that gives rise to strong
crossover effects, even whens is as large as23. Indeed, the
plateau observed inu corresponds to the FP value ofu in the
O(4) theory,60 uOs4d

* <17.4. Thus, unlesss*1, the flow first
feels the presence of the O(4) FP, so thatu<uOs4d

* , and then
goes towards the Os2d ^ Os2d FP. In Fig. 6, we also show the
ratio v /u. Note that for smalls, such a ratio is very small,
while for s*

1
2 the behavior is nonmonotonic with a pro-

nounced peak.
Finally, we determine the effective exponents. In Fig. 7,

we report the effective exponentsneff andheff as a function
of the rescaled reduced temperaturet̃. The exponentneff
shows quite large oscillations, especially for smalls. They
are not only due to the complex stability eigenvalues but also
to crossover effects related to the presence of the O(4) FP. As
we already remarked above, for smalls the trajectories are
close to the O(4) FP and thusneff is close tonOs4d [the best
available estimate isnOs4d=0.749s2d, Ref. 61]. For instance,
for s= 1

4
s 1
2

d the maximum value ofneff is 0.71(0.67). For s
close to 1, crossover effects are less relevant andneff does not
increase much. However, in this case there is a large down-
ward oscillation. The exponentneff decreases below the
asymptotic value and it may be even less than 0.5: fors=1

the minimum value ofneff is 0.49 and it is expected to further
decrease ifs increases. These oscillations show how difficult
is the determination of the critical exponents: extrapolations
may provide completely incorrect estimates. The effective
exponentgeff has a behavior similar to that ofneff. On the
other hand,heff shows an approximately monotonic behavior
without detectable oscillations, although the crossover ef-
fects due to the presence of the O(4) FP [hOs4d=0.0365s10d,
Ref. 61] are clearly visible fors&

1
4.

B. Crossover behavior in lattice systems

In Sec. III A, we computed the FT crossover curves. It is
of course of interest to relate them to the results obtained in
lattice models and in experimental systems. Strictly speak-
ing, the mapping cannot go beyond the leading correction
term appearing in Eq.(3.1) (see the discussion in Sec. IV A
of Ref. 52). In some cases, even the leading critical behavior
cannot be reproduced:54–56 this happens in the nearest-
neighbor Ising model and in the lattice self-avoiding walk.
However, there are limiting cases in which the FT results
exactly describe the lattice model: this is the case of the
critical crossover limit in weakly coupled lattice models and
in medium-range models.62–64 Consider, for instance, a
d-dimensional hypercubic lattice and the lattice discretiza-
tion of the FT Hamiltonian(1.1),

H = −
b

2o
x,y

Jsx − ydo
a

wx,a · wy,a + o
x

Vswxd, s3.6d

where the sums overx and y are extended over all lattice
points,Jsxd is a generic short-range coupling, and

Vswd = ro
a

wa
2 +

U0

4! Soa

wa
2D2

+
V0

4! oab

fswa · wbd2 − wa
2wb

2g.

s3.7d

The parameterr is irrelevant and can be made equal to ±1 by
changing the normalization of the fields.

The first interesting case corresponds to weakly coupled
theories in whichr .0 andU0, V0→0. Let bcsU0,V0d be the
critical point for givenU0 and V0 and let t be the reduced
temperature. Then, consider the limitt→0, U0, V0→0 keep-
ing fixed sL;V0/U0 and t̃; t /U0

2/s4−dd. In this limit,

xsb,U0,V0dU0
2 → mxFxsat̃,sLd,

jsb,U0,V0dU0 → mjFjsat̃,sLd, s3.8d

whereFxst ,sd and Fjst ,sd are exactly the FT functions de-
fined in Eq.(3.5). The constantsmx, mj, anda can be easily
computed by comparing the perturbative expansions(at one
loop) for the continuum and the lattice model. The additive
mass renormalization—it requires a nonperturbative match-
ing, see Ref. 63—also fixes the first terms of the expansion
of bcsU0,V0d in powers ofU0 andV0.

The second interesting case corresponds to medium-range
models. In this case, we assume that the couplingJsxd de-
pends on a parameterr. For instance, one may take

FIG. 6. The ratiov /u of the four-point couplingsu andv as a

function of j̃ for several values ofs andN=2. Asymptotically, the
ratio converges tov* / u* =2.9s2d (Ref. 19).

FIG. 7. Effective exponents as a function of the rescaled re-
duced temperaturet̃ for several values ofs andN=2.
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Jrsxd = H1 if uxu ø r,

0 otherwise.
J s3.9d

This specific form is not necessary for the discussion that
will be presented below, and indeed one can consider more
general families of couplings, as discussed in Sec. III of Ref.
63. The relevant property is thatJrsxd couples all lattice
points for r→`, i.e., that forr→` one recovers a mean-
field theory. The interaction range is characterized byR de-
fined by

R2 =
1

2d

ox
x2Jrsxd

ox
Jrsxd

. s3.10d

These models are called medium-range models and admit an
interesting scaling limit called critical crossover limit.62–64If
bcsRd is the critical temperature as a function ofR (hereU0

andV0 are fixed and do not play any role in the limit), then
for R→`, t;fbcsRd−bg /bcsRd→0 at fixed t̃;R2d/s4−ddt,
critical quantities show a scaling behavior. For instance, the
susceptibilityxsb ,Rd and the correlation lengthjsb ,Rd scale
as

x̃ ; xsb,RdR−2d/s4−dd < fxst̃d,

j̃ ; jsb,RdR−4/s4−dd < fjst̃d. s3.11d

The functionsfxst̃d and fjst̃d are directly related to the cross-
over functionsFxst̃ ,sd andFjst̃ ,sd computed in field theory,
cf. Eq. (3.5). Indeed,

fxst̃d = mxFxsat̃,sd,

fjst̃d = mjFjsat̃,sd, s3.12d

wheremx, mj, a, and s are nonuniversal constants that de-
pend on the model.63,64Therefore, the FT crossover functions
are expected to describe accurately the crossover behavior
for largeR: in practice, numerical simulations show that, for
r<3, one already obtains a good agreement. All constants
appearing in Eq.(3.12) can be exactly computed by perform-
ing a one-loop calculation. The relevant formulas are re-
ported in Appendix B.

IV. NUMERICAL RESULTS FROM MONTE CARLO
SIMULATIONS

A. The lattice model

In order to investigate the existence of the Os2d ^ Os2d
universality class by numerical MC simulations, we consid-
ered a simple cubic latticeL3 and the following Hamiltonian:

H = − bo
x,m

swx · wx+m + cx · cx+md + o
x

swx
2 + cx

2d

+ A4o
x

fswx
2 − 1d2 + scx

2 − 1d2g + 2A22o
x

wx
2cx

2,

s4.1d

where w and c are two-component real variables. The

HamiltonianH describes two identical two-component lat-
tice f4 models coupled by an energy-energy term. Note that
if A22=A4, the symmetry is enlarged to O(4) and we have the
standard four-component latticef4 model. By applying the
transformation

f11 =
w1 − c2

Î2
, f12 = −

w2 − c1

Î2
,

f21 =
w2 + c1

Î2
, f22 =

w1 + c2

Î2
, s4.2d

one can easily see that model(4.1) corresponds to the Hamil-
tonian (3.6) with nearest-neighbor couplingJ and potential
(3.7) with

U0 = 12sA22 + A4d,

V0 = 24sA22 − A4d,

r = 1 − 2A4. s4.3d

Therefore, model(4.1) is a lattice discretization of the
Os2d ^ Os2d Hamiltonian(1.1). According to the FT results
presented in Sec. II continuous transitions in models with
A22.A4 should be controlled by the Os2d ^ Os2d FP. For
A22=A4, the symmetry is enlarged to O(4) and the transition
is controlled by the O(4) FP. If A22,A4, continuous transi-
tions should belong to theXY universality class, because the
Os2d ^ Os2d theory has a stableXY FP with attraction do-
main in the regionv0,0, see, e.g., Ref. 4.

B. Monte Carlo simulations

We present the results of MC simulations for several val-
ues of the quartic Hamiltonian parameters. We setA4=1 and
vary A22, consideringA22=3, 11/4, 5/2, 9/4, 2, 5/3, and
7/5. If we define

sL ;
V0

U0
= 2

A22 − A4

A22 + A4
, s4.4d

they correspond tosL=1, 14/15, 6/7, 10/13, 2/3, 1/2, and
1/3, respectively. Note that forA22.A4.0, we have
0,sL,2.

