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Highly frustrated antiferromagnets composed of magnetic rare-earth moments are currently attracting much
experimental and theoretical interest. Rare-earth ions generally have small exchange interactions and large
magnetic moments. This makes it necessary to understand in detail the role of long-range magnetic dipole-
dipole interactions in these systems, in particular, in the context of spin-spin correlations that develop in the
paramagnetic phase, but are often unable to condense into a conventional long-range magnetic-ordered phase.
This scenario is most dramatically emphasized in the frustrated pyrochlore antiferromagnet material Tb2Ti2O7,
which does not order down to 50 mK despite an antiferromagnetic Curie-Weiss temperatureTCW,−20 K. In
this paper we report results from mean-field theory calculations of the paramagnetic elastic neutron scattering
in highly frustrated magnetic systems with long-range dipole-dipole interactions, focusing on the Tb2Ti2O7

system. Modeling Tb2Ti2O7 as an antiferromagnetick111l Ising pyrochlore, we find that the mean-field para-
magnetic scattering is inconsistent with the experimentally observed results. Through simple symmetry argu-
ments we demonstrate that the observed paramagnetic correlations in Tb2Ti2O7 are precluded from being
generated by any spin Hamiltonian that considers only Ising spins, but are qualitatively consistent with
Heisenberg-like moments. Explicit calculations of the paramagnetic scattering pattern for bothk111l Ising and
Heisenberg models, which include finite single-ion anisotropy, support these claims. We offer suggestions for
reconciling the need to restore spin isotropy with the Ising-like structure suggested by the single-ion properties
of Tb3+.
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I. INTRODUCTION

The pyrochlore oxides, with the general formula A2B2O7,
have attracted a great deal of attention over the last decade
because the combination of lattice geometry and chemical
composition allows for a plethora of interesting physical
phenomena in these materials.1–3 The A and B sites reside on
two distinct interpenetrating pyrochlore networks of corner-
sharing tetrahedra, Fig. 1. Since A3+ can be either a magnetic
rare-earth or a nonmagnetic transition metal and B4+ can be a
transition metal with or without a moment, there are numer-
ous possibilities to study insulating and itinerant magnetic
models in a geometrically frustrated environment. Experi-
mentally, long-range magnetic-ordered states,4–6 magnetic
phases(e.g., spin glass,7–11 spin ice,3,12–14 spin liquid15,16),
anomalous Hall effect,17 metallic properties,18 and
superconductivity19,20 have been observed in the pyrochlore
oxides. Materials with the pyrochlore-related spinel structure
have also attracted much attention recently. Heavy fermion
physics has been observed in thed-electron LiV2O4
compound.21 In the spinel antiferromagnet ZnCr2F4, a spin-
Peierls-like transition has been observed22 at low tempera-
tures and a protectorate of weakly interacting spin directors
slightly above the spin-Peierls transition temperature.23

In insulating rare-earth magnetic pyrochlores, the mag-
netic rare-earth ions often have large dipole moments, i.e.,
m@1mB and small Heisenberg exchange interactions. In
such a situation, long-range dipole-dipole interactions are a
significant contribution to the Hamiltonian. As well, a large
single-ion anisotropy interaction is also often present. For

example, crystal fields produce an effective Ising doublet at
the rare-earth ion site, A3+, in the Ho2Ti2O7 (Ref. 24),
Dy2Ti2O7 (Ref. 24), Tb2Ti2O7 (Refs. 24 and 25), and
Yb2Ti2O7 (Ref. 26) materials. An energy gap separates the
ground-state doublet from the lowest-lying excited states
with the Ising quantization axis coinciding with the local

FIG. 1. The pyrochlore lattice structure. The lattice is con-
structed from a network of corner sharing tetrahedra in which each
tetrahedron resides at an fcc Bravais lattice point. A cubic cell con-
tains 4 tetrahedra or 16 atoms.
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cubic k111l directions,24,25 i.e., the quantization axis points
toward the center of the tetrahedral-basis unit cell. Most no-
ticeably, this strong localk111l Ising-axis anisotropy has
been found responsible for endowing frustration to the pyro-
chlore lattice in the presence of effective nearest-neighbor
ferromagnetic(FM) interactions.12,27,28From a statistical me-
chanics point of view, a FMk111l Ising pyrochlore model is
equivalent to a model for disordered water iceIh, where both
magnetic12 and water-ice29–31 models possess macroscopic
degeneracy. Recent experiments on the magnetic systems
Dy2Ti2O7 (Ref. 13) and Ho2Ti2O7 (Refs. 32 and 33), so-
called spin-ice materials, reveal a residual entropy in agree-
ment with the prediction for water ice.31 In contrast, nearest-
neighbor antiferromagnetic(AFM) interactions in ak111l
Ising-pyrochlore model are nonfrustrated;25,27,28,34therefore,
such a model is expected to order at a temperature set by the
nearest-neighbor energy scale, i.e.,TN<Jnn

eff /kB. A candidate
AFM k111l pyrochlore material is Tb2Ti2O7, where a non-
collinear long-range ordered state is expected at
TN<1 K.25,35 However, experiments indicate the material
fails to order down toT=50 mK,15,16 despite an antiferro-
magnetic Curie-Weis temperature,uCW,−20 K, making this
system, thus far, one of the cleanest realizations of a spin
liquid in a three-dimensional system. The mechanism re-
sponsible for Tb2Ti2O7 failing to order down to such low
temperatures has not yet been resolved.36

In Tb2Ti2O7, the energy gap between the ground-state
doublet and the first excited-state doublet isD<20 K (Refs.
24 and 25). The size of anisotropy gap here is an order-of-
magnitude smaller than what is observed in the spin-ice ma-
terials,D=250−350 K(Ref. 24), and is comparable touCW
for Tb2Ti2O7. Consequently, in early theoretical work on
Tb2Ti2O7, a k111l Ising model was assumed and a noncol-
linear long-rang ordered state with zero net moment about
each until tetrahedron(q=0 state) was predicted atT<1 K
(Refs. 25 and 35). However, muon spin-relaxation measure-
ments indicate a dynamically fluctuating state at all experi-
mentally achievable temperatures, which recent results
pushed down below 50 mK(Ref. 16). In contrast, some
static susceptibility data suggest a spin-glass state at these
temperatures.37 Despite the experimental evidence that the
magnetic single-ion ground state of Tb3+ is an Ising
doublet,24,25 several experimental groups have used simple
Heisenberg-type models[which for the pyrochlore lattice is
paramagnetic down toT→0+ (Refs. 38–40)] to obtain quali-
tative agreement with the observed paramagnetic(PM) scat-
tering pattern.41,42 Finally, we note that high-pressure
neutron-scattering experiments on Tb2Ti2O7 find a transition
to long-range order at a temperature in excess of 1 K for an
applied pressure larger than 2 GPa,43 but the magnetic struc-
ture has not been determined. In summary, there is currently
ambiguity even as to the nature of the paramagnetic correla-
tions developing in Tb2Ti2O7 at temperatures aboveuCW.
This is an important issue since very recent neutron-
scattering measurements on a single crystal of Tb2Ti2O7
down to 50 mK have found that the scattered intensity in
reciprocal space remains essentially unchanged(i.e., frozen
out) when going from the paramagnetic temperature of 10 K
down to 50 mK(Ref. 16). It would therefore appear that a
first requirement to make theoretical progress in understand-

ing the spin-liquid state in Tb2Ti2O7 would be to understand
the nature of the paramagnetic spin—spin correlations. It is
the aim of this paper to shed some light on the paramagnetic
correlations of this material.

In this article, we use mean-field theory(MFT) to inves-
tigate the paramagnetic spin-spin correlations of ak111l Ising
dipolar model pertinent to Tb2Ti2O7 as well as a finite Ising
anisotropy model. In MFT, the PM regime is realized for
temperatures above an energy scale set by the mean-field
(MF) critical mode, i.e.,T.Tc

MF;lc
MF/n, whereT is tem-

perature in units ofkB, n is the number of spin components,
and lc

MF represents the mean-field global maximum eigen-
value of theq-dependent susceptibility. As the temperature
approachesTc

MF, one expects the critical mode to control the
spin-spin correlations. A clear understanding of this critical
mode softening relies on an accurate treatment of all inter-
actions in the Hamiltonian. The long-range dipole-dipole in-
teractions are our main concern. Our major results are the
following: We establish, on symmetry grounds and through
calculations, that the observed PM neutron scattering is in-
consistent with a localk111l Ising dipolar model. Calcula-
tions performed for an anisotropic Heisenberg pyrochlore
model yield good agreement with experiment and thus sup-
port the claim that at least a partial restoration of spin isot-
ropy occurs in Tb2Ti2O7.

We also have in mind a broader perspective in presenting
the enclosed work and detailed derivation of the mean-field
formulation of the structure factorSsqd for highly frustrated
magnets. In the past few years, there have been a number of
interesting and puzzling thermodynamic data and neutron-
scattering results on highly frustrated magnets. Examples in-
clude the antiferromagnetic Gd3Ga5O12 garnet(referred to as
GGG),44–49 the pyrochlore antiferromagnet Gd2Ti2O7 (Refs.
4–6, 50, and 51), and the pyrochlore ferromagnet Yb2Ti2O7
(Refs. 26 and 52). The experimental results on these systems,
which will be discussed in more detail in Section IV, raise a
common issue: To further our current understanding of a
number of highly frustrated magnets, including quantum
fluctuations,53 we need to have a clear and quantitative un-
derstanding of the predominant correlations that initially de-
velop out of the paramagnetic state as the materials are
cooled. The mean-field theory described herein is an ap-
proach to formulate such a program. For concreteness, this
paper focuses on the specific cases of insulating pyrochlore
oxides with localk111l Ising axis anisotropy. It is straight-
forward to use the formalism herein to tackle the frustrated
dipolar systems described above as well as others.

