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Highly frustrated antiferromagnets composed of magnetic rare-earth moments are currently attracting much
experimental and theoretical interest. Rare-earth ions generally have small exchange interactions and large
magnetic moments. This makes it necessary to understand in detail the role of long-range magnetic dipole-
dipole interactions in these systems, in particular, in the context of spin-spin correlations that develop in the
paramagnetic phase, but are often unable to condense into a conventional long-range magnetic-ordered phase.
This scenario is most dramatically emphasized in the frustrated pyrochlore antiferromagnet mas&r#d-Tb
which does not order down to 50 mK despite an antiferromagnetic Curie-Weiss temp@&igture-20 K. In
this paper we report results from mean-field theory calculations of the paramagnetic elastic neutron scattering
in highly frustrated magnetic systems with long-range dipole-dipole interactions, focusing on £higCrb
system. Modeling T§Ti,0; as an antiferromagnetid11) Ising pyrochlore, we find that the mean-field para-
magnetic scattering is inconsistent with the experimentally observed results. Through simple symmetry argu-
ments we demonstrate that the observed paramagnetic correlationsTinGbare precluded from being
generated by any spin Hamiltonian that considers only Ising spins, but are qualitatively consistent with
Heisenberg-like moments. Explicit calculations of the paramagnetic scattering pattern f¢t ibtlsing and
Heisenberg models, which include finite single-ion anisotropy, support these claims. We offer suggestions for
reconciling the need to restore spin isotropy with the Ising-like structure suggested by the single-ion properties
of Th%*.
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I. INTRODUCTION example, crystal fields produce an effective Ising doublet at

the rare-earth ion site, %, in the HgTi,0; (Ref. 24,

The pyrochlore oxides, with the general formulaB30;,  Dy,Ti, O, (Ref. 24, Tb,Ti,O, (Refs. 24 and 25 and
have attracted a great deal of attention over the last decade,Ti,O, (Ref. 26 materials. An energy gap separates the
because the combination of lattice geometry and chemicajround-state doublet from the lowest-lying excited states

composition allows for a plethora of interesting physicalwith the Ising quantization axis coinciding with the local
phenomena in these materiaf€ The A and B sites reside on

two distinct interpenetrating pyrochlore networks of corner-
sharing tetrahedra, Fig. 1. Sincé*can be either a magnetic /

rare-earth or a nonmagnetic transition metal afti@n be a

®

transition metal with or without a moment, there are numer-

ous possibilities to study insulating and itinerant magnetic / /,/Z N
models in a geometrically frustrated environment. Experi- / / == ®
mentally, long-range magnetic-ordered stdtésmagnetic G & \

phases(e.g., spin glas$;*! spin ice31214spin liquid>19, e

anomalous Hall effect! metallic propertied® and
superconductivit}?? have been observed in the pyrochlore
oxides. Materials with the pyrochlore-related spinel structure
have also attracted much attention recently. Heavy fermion & ) 4
physics has been observed in thikelectron LiV,O, A\
compounct! In the spinel antiferromagnet Zng,, a spin-
Peierls-like transition has been obserfedt low tempera- L
tures and a protectorate of weakly interacting spin directorg L
slightly above the spin-Peierls transition temperatdre.

In insulating rare-earth magnetic pyrochlores, the mag-
netic rare-earth ions often have large dipole moments, i.e.,
u>1ug and small Heisenberg exchange interactions. In FIG. 1. The pyrochlore lattice structure. The lattice is con-
such a situation, long-range dipole-dipole interactions are atructed from a network of corner sharing tetrahedra in which each
significant contribution to the Hamiltonian. As well, a large tetrahedron resides at an fcc Bravais lattice point. A cubic cell con-
single-ion anisotropy interaction is also often present. Fotains 4 tetrahedra or 16 atoms.
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cubic (111 directions?#?®i.e., the quantization axis points ing the spin-liquid state in Ti,0; would be to understand
toward the center of the tetrahedral-basis unit cell. Most nothe nature of the paramagnetic spin—spin correlations. It is
ticeably, this strong local111) Ising-axis anisotropy has the aim of this paper to shed some light on the paramagnetic
been found responsible for endowing frustration to the pyrocorrelations of this material.
chlore lattice in the presence of effective nearest-neighbor In this article, we use mean-field theofFT) to inves-
ferromagneti¢FM) interactions:227-?8From a statistical me- tigate the paramagnetic spin-spin correlations ¢if1d) Ising
chanics point of view, a FM111) Ising pyrochlore model is dipolar model pertinent to Ti,0; as well as a finite Ising
equivalent to a model for disordered water igewhere both  anisotropy model. In MFT, the PM regime is realized for
magneti¢? and water-ic&®-3! models possess macroscopic temperatures above an energy scale set by the mean-field
degeneracy. Recent experiments on the magnetic systerdF) critical mode, i.e.,T>T¥" =A¥"/n, whereT is tem-
Dy,Ti,O; (Ref. 13 and HgTi,O,; (Refs. 32 and 38 so-  perature in units okg, n is the number of spin components,
called spin-ice materials, reveal a residual entropy in agreeand )\QAF represents the mean-field global maximum eigen-
ment with the prediction for water ice.In contrast, nearest- value of theﬂ-dependent susceptibility. As the temperature
neighbor antiferromagnetiCAFM) interactions in a(111)  approache3Y", one expects the critical mode to control the
Ising-pyrochlore model are nonfrustrat&f’-2834therefore,  spin-spin correlations. A clear understanding of this critical
such a model is expected to order at a temperature set by tieode softening relies on an accurate treatment of all inter-
nearest-neighbor energy scale, i'By= Jﬁf{/kB. A candidate actions in the Hamiltonian. The long-range dipole-dipole in-
AFM (111) pyrochlore material is Ti,0;, where a non- teractions are our main concern. Our major results are the
collinear long-range ordered state is expected afollowing: We establish, on symmetry grounds and through
Ty=1 K.?535 However, experiments indicate the material calculations, that the observed PM neutron scattering is in-
fails to order down toT=50 mK2°16 despite an antiferro- consistent with a loca{111) Ising dipolar model. Calcula-
magnetic Curie-Weis temperatum;,,~-20 K, making this tions performed for an anisotropic Heisenberg pyrochlore
system, thus far, one of the cleanest realizations of a spimodel yield good agreement with experiment and thus sup-
liquid in a three-dimensional system. The mechanism report the claim that at least a partial restoration of spin isot-
sponsible for ThTi,O- failing to order down to such low ropy occurs in ThTi,Ox.
temperatures has not yet been resoRfed. We also have in mind a broader perspective in presenting
In Th,Ti,O,, the energy gap between the ground-statethe enclosed work and detailed derivation of the mean-field
doublet and the first excited-state doublefis-20 K (Refs. ~ formulation of the structure factd¥(q) for highly frustrated
24 and 25. The size of anisotropy gap here is an order-of-magnets. In the past few years, there have been a number of
magnitude smaller than what is observed in the spin-ice manteresting and puzzling thermodynamic data and neutron-
terials,A=250-350 K(Ref. 24, and is comparable té.,  scattering results on highly frustrated magnets. Examples in-
for Th,Ti,O;. Consequently, in early theoretical work on clude the antiferromagnetic G8a;0;, garnet(referred to as
Th,Ti,0,, a (111 Ising model was assumed and a noncol-GGG),*4~*°the pyrochlore antiferromagnet &ld,0, (Refs.
linear long-rang ordered state with zero net moment aboud—6, 50, and 5). and the pyrochlore ferromagnet YT,0,
each until tetrahedrofg=0 stat§ was predicted alT=1 K  (Refs. 26 and 52 The experimental results on these systems,
(Refs. 25 and 3p However, muon spin-relaxation measure-which will be discussed in more detail in Section IV, raise a
ments indicate a dynamically fluctuating state at all expericommon issue: To further our current understanding of a
mentally achievable temperatures, which recent resultsumber of highly frustrated magnets, including quantum
pushed down below 50 mKRef. 16. In contrast, some fluctuations}® we need to have a clear and quantitative un-
static susceptibility data suggest a spin-glass state at thegerstanding of the predominant correlations that initially de-
temperatured’ Despite the experimental evidence that thevelop out of the paramagnetic state as the materials are
magnetic single-ion ground state of *Tbis an Ising cooled. The mean-field theory described herein is an ap-
doublet?*2> several experimental groups have used simplgroach to formulate such a program. For concreteness, this
Heisenberg-type mode[svhich for the pyrochlore lattice is paper focuses on the specific cases of insulating pyrochlore
paramagnetic down t®— 0" (Refs. 38—4{] to obtain quali- oxides with local(11]) Ising axis anisotropy. It is straight-
tative agreement with the observed paramagrn@id) scat- forward to use the formalism herein to tackle the frustrated
tering patterrf14?2 Finally, we note that high-pressure dipolar systems described above as well as others.
neutron-scattering experiments on,ThO- find a transition The outline of the paper is as follows: In Section Il a
to long-range order at a temperature in excess of 1 K for agondensed description of the MFT formalism of neutron
applied pressure larger than 2 GBdut the magnetic struc- scattering for the anisotropic Heisenberg &h#il) Ising py-
ture has not been determined. In summary, there is currentljochlores is presented. We give the MFT results for the para-
ambiguity even as to the nature of the paramagnetic correlanagnetic scattering of Thi,O; in Section Ill. Our mean-
tions developing in T§ri,O, at temperatures abové.,,. field data are also compared to Monte Carlo results for the
This is an important issue since very recent neutronparamagneti€(q). Section IV discusses the need to relax the
scattering measurements on a single crystal ofTiH®, (112 Ising constraint to allow for transverse fluctuations in
down to 50 mK have found that the scattered intensity inTh,Ti,O;. For completeness, we include several detailed ap-
reciprocal space remains essentially unchanged frozen pendixes. In Appendix A, the variational MFT is discussed
out) when going from the paramagnetic temperature of 10 Kand the equations for elastic neutron scattering are derived in
down to 50 mK(Ref. 16. It would therefore appear that a detail. An alternate approach—a high-temperature series
first requirement to make theoretical progress in understancexpansion—to the equations for neutron scattering is pre-
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TABLE I. Our convention for vectors: The? define the basis vectors arfd define the locak111)
anisotropy axes for spins on the pyrochlore lattice. The size of the corresponding cubic cell is gavandy
contains 16 atoms. Vectof#' represent the global Cartesian-basis vectors.