We simulate model(4.1) by using two different types of
local moves:(i) a Metropolis update in whichwx andcx are
both varied by adding a random term to each component in
such a way to obtain a 50% acceptance;(ii ) an O(4) update65

in which wx andcx are both changed keeping fixed the O(4)-
symmetric part of the Hamiltonian, while the O(4)-breaking
term 2sA22−A4doxwx

2cx
2 is taken into account by performing a

standard Metropolis acceptance test(the acceptance of this
move is rather large, varying from approximately 78% for
A22=3 to 94% forA22=7/5). In the simulations, we use a
mixed algorithm in which we performed an O(4) sweep and
a standard Metropolis sweep with probability 1/4 and 3/4,
respectively. A rough investigation of the autocorrelation
times shows that this is an optimal combination. The mixed
algorithm is substantially faster(for sL=1/3, theautocorre-
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lation time of the magnetic susceptibilityx decreases by ap-
proximately a factor of 10) than the algorithm in which only
the Metropolis update is used.

We perform a FSS study using lattices with 16øLø120
for values ofb close tobc. The integrated autocorrelation
time tx of the magnetic susceptibility(estimated by using the
blocking method) increases approximately astx<cL2 at bc
with c<0.2 forA22=7/5 andc<0.5 forA22=5/3,where the
time unit is an update of all spin variables. For larger values
of A22, the transition becomes of first order and the dynamics
becomes very slow asL increases. The large autocorrelation
time, i.e., the difficulty of the updating algorithm to provide
independent configurations, represents the main limitation to
the study of the critical behavior atbc and for large volumes.
For each value ofb we typically performed runs of a few
million iterations for the smallest values ofL, and of 20–40
million iterations for the largest lattice sizes. The total CPU
time was approximately 5 CPU years of a single 64-bit
Opteron 246s2 Ghzd processor.

C. Definitions and notations

In order to investigate the phase diagram, it is useful to
study the FSS of quantities related to the energy

E ;
1

V
kHl s4.5d

(V;L3 is the volume), such as the specific heat

C ;
1

V
skH2l − kHl2d, s4.6d

and the energy cumulant66

BE ; 1 −
kH4l

3kH2l2 . s4.7d

We also define a quantityM related to the magnetization,

M ; Îmw
2 + mc

2 , s4.8d

where

mW w ;
1

V
o
x

wW x, mW c ;
1

V
o
x

cW x. s4.9d

The two-point correlation functionGsxd is defined as

Gsxd ; kw0 · wx + c0 · cxl. s4.10d

The corresponding susceptibilityx and second-moment cor-
relation lengthj are given by

x ; o
x

Gsxd,

j2 ;
1

4 sin2sqmin/2d
G̃s0d − G̃sqd

G̃sqd
, s4.11d

whereG̃sqd is the Fourier transform ofGsxd, q=sqmin,0 ,0d,
and qmin=2p /L. The finite-volume definition ofj is not

unique. The definition used here has the advantage of a fast
convergence to the infinite-volume limit.67

In our FSS study, we shall consider three RG-invariant
ratios,68

lj ; j/L, s4.12d

B1 ;
ksmw

2 + mc
2d2l

kmw
2 + mc

2l2 , s4.13d

B2 ;
kmw

2mc
2 − smw · mcd2l

kmw
2 + mc

2l2 . s4.14d

Note thatB1 sB2d is equal to3
2

s 1
8

d at b=0 and to 1(0) at
b=`.

D. First-order transitions: Summary of theoretical results

In the case of a first-order transition, the probability dis-
tributions of the energy and of the magnetization are ex-
pected to show a double peak for large values ofL. There-
fore, as a first indication, one usually looks for a double peak
in the distribution of the energy and of the magnetization.
However, as discussed in the literature, see, e.g., Refs. 69
and 70 and references therein, the observation of a double
peak in the distribution of the energy for a few finite values
of L is not sufficient to conclude that the transition is a first-
order one. For instance, in the two-dimensional Potts model
with q=3 and q=4,71,72 double-peak distributions are ob-
served for relatively large lattice sizes even if the transition is
known to be continuous. In order to identify definitely a
first-order transition, it is necessary to perform a more care-
ful analysis of the large-L scaling properties of the distribu-
tions or, equivalently, of the specific heat, the energy cumu-
lant, and the Binder cumulants, see, e.g., Refs. 66, 73, and
74.

The difference of the two maximum valuesE+ andE− of
the energy-density distribution gives the latent heat. Alterna-
tive estimates of the latent heat can be obtained from the
lattice-size scaling of the specific heatC and of the energy
cumulantBE. According to the phenomenological theory66 of
first-order transitions based on the two-Gaussian ansatz, for a
lattice of sizeL there exists a valuebmax of b whereC has a
maximum,Cmax, and

bmax− bc = Os1/Vd,

Cmax= VF1

4
Dh

2 + Os1/VdG , s4.15d

whereDh is the (rescaled) latent heat

Dh ; E+ − E−. s4.16d

Note that, since the temperature parameterb is included in
the Hamiltonian(4.1), Dh should be identified with the di-
mensionless ratio between the latent heat and the critical
temperature. We recall that in the case of a continuous tran-
sition, one expects
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bmax− bc < aL−1/n, Cmax< bLa/n + c. s4.17d

The energy cumulantBE can also be used to identify first-
order transitions. Indeed, a careful analysis66 shows that
there is a valuebmin whereBE has a minimum,BE,min, and
which is related to the latent heat. The phenomenological
theory gives75

bmin − bc = Os1/Vd,

BE,min =
2

3
F1 −

1

2
D2 −

1

8
D4G + Os1/Vd, s4.18d

where

D ;
E+ − E−

ÎE+E−

. s4.19d

In continuous transitionsD=0—there is only one peak in the
energy distribution—and the infinite-volume limit ofBE,min

is trivial: limL→` BE,min= 2
3.

As discussed in Ref. 73, the distribution of the order pa-
rameter is also expected to show two peaks atM+ and M−,
M−,M+, with M−→0 as L→` since in the high-
temperature phase there is no spontaneous magnetization.
The phenomenological theory predicts that the Binder pa-
rameter can still be used to identify the critical point[the
analysis shows thatbcrosssL1,L2d−bc,minsL1,L2d−2d, where
bcrosssL1,L2d is the value ofb at which B1sL1d=B1sL2d].
Moreover, it predicts

udB1/dbub=bc
< cLd, s4.20d

for sufficiently large lattice sizes, whered is the space di-
mension. More generally, close tobc the phenomenological
theory predicts73,74

B1sb,Ld < ffsb − bcdLdg. s4.21d

Such a relation is valid only sufficiently close tobc since the
scaling functionfsxd diverges forx=xpeak wherexpeak is re-
lated to the position of the peak present inB1 for L→`. Ref.
73 indeed shows thatB1sb ,Ld at fixed L has a maximum
B1,maxsLd at b=bpeaksLd,bc with

B1,max, Ld, bpeak− bc < cpL
−d. s4.22d

Thus, for sb−bcdLd close to sbpeak−bcdLd=xpeak=cp, the
scaling behavior(4.21) breaks down[fsxpeakd diverges] and
subleading terms of orderL−d must be included. In the region
in which Eq. (4.21) holds, we havedB1/db<Ldf8fsb
−bcdLdg. By using Eq.(4.21), we can expresssb−bcdLd in
terms ofB1 obtaining the relation

dB1

db
= Ldf̂sB1d, s4.23d

with a suitable scaling functionf̂sxd. In practice this means
that L−ddB1/db converges to a universal function ofB1 as
L→`.

It should be noted that the phenomenological theory has
been developed for systems with a discrete symmetry group,
for instance for the Potts model.66,73 In our case, the symme-

try is continuous; thus, one may wonder if it can be also
applied to the present case. The numerical results that we
will present below in Sec. IV E show that no changes are
needed and that all predictions hold irrespective of the sym-
metry group. This can be understood on the basis of a simple
argument. Imagine we introduce a magnetic fieldH in the
model. The first-order transition should be robust with re-
spect toH, since we expect here the transition to be tempera-
ture driven. In other words, we expect the behavior to be
unchanged ifH is switched on, as long asH is small. For
HÞ0 we have a discrete system, thus all previous scalings
apply. If the behavior is continuous inH, all results also
apply for H=0. Note that, forHÞ0, B2 is expected to be
noncritical, sinceB2 vanishes in a system magnetized in a
specific fixed direction. Thus,B2 should have no discontinu-
ity at the transition and its derivative atb=bc should be
finite, at variance with the behavior ofB1, cf. Eq.(4.20). This
fact will also be verified by the MC results that we shall
present in Sec. IV E.

E. The phase diagram forA22.A4=1

In this subsection we investigate the phase diagram of the
lattice model(4.1) for A22.A4=1 with the purpose of iden-
tifying the regions in which the model shows a first-order or
a second-order phase transition.

The distributions ofE and M show two peaks forA22
ù2 whenL is large enough. ForA22=3 two peaks are al-
ready observed forL=16, while for A22=2 two peaks are
observed only forL*100, cf. Fig. 8. Thus, the model with
A4=1 has apparently a relatively strong first-order transition
for A22*3 that gradually weakens asA22 is decreased. In
order to check that we are really in the presence of a first-
order transition, we check the scaling behavior of the differ-
ent observables forL→`. The predictions forC andBE are
well verified. For instance, in Fig. 9 we showC/V for A22

= 5
2 for several values ofL. In agreement with Eq.(4.15),

Cmax/V has a finite limit asL→`. In Fig. 10, we show the
energy cumulantBE for the same value ofA22; BE,min is dif-
ferent from 2

3, confirming the first-order nature of the transi-
tion. FromBE,min we can determine the latent heat. For each
L we determineDL, which is obtained fromBE,minsLd by
using Eq. (4.18) and neglecting the 1/V corrections. The
latent heat is obtained by extrapolatingDL assuming 1/V
corrections.