The outline of the paper is as follows: In Section II a
condensed description of the MFT formalism of neutron
scattering for the anisotropic Heisenberg andk111l Ising py-
rochlores is presented. We give the MFT results for the para-
magnetic scattering of Tb2Ti2O7 in Section III. Our mean-
field data are also compared to Monte Carlo results for the
paramagneticSsqd. Section IV discusses the need to relax the
k111l Ising constraint to allow for transverse fluctuations in
Tb2Ti2O7. For completeness, we include several detailed ap-
pendixes. In Appendix A, the variational MFT is discussed
and the equations for elastic neutron scattering are derived in
detail. An alternate approach—a high-temperature series
expansion—to the equations for neutron scattering is pre-
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sented in Appendix B. The derivation of the Ewald equations
for the q-dependent dipole-dipole Hamiltonian is given in
Appendix C. Appendix D contains a detailed discussion of
the symmetry-allowed scattering patterns fork111l Ising and
Heisenberg pyrochlores. We note that other authors have dis-
cussed various aspects of the mean-field theory39,54–57 and
Ewald58–61 derivations presented in Appendixes A and C,
respectively. Our purpose here is to provide a self-contained
reference for the application of the Ewald method within a
mean-field formalism, connecting at times with results from
earlier work,56 and which will be useful to other researchers
who wish to study frustrated magnetic systems with non-
Bravais lattice geometries and allowing for an array of pos-
sible spin symmetries and interactions.

II. MEAN-FIELD THEORY OF NEUTRON SCATTERING
IN THE PYROCHLORES

In this section, we present the models and provide an
outline of the derivation of the mean-field equations for the
neutron-scattering cross section,dssQd /dV, for classical
spins on the pyrochlore lattice. The resulting equations are
only applicable in the disordered paramagnetic regime of the
model Hamiltonians. Our derivation is performed for the
general anisotropic Heisenberg model because it has broad
appeal to the study of many highly frustrated magnetic sys-
tems. Our method is best described as variational mean-field
theory54 (VMFT) (which is equivalent to a Gaussian approxi-
mation of the free energy) and has been used to study frus-
trated magnetic systems.39,56,57The details of VMFT and its
application to the scattering cross section are presented in
Appendix A. We remind the reader that MFT corresponds to
a partial resummation of an infinite number of terms in the
high-temperature series expansion for theq-dependent sus-
ceptibility xsqd. In particular, the correlationskSs0d ·Ssrdl are
correctly treated to orderb=1/T [or xsqd to 1/T2] in MFT.
This is demonstrated in Appendix B, where scattering cross-
section equations are derived via a high-temperature series
expansion.

A. Models

The pyrochlore lattice, Fig. 1, is a non-Bravais lattice that
we describe as a fcc lattice with a four-atom unit cell. The
positions of the fcc Bravais lattice points, which coincide
with a corner point on the tetrahedral basis, are denoted by
Ri. The four atoms that form the tetrahedron at each fcc point
(and represent different sublattices) are labeled byr a. Hence,
the position of a site in the pyrochlore lattice is given by

Ri
a=Ri +r a. Table I lists our convention for the tetrahedral-

basis coordinatesr a. The most general Hamiltonian for rare-
earth spins on the pyrochlore lattice is a Heisenberg model
with nearest-neighbor exchange, dipole-dipole, and single-
ion anisotropy(with a local k111l orientation) energies,

HH = − J o
ksi,ad,s j ,bdl

Si
a ·Sj

b − Do
i,a

sẑa ·Si
ad2

+ Ddd o
si,ad.s j ,bd

FSi
a ·Sj

b

uRi j
abu3

−
3sSi

a ·Ri j
abdsSj

b ·Ri j
abd

uRi j
abu5 G .

s1d

The unit vectorẑa represents the localk111l quantization axis
that points toward the center of a tetrahedron. Table I defines
our convention forẑa. The spinsSi

a have unit length and full
Os3d symmetry,Ri j

ab=Ri
a−R j

b is the vector separation be-
tween spinsSi

a andSj
b, andJ andD define the exchange and

single-ion energy scales, respectively. The convention estab-
lished in Eq. (1) definesJ.0 as FM andJ,0 as AFM
exchange energies. The dipolar energy scale is set byDdd
;DRnn

3 , where

D =
mo

4p

m2

Rnn
3 ,

m is the moment on the rare-earth ion, andRnn is the nearest-
neighbor distance.

The k111l Ising dipolar model for the pyrochlore lattice35

is obtained by considering the limit of large Ising anisotropy
in Eq. (1) (D / uJu@1 andD /D@1). The low-energy physics
of this system is modeled by the Hamiltonian,

HI = − J o
ksi,ad,s j ,bdl

sẑa · ẑbdsi
as j

b

+ Ddd o
si,ad.s j ,bd

S sẑa · ẑbd
uRi j

abu3
−

3sẑa ·Ri j
abdsẑb ·Ri j

abd
uRi j

abu5
Dsi

as j
b.

s2d

By low-energy physics we mean that the single-ion term in
Eq. (1) is removed and the spins are restricted to lie along the
local k111l quantization axis, i.e.,Si

a= ẑasi
a with si

a±1. If one
were to truncate the dipolar sum in Eq.(2) at nearest-
neighbor distances, then the following effective nearest-
neighbor energy scale could be defined:

Jnn
eff ; Jnn + Dnn, s3d

whereJnn=J/3 andDnn=5D /3. For FM effective nearest-
neighbor exchange,Jnn

eff.0 setting all dipolar interactions be-

TABLE I. Our convention for vectors: Ther a define the basis vectors andẑa define the localk111l
anisotropy axes for spins on the pyrochlore lattice. The size of the corresponding cubic cell is given byā and
contains 16 atoms. Vectorsn̂u represent the global Cartesian-basis vectors.

r s1d ā/4 (0,0,0) ẑs1d 1/Î3 (1,1,1) n̂s1d (1,0,0)

r s2d ā/4 (1,1,0) ẑs2d 1/Î3 s−1,−1,1d n̂s2d (0,1,0)

r s3d ā/4 (1,0,1) ẑs3d 1/Î3 s−1,1,−1d n̂s3d (0,0,1)

r s4d ā/4 (0,1,1) ẑs4d 1/Î3 s1,−1,−1d
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yond nearest-neighbor to zero, one has the nearest-neighbor
spin-ice model of Harriset al. (Refs. 12 and 27). If the
nearest-neighbor interactionsJnn

eff are AFM, then the model
possesses a unique ordered state(q=0, all-in all-out state) at
temperatures on the order ofuJnn

effu (Refs. 25, 27, 28, and 34).
The transition between the spin-ice andq=0 phases occurs at
Jnn/Dnn=−1.0. When dipole-dipole sum is extended to long-
range distances, the transition between theq=0 and the spin-
ice states shifts to Jnn/Dnn
>−0.908. Hence, long-range dipolar interactions favor the
q=0 AFM phase slightly.35

B. Mean-field theory

We are interested in calculating the elastic neutron-
scattering cross section for both Heisenberg andk111l Ising
spins on the pyrochlore lattice at the mean-field level. There-
fore, we use the general anisotropic HamiltonianHH as the
starting point for MFT and include a local, fictitious field
term, uhu= uhi

au, (where at the end of the calculationhi
a→0),

HH = − 1
2o

i,j
o
a,b

o
u,v

Juv
absi, jdSi

a,uSj
b,v − o

i,a,u
hi

a,uSi
a,u, s4d

where

Juv
absi, jd = JdRij

ab,Rnn
sn̂u · n̂vd + Ddi,jd

a,bsẑa · n̂udsẑb · n̂vd

− DddS sn̂u · n̂vd
uRij

abu3
−

3sn̂u ·Ri j
abdsn̂v ·Ri j

abd
uRi j

abu5
D . s5d

In the notation of this general model, the spin vectors are
represented bySi

a= n̂s1dSi
a,1+ n̂s2dSi

a,2+ n̂s3dSi
a,3, where the unit

vectorsn̂u are the global Cartesian unit vectors, see Table I,
and Si

a,u is the uth component of spin. The sum in Eq.(4)
does not include terms withRi j

ab=0. For k111l Ising spins,
one begins withHI, Eq. (2), and adds the field term
−oi,ashi

a·ẑadsi
a. The resultant interaction parameterJabsi , jd

does not include the spin components.
The general expression for the mean-field free energy is

as follows:

Fr = TrhrHHj + TTrhr ln rj = kHHlr + Tkln rlr, s6d

wherer is the many-body density matrix and Tr represents a
trace over the states ofr. A mean-field form forFr is ob-
tained by first expressing the many-body density matrix as a
product of single-particle density matricesrshSi

ajd
=pi,ari

asSi
ad, followed by minimizingFr with respect tori

a

(the variational parameters) subject to the constraints
Trhri

aj=1 and Trhri
aSi

aj=mi
a, wheremi

a is the local, vector
order parameter. For Ising spins,mi

a has only one compo-
nent,mi

a. Next, the resulting mean-field free energy is trans-
formed to momentum space by applying the definitions,

mi
a,u = o

q
mq

a,ue−ıq·Ri
a
, s7d

Juv
absi, jd =

1

Ncell
o
q

Juv
absqdeıq·Rij

ab
, s8d

whereNcell is the number of fcc Bravais lattice points. We
note that the above convention for the Fourier transform,

which employs the position of the spinRi
a, results in a real

symmetricq-dependent interaction matrixJsqd, 12312 for
Heisenberg and 434 for Ising spins. An alternate convention
for the Fourier transform usesRi, the Bravais lattice points,
instead ofRi

a and yields a complexJsqd; refer to Appendix
A for details. For a non-Bravais lattice, the interaction matrix
is not fully diagonalized by a Fourier transform. Hence, to
completely diagonalizeJsqd, one must transform the
q-dependent variablesmq

a to normal mode variables. In com-
ponent form, the normal mode transformation is given by

mq
a,u = o

a=1

4

o
m=1

3

Uu,m
a,asqdfq

a,m, s9d

where the indicessa ,md label the normal modes(12 for
Heisenberg spins) and hfq

a,mj are the amplitudes of the nor-
mal modes. In matrix form,Usqd is the unitary matrix that
diagonalizesJsqd in the spin̂ sublattice space with eigen-
valueslsqd. Hence,Uu,m

a,asqd represents thesa,ud component
of thesa ,md eigenvector atq with eigenvaluelm

asqd. Finally,
the mean-field free energy to quadratic order in the normal
modes reads,

FrsTd = 1
2 o

q,a,m
fnT− lm

asqdgufq
a,mu2 − T o

q,a,m
h̃q

a,mf−q
a,m,

s10d

whereFrsTd=FrsTd /Ncell, h̃q
a,m~hq

a,u/T, T is the temperature
in units of kB, andn=3 for Heisenberg spins. Note, in order
to consider the Ising case, the indicesu and m are dropped
from Eq. (10) and n=1. We have also dropped a constant
from the expression forFrsTd, refer to Appendix A.