r® a/4(0,0,0 2 1/43 1,19 v (1,00
r@ a/4 (11,0 22 1/43 (-1,-1,1 @ (0,1,0
r® a/4 (1,0, 73 1/\3 (-1,1,-) Ad (0,0,
r@ a/4 (0,1, 74 1/\3 (1,-1,-)

sented in Appendix B. The derivation of the Ewald equationsR?=R;+r?. Table | lists our convention for the tetrahedral-
for the g-dependent dipole-dipole Hamiltonian is given in basis coordinates®. The most general Hamiltonian for rare-
Appendix C. Appendix D contains a detailed discussion ofearth spins on the pyrochlore lattice is a Heisenberg model
the symmetry-allowed scattering patterns fbt1) Ising and  with nearest-neighbor exchange, dipole-dipole, and single-
Heisenberg pyrochlores. We note that other authors have digan anisotropy(with a local(111) orientation energies,

cussed various aspects of the mean-field th&€68fy>” and ) .

EwaldP8-61 derivations presented in Appendixes A and C, Hw=-J X §-§-AX (25

respectively. Our purpose here is to provide a self-contained (@.a).(.b) la

reference for the application of the Ewald method within a s 3(S-RI)(S-RY
mean-field formalism, connecting at times with results from +Dyqg E Rab[3 - Rab|5

earlier work®® and which will be useful to other researchers e~ L IRY R3]

who wish to study frustrated magnetic systems with non- 1)

Bravais lattice geometries and allowing for an array of pos

sible spin symmetries and interactions. The unit vectoz? represents the locél11) quantization axis

that points toward the center of a tetrahedron. Table | defines
our convention foz?. The spinsS® have unit length and full
O(3) symmetry,R3°=R?~R? is the vector separation be-
tween spinsS® and S}’, andJ andA define the exchange and

In this section, we present the models and provide arsingle-ion energy scales, respectively. The convention estab-
outline of the derivation of the mean-field equations for thelished in Eq.(1) definesJ>0 as FM andJ<0 as AFM
neutron-scattering cross sectiodg(Q)/d(), for classical €xchange energies. The dipolar energy scale is seDjyy
spins on the pyrochlore lattice. The resulting equations aré& DR}, where

Il. MEAN-FIELD THEORY OF NEUTRON SCATTERING
IN THE PYROCHLORES

only applicable in the disordered paramagnetic regime of the o 12
model Hamiltonians. Our derivation is performed for the D=2,
general anisotropic Heisenberg model because it has broad AR,

appeal to the study of many highly frustrated magnetic sysy, is the moment on the rare-earth ion, dRygl is the nearest-
tems. Our method is best described as variational mean-fieﬁgighbor distance.

theory* (VMFT) (which is equivalent to a Gaussian approxi- - The (111 Ising dipolar model for the pyrochlore lattie
mation of the free energyand has been used to study frus-js gbtained by considering the limit of large Ising anisotropy
trated magnetic systeni$>*"The details of VMFT and its jn Eq. (1) (A/]J|>1 andA/D> 1). The low-energy physics

application to the scattering cross section are presented i this system is modeled by the Hamiltonian,
Appendix A. We remind the reader that MFT corresponds to

a partial resummation of an infinite number of terms in the H,=-J 2 (ia-ib)(r?ajb

high-temperature series expansion for titdependent sus- ((.a),(j.0))

ceptibility x(q). In particular, the correlation$s(0) - S(r)) are (A.5) 3. Rﬁb (. Rﬁ b
correctly treated to ordeB=1/T [or x(q) to 1/T?] in MFT. +Dyq > SYCEI Rab5 0 0j
This is demonstrated in Appendix B, where scattering cross- da=o \ [Rj R3]

section equations are derived via a high-temperature series 2
expansion.

By low-energy physics we mean that the single-ion term in

Eqg. (1) is removed and the spins are restricted to lie along the

local (111) quantization axis, i.eS'=2%¢" with o7+ 1. If one
The pyrochlore lattice, Fig. 1, is a non-Bravais lattice thatwere to truncate the dipolar sum in E() at nearest-

we describe as a fcc lattice with a four-atom unit cell. Theneighbor distances, then the following effective nearest-

positions of the fcc Bravais lattice points, which coincide neighbor energy scale could be defined:

with a corner point on the tetrahedral basis, are denoted by ¥ =3 +D 3)

R;. The four atoms that form the tetrahedron at each fcc point nnoTan s Enn

(and represent different sublattigese labeled by?. Hence, whereJ,,=J/3 andD,,=5D/3. For FM effective nearest-

the position of a site in the pyrochlore lattice is given by neighbor exchangd?™> 0 setting all dipolar interactions be-

A. Models
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yond nearest-neighbor to zero, one has the nearest-neighbehich employs the position of the spR?, results in a real
spin-ice model of Harriset al. (Refs. 12 and 2y If the  symmetricq-dependent interaction matrix(q), 12X 12 for
nearest-neighbor interactiod§" are AFM, then the model Heisenberg and % 4 for Ising spins. An alternate convention
possesses a unique ordered sggte0, all-in all-out statgat  for the Fourier transform useg;, the Bravais lattice points,
temperatures on the order [of"| (Refs. 25, 27, 28, and 34  instead ofR? and yields a comple¥/(q); refer to Appendix
The transition between the spin-ice ayd0 phases occurs at A for details. For a non-Bravais lattice, the interaction matrix
Jnn/ Dpn=—1.0. When dipole-dipole sum is extended to long-is not fully diagonalized by a Fourier transform. Hence, to
range distances, the transition betweengh® and the spin- completely diagonalize 7(q), one must transform the
ice states shifts to Jnn/Din - g-dependent variables? to normal mode variables. In com-