Estimates ofDL for several values ofA22 and L are re-
ported in Fig. 11. They show the expected 1/V behavior and
allow a precise determination of the latent heat in the
infinite-volume limit. The results of the extrapolations are
reported in Table II. They are in perfect agreement with those
obtained from the maximum of the specific heat, using Eq.
(4.15), and from the position of the peaks in the energy dis-
tributions.

We have also performed MC simulations forA22= 5
3 and 7

5
on lattices of sizeLø120, without observing evidence for
first-order transitions. The histograms ofE and M do not
show any evidence of two peaks and are not significantly
broad, as, for instance, the distribution ofE for L=80 and
A22=2, cf. Fig. 8, which would indicate the onset of two
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peaks. In the casesA22= 5
3 , 7

5, C and BE on lattices of size
Lø120 do not show the behavior predicted by the phenom-
enological theory of first-order transitions.66 In particular,
BE,min continuously increases towards2

3 and we can only put
upper bounds onDh. For A22= 5

3, we obtain, for instance,
Dh,0.005. A more stringent bound is suggested by the

width of the energy distribution atbc, i.e., Dh,0.003.
Let us now discuss the behavior of the variables related to

the magnetization. In particular, we focus on the derivatives
with respect tob of B1 andB2. Predictions(4.22) and(4.23)
are well verified by our data withA22ù2. We observe the
presence of a peak inB1 at fixedL that becomes sharper asL
increases and we also verify that far from this peak Eq.
(4.23) holds. Of course, corrections increase asA22 de-
creases, as expected. On the other hand,B1 is monotonically
decreasing withb at fixedL for A22= 7

5 andA22= 5
3, providing

no evidence that the transition is of first order for these two
values ofA22.

We have repeated the same analysis forB2. Its behavior
looks quite different with respect toB1. First of all, we ob-
serve a monotonic behavior without peaks for all the consid-
ered values ofA22, including the largest ones for which the
peak inB1 is rather sharp. Moreover, the data are reasonably
well described by assuming

dB2

db
= f̂sB1d, s4.24d

suggesting thatB2 does not have a jump at the transition, as
expected on the basis of the argument presented at the end of

FIG. 8. Histograms of the energy density(above) and of the
magnetization(below) for A22=2 and lattice sizesL=80, 100, and
120. For eachL, we report the data for the value ofb at which the
two peaks have approximately the same height. These results have
been obtained by reweighting the MC data atb=0.89170, 0.89175,
and 0.81980.

FIG. 9. Specific heat forA22= 5
2 and several values ofL.

FIG. 10. Energy cumulantBE for A22= 5
2 and several values

of L.

FIG. 11. Values ofDL for A22=2, 9
4, 5

2, 11
4 , and 3, as obtained

from BE,min by using Eq.(4.18). The lines represent the infinite-
volume extrapolations assuming a 1/V asymptotic correction.
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Sec. IV D. A similar analysis can also be performed forlj for
which we have no prediction. Our data are roughly consis-
tent with a behavior of the form

dlj
db

= Lu f̂sB1d s4.25d

with 3.2&u&3.7. It is quite difficult to intepret such a value
of u that could well bed or d+1 depending on the size of the
corrections.

The results forDh reported in Fig. 12 suggest therefore a
phase diagram characterized by a line of first-order transi-
tions extending from large values ofA22 down toA22

* where
Dh vanishes. In order to computeA22

* , we should first discuss
the expected behavior ofDh close to the tricritical pointA22

*

(see, e.g., Ref. 76). We consider a generic model depending
on two parametersb andg with a tricritical point atg*, bc

*

;bcsg* d. The critical behavior can be parametrized in terms
of two linear scaling fieldsu1 andu2 with RG dimensionsy1
and y2, satisfyingy1.y2. In the absence of any symmetry,
the linear scaling fields are combinations ofsg−g* d and of
sb−bc

*d. The scaling fieldu1 is completely defined, whileu2

can be arbitrarily chosen as long as it is independent ofu1.
Therefore, we write

u1 = a1sb − bc
*d + a2sg − g * d,

u2 = g − g * . s4.26d

The first-order transition line is characterized by the equation
u2=c1u1

y2/y1 with, by a proper choice of the scaling field,
u1.0. Analogously, the second-order transition line is given
by u2=c2ssu1dy2/y1, wheres may be either 1 or −1 anduc1u
Þ uc2u. Note that both lines are tangent tou1=0, but that the
nonanalytic deviations are parametrized differently.

The free energy can be written as

F < Fregsb,gd + uu2ud/y2Fsing,±su1uu2u−y1/y2d, s4.27d

whereFsing,+ sFsing,−d applies to the caseu2.0 su2,0d, and
Fregsb ,gd is a regular function. By hypothesis, assuming
c1.0 without loss of generality,Fsing,+sxd is continuous but
has a discontinuous derivative at the first-order transition
line, i.e., forx=c1

−y1/y2. It follows

E+ − E− < a2uu2usd−y1d/y2DFsing,+8 , ug − g * usd−y1d/y2.

s4.28d

In the model, we considerg=A22, so that we predict that
sufficiently close to the tricritical pointA22

*

Dh = D0sA22 − A22
* du, s4.29d

whereu is an exponent defined by the tricritical theory. If we
fit our data for the latent heat with this expression, we obtain

A22
* = 1.52s6d, D0 = 0.049s7d, u = 2.29s15d, s4.30d

with a x2 per degree of freedom(DOF) of 0.24. The fit is
stable with respect to the number of points that are included:
If the point with A22=3 is not included, we obtainA22

*

=1.50s12d andu=2.35s36d, in full agreement with the result
reported above. We have also investigated the possibility that
A22

* =A4=1, which would imply the absence of critical tran-
sitions in the Os2d ^ Os2d universality class. A fit of the data
for the latent heat of the formDh=D0sA22−1du gives u
=3.49s4d with x2/DOF<9. If the point with A22=3 is not
included, we obtainu=3.87s4d sx2/DOF<11d, while if the
two points with largestA22 are discarded, we obtainu
=4.00s3d sx2/DOF<9d. These fits are significantly worse
than that presented above. Moreover, the estimate ofu does
not agree with the theoretical prediction that can be obtained
assuming the tricritical point to be atA22=1. Indeed, ifA22

*

=1, the tricritical theory coincides with the O(4) theory.
There are two relevant perturbations, the thermal perturba-
tion with RG dimension 1/n and the perturbation that breaks
the O(4) symmetry down to Os2d ^ Os2d, which is associated
in field theory with the spin-4 quartic operator, with RG di-
mensionf /n. For the O(4) universality class,a=−0.247s6d
(Ref. 61) andf=0.08s1d (Ref. 48). Sincef,1 in this case,
we havey1=1/n andy2=f /n, so that we should have77

Dh , sA22 − 1ds1−ad/f , sA22 − 1d16±2, s4.31d

which is not compatible with the MC results. Thus, our re-
sults are incompatible withA22

* =1, unless the limiting behav-
ior sets in for even smaller values ofDh. This seems unlikely,

TABLE II. For the model withA4=1 and several values ofA22

we reportsL, bc, the average energy densityEc;sE++E−d /2, D, cf.
Eq. (4.19), and the latent heatDh. For bc andEc, all reported digits
are exact.

A22 sL bc Ec D Dh

3 1 0.8733 1.98 0.0607(6) 0.1198(12)

11/4 14/15 0.8627 1.98 0.0396(12) 0.0783(24)

5/2 6/7 0.8504 1.97 0.0239(4) 0.0471(8)

9/4 10/13 0.8364 1.96 0.0120(4) 0.0235(8)

2 2/3 0.8198 1.94 0.0048(2) 0.0093(4)

5/3 1/2 0.7927 1.92 ,0.0015 ,0.003

FIG. 12. Latent heatDh vs A22. The line corresponds to the best
fit, Dh=0.049sA22−1.52d2.29. We also report the estimate ofA22

* with
the corresponding error:A22

* =1.52s6d.
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since for A22&3 we are already in a region in whichDh

!1. Thus, our simulations provide nice evidence in favor of
the existence of a tricritical point atA22

* .1 separating the
first-order transition line from a continuous transition line for
1,A22,A22

* . Notice that a phase transition is always ex-
pected due to the qualitative difference of the minimum of
the free energy in the high- and low-temperature regions.