The neutron-scattering cross section for unpolarized neu-
trons in the dipole approximation is given by the general
expression,62,63

dssQd
dV

=
CffsQdg2

Ncell
o
i,j

o
a,b

kSi'
a ·Sj'

b leıQ·Ri j
ab

, s11d

whereQ is the momentum transfer,Q=G+q, G is a recip-
rocal lattice vector andq is a vector in the first zone,fsQd is
the magnetic form factor of the relevant scattering ion, andC
is a constant. The spin-spin correlation function only in-
volves spin components perpendicular toQ (i.e., Si'

a =Si
a

−sSi
a·QdQ / uQu2d) and can be written as

kSi'
a ·Sj'

b l = o
u,v

fn̂u · n̂v − sn̂u · Q̂dsn̂v · Q̂dg 3 kSi
a,uSj

b,vl

= o
u,v

Sdu,v −
QuQv

uQu2 DkSi
a,uSj

b,vl, s12d

where Q̂=Q / uQu. The correlation functionkSi
a,uSj

b,vl is ex-
pressed as a thermal average of the mean-field variables and
then transformed to normal modes,
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kSi
a,uSj

b,vl = o
q,q8

o
a,b

o
m,n

kfq
a,mfq8

b,nlUm,u
a,asqdUv,n

b,bsq8d

3 e−ıq·Ri
a
e−ıq8·R j

b
. s13d

The correlation function of normal mode variables is calcu-
lated from derivatives of the mean-field partition function,
Z=Trhe−bFrsTdj, whereFrsTd is given by Eq.(10), with re-

spect toh̃q
a,m. The result is

kfq
a,mfq8

b,nl =
da,bdm,ndq+q8,0

s3 − la,msqd/Td
s14d

for Heisenberg spins and

kfq
afq8

b l =
da,bdq+q8,0

s1 − lasqd/Td
s15d

for k111l Ising spins.
Using Eqs.(12)–(14) or (15) in Eq. (11) and carrying out

the sums, one obtains equations for the scattering cross sec-
tion. In the case of Heisenberg spins, we have

1

Ncell

dssQd
dV

= CffsQdg2o
a,m

uFm,'
a sqdu2

s3 − lm
asqd/Td

, s16d

where

Fm,'
a sqd = o

a

hUm
a,asqd − sUm

a,asqd · Q̂dQ̂jeıG·r a
s17d

is a three-component vector. Fork111l Ising spins, one has

1

Ncell

dssQd
dV

= CffsQdg2o
a

uF'
a sqdu2

s1 − lasqd/Td
, s18d

with

F'
a sqd = o

a

ẑ'
a Ua,asqdeıG·r a

, s19d

where F'
a sqd is still a three-component vector andẑ'

a = ẑa

−sẑa·Q̂dQ̂.
Equations(16) and (18) are the main results of this sec-

tion. They provide a mean-field description for the PM elas-
tic neutron scattering of Heisenberg andk111l Ising mo-
ments, respectively, on the pyrochlore lattice. The
temperature that defines the paramagnetic regime is set by
the maximum eigenvalue according to

T . Tc
MF ; maxqhlmaxsqdj/n, s20d

wherelmaxsqd is the maximum eigenvalue at wave vectorq,
and maxq selects the global maximum for allq. The
maxqhlmaxsqdj occurs at the ordering wave vectorqord.

III. NEUTRON SCATTERING OF Tb 2Ti2O7

Starting with the zeroth-order(low-energy) k111l descrip-
tion for Tb2Ti2O7, we useJ1=−2.64 K andD=0.48 K yield-
ing Jnn/Dnn=−1.1 (Ref. 25), which compares toJnn/Dnn
=−0.22 for Ho2Ti2O7 (Ref. 32) and Jnn/Dnn=−0.52 for

Dy2Ti2O7 (Ref. 35). Therefore, at a nearest-neighbor cutoff
distance, Tb2Ti2O7 is an AFM k111l pyrochlore that is pre-
dicted to develop noncollinear AFM order, with ordering
wave vectorqord=0, at T<1 K (Refs. 25 and 35). We em-
phasize that in the context of ak111l Ising model with
Jnn/Dnn=−1.1, Tb2Ti2O7 is still predicted to be a long-range
AFM when both antiferromagnetic nearest-neighbor ex-
change and long-range dipole interactions are considered.35

Hence, the antiferromagnetic exchange in ak111l model of
Tb2Ti2O7 is sufficiently strong to prevent the perturbations
arising from long-range dipolar interactions from changing
the ordered state of the model. The counterpoint to the above
model predictions is that experimentally Tb2Ti2O7 remains a
collective paramagnetic down to very low temperatures,T
*50 mK (Ref. 16).

As an initial attempt to explain the physics of Tb2Ti2O7,
we investigate the PM correlations within MFT and compare
to the experimental results for elastic neutron scattering. Ex-
perimental data for elastic neutron scattering in Tb2Ti2O7 are
shown in Fig. 2(a). The most intense region of scattering is
centered aroundQ=0,0,2with reduced correlations extend-
ing toward Q=2,2,0 and ascattering minimum at Q=0.
From the pyrochlore lattice structure and the MF formalism,
we know that the intensity atQ=0,0,2 iscontrolled by the
eigenmodes atQ=0,0,0 butmodulated by the phase factor
expsıG ·r ad, see Eqs.(18) and (19). This raises the question
as to whether the maximum aboutQ=0,0,2could be inter-
preted as the precursor of a long-range ordered noncollinear
AFM state.

We begin by consideringk111l Ising spins on the pyro-
chlore lattice.(The details upon which our arguments are
based are provided in Appendix D.) The neutron-scattering
intensity profile is determined byF'

a sqd, Eq. (19), and con-
tains information on the spin anisotropy viaẑa and the eigen-
values lasqd and the symmetry of the lattice through the
eigenvectorsUa,asqd, and a phase factor expsıG ·r ad. Hence,
the nature and strength of the exchange and dipole-dipole
interactions are arbitrary. From these basic symmetry com-
ponents, we find thatuF'

a s0,0,0du2= uF'
a s0,0,2du2 or that the

scattering intensity aboutQ=0,0,0 andQ=0,0,2 has the
same numerical value, disregarding the form factor(fsQd).
An equivalent statement is the intensities aboutQ=0,0,0
and Q=0,0,2 aresymmetry related. This strong condition
on the scattering pattern is in serious contradiction with the
experimentally observed results. In contrast, if we consider
an anisotropic Heisenberg pyrochlore model[Eq. (16) with
finite D], we find that the lattice and spin degrees of freedom
do not force the scattering intensity to be identical aboutQ
=0,0,0 andQ=0,0,2. For amodel with full Os3d spin sym-
metry, the scattering profile is controlled byFm,'

a sqd, Eq.
(17). The significant difference between Eqs.(17) and(19) is
the restoration of spin isotropy, i.e., the geometric factor de-
fining the localk111l quantization axisẑa is absent from Eq.
(17). Therefore, on purely symmetry grounds, nok111l Ising
model (i.e., Hamiltonian) with arbitrary distance-dependent
Jijsr ij d for Tb2Ti2O7 will reproduce the experimental PM cor-
relations shown in Fig. 2(a). Earlier works have recognized
the need to consider more isotropic spin models for
Tb2Ti2O7. In Ref. 41, the qualitative features of the PM scat-
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tering were reproduced from an isotropic structure factor for
the nearest-neighbor Heisenberg pyrochlore AFM. Similar
results were obtained in Ref. 42 by considering specificQ
=0 spin structures on a cluster of two tetrahedra.

To support the picture obtained on symmetry grounds, we
have applied our MF formalism to two models for Tb2Ti2O7:
(i) a pyrochlore system withk111l Ising spins, and(ii ) a
pyrochlore lattice with Heisenberg spins and finitek111l an-
isotropy. In both cases, the dipole-dipole interactions are

evaluated with the Ewald method, see Appendix C. For the
k111l Ising description[i.e., D / uJu@1 andD /D@1 and Eq.
(18)], we useJ1=−2.64 K andD=0.48 K (Ref. 25). Our data
are shown in Fig. 2(b). Note that the scattering aboutQ
=0,0,0 andQ=0,0,2 is symmetry related, as predicted
above, but is an intensity minimum. Monte Carlo data for
this k111l Ising model agrees with our MF results, see Fig. 3.
Monte Carlo simulations for Tb2Ti2O7 as ak111l Ising dipo-
lar model were performed on aL=4 lattice(N=1024 spins)
at T=5 K sTc

MF,1 Kd with J1=−2.64 K and D=0.48 K,
with the dipolar sum treated via the Ewald summation
method. Neutron-scattering data[as determined by Eq.(11)
(Ref. 32)] were collected after 53107 Monte Carlo steps per
spin for both equilibration and measurement stages, and are
shown in Fig. 3. The intensity minimum atQ=0,0,0 and
Q=0,0,2supports the above mean-field results and symme-
try arguments. For a Heisenberg model with finite anisotropy
[i.e.,D / uJu.1 andD /D.1 and Eq.(16)], our MF results are
provided in Fig. 2(c). With an anisotropy strength ofD
=20 K (i.e.,D /D<41.7), we achieve good qualitative agree-
ment with the experiment. The region aroundQ=0,0,2 has
the strongest scattering with reduced intensity nearQ
=2,2,0 and theinterconnecting regions. If we turn off the
finite anisotropysD=0d, i.e., an isotropic Heisenberg model
with long-range dipoles, the dominating scattering remains
about pointsQ=0,0,2 andQ=2,2,0, butthere is increased
intensity along the bridge regions inq-space connecting
these points. Finally, in the absence of dipoles andD=0 one
has the nearest neighbor AFM exchange Heisenberg model,
where the scattering intensity forms a network of intercon-
nected triangles with equal intensity aboutQ=0,0,2 and
Q=2,2,0(Refs. 41, 64, and 65). Hence, a partial restoration
of the spin isotropy is sufficient to place scattering about
points Q=0,0,2 andQ=2,2,0 in q-space, but to achieve
good qualitative agreement with the experimental intensity
profile dipolar interactions are necessary as is a finite single-
ion contribution to the Hamiltonian.