=-0.908. Hence, long-range dipolar interactions favor theponent form, the normal mode transformation is given by
q=0 AFM phase slightly?®

4 3
B. Mean-field theory U E 2 a
: . . . = UGa(@) ég”, 9)
We are interested in calculating the elastic neutron- o a=1 p=1 e K

scattering cross section for both Heisenberg &kid) Ising

spins on the pyrochlore lattice at the mean-field level. Thereyhere the indiceSa,u) label the normal modegl2 for
fore, we use the general anisotropic Hamiltonkan as the  Hejsenberg spinsand{¢¢*} are the amplitudes of the nor-
starting point for MFT and include a local, fictitious field ma| modes. In matrix formi(q) is the unitary matrix that
term, |h[=[hf], (where at the end of the calculatidrt— 0), diagonalizes7(q) in the spin® sublattice space with eigen-

.. v a,a
Hy = - %2 >SS jﬁf(l,l)§’u§' -3 haUY (4) values\(q). H.ence,Uu’ﬂ(q) represgnts th&\,ug component
ij ab uv iau of the (a, w) eigenvector af with e|genvalu9\M(q). Finally,
the mean-field free energy to quadratic order in the normal

where modes reads,
J0i,j) = ombg (A1) +AS PPN (2 - AY)
(A“-f°) _ 3 RP)(A - R] FoM =35 2 [INT-Nu@]ldg“* - T 2 hg# e,
-D - (5) Q. Q.a,u
“\ RSP RSP
1 i (10

In the notation of this general model, the spin vectors are

represented b =AY +APF?+A®SS, where the unit whereF,(T)=F,(T)/Ngy, hg<h3"/T, T is the temperature
vectorsi” are the global Cartesian unit vectors, see Table ljn ynits ofkg, andn=3 for Heisenberg spins. Note, in order
and §*" is the uth component of spin. The sum in E@)  to consider the Ising case, the indicesind . are dropped
does not include terms witRj®=0. For (111 Ising spins,  from Eq. (10) and n=1. We have also dropped a constant
one begins withH,, Eq. (2), and adds the field term from the expression fof,(T), refer to Appendix A.

2 4(h}- )07 The resultant interaction paramet@®™(i, j) The neutron-scattering cross section for unpolarized neu-
does not include the spin components. trons in the dipole approximation is given by the general
The general expression for the mean-field free energy igxpressior§263
as follows:
= = d C[f 2 a
Fp Tr{pHH} + -I_rr{P In P} <HH>p + T<|n p>p! (6) O-(Q) — [ (Q)] 2 2 <S'T’:1L i S})L>eIQ-Rijb, (11)

wherep is the many-body density matrix and Tr represents a dQ Neen 7ij ab

trace over the states @f A mean-field form forF, is ob-

tained by first expressing the many-body density matrix as avhereQ is the momentum transfeQ=G+q, G is a recip-
product of single-particle density matricep({S7}) rocal lattice vector and is a vector in the first zond(Q) is
=11; ,p(S), followed by minimizingF, with respect top!  the magnetic form factor of the relevant scattering ion, @d
(the variational parameterssubject to the constraints IS @ constant. The spin-spin correlation function only in-
Tr{p?=1 and T{p?S}=m? wherem? is the local, vector Volves spin components perpendicular @ (i.e., Sf, =S’
order parameter. For Ising spins? has only one compo- ~(S7-Q)Q/|Q|?) and can be written as

nent,m?. Next, the resulting mean-field free energy is trans-

formed to momentum space by applying the definitions, (S, -S}’l) =D [AY- A - (A Q)(ﬁv _Q)] % (Sa,uS),%
mp = E mg,ue—lq-Ria, ) upy
! =2 (6“’“ - QQ?Z ><sa'“§b’">, (12)
1 uv
T = 3 Tae T, ®) )
cell q where Q=Q/|Q|. The correlation functiodaa'“ﬁ]'”) is ex-

where N is the number of fcc Bravais lattice points. We pressed as a thermal average of the mean-field variables and
note that the above convention for the Fourier transformthen transformed to normal modes,
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uchuy — ar gBryyad(qyUPE(g’ Dy,Ti,O; (Ref. 35. Therefore, at a nearest-neighbor cutoff
S § ) %, %%(% U @U,(a") distance, TBTi,0; is an AFM (111) pyrochlore that is pre-

A b dicted to develop noncollinear AFM order, with ordering
X g 'dRigTa Ry (13)  wave vectorg,y=0, at T=1 K (Refs. 25 and 36 We em-
. . . . phasize that in the context of @11) Ising model with
The correlation function of normal mode variables is calcu-3 /p -_1 1 ThTi,0, is still predicted to be a long-range
lated from derivatives of the mean-field partition function, \gn when  both antiferromagnetic nearest-neighbor ex-
Z=Tr{e"P*D}, where F,(T) is given by Eq.(10), with re- change and long-range dipole interactions are consid&red.

spect tohg*. The result is Hence, the antiferromagnetic exchange ifl&1) model of
sBgvs szTi207 is sufficiently strpng tol preven_t the perturbatio.ns
<¢a,u¢,&,v> -2 “ %ata'0 (14) arising from long-range dipolar interactions from changing
4 7a (3=\“™(q)IT) the ordered state of the model. The counterpoint to the above

model predictions is that experimentally 5,0, remains a

for Heisenberg spins and collective paramagnetic down to very low temperatufes,

SUBS. ., =50 mK (Ref. 16.
a B g+q’,0 N . . .
(dqg) = m (15) As an initial attempt to explain the physics of J,0-,
q we investigate the PM correlations within MFT and compare
for (112) Ising spins. to the experimental results for elastic neutron scattering. Ex-

Using Eqs(12)<(14) or (15) in Eq.(11) and carrying out perimental data for elastic neutron scattering inTikO; are
the sums, one obtains equations for the scattering cross segown in Fig. 2a). The most intense region of scattering is
tion. In the case of Heisenberg spins, we have centered aroun®=0,0, 2with reduced correlations extend-

ing toward Q=2,2,0 and ascattering minimum at Q&
1 do(Q) _ CLHOPS Fo (@ From the pyrochlore lattice structure and the MF formalism,
NceII dQ a,u (3 - Az(Q)/T) ’

(16) we know that the intensity &=0,0,2 iscontrolled by the

eigenmodes a=0,0,0 butmodulated by the phase factor
where expIG -r?), see Eqs(18) and(19). This raises the question
N B wa wa Aa ard as to whether the maximum aboQt=0,0,2could be inter-
FM,L(Q) - Ea: {Uu' (@) - (Uu' (@) -QQje (17) preted as the precursor of a long-range ordered noncollinear

AFM state.
is a three-component vector. Fdrl1) Ising spins, one has We begin by consideringl11l) Ising spins on the pyro-
w12 chlore lattice.(The details upon which our arguments are
1 do(Q = CHHQES IF(q)l (19  based are provided in Appendix DThe neutron-scattering
Neey  dQ) ~(L-\*q)T)’ intensity profile is determined by (q), Eq. (19), and con-

. tains information on the spin anisotropy \#and the eigen-
with values\?(g) and the symmetry of the lattice through the
@iy N 52| @) G eigenvectordJ*?(q), and a phase factor e -r?). Hence,
Fl(q)—gziu (@e=", (19 the nature and strength of the exchange and dipole-dipole
interactions are arbitrary. From these basic symmetry com-
where F9(q) is still a three-component vector al =2 ponents, we find thdE?(0,0,0[2=|F¢(0,0,2? or that the
-(2.0)0. scattering intensity abou®=0,0,0 andQ=0,0,2 has the
Equations(16) and (18) are the main results of this sec- same numerical value, disregarding the form fagfgQ)).
tion. They provide a mean-field description for the PM elas-An equivalent statement is the intensities abQu#0,0,0
tic neutron scattering of Heisenberg afitill) Ising mo- andQ=0,0,2 aresymmetry related. This strong condition
ments, respectively, on the pyrochlore lattice. Theon the scattering pattern is in serious contradiction with the
temperature that defines the paramagnetic regime is set ®xperimentally observed results. In contrast, if we consider

the maximum eigenvalue according to an anisotropic Heisenberg pyrochlore mofet. (16) with
ME na finite A], we find that the lattice and spin degrees of freedom
T>Tc" = max,{\"(q)}/n, (200 do not force the scattering intensity to be identical ab@ut