The estimate(4.30) implies that, forA22= 5
3, one should

observe a first-order transition. As we have already dis-
cussed, our data do not show any evidence for that. This is
hardly surprising, since the fit of the estimates ofDh predicts
Dh=0.8s6d310−3 for A22= 5

3, which is smaller than the
bound Dh,3310−3 obtained on latticesLø100. A poste-
riori , however, one can convince oneself of the first-order
nature of the transition by considering the estimated values
of n. For instance, the derivative of the Binder parameterB1
with respect tob is expected to scale at the critical point as
B18,Ld for a first-order transition. In our analyses of the data
with A22ù2, we find that, if one estimatesB18 with B18,Lu,
the effectiveu rapidly increases towardsd as the considered
set of sizes increases, even when a double peak in the distri-
butions is not yet evident. ForA22= 5

3, if we use the data with
Lù60 we obtain 1/u=0.47s2d, while including only the data
with Lù80 gives 1/u=0.42s4d: the exponentu is increasing
towards the expected valueu=d=3. At a second-order tran-
sition, one expectsB18,L1/n, and thus the previous results
would give a quite small value forn, definitely incompatible
with the FT predictions. Therefore, even if we do not have
direct evidence, the data forA22= 5

3 are better explained by a
very weak first-order transition than by a second-order one.

The presence of a tricritical point atA22
* =1.52s6d is fur-

ther supported by the results forbc reported in Table II and
plotted in Fig. 13 versusA22−A4. Equation(4.26) implies
that, sufficiently close to the tricritical pointA22

* , the values
of bc along the first-order transition line behave as

bc − bc
* < −

a2

a1
sA22 − A22

* d +
1

a1
F 1

c1
sA22 − A22

* dGy1/y2

,

s4.32d

while, along the second-order transition line, we have simi-
larly

bc − bc
* < −

a2

a1
sA22 − A22

* d +
1

sa1
F 1

c2
sA22 − A22

* dGy1/y2

.

s4.33d

Equations(4.32) and (4.33) strictly hold only if y1/y2,2,
otherwise one should also include additional integer powers
sA22−A22

* dn, n,y1/y2, with coefficients that are identical for
the first-order and second-order transition line.

The linear dependence ofbc on A22 for A22*A22
* is

clearly observed in Fig. 13. A linear fit of the three points
that are closest toA22

* and satisfyA22.A22
* gives a2/a1<

−0.068 with a reasonablex2. Note that the deviations from a
straight line are very small, indicating that the corrections,
and in particular the nonanalytic ones, are tiny. Figure 13
also shows the value ofbc for A22=7/5,A22

* , i.e., bc
=0.766 15s15d, which will be determined in the next subsec-
tion, and for the O(4) f4 model obtained by settingA22
=A4=1, which is given bybc=0.7154s1d.78 Both values, and
in particular the one forA22=7/5, differ significantly from
the linear extrapolation of the data forA22.A22

* . This behav-
ior of bc as a function ofA22 is naturally explained by the
presence of a tricritical point atA22

* =1.52s6d, and is more
evidence of the fact that the pointA22=7/5 belongs to the
second-order transition region. Indeed, in this scenario the
nonanalytic corrections are differentsuc2uÞ uc1ud from those
observed in the first-order transition region. Thus, the ob-
served value forA22=7/5 can beexplained by the presence
of nonanalytic corrections to the linear behavior that are sub-
stantially largersuc2u! uc1ud than those observed on the side
of the first-order transition line. The data shown in Fig. 13
can hardly be explained by assumingA22

* =1, i.e., a first-order
transition line extending down to the O(4) point A22=A4=1.
Indeed, in this case the linear behavior should extend down
to the O(4) point, but this is clearly contradicted by the val-
ues ofbc obtained forA22=7/5 andA22=1. Note also that
the same RG arguments leading to Eqs.(4.26), (4.27), and
(4.33) tell us that the values ofbc along the continuous tran-
sition line must approach linearly the O(4) point A22=A4, but
with a slope different from the one observed at the tricritical
point A22

* =1.56s2d.
In conclusion, we have shown that, in the quartic param-

eter space withA22.A4, there is a region in which the tran-
sition is continuous and therefore belongs to the Os2d
^ Os2d universality class controlled by the Os2d ^ Os2d FP
found in the FT approach of Sec. II.

Finally, we should note that, in the FT studies, the basin
of attraction of the Os2d ^ Os2d FP includes all theories with
s,s* and s* *1, while heresL

* =0.41s4d. As we have al-
ready discussed before, in spite of the similar definition,sL
should not be identified withs and we havesL→s only for a
weakly coupled theory, i.e., forA4→0 and A22→0. Here,

FIG. 13. The inverse critical temperaturebc vs A22. The vertical
lines indicate the estimate ofA22

* with its error. The data for
A22.A22

* =1.52s6d are indicated by circles, while the ones for
A22,A22

* are indicated by a square. Errors are much smaller than
the size of the symbols. The dashed line shows the linear fit of the
three data forA22.A22

* that are closest toA22
* .
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A4=1, so that we are far from this limiting case. In any case,
the FT results imply thatsL

* increases ifA4 decreases. The
critical valuesL

* is also expected to increase if longer-range
interactions are added. Indeed, as shown in Appendix B, we
expect 0.71&sL

* ,1.23 for medium-range models with
A4=1.

F. Determination of the critical quantities for A22= 7
5

In this section, we analyze the results forA22= 7
5. On the

basis of the analysis presented in the previous section, in this
case the transition should be of second order. In the FSS
limit, we expect the following behavior:

R< fRfsb − bcdL1/ng, s4.34d

x < L2−hfxfsb − bcdL1/ng, s4.35d

M < L−b/nfMfsb − bcdL1/ng, s4.36d

whereR is any RG invariant quantity(we will take R to be
B1, B2, or lj). These scaling forms are valid forb→bc, L
→` at fixed argumentsb−bcdL1/n. From Eq.(4.34) we ob-
tain moreover

dR

db
< L1/nfR8fsb − bcdL1/ng. s4.37d

Equations(4.35)–(4.37) can be used to determineh, b /n,
andn. It is also possible to avoid the use of the two unknown
quantities, bc and n. We use Eq.(4.34) to expresssb
−bcdL1/n in terms ofR, and rewrite all equations as

x < L2−hgx,RsRd, s4.38d

M < L−b/ngM,RsRd, s4.39d

dR1

db
< L1/ngR1,R2

sR2d, s4.40d

whereR is a RG-invariant quantity.
Let us begin by performing a direct analysis ofB1, B2, and

lj. We fit our results corresponding to 20øLø120 and
0.755øbø0.767(see Fig. 14) by using Eq.(4.34). For this
purpose, we must somehow parametrize the scaling function
fRsxd. We use a simple polynomial expression, writing

fRsxd = o
n=0

p

anx
n. s4.41d

The orderp is chosen in the following way. For a given set
of data we perform a nonlinear fit, increasing each timep
until the x2 changes by approximately 1 by going fromp to
p+1. Of course, one should also worry about scaling correc-
tions and crossover effects. In order to detect them, we per-
form the fit several times, each time including only the data
corresponding to lattice sizesL larger than some valueLmin.
The corresponding results are reported in Table III.

The quality of the fits ofB1 and lj is reasonably good
sx2/DOF<1d, while for B2 one should certainly discard the

results withLmin=20 and 40. As far as the estimates ofn are
concerned, we observe in all cases a systematic drift. The
analyses ofB1 and lj give first n<0.69–0.71 and then, by
using only the data with Lmin=80, one obtains n
<0.66–0.67. On the other hand, fits ofB2 give first n
<0.66 and then, forLmin=80,n<0.59, although with a large
error of ±0.03. Clearly the data are affected by large scaling
corrections and, apparently, even on these relatively large
lattices one is not able to obtain a precise estimate ofn, but
only an upper boundn&0.67. In any case, if we assume that
the observed discrepancies give a reasonable estimate of the
systematic error, the results withLmin=80 give

FIG. 14. Plots oflj, B1, andB2 for A22= 7
5. The lines are drawn

to guide the eye.
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n = 0.63s7d, s4.42d

which includes the estimates fromB1, B2, and lj with their
errors. This is fully compatible with the FT estimates.

The results obtained from the analysis can be interpreted
in terms of a crossover due to the presence of a nearby O(4)
FP. Indeed, the observed behavior rensembles quite closely
what is observed in field theory for, say,s= 1

4. The effective
exponentn is first close to the O(4) value and then decreases
towards its asymptotic value. This interpretation is somehow
supported by the observed values ofB1

* and lj
* , whereR*

=Rsbcd. They are close to the corresponding O(4) ones:61

lj
* <0.547,B1

* =1.0945s2d. Only for B2 do we observe a rela-
tively large difference since in the O(4) case B2

* = 1
12B1

*

=0.091 21s2d. This may explain why the estimates ofn from
B2 are those that most differ from the O(4) ones. Of course,
one may not exclude that the asymptotic valuesB1

* andlj
* are

close to the O(4) estimates.
As a check, we have also considered the derivatives ofB1,

B2, and lj and we have used Eq.(4.40). We find that in all
cases the best fit(smallestx2/DOF) is obtained by taking
R1=R2 with results that are(not surprisingly) fully compat-
ible with those obtained in the previous analysis. Fits with
R1ÞR2 are somewhat worse but always show the same pat-
tern. While for small values ofLmin, n varies between 0.64
and 0.70, depending on the choice ofR1 and R2, for Lmin
=80 the analyses indicate a smaller value, fully compatible
with the result reported above.