FIG. 2. (Color online) Paramagnetic scattering in theshhld plane
for Tb2Ti2O7: (a) Experimental paramagnetic scattering41 sT
=9 Kd, maximum intensity atQ=0, 0, 2, (b) MF model of
Tb2Ti2O7 treated as ak111l Ising pyrochloresT=1.5Tc

MFd, no inten-
sity at Q=0, 0, 2, (c) MF model of Tb2Ti2O7 treated as an aniso-
tropic Heisenberg pyrochloresT=1.5Tc

MF,D=20 Kd, maximum in-
tensity atQ=0, 0, 2.

FIG. 3. (Color online) Monte Carlo results for paramagnetic
scattering in theshhld plane for Tb2Ti2O7 as ak111l Ising AFM,
T=5.0 K, N=1024 spins. Note that there is no intensity aboutQ
=0,0,2. Dipoles were treated via the Ewald method.
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IV. DISCUSSION

A. Tb2Ti2O7

The prediction of ank111l Ising model for Tb2Ti2O7 is
that of an AFM long-range ordered state in which all spins
point either in or out of the unit tetrahedra atT<100 K.
However, this prediction is not realized experimentally. An-
other problem, and possibly even more important, with a
k111l Ising model for Tb2Ti2O7, is that the mean-field PM
correlations[see Fig. 2(b)] do not agree with the experimen-
tally observed results[Fig. 2(a)]. In Section III and in Ap-
pendix D, we demonstrated on symmetry grounds alone that
no pyrochlore model withk111l Ising moments could repro-
duce the basic features of the experimental PM scattering
(i.e., strongest intensity centered aboutQ=0, 0, 2, lower in-
tensity aboutQ=2, 2, 0, and minimum intensity at the zone
center Q=0, 0, 0). These symmetry arguments were also
supported by MF and MC calculations of the elastic neutron-
scattering cross section, Eq.(18).

In Section III and in Appendix D, we were also able to
demonstrate on symmetry grounds that a Heisenberg pyro-
chlore model of Tb2Ti2O7 would allow for elastic scattering
aboutQ=0, 0, 2 while at the same time permit no scattering
aboutQ=0, 0, 0. A MF calculation of the PM neutron scat-
tering in theshhld plane for an anisotropic Heisenberg model
with long-range dipoles, Eq.(1), shows good agreement with
the experimental scattering pattern[strongest intensity about
Q=0, 0, 2 with reduced scattering atQ=2, 2, 0 and along the
bridges between these points, see Fig. 2(c)]. Both the finite
anisotropy(D / uJu.1 and D /D.1) and long-range dipoles
are necessary to achieve a quantitative match with the ex-
periments. Reducing either the single-ion anisotropy to the
isotropic limit sD=0d or the range of the dipole-dipole inter-
actions in the model reduces this agreement by altering the
ratio of scattering intensity betweenQ=0, 0, 2 andQ=2, 2,
0. However, even a dramatically simplified model, which
would have dipoles cut off at the first nearest neighborrc
=1, would still improve the picture provided by a nearest-
neighbor AFM exchange-only Heisenberg model presented
in Ref. 41. Therefore, and foremost in our argument, a res-
toration of the spin isotropy is absolutely necessary to place
paramagnetic scattering about theq-space pointsQ=0, 0, 2
and Q=2, 2, 0. The dipolar interactions are then important
for shifting (i.e., redistributing) the scattering intensity from
Q=2, 2, 0 toQ=0, 0, 2. Intermediate regions between these
two points also experience a reduction in scattering. In terms
of the underlying soft-mode spectrum, theq=0 eigenvalues
and eigenvectors control the scattering atQ=2, 2, 0 toQ
=0, 0, 2. A shift in intensity fromQ=2, 2, 0 toQ=0, 0, 2
signals a PM spin structure that prefers to lie inxy plane(i.e.,
neutron scattering atQ=0, 0, 2 comes from spins with com-
ponents perpendicular to this direction).

Switching to a model with fully isotropic Heisenberg
spins (as in Ref. 41) restores all the spin symmetry in the
paramagnetic limit. This picture is dramatically inconsistent
with the experimentally determined single-ion structure of
Tb3+ sJ=6, 7F6d in Tb2Ti2O7, where a ground-state doublet
is separated from the first excited doublet by an anisotropy
gap of 20 K, close to theuCW temperature.24,25 Therefore, a

restoration of the full spin symmetry atT,20 K seems an
unlikely explanation for the PM scattering at 9 K.

The current MF approach does not allow the single-ion
properties to be systematically considered, but a RPA calcu-
lation does.66 By retaining only the simplest energy-level
structure in the Tb3+ wave function, the ground-state doublet
and the first excited-state doublet, one can relax the strict
k111l Ising constraint on the spins in a controlled approxima-
tion. Within the RPA, fluctuations out of the ground-state and
into the first excited-state levels are equivalent to a fluctuat-
ing canting of spins away from the Ising geometry. In this
case, the lowest-order fluctuations from the strictk111l Ising
limit yield qualitative agreement with experiment for the
paramagnetic spin-spin correlations.66 Others have also pro-
posed a simple relaxation scheme of the strictk111l Ising
directions.42 Theoretical work remains to be done to explain
the failure of Tb2Ti2O7 to order at a temperature of 1 K, and
why it remains paramagnetic down to 50 mK(Refs. 15 and
41).

B. General discussion: Avenues for other studies

We now briefly discuss some puzzling experimental re-
sults for a few highly frustrated magnets. We note that the
present mean-field formulation for the structure factorSsqd
could provide valuable insight on the development of mag-
netic correlations out of the PM regime for each of these
systems. The first, very paradoxical, system is the antiferro-
magnetic Gd3Ga5O12 garnet (GGG). This material, where
Gd3+ is the magnetic ion with a spinS=7/2, consists of two
sublattices of intertwined spirals of corner-sharing triangles.
For classical Heisenberg spins coupled by nearest-neighbor
antiferromagnetic exchange, each spiral on a garnet lattice
structure should display a thermally induced spin-nematic
order-by-disorder transition according to work by Moessner
and Chalker.64 Some precursors of spin coplanarity in GGG
may have recently been observed in Mössbauer
experiments.49 In GGG, however, dipolar interactions are ap-
proximately 50% of the strength of the exchange interactions
for nearest neighbors and is, consequently, a sizable pertur-
bation to contend with in this system.44 In zero-applied mag-
netic field, specific heat, magnetic susceptibility, and nonlin-
ear susceptibility measurements on GGG strongly suggest
that this material undergoes a spin-glass transition around
140 mK (Refs. 45 and 46). However, the nonlinear suscepti-
bility xnl measurements indicate that the spin-glass transition
in this material is unusual in thatxnl exhibits two maxima.46

In contrast to bulk measurements,45,46 neutron-scattering ex-
periments on powder samples of isotopically enriched160Gd
(natural Gd has a huge neutron absorption cross section) in-
dicates the development of spin-spin correlations at approxi-
matively 140 mK, extending to a length scale of
,100 Å(Refs. 47 and 48). It is unclear at present whether or
not the development of extended spin correlations in GGG at
,140 mK is an intrinsic effect or is due to material impuri-
ties and/or defects(e.g., Gd3+ magnetic ions at Ga3+ sites67).
Another interesting system is the Gd2Ti2O7 pyrochlore anti-
ferromagnet, where there, too, Gd3+ is the moment-carrying
species. In Gd2Ti2O7, the dipolar interactions are approxi-
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mately 20% of the strength of the exchange interactions for
nearest neighbors and is here, just as in GGG above, an
important perturbation.4,5,50 Palmer and Chalker argue that
the ground state consists of a fully ordered structure where
each tetrahedral unit cell has an identical(zero total magnetic
moment) spin configuration(a so-calledqord=0 structure).5

Recent work has confirmed that this ground state is ex-
tremely robust against quantum fluctuations.53 However, re-
cent experiments on Gd2Ti2O7 are rather puzzling and ap-
pear inconsistent with Palmer and Chalker’s work.
Specifically, neutron diffraction measurements on160Gd iso-
topically enriched powders find a partially ordered phase
with one disordered sublattice and propagation vectorq
= 1

2 , 1
2 , 1

2 at T=50 mK,6 hence incompatible with the predic-
tions of Palmer and Chalker.5 Specific heat measurements
find strong evidence for two transitions atT=0.7 K and at
T=1.0 K (Ref. 50). Recent mean-field calculations find evi-
dence for a two-step magnetic ordering in this system.68,69So
for Gd2Ti2O7, there also exists a complex behavior as sig-
naled by thermodynamic measurements, theoretical predic-
tions, and neutron-scattering results.70 Finally, the Yb2Ti2O7
pyrochlore ferromagnet is also puzzling.26,52 There, neutron-
scattering results, muon spin relaxation, and Mössbauer ex-
periments suggest a ground state that lacks long-range mag-
netic order while there exist good evidence from the
Mössbauer data that a first-order spin-freezing transition oc-
curs around Tf ,0.24 K. Meanwhile, elastic neutron-
scattering results reveal the development of nontrivial spin-
spin correlations asTf is approached from above. In this
system too, it is possible that long-range dipolar interactions
may play some role due to the contribution of theuJ,mJl
= u7/2, ±7/2l eigenstate within the effectiveSeff=1/2
ground-state doublet.26

V. CONCLUSIONS

In conclusion, we have demonstrated on symmetry
grounds, through MF calculations, and MC simulations that
the experimentally measured PM elastic neutron scattering in
Tb2Ti2O7 is inconsistent with ak111l Ising pyrochlore spin
structure. From the qualitative agreement obtained using an
anisotropic Heisenberg model, we argue in favor of a more
isotropic effective spin model to describe the low-energy
phases of Tb2Ti2O7.