=0,0,0 andQ=0,0,2. For anodel with full O(3) spin sym-
metry, the scattering profile is controlled #; , (q), Eq.
(17). The significant difference between E@t7) and(19) is
the restoration of spin isotropy, i.e., the geometric factor de-
fining the local(111) quantization axi€? is absent from Eq.
(17). Therefore, on purely symmetry grounds, (141 Ising
model (i.e., Hamiltonian with arbitrary distance-dependent
Starting with the zeroth-ordétow-energy (111) descrip-  J;;(r;;) for Tb,Ti,O; will reproduce the experimental PM cor-
tion for Th,Ti,O;, we usel;=-2.64 K andD=0.48 K yield-  relations shown in Fig. (2). Earlier works have recognized
ing Jyn/Dpn=—1.1 (Ref. 25, which compares tal,,/D,, the need to consider more isotropic spin models for
=-0.22 for HgTi,0; (Ref. 32 and J,,/D,,=—0.52 for  Th,Ti,O,. In Ref. 41, the qualitative features of the PM scat-

whereA™®{(q) is the maximum eigenvalue at wave vectpr
and may selects the global maximum for alfj. The
max,{\"¥{(q)} occurs at the ordering wave veciy.

IIl. NEUTRON SCATTERING OF Tb ,Ti,04
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FIG. 3. (Color onling Monte Carlo results for paramagnetic
scattering in theghhl) plane for TRTi,O; as a(11l) Ising AFM,
T=5.0 K, N=1024 spins. Note that there is no intensity abQut
=0,0,2. Dipoles were treated via the Ewald method.

evaluated with the Ewald method, see Appendix C. For the
(111 Ising descriptioni.e., A/|J}>1 andA/D>1 and Eq.
(18)], we usel;=-2.64 K andD>=0.48 K(Ref. 25. Our data
. are shown in Fig. @®). Note that the scattering abo@
4 R 3 = s 5 5 =0,0,0 andQ=0,0,2 issymmetry related, as predicted
above, but is an intensity minimum. Monte Carlo data for
this (111 Ising model agrees with our MF results, see Fig. 3.
Monte Carlo simulations for Ti,0; as a(111) Ising dipo-
lar model were performed onla=4 lattice(N=1024 spin¥
at T=5 K (T¥F~1 K) with J;=-2.64 K andD=0.48 K,
with the dipolar sum treated via the Ewald summation
method. Neutron-scattering ddi@as determined by Eq11l)
(Ref. 32] were collected after 5 10’ Monte Carlo steps per
spin for both equilibration and measurement stages, and are
shown in Fig. 3. The intensity minimum &=0,0,0 and
Q=0,0,2supports the above mean-field results and symme-
try arguments. For a Heisenberg model with finite anisotropy
4 05 » 15 3 25 [i.e.,A/|J|>1 andA/D>1 and Eq(16)], our MF results are
() {001} provided in Fig. 2c). With an anisotropy strength oA
] . o =20 K (i.e.,A/D=41.7), we achieve good qualitative agree-
FIG. 2.. (Color onling Pgramagnetlc scatterlng in thiehl) plane ment with the experiment. The region arou@e0,0,2 has
for ThyTioO7: () Experimental paramagnetic scatteffhg(T o strongest scattering with reduced intensity n&ar
1:-3 ;(l),orr:m:mém mtelnsulty atQ=0i]|0, 2’T(:b)1 ghﬁF mOd.elt Of =2,2,0 and thdnterconnecting regions. If we turn off the
P211207 treated as aL11) Ising pyrochlore(T=15Tc"), no inten- g ;0 anisotropy(A=0), i.e., an isotropic Heisenberg model
sity atQ=0, 0, 2,(c) MF model of ThTi,O; treated as an aniso- . . o . .
tropic Heisenberg pyrochloré =151, A=20 K), maximum in- with Iong_-rang_e dipoles, the_ dominating scattering remains
tensity atQ=0, 0, 2. _about _pomtsQ—0,0,Z a_ch—z,_Z,O, k_Jutthere is |ncrea§ed
intensity along the bridge regions ig-space connecting
these points. Finally, in the absence of dipoles AmD one
tering were reproduced from an isotropic structure factor fohas the nearest neighbor AFM exchange Heisenberg model,
the nearest-neighbor Heisenberg pyrochlore AFM. Similawhere the scattering intensity forms a network of intercon-
results were obtained in Ref. 42 by considering spe€fic nected triangles with equal intensity aboQ=0,0,2 and
=0 spin structures on a cluster of two tetrahedra. Q=2,2,0(Refs. 41, 64, and §5Hence, a partial restoration
To support the picture obtained on symmetry grounds, wef the spin isotropy is sufficient to place scattering about
have applied our MF formalism to two models for,T,0: points Q=0,0,2 andQ=2,2,0 ing-space, but to achieve
(i) a pyrochlore system witf111) Ising spins, andii) a good qualitative agreement with the experimental intensity
pyrochlore lattice with Heisenberg spins and finitd1) an-  profile dipolar interactions are necessary as is a finite single-
isotropy. In both cases, the dipole-dipole interactions aréon contribution to the Hamiltonian.

I
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IV. DISCUSSION restoration of the full spin symmetry 3t<20 K seems an

A. Tb,Ti,O, unlikely explanation for the PM scattering at 9 K. _ .

' The current MF approach does not allow the single-ion

The prediction of an(111) Ising model for ThTi,O, is  properties to be systematically considered, but a RPA calcu-
that of an AFM long-range ordered state in which all spinslation does® By retaining only the simplest energy-level
point either in or out of the unit tetrahedra at=10° K. structure in the T¥ wave function, the ground-state doublet
However, this prediction is not realized experimentally. An-and the first excited-state doublet, one can relax the strict
other problem, and possibly even more important, with &111) Ising constraint on the spins in a controlled approxima-
(112) Ising model for TRTi,O,, is that the mean-field PM tion. Within the RPA, fluctuations out of the ground-state and
correlationgsee Fig. 2b)] do not agree with the experimen- into the first excited-state levels are equivalent to a fluctuat-
tally observed result§Fig. 2a)]. In Section Il and in Ap- ing canting of spins away from the Ising geometry. In this
pendix D, we demonstrated on symmetry grounds alone tha@se, the lowest-order fluctuations from the sifidt1) Ising
no pyrochlore model wit111) Ising moments could repro- limit yield qualitative agreement with experiment for the
duce the basic features of the experimental PM scatteringaramagnetic spin-spin correlatici¥sOthers have also pro-
(i.e., strongest intensity centered ab@#0, 0, 2, lower in-  posed a simple relaxation scheme of the stitl) Ising
tensity abouQ=2, 2, 0, and minimum intensity at the zone directions?? Theoretical work remains to be done to explain
centerQ=0, 0, 0. These symmetry arguments were alsothe failure of TQTi,O; to order at a temperature of 1 K, and
supported by MF and MC calculations of the elastic neutronwhy it remains paramagnetic down to 50 ngRefs. 15 and
scattering cross section, E{.8). 41).