The analyses ofB1, B2, and lj also provide estimates of
bc. There is a clear upward trend in the estimates obtained
from B2, as can be also understood from Fig. 14: the value at
which the linesB2sb ,Ld at fixedL cross moves significantly
towards higher values ofb as L increases. The estimates
obtained fromB1 and lj are apparently stable, but not com-
patible within the tiny statistical errors, indicating that there
are strong(compared to the statistical errors) crossover ef-
fects, as observed forn. If we assume that the discrepancies
among the estimates obtained from the analyses of the three
RG-invariant quantities give a reasonable estimate of the

systematic error, an estimate ofbc that includes all results is

bc = 0.766 15s15d. s4.43d

We finally computeh andb /n from the analysis ofx andM.
We have performed the analyses by using Eqs.(4.38) and
(4.39). The analyses usingR= lj are well behaved and show
little dependence onLmin, leading to the estimates

h = 0.045s10d,
b

n
= 0.0525s10d. s4.44d

The corresponding scaling plots are reported in Fig. 15. On
the other hand, we observe systematic deviations if we use
R=B1 or B2. The goodness of the fit,x2/DOF, is a factor of
10 larger than for the analysis withR= lj, and the estimates
vary significantly, between −0.1 and 0.2shd and 0.45 and 0.6
sb /nd.

The results(4.44) satisfy the scaling relation 2b /n=1
+h quite precisely. They can be compared with the FT re-
sults: h=0.09s1d (MZM scheme, Ref. 19) and h=0.09s4d
(MS scheme). Although larger, theMS estimate is compat-
ible within error bars. A discrepancy is observed for the
MZM result, whose error might have been underestimated
(after all, the MZM series are not Borel summable). Of
course, it is also possible that scaling corrections play an
important role, as is the case in the analyses ofB1, B2, andlj.
In this case, we expect the MC result to be influenced by the
presence of the nearby O(4) FP. Such an interpretation is
supported by the fact that the estimatedh is close to the O(4)
resulth=0.0365s10d (Ref. 61).

Finally, we analyzed the specific heat by using

C = La/nfsRd, s4.45d

which is valid as long asa.0. We do not expect this fit to
be very precise since we are neglecting the analytic contri-
bution that gives rise to corrections of orderL−a/n, which are
expected to be sizeable sincea is small. All fits have a poor
x2. Only the fit withR= lj andLmin=80 hasx2/DOF of order
1. Fits usinglj give estimates ofa /n that decrease asLmin

TABLE III. Analysis of the RG-invariant quantitiesR, R=B1, B2, and lj, by using Eq.(4.34). We report
n, bc, andR* = Rsbcd.

R Lmin x2/DOF n bc R*

B1 20 78/70 0.728(4) 0.766284(8) 1.1111(6)

40 63/54 0.716(7) 0.766278(11) 1.1121(9)

60 40/38 0.711(14) 0.766281(17) 1.1121(16)

80 24/20 0.665(27) 0.766260(25) 1.1148(30)

B2 20 305/69 0.662(5) 0.765890(7) 0.0643(2)

40 92/54 0.639(9) 0.765992(10) 0.0604(4)

60 51/38 0.650(17) 0.766044(15) 0.0580(7)

80 25/21 0.587(33) 0.766038(19) 0.0585(9)

lj 20 117/71 0.687(2) 0.766153(3) 0.5692(6)

40 61/55 0.692(2) 0.766168(5) 0.5726(10)

60 29/37 0.694(5) 0.766181(8) 0.5770(19)

80 9/18 0.673(13) 0.766168(12) 0.5741(39)
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increases, varying between 0.20 and 0.16. Fits usingB1 show
the same decreasing trend with 0.19&a /n&0.20. Fits using
B2—they have a very large x2, x2/DOF=14 for
Lmin=80—show a more erratic behavior withLmin and give
0.14&a /n&0.18. We quote as a final result that obtained by
using lj andLmin=80:

a

n
= 0.16s3d. s4.46d

The error has been chosen such that it includes all estimates
with Lmin=80. Using hyperscaling, Eq.(4.46) gives n
=0.63s1d, in good agreement with the result reported above,
anda=0.10s2d. A scaling plot is reported in Fig. 16.

The very largex2/DOF of the above-reported analysis is
probably due to the fact that the analytic contribution to the
specific heat is neglected. We have thus performed a second
set of analyses using

C = La/nf1sRd + f2sbd s4.47d

andR=j /L. As before, we have used polynomials forf1sxd
and f2sxd. Fifth-order polynomials allow us to obtain
x2/DOF<1 even for Lmin=20. We obtaina /n=−0.10s6d,
0.01(9), and 0.16(25) for Lmin=20, 40, and 60, respectively.
The results for the largestLmin are compatible with the esti-
mates reported above. However, the very large errors indi-
cate that our data are not precise enough and that our set of

values ofL is too small to disentangle the analytic back-
ground from the singular behavior. This probably means that
the error reported in Eq.(4.46) should not be taken too seri-
ously and is most likely underestimated.

V. CONCLUSIONS

In this paper, we investigated the critical behavior of
three-dimensional models with symmetry Os2d ^ OsNd de-
scribed by the FT Hamiltonian(1.1) in the casev0.0, which
corresponds to the symmetry-breaking pattern Os2d ^ OsNd
→Os2d ^ OsN−2d (the casev0,0 has been discussed in de-
tail in Ref. 11).

First, we considered the FT perturbative approach. The
analysis of the five-loop series in theMS scheme withoute
expansion provides strong evidence for the presence of a
stable FP withv.0 for N=2 andN=3, and therefore for the
existence of the corresponding three-dimensional Os2d
^ OsNd universality classes. This result confirms the conclu-
sions of Ref. 19, in which a stable FP withv.0 was found
in the three-dimensional MZM scheme. Note that these FT
perturbative analyses disagree with the conclusions of Refs.
5, 30, and 31, in which no FP was found by using a nonper-
turbative RG approach. Moreover, theMS scheme withoute
expansion allowed us to obtain fixed-dimension results at
any d. We recovered thee-expansion results sufficiently
close to four dimensions and obtained a full picture of the
fate of the different FPs asd varies from four to three dimen-
sions.

In order to confirm the existence of a new universality
class, we have performed a MC study of a lattice discretiza-
tion of Hamiltonian(1.1) for N=2. The purpose is to identify
a parameter region in which the transition is of second order
with the expect symmetry-breaking pattern, Os2d ^ Os2d
→Os2d. A detailed analysis of the critical behavior of the
model (1.2) for A4=1 and A22.A4 shows the following
phase diagram. ForA22.A22

* =1.52s6d, the model has a first-
order transition. Such a transition is easily identified for
A22*3—the energy and the magnetization show two peaks
already forL<10 with reduced latent heatDE/Tc larger than
0.1. The first-order transition becomes weaker asA22 de-
creases, the latent heat vanishing at the tricritical pointA22

FIG. 15. Plots ofx /L2−h (above) and ofMLb/n (below) vs j /L.
Hereh=0.045 andb /n=0.525.

FIG. 16. Plot ofC/La/n vs j /L. Herea /n=0.16.
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=A22
* . For 1=A4,A22,A22

* , the transition is continuous. Its
critical behavior is expected to belong to the three-
dimensional Os2d ^ Os2d universality class and therefore to
be controlled by the stable FP of the Os2d ^ Os2d theory
found within the FT methods. We have also performed simu-
lations of the lattice model forA22= 7

5 in order to identify the
critical behavior. All results are definitely compatible with
the expected behavior at a second-order transition. We are,
however, unable to provide precise estimates of the critical
exponents since we observe strong crossover effects, prob-
ably due to the presence of the nearby O(4) FP. The effective
exponents computed in the MC simulation resemble those
observed in the FT model for smalls;v0/u0, see Fig. 7,
indicating that crossover effects play an important role in
these systems and make difficult, both numerically and ex-
perimentally, a precise determination of the asymptotic criti-
cal behavior.