Finally, we have discussed the usefulness of a combined
mean-field theory and Ewald method approach to studying
geometrically frustrated magnets with long-range dipole-
dipole interactions in the paramagnetic phase. This approach
could be applied in general to any geometrically frustrated
system. The zero field picture of Gd3Ga5O12 (GGG) is par-
ticularly interesting because the low-temperature phase re-
mains an unresolved issue that entails unraveling the physics
of competing exchange and long-range dipole-dipole interac-
tions in a garnet lattice environment.45–49,71

ACKNOWLEDGMENTS

We would like to acknowledge Bill Buyers, Steve Bram-
well, Adrian del Maestro, Jason Gardner, Bruce Gaulin, By-

ron den Hertog, Ying-Jer Kao, Jean-Yves Delannoy, Roger
Melko, Adrian del Maestro, Hamid Molavian, and Taras
Yavors’kii for many useful discussions. This work is sup-
ported by NSERC of Canada, the Canada Research Chairs
Program, Research Corporation, and the Province of Ontario.

APPENDIX A: NEUTRON SCATTERING IN THE
GAUSSIAN APPROXIMATION

As we noted in the Introduction, other authors have dis-
cussed MFT and its application to magnetism39,54–57and the
Ewald method for magnetic dipoles.59–61 Our purpose is to
combine the techniques of MFT, developed here, with the
Ewald procedures for magnetic dipoles inq-space(devel-
oped in Appendix C so they can be readily applied to other
problems of highly frustrated rare-earth magnets.

In this appendix we provide a detailed derivation of the
mean-field equations for the elastic-scattering cross section
for pyrochlore spin systems. Our derivation is performed for
Heisenberg spins, with a finite localk111l anisotropy, in or-
der to broaden the appeal of the results. Connections tok111l
Ising systems, infinite localk111l anisotropy, are noted at
appropriate points. As mentioned in Section II, the MFT is
developed via a variational approach(VMFT) and, in gen-
eral, this approach applies to a large array of statistical mod-
els with arbitrarily complex order parameters.54 In this work,
the method reproduces the Gaussian approximation(GA) of
the Landau free energy. The VMFT described here has been
used by others,39,55–57and we provide a detailed presentation
here to clear up the notational inconsistencies that appeared
in some of these previous works. We also wish to provide for
comparison with the RPA, which allows for a more con-
trolled relaxation of thek111l Ising restriction62,66 that ex-
perimental evidence suggests is needed for Tb2Ti2O7

41,42

We begin with the model Hamiltonian of Eq.(1), HH. The
conventions for the spin vectorsSi

a, unit vectorsn̂u, and ẑa,
and the description of the pyrochlore lattice in a rhombohe-
dral basis with a four-atom unit cell are as described in Sec-
tion II. Therefore, our starting Hamiltonian for MFT is given
by

HH = −
1

2o
i,j

o
a,b

o
u,v

Juv
absi, jdSi

a,uSj
b,v − o

i,a,u
hi

a,uSi
a,u, sA1d

where Juv
absi , jd is defined by Eq.(5), and a fictitious field

term has been added. The field term, withuhi
au= uhu, is re-

moved from the final equations by takinghi
a→0. We note

that indicessa,bd=1, 2, 3, 4 label the sublattices andsu,vd
=1, 2, 3 label the spin components.

In VMFT, an approximate free energy as a function of a
trial density matrixr is formed,

Fr = TrhrHHj + T Trhr ln rj = kHHlr + Tkln rlr, sA2d

where Tr represents a trace-over spin variables.Fr is varia-
tional and defines an upper bound to the actual free energy,
i.e., FrùF. The best functional from for the trial density
matrix is obtained by minimizingFr with respect to the pa-
rameters ofr. For a system ofN particles, the MF form of
the N-body density matrix is given by a product of single
particle density matrices,
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rshSi
ajd = p

i,a
ri

asSi
ad. sA3d

The single particle density matrixri
a is treated as a varia-

tional parameter that is subject to the constraints

Trhri
aj = 1, sA4d

Trhri
aSi

aj = mi
a, sA5d

which keep the internal energy constant, i.e., TrhrHj=C.
Here,mi

a is a vector-order parameter; fork111l Ising spins,
one has the scalar equivalent, Trhri

asi
aj=mi

a. Incorporating
the constraints into the expression forFr gives

Fr = TrhrHHj + T Trhr ln rj − T TrHo
i,a

ji
asri

a − 1dJ
− T TrHo

i,a
sri

aSi
a − mi

ad ·A i
aJ , sA6d

whereji
a and A i

a are the Lagrange multipliers for the con-
straints of Eq.(A4) and Eq.(A5), respectively. In minimiz-
ing Fr with respect tori

a, one has the following results:

d

dri
a TrhrHHj = 0,

d

dri
a Trhr ln rj = Trhln ri

aj + Trh1j,

d

dri
a TrHo

i,a
ji

ari
aJ = Trhji

aj,

d

dri
aT TrHo

i,a
ri

aSi
a ·A i

aJ = TrhSi
a ·A i

aj.

The optimum form for the density matrix is found by solving
dFr /dri

a=0,

ri
a = Ci

aeA i
a·Si

a
, sA7d

whereCi
a=eji

a−1=1/TrheAi
a·Si

a
j follows from Eq.(4). Evaluat-

ing the trace inCi
a for both Heisenberg and Ising spins we

obtain

Zi
a =

s2pd3/2

suA i
aud1/2I1/2suA i

aud =
4p

uA i
au

sinhsuA i
aud sA8d

and

Zi
a = 2 coshsAi

ad, sA9d

respectively, whereI1/2suA i
aud is a modified Bessel function.

The variational local density matrix is now written as

ri
a =

eA i
a·Si

a

Zi
a sA10d

and is used, along with the constraints of Eqs.(A4) and
(A5),to rewrite the variational free energy,

Fr = − 1
2o

i,j
o
a,b

o
u,v

Juv
absi, jdmi

a,umj
b,v − o

i,a,u
hi

a,umi
a,u

+ To
i,a

sA i
a ·mi

a − ln Zi
ad. sA11d

We want an expression for the free-energy–to–quadratic
order inmi

a. This means that one must expand lnZi
asA i

ad and
then expressA i

a as a function ofmi
a. From the series repre-

sentation ofZi
asA i

ad followed by the series expansion of
lns1−xd, one has

ln Zi
a < ln C1 +

uA i
au2

2n
, sA12d

whereC1 is a model-dependent constant andn=1, 3 for Ising
and Heisenberg spins, respectively. Using Eq.(A5), one ob-
tains the expression

mi
a = Âi

aI3/2suA i
au2d

I1/2suA i
au2d

sA13d

=Âi
aHCothsuA i

aud −
1

uA i
auJ sA14d

for Heisenberg and

mi
a = tanhsAi

ad sA15d

for Ising spins. To first order, we have

mi
a = 3A i

a sA16d

and

mi
a = Ai

a. sA17d

Using Eqs.(A12)–(A17), we can write the MF free energy to
quadratic order in the order parameter,

Fr = 1
2o

i,j
o
a,b

o
u,v

mi
a,uhnTdi,jd

a,bdu,v − Juv
absi, jdjmj

b,v

− o
i,a,u

hi
a,umi

a,u − TpNcell ln C1, sA18d

where p=4 denotes the size of the basis(sublattice). As a
side note, the Lagrange multiplierA i

a can be interpreted as an
effective mean field interacting with a local moment. Mini-
mizing Fr, of Eq. (A11) with respect tomi

a,u one has

Ai
a,u =

h̄i
a,u

T
, sA19d

where

h̄i
a,u = o

j ,b,v
Juv

absi, jdmj
b,v + hi

a,u, sA20d

is the uth component of the effective field at sitesi ,ad. We
next exploit the fact that the pyrochlore lattice has the under-
lying symmetry of a fcc lattice by defining the Fourier trans-
forms,

mi
a,u = o

q
mq

a,ue−ıq·Ri
a
, sA21d
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Juv
absi, jd =

1

Ncell
o
q

Juv
absqdeıq·Ri j

ab
, sA22d

whereNcell is the number of fcc Bravais lattice points, butRi
a

denotes the position of a spin, andRi j
ab=Ri

a−R j
b. Equations

(A21) and (A22) applied toFr yield

FrsTd = 1
2o

q
o
a,b

o
u,v

mq
a,ufnTda,bdu,v − Juv

absqdgm−q
b,v

− o
q

o
a,b

o
u,v

da,bdu,vhq
a,um−q

b,v − Tp ln C1, sA23d

whereFrsTd=FrsTd /Ncell. A transformation to normal modes
is necessary to diagonalizeJuv

absqd. This is accomplished by
the use of Eq.(9), or

mq
a,u = o

a=1

4

o
m=1

3

Uu,m
a,asqdfq

a,m, sA24d

where the Greek indicessa ,md label the normal modes.Usqd
is the unitary matrix that diagonalizesJsqd in the sublattice
space with eigenvalueslsqd,

U†sqdJsqdUsqd = lsqd, sA25d

where in component formUu,m
a,asqd represents thesa,ud com-

ponent of thesa ,md eigenvector atq with eigenvaluelm
asqd.

The amplitudes of the normal modes are denoted byhfqj
=hoa,mfq

a,mj. Therefore, the MF free-energy–to–quadratic or-
der in the normal modes variables reads

FrsTd = 1
2o

q
o
a,m

fq
a,mfnT− lm

asqdgf−q
a,m − To

q
o
a,m

h̃q
a,mf−q

a,m

− Tp ln C1, sA26d

where

h̃q
a,m =

1

T
o
a,u

hq
a,uUu,m

a,as− qd.

Note that for the Ising case, the indices representing the spin
componentssu,vd and the corresponding modessm ,nd are
dropped from Eq.(A26).