In Section Il and in Appendix D, we were also able to
demonstrate on symmetry grounds that a Heisenberg pyro-
chlore model of TbTi,O; would allow for elastic scattering
aboutQ=0, 0, 2 while at the same time permit no scattering We now briefly discuss some puzzling experimental re-
aboutQ=0, 0, 0. A MF calculation of the PM neutron scat- sults for a few highly frustrated magnets. We note that the
tering in the(hhl) plane for an anisotropic Heisenberg model present mean-field formulation for the structure fac$to)
with long-range dipoles, Eql), shows good agreement with could provide valuable insight on the development of mag-
the experimental scattering pattgsirongest intensity about netic correlations out of the PM regime for each of these
Q=0, 0, 2 with reduced scattering@t=2, 2, 0 and along the systems. The first, very paradoxical, system is the antiferro-
bridges between these points, see Fig)]2 Both the finite  magnetic GgGa;0,, garnet(GGG). This material, where
anisotropy(A/|J|>1 and A/D>1) and long-range dipoles Gd* is the magnetic ion with a spiB=7/2, consists of two
are necessary to achieve a quantitative match with the exsublattices of intertwined spirals of corner-sharing triangles.
periments. Reducing either the single-ion anisotropy to thé=or classical Heisenberg spins coupled by nearest-neighbor
isotropic limit (A=0) or the range of the dipole-dipole inter- antiferromagnetic exchange, each spiral on a garnet lattice
actions in the model reduces this agreement by altering thstructure should display a thermally induced spin-nematic
ratio of scattering intensity betwe&p=0, 0, 2 andQ=2, 2,  order-by-disorder transition according to work by Moessner
0. However, even a dramatically simplified model, whichand Chalkef* Some precursors of spin coplanarity in GGG
would have dipoles cut off at the first nearest neighbor may have recently been observed in Mdéssbauer
=1, would still improve the picture provided by a nearest-experiments? In GGG, however, dipolar interactions are ap-
neighbor AFM exchange-only Heisenberg model presentegroximately 50% of the strength of the exchange interactions
in Ref. 41. Therefore, and foremost in our argument, a resfor nearest neighbors and is, consequently, a sizable pertur-
toration of the spin isotropy is absolutely necessary to placéation to contend with in this systetfiln zero-applied mag-
paramagnetic scattering about tpespace point€)=0, 0, 2  netic field, specific heat, magnetic susceptibility, and nonlin-
andQ=2, 2, 0. The dipolar interactions are then importantear susceptibility measurements on GGG strongly suggest
for shifting (i.e., redistributing the scattering intensity from that this material undergoes a spin-glass transition around
Q=2,2,0t0Q=0, 0, 2. Intermediate regions between thesel40 mK (Refs. 45 and 46 However, the nonlinear suscepti-
two points also experience a reduction in scattering. In termsbility y,, measurements indicate that the spin-glass transition
of the underlying soft-mode spectrum, the 0 eigenvalues in this material is unusual in that, exhibits two maxima®
and eigenvectors control the scattering@t2, 2, 0 toQ  In contrast to bulk measuremenitsi® neutron-scattering ex-
=0, 0, 2. A shift in intensity fromQ=2, 2, 0 toQ=0, 0, 2  periments on powder samples of isotopically enrich¥6d
signals a PM spin structure that prefers to lixyrplane(i.e.,  (natural Gd has a huge neutron absorption cross sédtien
neutron scattering @ =0, 0, 2 comes from spins with com- dicates the development of spin-spin correlations at approxi-
ponents perpendicular to this directjon matively 140 mK, extending to a length scale of

Switching to a model with fully isotropic Heisenberg ~100 A(Refs. 47 and 48 It is unclear at present whether or
spins(as in Ref. 4] restores all the spin symmetry in the not the development of extended spin correlations in GGG at
paramagnetic limit. This picture is dramatically inconsistent~140 mK is an intrinsic effect or is due to material impuri-
with the experimentally determined single-ion structure ofties and/or defectée.g., Gd* magnetic ions at G4 site$?).
Tb®* (J=6, 7F6) in Th,Ti,O;, where a ground-state doublet Another interesting system is the gil,O; pyrochlore anti-
is separated from the first excited doublet by an anisotropyerromagnet, where there, too, &ds the moment-carrying
gap of 20 K, close to thé.,, temperaturé*?°> Therefore, a  species. In G4Ti,0, the dipolar interactions are approxi-

B. General discussion: Avenues for other studies
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mately 20% of the strength of the exchange interactions foron den Hertog, Ying-Jer Kao, Jean-Yves Delannoy, Roger
nearest neighbors and is here, just as in GGG above, avelko, Adrian del Maestro, Hamid Molavian, and Taras
important perturbatiot>%° Palmer and Chalker argue that Yavorskii for many useful discussions. This work is sup-
the ground state consists of a fully ordered structure wherported by NSERC of Canada, the Canada Research Chairs
each tetrahedral unit cell has an identi@dro total magnetic Program, Research Corporation, and the Province of Ontario.
momenj spin configuration(a so-calledq,q=0 structure.®
Recent work has confirmed that this ground state is ex-
tremely robust against quantum fluctuatiSagiowever, re-

cent experiments on Gli,O; are rather puzzling and ap-  As we noted in the Introduction, other authors have dis-
pear inconsistent with Palmer and Chalker's work.c ssed MFT and its application to magneft&f4-57and the
Specifically, neutron diffraction measurements'8iGd iso- Ewald method for magnetic dipol&%:81 Our purpose is to
topically enriched powders find a partially ordered phaseombine the techniques of MFT, developed here, with the
Wllthl one disordered sublattice and propagation vecfor Ewald procedures for magnetic dipoles drspace(devel-
=3.3,3 at T=50 mK? hence incompatible with the predic- oped in Appendix C so they can be readily applied to other
tions of Palmer and ChalkérSpecific heat measurements problems of highly frustrated rare-earth magnets.

find strong evidence for two transitions @£0.7 K and at In this appendix we provide a detailed derivation of the
T=1.0 K(Ref. 50. Recent mean-field calculations find evi- mean-field equations for the elastic-scattering cross section
dence for a two-step magnetic ordering in this systéfSo  for pyrochlore spin systems. Our derivation is performed for
for Gd,Ti,O7, there also exists a complex behavior as sig-Heisenberg spins, with a finite loc&l11) anisotropy, in or-
naled by thermodynamic measurements, theoretical predigter to broaden the appeal of the results. Connectiofiklth
tions, and neutron-scattering resufiginally, the YBTi,O;  |sing systems, infinite loca{111) anisotropy, are noted at
pyrochlore ferromagnet is also puzzIiff?> There, neutron-  appropriate points. As mentioned in Section Il, the MFT is
scattering results, muon spin relaxation, and Mosshauer exteveloped via a variational approa¢iMFT) and, in gen-
periments suggest a ground state that lacks long-range magral, this approach applies to a large array of statistical mod-
netic order while there exist good evidence from thee|s with arbitrarily complex order parametéfdn this work,
Méssbauer data that a first-order spin-freezing transition octhe method reproduces the Gaussian approximay) of

curs around T¢~0.24 K. Meanwhile, elastic neutron- the Landau free energy. The VMFT described here has been
scattering results reveal the development of nontrivial spinysed by other3®55-57and we provide a detailed presentation
spin correlations aS is approached from above. In this here to clear up the notational inconsistencies that appeared
system too, it is possible that long-range dipolar interactionsn some of these previous works. We also wish to provide for
may play some role due to the contribution of demy)  comparison with the RPA, which allows for a more con-
=|7/2,+712 eigenstate within the effectiveS.x=1/2  trolled relaxation of the111) Ising restrictio§26 that ex-