The FT Hamiltonian(1.1) is supposed to describe the
critical behavior of STA’s and of helimagnets.3 Inelastic
neutron-scattering experiments show that STA’s can be mod-
eled by three-component spin variablessW associated with
each site of a stacked triangular lattice and by the Hamil-
tonian

HSTA = Ji o
kvwlxy

sWsvd ·sWswd + J' o
kvwlz

sWsvd ·sWswd + Do
v

s3svd2.

s5.1d

The first sum is over nearest-neighbor pairs within the trian-
gular layers(xy planes) with an antiferromagnetic coupling
Ji .0; the second one is over orthogonal interlayer nearest
neighbors. If the uniaxial term is positive, one has an effec-
tive two-component theory. Numerically, Hamiltonian(5.1)
has been much studied in the limiting casesD= +` and D
=0. In the first case, the spins are confined to a plane, i.e.,
one is effectively consideringXY spins. There is now evi-
dence thatXY STA’s undergo first-order transitions, at least
for uJ' /Jiu not too small. Indeed, first-order behavior has
been observed forJ' /Ji=−3

4 (Ref. 33), J' /Ji=−1 (Ref. 34),
andJ' /Ji=−10 (Ref. 32). The numerical results indicate that
the first-order transition becomes stronger asuJ' /Jiu in-
creases, and thus we can conclude that all these models have
first-order transitions, at least foruJ' /Jiu* 3

4. It should, how-
ever, be noted that the latent heat is very small. ForJ' /Ji

=−3
4 and J' /Ji=−1, DE/Tc<7310−3.33,34 This means that

small modifications of the lattice model may turn the first-
order transition into a second-order one. In particular, it is
not clear whether, on the basis of these numerical simula-
tions of theXY STA’s, we should expect first-order transi-
tions also for experimental easy-plane systems, which do not
satisfy the conditionD@Ji , uJ'u. For instance, in the case of
CsMnBr3 we have1 Ji <0.0018 meV,J'=0.88 meV, andD
=0.013 meV, while in other compounds such as CsVX3 sX
=Cl,Br, Id one observes1 D<Ji !J'. Os2d ^ Os2d critical
behavior is also expected in easy-axis materialssD,0d in
the presence of a(large) magnetic field along the easy direc-
tion.

Experiments on STA’s favor a second-order transition, al-
though the estimates ofb do not satisfy the inequalityb

ùn /2 that is expected on the basis of unitarity.31,5 Of course,
this could be explained by the presence of a weak first-order
transition. A second possibility is that the experimental sys-
tems are in the basin of attraction of the stable FP, but close
to the boundary of the stability region. If this is the case, on
the basis of the FT crossover analysis, one expects strong
crossover effects; see, for example, the results presented in
Fig. 7 for s<1. Thus, the exponentsb and n that are mea-
sured experimentally may well differ from their asymptotic
value. For what concerns helimagnets, their critical behavior
is somewhat different from that observed in STA’s. The ex-
ponentb is always very close to the O(4) value, whilea
varies between 0.1 and 0.3. These results are strongly remi-
niscent of our MC ones withA22= 7

5. In that case,b /n was
close to the O(4) value anda<0.10. Thus, the helimagnetic
results can be explained by the presence of the nearby O(4)
FP that controls the critical behavior forutu*10−3.

Finally, we would like to conclude with some remarks on
the experimental relevance of the Os2d ^ Os3d universality
class. Such a critical behavior is expected in some easy-axis
materials that have a small uniaxial anisotropy,1 for instance
in RbNiCl3, VCl2, and VBr2. However, the reduced-
temperature region in which Os2d ^ Os3d behavior might be
observed is usually very small, i.e., fort*10−2, because
these systems are expected to crossover to anXY critical
behavior for t&10−2.1,3 Therefore, the asymptotic Os2d
^ Os3d critical behavior can be hardly observed in these ma-
terials and significant differences between theoretical predic-
tions and experimental results should not be unexpected. As
argued in Ref. 79, and usually assumed in the literature, the
Os2d ^ Os3d critical behavior should also be experimentally
realized in easy-axis STA’s, such as CsNiCl3 and CsNiBr3, at
the multicritical point observed in the presence of an external
magnetic field along the easy axis, or at the critical concen-
tration of mixtures of easy-axis and easy-plane materials, for
instance in CsMnsBrxI1−xd3.

80 We note that the identification
of the multicritical point with the Os2d ^ Os3d universality
class is not obvious and should be theoretically analyzed.
The critical behavior at the multicritical point in a magnetic
field should be described by the stable FP of the most general
LGW theory with symmetry Os2d ^ fZ2 % Os2dg.81 In Ref.
79, only the quadratic terms have been considered and dis-
cussed, but the relevant LGW Hamiltonian has also addi-
tional quartic terms beside those appearing in the Os2d
^ Os3d Hamiltonian. As a consequence, the Os2d ^ Os3d FP,
describing a critical behavior with an enlarged Os2d ^ Os3d
symmetry, determines the asymptotic behavior at the multi-
critical point only if it remains stable with respect to the
additional quartic terms breaking Os2d ^ Os3d to Os2d
^ fZ2 % Os2dg. The critical behavior at the multicritical point
is determined by the stable FP of the RG flow of the com-
plete LGW theory with symmetry Os2d ^ fZ2 % Os2dg. This
issue was recently investigated in Ref. 81 by a FT analysis
based on five-loop calculations within theMS and MZM
schemes. Unfortunately, this study was unable to establish
the stability properties of the Os2d ^ Os3d FP. In any case, it
did not provide evidence for any other stable FP. Thus, on
the basis of these FT results, the transition at the multicritical
point is expected to be either continuous and controlled by
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the Os2d ^ Os3d fixed point or to be of first order. Similar
arguments can be applied to the multicritical point in mix-
tures of easy-axis and easy-plane materials, such as
CsMnsBrxI1−xd3. We believe that the identification of the
multicritical behavior with the Os2d ^ Os3d universality class
is even more questionable in this case, since, beside the ad-
ditional quartic terms considered above, there are other per-
turbations related to the quenched randomness.
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APPENDIX A: THE FIVE-LOOP SERIES
OF THE MS SCHEME

In the MS scheme37 one sets

f = fZfsu,vdg1/2fR, sA1d

u0 = AdmeZusu,vd,

v0 = AdmeZvsu,vd,

where the renormalization functionsZf, Zu, andZv are de-
termined from the divergent part of the two- and four-point
one-particle irreducible correlation functions computed in di-
mensional regularization. They are normalized so that

Zfsu,vd<1, Zusu,vd<u, andZvsu,vd<v at tree level. Here
Ad is a d-dependent constant given byAd=2d−1pd/2Gsd/2d.
Moreover, one defines a mass renormalization constant
Ztsf ,gd by requiringZtG

s1,2d to be finite when expressed in
terms ofu and v. HereGs1,2d is the one-particle irreducible
two-point function with an insertion of12f2. Theb functions
are computed from

busu,vd = mU ]u

]m
U

u0,v0

, bvsu,vd = mU ]v
]m
U

u0,v0

, sA2d

while the RG functionshf andht associated with the critical
exponents are obtained from

hf,tsf,gd = U] log Zf,t

] log m
U

u0,v0

. sA3d

The b functions have a simple dependence ond, indeed

bu = sd − 4du + Busu,vd,

bv = sd − 4dv + Bvsu,vd, sA4d

where the functionsBusu,vd andBvsu,vd are independent of
d. Also the RG functionshf,t are independent ofd. The
standard critical exponents are related tohf,t by

h = hfsu * , v * d, n = f2 + htsu * , v * d − hfsu * , v * dg−1.

sA5d

We report the five-loop series17 for the casesN=2 and 3. The
series forN=2 are

Busu,vd = 2u2 − 1
3uv + 1

6v2 − 13
6 u3 + 11

18u
2v − 13

24uv2 + 5
36v3 + 6.95758u4 − 2.95970u3v + 3.49036u2v2 − 1.45080uv3

+ 0.0939364v4 − 33.3119u5 + 18.9022u4v − 25.3312u3v2 + 14.5844u2v3 − 3.31596uv4 + 0.260717v5 + 197.427u6

− 140.525u5v + 211.453u4v2 − 152.787u3v3 + 56.2903u2v4 − 10.8790uv5 + 0.767937v6,

Bvsu,vd = 2uv − 2
3v2 − 17

6 u2v + 29
18uv2 − 11

72v3 + 10.0721u3v − 8.38186u2v2 + 2.73239uv3 − 0.272799v4 − 53.1466u4v

+ 56.7468u3v2 − 29.2643u2v3 + 7.15431uv4 − 0.598922v5 + 341.414u5v − 444.234u4v2 + 311.112u3v3

− 120.254u2v4 + 22.4575uv5 − 1.52571v6,

hfsu,vd = 1
12u

2 − 1
36uv + 1

48v2 − 1
24u

3 + 1
48u

2v − 5
288uv2 + 7

1728v
3 + 0.112847u4 − 0.0752315u3v + 0.0998264u2v2 − 0.041956uv3

+ 0.00126591v4 − 0.41016u5 + 0.3418u4v − 0.466487u3v2 + 0.271787u2v3 − 0.0630416uv4 + 0.00479535v5,

htsu,vd = − u + 1
6v + 1

2u2 − 1
6uv + 1

8v2 − 59
48u

3 + 59
96u

2v − 97
192uv2 + 401

3456v
3 + 4.13719u4 − 2.75813u3v + 2.95416u2v2 − 1.18534uv3

+ 0.121022v4 − 18.2814u5 + 15.2345u4v − 19.0871u3v2 + 10.7601u2v3 − 2.69595uv4 + 0.244579v5.