The neutron-scattering cross-section for unpolarized neu-
trons in the dipole approximation is given by Eq.(11) (Refs.
62 and 63, or

dssQd
dV

=
CffsQdg2

Ncell
o
i,j

o
a,b

kSi'
a ·Sj'

b leıQ·Ri j
ab

, sA27d

whereQ is the momentum transfer, i.e.,Q=G+q, G is a fcc
reciprocal lattice vector,q is a wave vector in the first Bril-
louin zone, andC is a constant. The correlation function is
between spin components perpendicular to the vectorQ,

kSi'
a ·Sj'

b l = o
u,v

sn̂'
u · n̂'

v dkSi
a,uSj

b,vl

= o
u,v

Sdu,v −
QuQv

uQu2 DkSi
a,uSj

b,vl, sA28d

where n̂'
u = n̂u−sn̂u·Q̂dQ̂ is strictly a geometric factor and

Q̂=Q / uQu. For Ising spins one replacesn̂u with ẑa from Table
I and Si

a,u with si
a. In order to proceed, the correlation func-

tion between spin variables,kSi'
a ·Sj'

b l, must be transformed
to q-space by use of Eq.(A21) and then to normal mode
variables by application of Eq.(A24), one arrives at

kSi
a,uSj

b,vl = o
q,q8

o
a,b

o
m,n

kfq
a,mfq8

b,nl

3 Um,u
a,asqdUv,n

b,bsq8de−ıq·Ri
a−ıq8·R j

b
. sA29d

The correlation functionkfq
a,mfq8

b,nl can be calculated from a
partition function defined in terms of the normal mode am-
plitudes. The general definition reads

Z = Trhe−FrsTd/Tj, sA30d

whereFrsTd is given by Eq.(A26), and the trace is over all
values of the normal mode amplitudes,

Tr ; E
−`

`

p
q,a,m

dfq
a,m,

so one has

Z = p
q,a,m

E
−`

`

dfq
a,me−1

2
Sn−

lm
asqd
T

Dufq
a,mu2+h̃q

a,mf−q
a,m

, sA31d

where a constant term has been dropped. The integral above
is recast as a general Gaussian,

E
−`

`

dfe−1
2

Af2+Bf =Î2p

A
e

B2

2A , sA32d

where A=sn−flm
asqdg /Td and B= h̃q

a,m. Therefore, the final
form of the partition function is

Z = p
q,a,m

Za,msqd = p
q,a,m 3 2p

n −
lm

asqd
T

4
s1/2d

euh̃q
a,mu2/2fn−lm

asqd/Tg.

sA33d

The correlation function is now determined from derivatives

of Z with respect to the fieldsh̃q
a,m,

kfq
a,mfq8

b,nl =
1

ZU ]2Z

]h̃q
a,m]h̃q8

b,nU
h̃q=0

=
dq+q8,0d

a,bdm,n

Sn −
lm

asqd
T

D .

sA34d

Back substitution of the result from Eq.(A34), into Eq.
(A29), (A28), and then into Eq.(A27), and finally imposing
the properties of the Kronecker delta functions leaves

1

Ncell

dssQd
dV

= CffsQdg2o
a,m

o
a,b

o
u,v

sn̂'
u · n̂'

v d
sn − lm

asqd/Td

3 Um,u
a,asqdUv,m

b,as− qdeıG·r ab
, sA35d

where we have used the identity
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o
i,j

eısQ−qd·Ri jeısQ−qd·r ab
= Ncell

2 eıG·r ab
.

We find it convenient to define the function,

Fm,'
a sqd = o

a,u
n̂'

u Um,u
a,asqdeıG·r a

= o
a

hUm
a,asqd − fUm

a,asqd · Q̂gQ̂jeıG·r a
, sA36d

where Um
a,asqd=oun̂

uUm,u
a,asqd [and, therefore,Fm,'

a sqd] is a
three-component vector. The scattering cross section is writ-
ten compactly as

1

Ncell

dssQd
dV

= CffsQdg2o
a,m

uFm,'
a sqdu2

sn − lm
asqd/Td

, sA37d

which is Eq.(16) with n=3. When consideringk111l Ising
spins, the arguments that follow Eq.(A29) still hold, but the
indices for the spin componentssu,vd and corresponding
normal modessm ,nd are dropped from the equations. The
final expression for the scattering cross-section reads

1

Ncell

dssQd
dV

= CffsQdg2o
a

uF'
a sqdu2

s1 − lasqd/Td
, sA38d

whereF'
a sqd is a three component vector given by

F'
a sqd = o

a

ẑ'
a Ua,asqdeıG·r a

, sA39d

which is just Eq.(18). We note that Eqs.(A37) and(A38) are
only valid for T.lm

asqordd /n, where lm
asqordd

=maxqhlmaxsqdj is the critical eigenvalue, a global maxi-
mum, which setsTc

MF and defines the paramagnetic regime.
We also point out that the lattice structure and spin symmetry
are contained in the respectiveF'sqd-functions, Eqs.(A36)
and(A39); these properties will be exploited in Appendix D
when we discuss symmetry-allowed scattering patterns for
Heisenberg and Ising spins.

1. Comment on the convention for the Fourier transform

Another convention for defining Fourier modes uses the
Bravais lattice points,Ri, in the definitions,72

mi
a,u = o

q
mq

a,ue−ıq·Ri , sA40d

and

Juv
absi, jd =

1

Ncell
o
q

Juv
absqdeıq·Ri j . sA41d

Hence, this convention differs from the one we employ by a
simple phase factor, expsıq ·r abd for Juv

absi , jd. The two ap-
proaches are equally valid and yield the same results; how-
ever, there are a couple of important differences in the above
results when this alternate convention is used. First, the in-
teraction matrix defined by the inverse of Eq.(A41) has
complex entries. For nearest-neighbor interactions between
sitesa=1 andb=2, we have

Juv
absqd = Juv

1,2s1 + e−ıq·Ri,jd, sA42d

where the factor of 1 arises because the sitesa=1 andb=2
are in the same tetrahedral basis unit, i.e.,Ri,j =0, but its
symmetric equivalent hasRi,j Þ0. Next, the definition for the
scattering cross section, Eq.(A27), holds, but the expression
for the correlation function between normal-mode variables,
Eq. (A29), contains the phase-factor exps−ıq ·Ri − ıq8 ·R jd.
Carrying the necessary steps through to an expression for
scattering cross section, one finds that the factor expsıG ·r ad
in Eqs. (A36) and (A39) is replaced by expsıQ ·r ad. Recall
that momentum transfer and reciprocal lattice vector are re-
lated according toQ=G+q. The presentation found in Refs.
39 and 56(as noticed recently by Kadowakiet al.73) unin-
tentionally mixes these two conventions.

APPENDIX B: HIGH TEMPERATURE EXPANSION OF
THE GAUSSIAN APPROXIMATION

We demonstrate that the equations for the neutron-
scattering cross section obtained from MFT at the Gaussian
level (Appendix A) can also be formulated via a high-
temperature series expansion(HTSE) to lowest order inb
;1/T, whereT is temperature in units ofkB. In contrast to
VMFT, in a HTSE there is no appeal to any simplifying
approximation that changes the character of the density ma-
trix and imposes constraints that keep the internal energy
TrhrHj fixed. We follow our established convention of treat-
ing the general case of anisotropic Heisenberg spins while
pointing out the specific differences fork111l Ising spins
when needed. The starting point is the Heisenberg Hamil-
tonian of Eq.(1).

HH = − 1
2o

i,j
o
a,b

o
u,v

Juv
absi, jdSi

a,uSj
b,v, sB1d

whereJuv
absi , jd contains both spin and coordinate degrees of

freedom and is defined by Eq.(5).
In the formula for the scattering cross section, Eq.(11),

one must calculate the perpendicular correlation function,

kSi'
a ·Sj'

b l = o
u,v

sn̂'
u · n̂'

v dkSi
a,uSj

b,vl, sB2d

which is just Eq.(12). We express the correlation function
kSi

a,uSj
b,vl as a series expansion in cumulants,74

kSi
a,uSj

b,vl = o
m=0

`
s− bdm

m!
kSi

a,uSj
b,vHH

mlc, sB3d

wherek…l represents a thermal average with respect toHH
and k. . .lc represents the cumulant expansion of the spin op-
erators andHH. Cumulants are evaluated as a trace over the

T=0 states,k. . .l0=Trh. . .j /Trh1j, where Trh1j=Ñ is a nor-
malization factor,s4pdN for Heisenberg spins ands2dN for
Ising spins, andN is the total number of sites in the lattice.
Therefore, the correlation function to lowest order inb is

kSi
a,uSj

b,vl < kSi
a,uSj

b,vlc − bkSi
a,uSj

b,vHHlc + . . . sB4d

For both Heisenberg and Ising Hamiltonians, any nonzero
contribution to the correlation function must have an even
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number of spin components per site[i.e., sSi
a,ud2]. The zeroth-

order term inb is obtained trivially,

kSi
a,uSj

b,vlc = kSi
a,uSj

b,vlo = s1/nddi,jd
a,bdu,v,

The first-order contribution has two terms in the cumulant,

kSi
a,uSj

b,vHlc = kSi
a,uSj

b,vHlo − kSi
a,uSj

b,vlokHlo,

but the second does not contribute becausekHlo

~ kSl
ã,ũSm

b̃,ṽlo=0, spins in the Hamiltonian can not be at the
same site. The first term yields the result

kSi
a,uSj

b,vHlo = − 1
2o

l,m
o
ã,b̃

o
ũ,ṽ

Jũṽ
ãb̃si, jdkSi

a,uSj
b,vSl

ã,ũSm
b̃,ṽl

= − s1/n2dJuv
absi, jd. sB5d

Therefore, Eq.(B4) can be rewritten as

kSi
a,uSj

b,vl < s1/nddi,jd
a,bdu,v + sb/n2dJuv

absi, jd. sB6d

We obtain an expression for the scattering cross section
by substituting the result of Eq.(B6) into Eq. (B2), and then
that result into Eq.(11); we use the identityQ=q+G and the
definition of the Fourier transform ofJuv

absi , jd, Eq. (8), to
arrive at

1

Ncell

dssQd
dV

= sC/ndffsQdg2o
a,b

o
u,v

sn̂'
u · n̂'

v d

3 Sda,bdu,v +
b

n
Juv

abs− qdDeıG·r ab
, sB7d

where C is a constant. Note, a factor of 1/Ncell has been
absorbed into the expression of the Fourier transform of the
correlation function, Eq.(B6), in order to remain consistent
with our use of Eq.(A23) in the derivation of the mean-field
neutron-scattering cross-section, Eq.(A37). The interaction
matrix, Juv

abs−qd, in Eq. (B7) is not diagonal. In order to
calculate the differential cross section for the pyrochlore lat-
tice, or any lattice with a basis, we must diagonalize
Juv

abs−qd. This is done with unitary matrixUsqd, or Uu,m
a,asqd in

component form. The first term on the right-hand side of Eq.
(B7) follows directly from the definition ofUsqd,

o
a,m

Uu,m
a,as− qdUm,v

a,bsqd = I = da,bdu,v, sB8d

where I is the appropriate identity matrix. The transforma-
tion of the second term uses Eq.(A25) and solves forJsqd,