APPENDIX A: NEUTRON SCATTERING IN THE
GAUSSIAN APPROXIMATION

ground-state doublét. perimental evidence suggests is needed foiTiHD,*142
We begin with the model Hamiltonian of E(L), Hy. The
V. CONCLUSIONS conventions for the spin vecto&, unit vectorsi, and 22,

and the description of the pyrochlore lattice in a rhombohe-
In conclusion, we have demonstrated on symmetryiral basis with a four-atom unit cell are as described in Sec-
grounds, through MF calculations, and MC simulations thation II. Therefore, our starting Hamiltonian for MFT is given
the experimentally measured PM elastic neutron scattering ipy
Tb,Ti,O5 is inconsistent with g111) Ising pyrochlore spin L
structure. From the qualitative agreement obtained using an __= bri i\cauchy _ aucau
anisotropic Heisenberg model, we argue in favor of a more Hr 2% % UEU T )SS %u s, (A1)
isotropic effective spin model to describe the low-energy b s ) o )
phases of T§Ti,O-. where 75 ,j) is defined by Eq(5), and a fictitious field
Finally, we have discussed the usefulness of a combineterm has been added. The field term, wiiii|=|h|, is re-
mean-field theory and Ewald method approach to studyingnoved from the final equations by takirg — 0. We note
geometrically frustrated magnets with long-range dipolethat indices(a,b)=1, 2, 3, 4 label the sublattices afal,v)
dipole interactions in the paramagnetic phase. This approachl, 2, 3 label the spin components.
could be applied in general to any geometrically frustrated In VMFT, an approximate free energy as a function of a
system. The zero field picture of Gaa;0, (GGG) is par- trial density matrixp is formed,
ticularly interesting because the low-temperature phase re- _ _
mains an unresolved issue that entails unraveling the physics ' »~ TripHpt+ TTr{pln p} = (Hy), + Tn p)y,,  (A2)
of competing exchange and long-range dipole-dipole interaowhere Tr represents a trace-over spin varialifesis varia-

tions in a garnet lattice environmefit4%.7 tional and defines an upper bound to the actual free energy,
i.e., F,=F. The best functional from for the trial density
ACKNOWLEDGMENTS matrix is obtained by minimizingr, with respect to the pa-

rameters ofp. For a system of particles, the MF form of
We would like to acknowledge Bill Buyers, Steve Bram- the N-body density matrix is given by a product of single
well, Adrian del Maestro, Jason Gardner, Bruce Gaulin, By-particle density matrices,
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p({S7} = H p{(S). (A3)

The single particle density matripsg-a is treated as a varia-
tional parameter that is subject to the constraints

Trip}=1, (A4)

To{p(S}=m?, (A5)

which keep the internal energy constant, i.e.{pF}=C.
Here,m is a vector-order parameter; f<)11],> Ising spins,
one has the scalar equivalent,{g@to®}=m?. Incorporating
the constraints into the expression féy g|ves

F,=Tr{pHu} + T Tr{pIn p} - TTr{E &(pf - 1)}

(A6)

—TTr{E (i~ m?) -A?},

where & and A? are the Lagrange multipliers for the con-
straints of Eq.(A4) and Eq.(A5), respectively. In minimiz-
ing F, with respect top?, one has the following results:

o
P —a T{pHu} =0,

5i Tr{p In p} = Tr{In p?} + Tr{1},

Pi

e TF{E fpl} &Y,
Pi ia

é
T X oSt AR L =TS AR
op; ia
The optimum form for the density matrix is found by solving
oF 1 6p?=0,
= C?eAia'Sla,

Wherecf‘:ef‘l:l/Tr{eA?'ia} follows from Eq.(4). Evaluat-
ing the trace inC? for both Heisenberg and Ising spins we
obtain

(A7)

a (2,”_)3/2

= pa A = [T AT (49

IAaI
and
=2 costiA?), (A9)

respectively, where,;,(|A?%) is a modified Bessel function.
The variational local density matrix is now written as

(A10)

and is used, along with the constraints of E¢&4) and
(A5),to rewrite the variational free energy,

PHYSICAL REVIEW B 70, 174426(2004)

-3 > 2 i, jhm

i,j ab uv

+T>, (A% -m2-
ia

by _ 2 h?,um?,u

i,au

In 23). (A11)

We want an expression for the free-energy—to—quadratic
order inm?® This means that one must expanddf(A?) and
then expres#\? as a function ofn?. From the series repre-
sentation of ZX(A{) followed by the series expansion of
In(1-x), one has
|A%?

InZ2~InC,+ o (A12)

whereC; is a model-dependent constant arwll, 3 for Ising
and Heisenberg spins, respectively. Using &®b), one ob-
tains the expression

I35(|A
Aa 3/2(| | ) (A13)
AR
Aa al 1
=AY\ Coth|A) - —— (A14)
AT
for Heisenberg and
m? = tanHA?) (A15)
for Ising spins. To first order, we have
=3A% (A16)
and
mi = A? (A17)

Using Eqs(A12)—(A17), we can write the MF free energy to
quadratic order in the order parameter,

p= 33 3 X nfUnTa 508 - T, D"

i,j ab uv

- 2 WU = TpNgy In Cy, (A18)

i,au
where p=4 denotes the size of the bag®ublattice. As a
side note, the Lagrange multipli&f can be interpreted as an
effective mean field interacting with a local moment. Mini-

mizing F,, of Eq. (A11) with respect ton" one has
Eﬂ,u
A= '? (A19)
where
hat= 3 o0 J)mPe + b, (A20)

jbo

is the uth component of the effective field at site a). We
next exploit the fact that the pyrochlore lattice has the under-
lying symmetry of a fcc lattice by defining the Fourier trans-
forms,

|qR

auE

(A21)
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1

> JE(q)ea R,

cell q

Toi,)) = (A22)

N
whereN.g is the number of fcc Bravais lattice points, HRft

denotes the position of a spin, aR§’=R?~R?. Equations
(A21) and(A22) applied toF, yield

F(T) =32 2 2 mg nTe* 8 = 7(a) Iy

g ab uv

-2 2 > P Ml - TpIn Cy, (A23)
q ab uv
whereF (T)=F ,(T)/Ncgy. A transformation to normal modes
is necessary to diagonalizﬁf(q). This is accomplished by
the use of Eq(9), or

4 3
mg'”=2 E Uﬁ’a

)
a=1 pu=1

(@ g, (A24)
where the Greek indicegy, i) label the normal modesl(q)
is the unitary matrix that diagonalizgdq) in the sublattice
space with eigenvalues(q),

UT(q)7(a)U(a) =\ (q),

where in component forrhlﬁjfj(q) represents théa,u) com-
ponent of the(a, 1) eigenvector af with eigenvalue\;(q).
The amplitudes of the normal modes are denoted ¢y}
={Z, 95"} Therefore, the MF free-energy—to—quadratic or-
der in the normal modes variables reads

FyM =52 2 o2 InT-\Aa)] g%~ T X hergh

q au q ap
-TpinCy,

(A25)

(A26)

where

~ 1
= 23 hg UG- ).
T a,u

Note that for the Ising case, the indices representing the spin

componentqu,v) and the corresponding modég,v) are
dropped from Eq(A26).

The neutron-scattering cross-section for unpolarized ne
trons in the dipole approximation is given by E@l) (Refs.
62 and 63, or

do(Q _ CIf(QT?
dQ - I\Icell

S (S-SR, (A27)

ij ab

whereQ is the momentum transfer, i.€Q=G+q, G is a fcc
reciprocal lattice vectory is a wave vector in the first Bril-
louin zone, andC is a constant. The correlation function is
between spin components perpendicular to the ve@tor

(S8 =2 (A A (SIS
Q'Y

(- G

where ﬁj:ﬁ“—(ﬁ”-())@ is strictly a geometric factor and

=2

uu

(A28)

PHYSICAL REVIEW B0, 174426(2004)

Q=Q/|Q|. For Ising spins one replacé$ with 2 from Table

I and §*" with ¢?. In order to proceed, the correlation func-
tion between spin variable$S?, -Sﬁ), must be transformed

to g-space by use of EqA21) and then to normal mode

variables by application of EqA24), one arrives at

(U =2 2 Dbl

q.q" @B v

X US3(@)UDA(Q e R R (A29)

u

The correlation functionj¢g"“¢g;”> can be calculated from a

partition function defined in terms of the normal mode am-
plitudes. The general definition reads

Z=Tr{e 7D}, (A30)

where F,(T) is given by Eq.(A26), and the trace is over all
values of the normal mode amplitudes,

Tr= I1 depg™,
- g, a,u
so one has
e 1 )\a(q) «, Na, «,
z=11 d¢g'f*e‘z(n-‘“—T )Wq”lz*hq“ff’—q”, (A31)

q,a,p & =

where a constant term has been dropped. The integral above
is recast as a general Gaussian,

o 2
f d¢e‘%A"’Z+B¢: \/%TGZB_A,

where A:(n—[)\Z(q)]/T) and B:Eg*“. Therefore, the final
form of the partition function is

(A32)

u_

20 1/2) - 5
z= 11 z=#@q) = 11 g Prain-xg (@)
q,a,u q,a,u n- A(L(Q)
T
(A33)
The correlation function is now determined from derivatives
of Z with respect to the fieldgj*,
« v 1 (922 5q+q,,0501,,38u,,v
("5 =5 T AT N
o\ q J 9 |7 = (n_ _/J-_)
q T
(A34)