The series forN=3 are

Busu,vd = 7
3u2 − 2

3uv + 1
3v2 − 8

3u3 + 11
9 u2v − 13

12uv2 + 5
18v3 + 9.07446u4 − 6.28514u3v + 7.35688u2v2 − 2.98029uv3 + 0.149100v4

− 46.7683u5 + 42.8264u4v − 56.8289u3v2 + 32.0271u2v3 − 6.92247uv4 + 0.503549v5 + 296.166u6 − 338.69u5v

+ 506.708u4v2 − 362.366u3v3 + 131.029u2v4 − 24.7085uv5 + 1.71145v6,
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Bvsu,vd = 2uv − 1
2v2 − 28

9 u2v + 14
9 uv2 − 1

36v3 + 11.1573u3v − 8.36797u2v2 + 2.43934uv3 − 0.264816v4 − 62.5357u4v

+ 62.5357u3v2 − 30.8196u2v3 + 7.59503uv4 − 0.660444v5 + 422.235u5v − 527.794u4v2 + 364.748u3v3

− 141.636u2v4 + 25.7555uv5 − 1.63935v6,

hfsu,vd = 1
9u2 − 1

18uv + 1
24v2 − 7

108u
3 + 7

144u
2v − 11

288uv2 + 13
1728v

3 + 0.165895u4 − 0.165895u3v + 0.228588u2v2 − 0.0935571uv3

− 0.00108507v4 − 0.709208u5 + 0.88651u4v − 1.19506u3v2 + 0.674671u2v3 − 0.144646uv4 + 0.00961789v5,

htsu,vd = − 4
3u + 1

3v + 2
3u2 − 1

3uv + 1
4v2 − 52

27u
3 + 13

9 u2v − 9
8uv2 + 191

864v
3 + 7.00217u4 − 7.00217u3v + 7.32279u2v2 − 2.78612uv3

+ 0.227593v4 − 33.6900u5 + 42.1125u4v − 51.8428u3v2 + 28.3540u2v3 − 6.77118uv4 + 0.599424v5.

The critical exponents associated with the chiral degrees of freedom can be determined from the RG dimension of the chiral
operatorCckdlsxd=fcksxdfdlsxd−fclsxdfdksxd. For this purpose, we computed the renormalization functionZcsu,vd by requir-
ing ZcG

sc,2d to be finite when expressed in terms ofu andv. HereGsc,2d is the one-particle irreducible two-point functionGsc,2d

with an insertion of the operatorCckdl. Then, one defines the RG function

hcsu,vd = U ] log Zc

] log m
U

u0,v0

. sA6d

The resulting series forN=2 andN=3 cases are, respectively,

hcsu,vd = − 1
3u + 1

2v + 5
18u

2 − 7
18uv + 5

72v2 − 193
432u

3 + 307
288u

2v − 353
576uv2 + 163

3456v
3 + 1.51005u4 − 3.99379u3v + 3.36615u2v2

− 1.05138uv3 + 0.0947443v4 − 6.32935u5 + 19.2654u4v − 21.2447u3v2 + 10.7984u2v3 − 2.47513uv4 + 0.197296v5,

and

hcsu,vd = − 1
3u + 1

2v + 1
3u2 − 4

9uv + 1
18v2 − 55

108u
3 + 5

4u2v − 205
288uv2 + 55

1728v
3 + 1.93436u4 − 5.12306u3v + 4.24956u2v2

− 1.26059uv3 + 0.105233v4 − 8.73201u5 + 26.6393u4v − 29.198u3v2 + 14.5119u2v3 − 3.18347uv4 + 0.246754v5.

The chiral crossover exponentfc can be determined by using
the RG scaling relation

fc = nf2 + hcsu * , v * d − hfsu * , v * dg. sA7d

We have computedhcsu,vd for generic values ofN. Thus,
we have been able to compute the expansion offc in powers
of e for any N. We have compared the result with the large-
N expression of Ref. 82, finding full agreement.

APPENDIX B: MEDIUM-RANGE MODELS

In this Appendix, we consider ad-dimensional theory on
a hypercubic lattice with general Hamiltonian

H = −
b

2o
x,y

Jrsx − ydo
ab

wx
abwy

ab + o
x

Vswxd, sB1d

where wx2
ab are M 3N matrices,Vswxd is an OsMd ^ OsNd

invariant function, and the sums overx and y are extended
over all lattice points. The couplingJrsxd depends on a pa-
rameterr. For instance, one may take the explicit form(3.9),
but this is not necessary for the discussion that will be pre-
sented below. Indeed, one can consider more general families
of couplings, as discussed in Sec. III of Ref. 63. The relevant

property is thatJrsxd couples all lattice points forr→`, i.e.,
that for r→` one recovers a mean-field theory.

Models like Eq. (B1) are called medium-range models
and admit an interesting scaling limit called the critical
crossover limit. IfR parametrizes the range of the interac-
tions, cf. Eq.(3.10), andbcsRd is the critical temperature as a
function of R, then for R→`, t;fbcsRd−bg /bcsRd→0 at
fixed t̃;R2d/s4−ddt, critical quantities show a scaling behavior.
For instance, the susceptibilityxsb ,Rd and the correlation
lengthjsb ,Rd scale62 according to Eq.(3.11). The functions
fxst̃d and fjst̃d are directly related to the crossover functions
Fxst ,sd and Fjst ,sd computed in field theory, cf. Eq.
(3.12).63,64 The purpose of this section is the computation of
the nonuniversal constantsmx, mj, a, and s. Interestingly
enough, if the rangeR is defined according to Eq.(3.10),
they do not depend on the explicit form of the couplingJsxd,
but only on the potentialVswd. The dependence onJsxd is
effectively encoded in the variableR.

The calculation can be done by a straightforward gener-
alization of the results of Ref. 63. Following Sec. 4.1 of Ref.
63, we first perform a transformation83,84—we use matrix
notation and drop the subscriptr from Jrsxd to simplify the
notation—rewriting85
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expSb

2
wJwD = sdetbJd−NM/2E dNMf

s2pdNM/2

3expS−
1

2b
fJ−1f + fwD , sB2d

where f is an N3M matrix. Then, we define a function
Asfd by requiring

zeAsfd ; E dNMwe−Vswd+fw, sB3d

wherez is a normalization factor ensuringAs0d=0. We need
to compute the small-f expansion ofAsfd. For this purpose,
we define the integrals

I2n,1 =E dNMwe−Vswdsw2dn, sB4d

I2n,2 =E dNMwe−Vswdsw2dn−2 3 o
ab

N

o
cd

M

wacwadwbcwbd,

sB5d

and fn,m; In,m/ I0,1. Then, a straightforward calculation gives

Asfd =
ā2,1

2
f2 +

ā4,1

4!
sf2d2

+
ā4,2

4! FSo
ab

N

o
cd

M

facfadfbcfbdD − sf2d2G + Osf6d,

sB6d

where

ā2,1=
1

NM
f2,1, sB7d

ā4,1=
3sf4,1+ 2f4,2d

MNsM + 2dsN + 2d
−

3

N2M2 f2,1
2 , sB8d

ā4,2= 6
sMN + 2df4,2− sM + N + 1df4,1

MNsM − 1dsN − 1dsM + 2dsN + 2d
. sB9d

The expansion ofAsfd is all we need to compute the critical
crossover limit. Indeed, it is possible to show thatw correla-
tions are directly related tof correlations.63 For instance,

kwx · wyl = −
1

b
sĴ−1dxy +

1

b2o
wz

sĴ−1dxwsĴ−1dyzkfw · fzl.

sB10d

In the critical crossover limit, the first term on the right-hand
side represents a subleading correction and can be neglected.
This equation implies thatxw= ā2,1

2 xf, where we have used
the fact thatbcfoxJsxdg=1/ā2,1+OsR−dd.

Moreover,f correlations can be computed by using the
following continuum theory:

H =E ddxH1

2
ā2,1R

2o
m

s]mfd2 +
1

2
ā2,1tf

2 −
ā4,1

4!
sf2d2

−
ā4,2

4! FSo
ab

N

o
cd

M

facfadfbcfbdD − sf2d2GJ , sB11d

with a proper mass renormalization that is discussed in detail
in Ref. 63. This identification gives necessary conditions in
order to observe a second-order OsMd ^ OsNd transition. The
bare parameters should belong to the stability region, which
implies ā4,1,0 andā4,1−

1
2ā4,2,0, and should be in the at-

traction domain of the OsMd ^ OsNd FP(assuming it exists),
which implies(at least) ā4,2,0.