Jsqd = UsqdlsqdU†sqd,

or in component form,

Juv
abs− qd = o

a,m
lm

asqdUu,m
a,as− qdUm,v

a,bsqd, sB9d

wherelm
as−qd=lm

asqd. Using the results from Eqs.(B8) and
(B9), the expression for the scattering cross section becomes

1

Ncell

dssQd
dV

= sC/ndffsQdg2o
a,m

o
a,b

o
u,v

sn̂'
u · n̂'

v d

3 S1 +
b

n
lm

asqdDUu,m
a,as− qdUm,v

a,bsqdeıG·r ab
.

sB10d

In the high-temperature limitsb→0d, one can write

S1 +
b

n
lm

asqdD < S1 −
b

n
lm

asqdD−1

,

and the mean-field result is recovered,

1

Ncell

dssQd
dV

= CffsQdg2o
a,m

uFm,'
a sqdu2

sn − blm
asqdd

, sB11d

where Fm,'
a sqd is given by Eq. (A36) with Uu,m

a,as−qd
=Um,u

a,asqd. For a k111l Ising model, the indicessu,vd and
sm ,nd are dropped from our presentation,n=1, andF'

a sqd is
given by Eq.(A39).

APPENDIX C: EWALD EQUATIONS

Here we treat the dipole-dipole term inJsqd via the
Ewald method.75 In MFT one works in the thermodynamic
limit, so one has an infinite lattice sum. Within the Ewald
approach, one recasts this infinite and conditionally conver-
gent series as two finite absolutely convergent(rapidly con-
verging) sums.58,76 The application of Ewald’s ideas to the
Fourier transformed dipole-dipole interaction is equivalent to
the method of long wavelengths presented in Ref. 58.

The general expression of the Fourier transformed dipole-
dipole lattice sum is

Asqd = o
i

8o
a,b

u,v

Auv
abe−ıq·Ri j

ab
, sC1d

where

Auv
ab =

n̂u · n̂v

uRi j
abu3

−
3sn̂u ·Ri j

abdsn̂v ·Ri j
abd

uRi j
abu5

. sC2d

The conventions for indices and vectors are described in Sec-
tion II, andAsqd is a 12312 matrix. The sumoi8 is over all
Ri j

ab except the termsRi j
ab=0. To implement the Ewald

method, we rewrite Eq.(C2) in the following form:60

Auv
ab = − sn̂u ·¹xdsn̂v ·¹xdH 1

uRi j
ab − xuJx=0

. sC3d

Equation(C3) is used in Eq.(C1), and in terms of compo-
nents one has,

Auv
absqd = − sn̂u ·¹xdsn̂v ·¹xdHo

i
8

e−ıq·Ri j
ab

uRi j
ab − xuJ

x=0

. sC4d

The goal of the Ewald method is to rewrite Eq.(C4), a
conditionally convergent series, as two absolutely convergent
series, one in real space and the other in reciprocal space
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(k-space). We begin by writing the sum inside the brackets as
a sum over allRi j

ab, the result is

Auv
absqd = − sn̂u ·¹xdsn̂v ·¹xdHo

i

e−ıq·Ri j
ab

uRi j
ab − xuJ

x=0

+ dabsn̂u ·¹xdsn̂v ·¹xdH 1

uxuJx=0
. sC5d

Next, the definition of a Gaussian integral(also a gamma
function identity77),

1

uRu
=

2
Îp
E

0

`

e−t2R2
dt,

is used rewrite the point source term, 1/uRi j
ab−xu, in Eq.(C5).

The Fourier-transformed dipole-dipole lattice sum now reads

Auv
absqd = − sn̂u ·¹xdsn̂v ·¹xdE

0

`

dt
2

Îp
e−ıq·x

3 Ho
i

e−t2uRi j
ab − xu2−ıq·sRi j

ab−xdJ
x=0

+ dabsn̂u ·¹xdsn̂v ·¹xdH 1

uxuJx=0
. sC6d

The integral in Eq.(C6) is divided into two regions,f0,ag
and fa ,`d. It is from this decomposition that the real space
sfa ,`dd and k-spacesf0,agd series will arise. We note that
the series resulting from thefa ,`d integral will have a di-
vergence atRi j

ab=0, hence this term is treated separately. The
range of integration is controlled bya; it has units of inverse
distance and will play the role of a convergence parameter in
the final series. Equation(C6) now reads

Auv
absqd = Wuv

absqd + Xuv
absqd + Yuv

ab, sC7d

where

Wuv
absqd = − sn̂u ·¹xdsn̂v ·¹xdE

0

a

dt
2

Îp
e−ıq·x

3 Ho
i

e−t2uRi j
ab − xu2−ıq·sRi j

ab−xdJ
x=0

, sC8d

Xuv
absqd = − sn̂u ·¹xdsn̂v ·¹xdE

a

`

dt
2

Îp
e−ıq·x

3 Ho
i

8e−t2uRi j
ab − xu2−ıq·sRi j

ab−xdJ
x=0

, sC9d

Yuv
ab = dabsn̂u ·¹xdsn̂v ·¹xdH 1

uxu
−

2
Îp
E

a

`

e−t2uxu2dtJ
x=0

.

sC10d

We treat the expressions forWuv
absqd, Xuv

absqd, andYuv
ab in suc-

cession.
For Wuv

absqd, the sum inside the brackets is a periodic func-
tion in x. Therefore, it can be expressed as a Fourier series,

fsxd = o
i

e−t2uRi j
ab − xu2−ıq·sRi j

ab−xd = o
k

gkeık·x. sC11d

Solving for gk one has

gk=G =
4p

v

e−ıG·r ab

uq − Gu3
Fszd, sC12d

whereG is a reciprocal lattice vector,v is the volume of the
unit cell,

Fszd =E
0

`

y sinsyde−z2y2
dy=

Îp

4z3e−1/4z2
, sC13d

and z= t / uq−Gu.78 One now has the following identity for
fsxd,

fsxd = o
i

e−t2uRi j
ab − xu2−ıq·sRi j

ab−xd =
4p

v o
G

e−ıG·sr ab−xd

uq − Gu3
Fszd.

sC14d

Substituting Eq.(C14) into Eq.(C8), differentiating, and im-
posing the limit onx yields

Wuv
absqd =

4p

v o
G

fn̂u · sq − Gdgfn̂v · sq − Gdg
uq − Gu3

e−ıG·r ab

3
2

Îp
E

0

a

dtFst/uq − Gud. sC15d

The integral overf0,ag is readily performed by using the
result from Eq.(C13). Therefore, the reciprocal space sum in
the Ewald decomposition reads

Wuv
absqd =

4p

v o
G

fn̂u · sq − Gdgfn̂v · sq − Gdg
uq − Gu2

3 e−uq − Gu2/4a2
e−ıG·r ab

, sC16d

where the sum is over all reciprocal lattice vectorsG. We
note, however, the series forWuv

absqd has a nonanalytic term
at G=0 when at the zone center,q=0. This point is dis-
cussed below.

The expression forXuv
absqd, Eq. (C9), can be rearranged to

obtain an identifiable integral. By reversing the sum and in-
tegral in Eq.(C9), we obtain

Xuv
absqd = − sn̂u ·¹xdsn̂v ·¹xdo

i
8e−ıq·Ri j

ab

3
2

Îp
E

a

`

dtue−t2uRi j
ab − xu2ux=0. sC17d

The integral in Eq.(C17) can be expressed as a complemen-
tary error function,77

erfcszd =
2

Îp
E

z

`

e−x2
dx.

A final form for Xuv
absqd is obtained by first applying the dif-

ferential operators in Eq.(C17), followed by taking the limit
x→0, and then integrating to get
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Xuv
absqd = o

i
8fS1uv

absRi j
abd − S2uv

absRi j
abdge−ıq·Ri j

ab
, sC18d

where

S1uv
absRi j

abd = sn̂u · n̂vdH 2a

Îp

e−a2uRi j
abu2

uRi j
abu2

+
erfcsauRi j

abud
uRi j

abu3 J ,

sC19d

S2uv
absRi j

abd = sn̂u ·Ri j
abdsn̂v ·Ri j

abd

3 HF 4a3

ÎpuRi j
abu2

+
6a

ÎpuRi j
abu4Ge−a2uRi j

abu2

+
3 erfcsauRi j

abud
uRi j

abu5 J . sC20d

Equations (C18)–(C20) form the real-space sum in the
Ewald decomposition of the dipole-dipole interaction. Note
that the sum in Eq.(C18) is over all Bravais lattice displace-
ment vectorsRi j , with j fixed, exceptRi j =0. Hence, the
real-space Ewald series is analytic everywhere.