Back substitution of the result from E@A34), into Eq.
(A29), (A28), and then into Eq¢A27), and finally imposing
the properties of the Kronecker delta functions leaves

= Cl[f ——L
Ncell dQ [ (Q)] %% uzu (n - Az(Q)/T)

(@)U~ q)e®™,

where we have used the identity

,a
X UZVU

(A35)
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S QR QT = N2 G Toq) = 51+ e'9Ri), (A42)
N where the factor of 1 arises because the sited andb=2
We find it convenient to define the function, are in the same tetrahedral basis unit, iR.;=0, but its
N U Gy symmetric equivalent hag; ; # 0. Next, the definition for the
Fo@= > n Uy Qe scattering cross section, HA\27), holds, but the expression
a,u

for the correlation function between normal-mode variables,
:E{Ufﬁ'a(Q) -[U;‘i'a(q) _Q]Q}eIG-ra, (A36) Eq. (A29), contains the phase-factor pr)q-Ri—lq’-Rj)_.
a Carrying the necessary steps through to an expression for
war < AUl A N ) scattering cross section, one finds that the factofi&y?)
where U;"(q)=2,"U, (@) [and, thereforeF,  (q)] is @ iy Egs.(A36) and (A39) is replaced by expQ -r?). Recall
three-component vector. The scattering cross section is Writha+ momentum transfer and reciprocal lattice vector are re-
ten compactly as lated according t@ =G +q. The presentation found in Refs.

" 2 39 and 56(as noticed recently by Kadowakt al.”®) unin-
1 do(Q_ ClfQT> M (A37)  tentionally mixes these two conventions.
Neel dQ a,m (I’] - Az(Q)/T)
o , o , APPENDIX B: HIGH TEMPERATURE EXPANSION OF
Wh|ch is Eg.(16) with n=3. When con&dgrm@ll]} Ising THE GAUSSIAN APPROXIMATION
spins, the arguments that follow E@\29) still hold, but the
indices for the spin componentsi,v) and corresponding We demonstrate that the equations for the neutron-
normal modesu,v) are dropped from the equations. The Scattering cross section obtained from MFT at t_he Ga_ussian
final expression for the scattering cross-section reads level (Appendix A) can also be formulated via a high-
temperature series expansi@iTSE) to lowest order in8
1 do(Q) _ 2y [FS (a)f? =1/T, whereT is temperature in units dz. In contrast to
Neoy  dQ =CliQ] ~ (1-\%q)IT)’ (A38)  VMFT, in a HTSE there is no appeal to any simplifying
approximation that changes the character of the density ma-
whereF{(q) is a three component vector given by trix and imposes constraints that keep the internal energy
A A Tr{pH} fixed. We follow our established convention of treat-
Fi(q) =2 £ U*(q)e®", (A39)  ing the general case of anisotropic Heisenberg spins while
a pointing out the specific differences f@il11) Ising spins

which is just Eq(18). We note that EqgA37) and(A38) are Wh(_an needed. The starting point is the Heisenberg Hamil-
only valid for T>\!dod/n, Where \(qeg  tonian of Eq.(1).
=max,{\"{q)} is the critical eigenvalue, a global maxi- _ 1 b i\ caucho

mum),%which sets‘l’c'\’IF and defines the paramagnetic regime. Hiu=- 22 227, (L.)s" gj ' (B1)

We also point out that the lattice structure and spin symmetry

are contained in the respective (q)-functions, Eqs(A36)  where 73(i,j) contains both spin and coordinate degrees of
and(A39); these properties will be exploited in Appendix D freedom and is defined by E¢p).

when we discuss symmetry-allowed scattering patterns for In the formula for the scattering cross section, Etf),

i,j ab uv

Heisenberg and Ising spins. one must calculate the perpendicular correlation function,
S-S =2 (A (SIS, B2
1. Comment on the convention for the Fourier transform (S-S0 UE’U( LR g) ) (B2)

Another convention for defining Fourier modes uses th

Bravais lattice pointsR,, in the definitions? 8vhich is just Eq.(12). We express the correlation function
11 ’

(Sa'“%b'”) as a series expansion in cumulafits,

mit = > mite R, (A40) ()T
| (S5 = 2 (S He, (B3)
m=o M
and
1 where(...) represents a thermal average with respedtito
jﬁg(i,j) =—> jﬁg(q)e'q'Rij_ (A41)  and(...) represents the cumulant expansion of the spin op-
cell g erators anH,. Cumulants are evaluated as a trace over the

Hence, this convention differs from the one we employ by al =0 states...)o=Tr{...}/Tr{1}, where T{1}=N is a nor-
Simp|e phase factor, em.rab) for jgs“ ,J) The two ap- malization faCtor,(41T)N for Heisenberg Spins an@)N for
proaches are equally valid and yield the same results; howsing spins, and is the total number of sites in the lattice.
ever, there are a couple of important differences in the abov&herefore, the correlation function to lowest orderdns
results when this alternate convention is used. First, the in- U\ Jcauchy Uch

teraction matrix defined by the inverse of H@§\41) has s 33 )~ Sb Jom S ﬁj Hudet ... (B4
complex entries. For nearest-neighbor interactions betweefRor both Heisenberg and Ising Hamiltonians, any nonzero
sitesa=1 andb=2, we have contribution to the correlation function must have an even
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number of spin components per site., (§")?]. The zeroth- 1 do(Q) U
order term ing is obtained trivially, Ny d0 CMFQPX X X (A4 /%)

a,;u ab uuv
<Savushﬁ@,v>c - <§'u§’v>o =(1)3, SPbsuv.

The first-order contribution has two terms in the cumulant,

x<1+§)\z(q))ua“( QU bge™,

u UH — u UH u v H (Blo)
(F5He = (S H)o = (S5 )olH)o, In the high-temperature limit3— 0), one can write
but the second does not contribute becaudd), 5 1
(S =0, spins in the Hamiltonian can not be at the <1+ ka(Q)) (1‘5)\2‘5@) :
same site. The first term yields the result
and the mean-field result is recovered,
(SIS HY =33 S S USSP ST 14 Fe
i e 4ot =ClQPE Fa @l gy
i Near 402 . (n=-Br(@)’
= (1) 755, ). (B5)
where F;  (q) is given by Eg.(A36) with U39(-q)
Therefore, Eq(B4) can be rewritten as —U“a(q) For a(111) Ising model, the indicegu, v) and

o (e, v) are dropped from our presentatiors 1, andF{(q) is
(SUSY) = (1) 8 ;678" + (BN Joii).  (B6) given by Eq.(A39).

We obtain an expression for the scattering cross section

by substituting the result of E¢B6) into Eq.(B2), and then APPENDIX C: EWALD EQUATIONS

that result into Eq¢11); we use the identit@) =q+G and the

definition of the Fourier transform af®%i,j), Eq. (8), to Here we treat the dipole-dipole term i(q) via the
arrive at Ewald method® In MFT one works in the thermodynamic

limit, so one has an infinite lattice sum. Within the Ewald
1 do(Q 5 approach, one recasts this infinite and conditionally conver-
Nce” do =(CMfQ] % UEU (7 -A%) gent series as two finite absolutely converggapidly con-
verging sums>®76 The application of Ewald’s ideas to the
Fourier transformed dipole-dipole interaction is equivalent to
the method of long wavelengths presented in Ref. 58.
The general expression of the Fourier transformed dipole-
where C is a constant. Note, a factor of/N., has been dipole lattice sum is
absorbed into the expression of the Fourier transform of the