The above-reported results allow us to compute the non-
universal constants appearing in Eq.(3.12).86 We obtain

mx = ā2,1
2 mj

2 =
ā2,1

5

ā4,1
2 , sB12d

a =
ā2,1

4

ā4,1
2 , sB13d

s=
ā4,2

ā4,1

. sB14d

In Sec. IV we will be interested in the specific potential(3.7)
for N=M =2. In this case

I2n,1 = p2E
0

`

yn+1dyE
0

1

dx3 expS− ry −
U0

24
y2 +

V0

48
x2y2D ,

sB15d

while I2n,2 can be obtained by taking derivatives ofI2n,1 with
respect toV0 and U0. Exact results can be obtained forV0,
U0→0 at fixed sL;V0/U0. It is easy to verify thats
< fssLd /U0→0 if r ,0 ands→sL if r .0, as expected in a
weakly coupled system. We can also compute the nonuniver-
sal constants and, in particular,s for the parameter values
used in the MC simulation. For instance, we can consider
two cases:(a) A22=2, which corresponds tor =−1, U0=36,
and V0=24 [cf. Eq. (4.3)]; (b) A22= 7

5, i.e., r =−1, U0
=144/5, and V0=48/5. For case(a), we obtain ā4,1=
−0.037 043 8 andā4,2=−0.033 648 3, which satisfy the nec-
essary conditions reported above. Correspondingly,s
=0.908 337,a=2.514 97,mx=0.609 569, andmj=3.221 22.
For case (b), we obtain ā4,1=−0.041 288 7, ā4,2
=−0.017 552 1,s=0.425 106, a=2.823 53, mx=0.743 715,
andmj=3.274 08. It is interesting to note that for the family
of Hamiltonians considered in Sec. IV—those with
A4=1—we always haves.sL, the differences−sL decreas-
ing assL→0. The exact mapping between the lattice model
and the FT one also allows us to determine bounds onA22

* for
A4=1. Sinces=1 corresponds toA22<2.13 ssL<0.72d and
s=2 to A22<4.17 ssL<1.23d, the FT bound 1&s* ,2 im-
plies 2.13&A22

* ,4.17 or, equivalently, 0.72&sL
* ,1.23.

CRITICAL BEHAVIOR OF Os2d ^ OsNd SYMMETRIC MODELS PHYSICAL REVIEW B70, 174439(2004)

174439-21



*Email address: calabres@df.unipi.it
†Email address: parrucci@df.unipi.it
‡Email address: Andrea.Pelissetto@roma1.infn.it
§Email address: vicari@df.unipi.it
1M.F. Collins and O.A. Petrenko, Can. J. Phys.75, 605 (1997).
2P. de V. Du Plessis, A.M. Venter, and G.H.F. Brits, J. Phys.:

Condens. Matter7, 9863(1995).
3H. Kawamura, J. Phys.: Condens. Matter10, 4707(1998); Can. J.

Phys. 79, 1447(2001); cond-mat/0202109.
4A. Pelissetto and E. Vicari, Phys. Rep.368, 549 (2002).
5B. Delamotte, D. Mouhanna, and M. Tissier, Phys. Rev. B69,

134413(2004).
6H. Kawamura, Phys. Rev. B38, 4916 (1988); 42, 2610(E)

(1990).
7If we write the order parameter as a matrixfaA, a=1, 2, A

=1, . . . ,N, the symmetries aref→LfR1 in the high-
temperature phase andf→LTfsL % R2d in the low-temperature
phase. HereLPOs2d, R1POsNd, andR2POsN−2d. Note that
the Os2d subgroup is different in the two phases.

8D. Mukamel, Phys. Rev. Lett.34, 481 (1975).
9D.R.T. Jones, A. Love, and M.A. Moore, J. Phys. C9, 743

(1976).
10D. Bailin, A. Love, and M.A. Moore, J. Phys. C10, 1159(1977).
11M. De Prato, A. Pelissetto, and E. Vicari, cond-mat/0312362,

Phys. Rev. B(to be published).
12S.A. Antonenko and A.I. Sokolov, Phys. Rev. B49, 15 901

(1994).
13S. Sachdev, Ann. Phys.(N.Y.) 303, 226 (2003); Y. Zhang, E.

Demler, and S. Sachdev, Phys. Rev. B66, 094501(2002).
14K.G. Wilson and M.E. Fisher, Phys. Rev. Lett.28, 240 (1972).
15G. Parisi, Cargèse Lectures(1973); J. Stat. Phys.23, 49 (1980).
16S.A. Antonenko, A.I. Sokolov, and V.B. Varnashev, Phys. Lett. A

208, 161 (1995).
17P. Calabrese and P. Parruccini, Nucl. Phys. B679, 568 (2004).
18A. Pelissetto, P. Rossi, and E. Vicari, Nucl. Phys. B607, 605

(2001).
19A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. B63, 140414(R)

(2001).
20P. Calabrese, P. Parruccini, and A.I. Sokolov, Phys. Rev. B66,

180403(R) (2002); 68, 094415(2003).
21Y. Holovatch, D. Ivaneyko, and B. Delamotte, J. Phys. A37,

3569 (2004).
22P. Azaria, B. Delamotte, and T. Jolicoeur, Phys. Rev. Lett.64,

3175 (1990).
23F. David and T. Jolicoeur, Phys. Rev. Lett.76, 3148(1996).
24B.I. Halperin, T.C. Lubensky, and S.K. Ma, Phys. Rev. Lett.32,

292 (1974).
25H. Kleinert,Gauge Fields in Condensed Matter(World Scientific,

Singapore, 1989).
26K. Kajantie, M. Karjalainen, M. Laine, and J. Peisa, Phys. Rev. B

57, 3011 (1998); S. Mo, J. Hove, and A. Sudbø,ibid. 65,
104501(2002).

27C.W. Garland and G. Nounesis, Phys. Rev. E49, 2964(1994).
28J. Berges, N. Tetradis, and C. Wetterich, Phys. Rep.363, 223

(2000).
29G. Zumbach, Nucl. Phys. B413, 771 (1994).
30M. Tissier, B. Delamotte, and D. Mouhanna, Phys. Rev. Lett.84,

5208 (2000).
31M. Tissier, B. Delamotte, and D. Mouhanna, Phys. Rev. B67,

134422(2003).

32M.L. Plumer and A. Mailhot, J. Phys.: Condens. Matter9, L165
(1997).

33M. Itakura, J. Phys. Soc. Jpn.72, 74 (2003).
34A. Peles, B.W. Southern, B. Delamotte, D. Mouhanna, and M.

Tissier, Phys. Rev. B69, 220408(R) (2004).
35D. Loison and K.D. Schotte, Eur. Phys. J. B5, 735 (1998); 14,

125 (2000).
36A. Peles and B.W. Southern, Phys. Rev. B67, 184407(2003).
37G. ’t Hooft and M.J.G. Veltman, Nucl. Phys. B44, 198 (1972).
38V. Dohm, Z. Phys. B: Condens. Matter60, 61 (1985); 61, 193

(1985).
39R. Schloms and V. Dohm, Nucl. Phys. B328, 639 (1989); Phys.

Rev. B 42, 6142(1990).
40J.C. Le Guillou and J. Zinn-Justin, Phys. Rev. B21, 3976(1980).
41J. Zinn-Justin,Quantum Field Theory and Critical Phenomena,

4th ed.(Clarendon Press, Oxford, 2001).
42Large-Order Behaviour of Perturbation Theory, edited by J.C. Le

Guillou and L. Zinn-Justin(North-Holland, Amsterdam, 1990).
43M.C. Bergère and F. David, Phys. Lett.135B, 412 (1984).
44M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev.

E 65, 066127(2002); 60, 3526(1999).
45Y. Deng and H.W.J. Blöte, Phys. Rev. E68, 036125(2003).
46M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E.

Vicari, Phys. Rev. B63, 214503(2001).
47Actually, using the same arguments, this result can be extended to

any dimension 2,d,4.
48P. Calabrese, A. Pelissetto, and E. Vicari, Phys. Rev. B67,

054505(2003).
49P. Calabrese, A. Pelissetto, and E. Vicari, inFrontiers in Super-

conductivity Research, edited by Barry P. Martins(Nova Sci-
ence, Hauppauge, NY, 2004).

50J.M. Carmona, A. Pelissetto, and E. Vicari, Phys. Rev. B61,
15 136(2000).

51A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. B65, 020403(R)
(2002).

52P. Calabrese, P. Parruccini, A. Pelissetto, and E. Vicari, Phys. Rev.
E 69, 036120(2004).

53D. Loison, A.I. Sokolov, B. Delamotte, S.A. Antonenko, K.D.
Schotte, and H.T. Diep, Pis’ma Zh. Eksp. Teor. Fiz.72, 487
(2000) [JETP Lett. 72, 337 (2000)].

54A.J. Liu and M.E. Fisher, J. Stat. Phys.58, 431 (1990).
55B.J. Nickel, Macromolecules24, 1358(1991).
56L. Schäfer, Phys. Rev. E50, 3517(1994).
57H.J. Krause, R. Schloms, and V. Dohm, Z. Phys. B: Condens.

Matter 79, 287 (1990).
58The quantitiesu andv are related toū andv̄ defined in Ref. 19 by
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