In treating the singular terms in Eq.(C10), one applies
differential operators first to get

Yuv
ab = lim

x→0
dabH−

sn̂u · n̂vd
uxu3

+
3sn̂u ·xdsn̂v ·xd

uxu5

+ sS1uv
absxd − S2uv

absxddJ , sC21d

where S1uv
absxd and S2uv

absxd are given by Eqs.(C19) and
(C20), respectively, withRi j

ab replaced byx. To evaluate the
limit in Eq. (C21), one expands the exponential function to
Osx2d and the complementary error function to orderOsx3d.
The result is the constant,

Yuv
ab = −

4a3

3Îp
sn̂u · n̂vdda,b. sC22d

Collecting the results of Eqs.(C16), (C18)–(C20), and
(C22), we write the Ewald representation of theq-dependent
dipole-dipole interaction as

Auv
absqd = −

4a3

3Îp
sn̂u · n̂vdda,b

+
4p

v o
G

Kuvsq − Gde−uq − Gu2/4a2
e−ıG·r ab

+ o
i

8fS1uv
absRi j

abd − S2uv
absRi j

abdge−ıq·Ri j
ab

,

sC23d

where

Kuvsq − Gd =
fn̂u · sq − Gdgfn̂v · sq − Gdg

uq − Gu2
. sC24d

In our derivation of the Ewald equations there is no ref-
erence to a specific lattice structure. Therefore, the Ewald
results encapsulated in Eq.(C23) hold for any lattice de-

scribed by a set of translation vectorshRi j
abj. Through the unit

vectorsn̂u (where local quantization axes can be treated by
including a sublattice index, i.e.,n̂a,u), the freedom to define
the spin symmetry(e.g., Heisenberg, XY, Ising) has been
ensured, too. For the work discussed in this article, we con-
sider both Heisenberg andk111l Ising spins on the pyro-
chlore lattice. For Heisenberg spins,Auv

absqd is calculated for
all sublatticessa,bd and spin componentssu,vd, the resulting
Asqd is a 12312 symmetric matrix contribution toJsqd.
For k111l Ising spins, the sums over spin components are
dropped and the local quantization vectors are substituted,ẑa.
One calculatesAabsqd for all sublatticessa,bd, resulting in
Asqd a symmetric 434 contribution toJsqd. For each py-
rochlore model,Asqd is determined at everyq-point in a
mesh that covers the first Brillouin zone in theshhld plane.
These matrices are stored and then used in the formation of
Jsqd to calculate the neutron-scattering cross section, Eq.
(16) or Eq. (18), for a specified set of interaction parameters
(i.e.,J, D, D, T). BecauseAsqd is calculated only forq in the
first zone, the termKuvsq−Gd in Eq. (C23) is ill defined at
q=G=0. We discuss the smallq behavior of the Ewald
equations below.

The parametera used to divide the integral in Eq.(C6)
functions as a convergence parameter in the Ewald sums, Eq.
(C23). Although, the result ofAuv

absqd is independent of the
value of a, in practice one choosesa so that both real and
reciprocal sums converge rapidly. Note that the convergence
of the real-space sum, Eqs.(C18)–(C20), is enhanced by a
large value fora, while the convergence of the reciprocal
sum, Eq.(C16), is improved for a smalla. In choosing a
convergence parameter, we followed Ref. 59 and seta
=Îp /v, wherev is the volume of the unit cell. For a pyro-
chlore lattice defined in the rhombohedral basis with a cubic
cell size of ā, we usedv= ā3/4. The real- and reciprocal-
space sums converged at about the same rate for this value of
a. We obtained similar results forAuv

absqd using a=Îp /2v
anda=Î2p /v. Our Ewald results were checked by compar-
ing the maximum eigenvalues ofAsqd to those generated
from a direct lattice sum ofAsqd out to some cutoff distance
rc. Comparisons were done for the bcc and fcc lattices. We
also performed tests of our Ewald equations for the pyro-
chlore lattice by calculating the soft-mode spectrum ofAsqd
in the spin-ice regime, e.g.,D=1. Ewald results alongs00ld
in the first Brillouin zone were compared to calculations with
the dipolar sum cutoff at different maximum separation dis-
tancesrc. The cutoff-results approach the Ewald results asrc
increases. This spectrum of eigenvalues agrees well with the
spectrum generated from a direct lattice sum forAsqd with a
cutoff distance ofrc=1000, Fig. 6 in Ref. 79. The Ewald
method eliminates the ripples in the soft-mode spectrum of
Asqd by effectively taking the range of interaction to infinity.

The reciprocal space sum in Eq.(C23) has a nonanalytic
term at the pointq=0 in the first Brillouin zone. If we con-
sider theG=0 contribution to Eq.(C16), we have,

Wuv
absq,G = 0d =

4p

v

sn̂u ·qdsn̂v ·qd
uqu2

e−uqu2/4a2
. sC25d

In the limit of smallq the exponential is expanded to yield
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Wuv
absq,G = 0d <

4p

v

sn̂u ·qdsn̂v ·qd
uqu2 S1 −

uqu2

4a2D , sC26d

where in the limitq→0 the value of

4p

v

sn̂u ·qdsn̂v ·qd
uqu2

depends on the direction in which one approaches the zone
center. The nonanalytic term can be related to the macro-
scopic field of the dipoles and is shape dependent(see Sec-
tion 30 in Ref. 58). We drop this term from our calculation to
obtain a completely smooth spectrum all the way toq
=0,0,0. Thephysics of spin ice is not affected by this omis-
sion because all modes contribute to the PM scattering with
q=0,0,1going critical atTc

MF. The case of Tb2Ti2O7 is more
subtle because it is theq=0,0,0soft mode that goes critical.
However, our focus here is not the ordered state of Tb2Ti2O7,
where aq=0 ordered state is expected for a pyrochlore AFM
with either k111l Ising25,28,35 or Heisenberg5 spins. Instead,
we are concerned with understanding the physics in the para-
magnetic regime of this system as a first step toward unrav-
eling the mystery surrounding the failure of Tb2Ti2O7 to or-
der at 50 mK.

APPENDIX D: SYMMETRY EXCLUDED SCATTERING

The paramagnetic neutron scattering spectrum of
Tb2Ti2O7 in the shhld plane contains a strong but broad re-
gion of intensity aboutQ=0,0,2with no discernible corre-
lations near the zone center,Q=0,0,0.41 In this appendix,
we put forward arguments based only on the structure of the
lattice and the symmetry of spin space to demonstrate that
the PM scattering intensity profile described above can not
be realized byk111l Ising spins on the pyrochlore lattice, but
is allowed if the spins are Heisenberg-like.

For the Ising pyrochlores, the map of scattering intensity
is determined by the functionF'

a sqd, Eq. (19), which con-
tains only information on the symmetry of the lattice through
the eigenvectorsUa,asqd and the phase-factor expsıG ·rad and
the symmetry of spin space through the local quantization
axis za. We consider a unit tetrahedron with scattering vec-
tors Q restricted to thes00ld direction. To handle the situa-
tion near the origin, we express allQ as a small displacement
from a reciprocal lattice vector(i.e., Q=G+q=0,0,,
+0,0,d), where 0,d,1, , is an integer, and a factor of
2p / ā is implied. The term0,0,d falls in the first zone and,
therefore, determines the eigenvalues and eigenvectors. Us-
ing the values forr a and ẑa defined in Table I we write

F'
a s0,0,, + dd =

s1,1,0d
Î3

fU1,asdd − U2,asddg

+
s1,− 1,0d

Î3
fU4,asdd − U3,asddgeıs,p/2d.

sD1d

Note that the projections of the spins onto the plane perpen-
dicular to the direction ofQ sum to zero(i.e., ẑ

'

s1d+ ẑ
'

s2d

+ ẑ
'

s3d+ ẑ
'

s4d=0). For wave vectorsQ=0,0,d and Q=0,0,2
+d, one has the following:

F'
a s0,0,dd =

s1,1,0d
Î3

fU1,asdd − U2,asddg

+
s1,− 1,0d

Î3
fU4,asdd − U3,asddg sD2d

and

F'
a s0,0,2 +dd =

s1,1,0d
Î3

fU1,asdd − U2,asddg

−
s1,− 1,0d

Î3
fU4,asdd − U3,asddg. sD3d

The modulus squared of these two functions, e.g., the nu-
merator of the scattering cross section, yields the same nu-
merical result,

uF'
a s0,0,ddu2 = uF'

a s0,0,2 +ddu2

= 1
3hfU1,asdd − U2,asdd − U3,asdd + U4,asddg2

+ fU1,asdd − U2,asdd + U3,asdd − U4,asddg2j.

This means the scattering cross section, given by Eq.(18), in
the limit d→0, is the same(or exactly correlated) for Q
=0,0,0 andQ=0,0,2, absent the magnetic form factor
(fsQd). Therefore, the paramagnetic scattering of Tb2Ti2O7

cannot be generated by a model with Ising spins(infinite
local k111l anisotropy).

In the case of Heisenberg spins with finite single-ion an-
isotropy, we consider the functionFm,'

a sqd is given by Eq.
(17). Again, restricting ourselves to wave vectors along the
s00ld direction, we have the general result

Fm,'
a s0,0,, + dd = Um,'

1,a sdd + Um,'
2,a sdd

+ fUm,'
3,a sdd + Um,'

4,a sddgeıs,p/2d, sD4d

whereUm,'
a,a sdd=fUx,m

a,asdd ,Uy,m
a,asdd ,0g. For Q near 0,0,0 and

0,0,2, we obtain the following two forms:

Fm,'
a s0,0,dd = Um,'

1,a sdd + Um,'
2,a sdd + Um,'

3,a sdd + Um,'
4,a sdd

sD5d

and

Fm,'
a s0,0,2 +dd = Um,'

1,a sdd + Um,'
2,a sdd − fUm,'

3,a sdd + Um,'
4,a sddg.

sD6d

Taking the modulus squared we get

uF'
a,ms0,0,ddu2 = sA2 + B2d + sC2 + D2d + 2sAC+ BDd

sD7d

and

uF'
a,ms0,0,2 +ddu2 = sA2 + B2d + sC2 + D2d − 2sAC+ BDd,

sD8d

where
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A = Ux,m
1,asdd + Ux,m

2,asdd,

B = Uy,m
1,asdd + Uy,m

2,asdd,

C = Ux,m
3,asdd + Ux,m

4,asdd,

D = Uy,m
3,asdd + Uy,m

4,asdd. sD9d

Equations(D7) and(D8) are not strictly equivalent. Hence, it
is possible to have paramagnetic spin-spin correlations about
Q=0,0,2 while intensity aboutQ=0,0,0 is suppressed.
This result puts on a firm theoretical footing the need to
describe Tb2Ti2O7 by a three-component Heisenberg model
with finite anisotropy.
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