X (éﬁ'bé“*” + fjﬁs(— q))e‘G'rab, (B7)

ab
correlation function, Eq(B6), in order to remain consistent A(Q) =2 "> APeaRi, (Cy
with our use of Eq(A23) in the derivation of the mean-field i
neutron-scattering cross-section, E437). The interaction v

matrix, 72%(-q), in Eq. (B7) is not diagonal. In order to \here
calculate the differential cross section for the pyrochlore lat-

tice, or any lattice with a basis, we must diagonalize nt-ne - 30" R )(R°-R

ab_
jﬁ,?(—q). This is done with unitary matrik(q), or Uﬁ:;’:(q) in Auw = |Rﬁb |Rﬁb (€2
component form. The first term on the right-hand side of Eq. i o ) ]
(B7) follows directly from the definition ofJ(q) The conventions for indices and vectors are described in Sec-
’ tion Il, and.A(q) is a 12x 12 matrix. The sunk/ is over all
b ab_
U (= q)UeD(q) = | = s2bsuo. BS Ri” except the termsR{’=0. To |mpIement the Ewald
p) ual~ U@ (B8) m”ethod we rewrite Ec(CZ) in the following form®°
wherel is the appropriate identity matrix. The transforma- A= - (AU V(A -V X){ 1 } (C3)
. 813}
tion of the second term uses H#&25) and solves for7(q), |Rab X| | veo
J(@) = U@\ @)Ut (q) Equation(C3) is used in Eq(C1), and in terms of compo-

nents one has,

iR
AB(Q) = (AU VYR T1 D — )
C IR o

or in component form,

T ) = D NAQUEL- UL,  (BY)

The goal of the Ewald method is to rewrite He&4), a
Where)\Z(—q)=)\Z(q). Using the results from Eq$B8) and  conditionally convergent series, as two absolutely convergent
(B9), the expression for the scattering cross section becomeseries, one in real space and the other in reciprocal space
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(k-space. We begm by writing the sum inside the brackets as f(x) = 2 e ~RE° - x[2-10:(REP-x) — E g€ *.  (C11)
a sum over aIRf} , the result is
ab .
. . g aRj Solving for g, one has
ASa) = = (- V) (7 -VX>{2 m} 4 G
i ij =0 T '
” Geo= " qmap @ (C12)
+ A V(R -V ){ } (CH
IX| ) x=0 whereG is a reciprocal lattice vector, is the volume of the

Next, the definition of a Gaussian integra@iso a gamma unit cel,

function identity”), o [
F(z):f y sin(y)eZYdy = AP (C13
1 2 (" 0 47
12 [ ey,

IRl Valo and z=t/|q—G|.”® One now has the following identity for

is used rewrite the point source termJRﬁb—xL in Eq.(C5). f,

The Fourier-transformed dipole-dipole lattice sum now reads -1G-(r2P-x)

al al 4
B f(x)= >, e PIRE = xPP-1g:(REP-x) = _WE e|q—G|3F(Z).
. v g _
A3a) == (A" V(7 -V J dt-=e 9% '
W@ == (- V@V |t cra
x 1> e—tz\Rﬁb—XIz—lq-(Rﬁb—x) Substituting Eq(C14) into Eq.(C8), differentiating, and im-
i <=0 posing the limit onx yields
+ SRV V)(AY -V x){ } (C6) WEq y= 4T 2 ["- (g -G)]h 3(q Gl -igra
X ) x=0' G la-G|

The integral in Eq(C6) is divided into two regions|0,«] 2 [«

and[«,). It is from this decomposition that the real space X _—f dtF(t/lq - G|). (C15
([a,0)) and k-space([0,a]) series will arise. We note that NTIo

the series resulting from ther,») integral will have a di- The integral ovef0,«] is readily performed by using the
vergence aRf}b= 0, hence this term is treated separately. Theresult from Eq(C13). Therefore, the reciprocal space sum in
range of integration is controlled hy; it has units of inverse the Ewald decomposition reads

distance and will play the role of a convergence parameter in

the final series. EquatiofC6) now reads Web(q) = 4_772 [A"-(q ‘|G)][ﬁ72' (q-0)]
v v qg-G
Af(@) =WER(@) + X(@) + Yy, (C7) s
X e—‘q - G‘ /4o e—IG-r , (C16)
where

where the sum is over all reciprocal lattice vect@sWe
WEB(Q) = — (A V) (A - X)f t_e_qu note, however, the series fo¥2(q) has a r?onan'aIyFic term
at G=0 when at the zone centegq=0. This point is dis-

——— cussed below.
X {E e VIR~ xI™ad "X)} , (C8) The expression fox2(q), Eq.(C9), can be rearranged to
i x=0 obtain an identifiable integral. By reversing the sum and in-
tegral in Eq.(C9), we obtain
R R T2 a
Xa(q) == (A V,) (A" - V) f dt?e 1 X3(q) = - (AU V(Y - V) S 'eR]
a N i
2/ pab 2_
x | > e R R0l (co 2 (~ a
{E ;9 x = | dte Ry . (C17)
x=0 N
1 2 (" a0 The integral in Eq(C17) can be expressed as a complemen-
Yoo = SR V(R0 V)| = - = Ot tary error functior’
Xl m %=0
2 o]
(C10 erfdz) = —= eXdx.
We treat the expressions fav2’(q), X2%q), and Y2 in suc- N
cession. A final form for Xﬁf(q) is obtained by first applying the dif-

ForV\/ﬁf(q), the sum inside the brackets is a periodic func-ferential operators in EqC17), followed by taking the limit
tion in x. Therefore, it can be expressed as a Fourier seriex— 0, and then integrating to get
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_q-R2P
X = ’[SlﬁE(Rﬁb) _ SzSE(RiaJ}b)]e R (C18) scribed buy a set of translation vectc{Fﬁab} Through the unit
- vectorsn (where local quantlzatlon axes can be treated by
including a sublattice index, i.eb®Y), the freedom to define

where the spin symmetrye.g., Heisenberg, XY, Isinghas been
2a a2 erfo(a|R? B ensured, too. For the work discussed in this article, we con-
51ab b) (AY-AY)) = , sider both Heisenberg and11) Ismg spins on the pyro-
|R |Ri,~ chlore lattice. For Heisenberg spin4?, (q) is calculated for
(C19 all sublatticega,b) and spin componen(&u v), the resulting
A(q) is a 12x12 symmetric matrix contribution tg7(q).
SZﬁE(Rf’}b) =(AY- Rﬁ}b)(ﬁv ‘R For (113 Ising spins, the sums over spin components are
dropped and the local quantization vectors are substitated,
40° L b oo dRE2 One calculates42®(q) for all sublattices(a,b), resulting in
V’;|Rﬁb2 \5'7_T|R;”J!b4 A(q) a symmetric 4< 4 contribution to7(q). For each py-
ab rochlore model,A(q) is determined at everg-point in a
n 3 erfdo|Ri) _ (c20  mesh that covers the first Brillouin zone in tttehl) plane.
|Rﬁb5 These matrices are stored and then used in the formation of

J(q) to calculate the neutron-scattering cross section, Eq.
(16) or Eq.(18), for a specified set of interaction parameters
(i.e.,J,D, A, T). BecauseA(q) is calculated only fog in the
first zone, the ternkC,,(q—G) in Eq. (C23) is ill defined at
g=G=0. We discuss the smali behavior of the Ewald
equations below.

The parameterr used to divide the integral in EGC6)

Equations (C18—C20) form the real-space sum in the
Ewald decomposition of the dipole-dipole interaction. Note
that the sum in Eq(C18) is over all Bravais lattice displace-
ment vectorsR;;, with j fixed, exceptR;=0. Hence, the
real-space Ewald series is analytic everywhere.

In treating the singular terms in EGC10), one applies
differential operators first to get

o A A functions as a convergence parameter in the Ewald sums, Eq.
ab_ o @p) (010 30" x)(N”-x) (C23). Although, the result 0fA2%(q) is independent of the
Yoo = lim &% - : . v
w0 x| |x|° value of «, in practice one chooses so that both real and
reciprocal sums converge rapidly. Note that the convergence
Slab(x) iy (x)) (C21) of the real-space sum, Eq&C18—<C20), is enhanced by a

large value fore, while the convergence of the reciprocal
sum, Eq.(C16), is improved for a smalk. In choosing a
convergence parameter, we followed Ref. 59 and ®et
Vmrlv, wherev is the volume of the unit cell. For a pyro-
chlore lattice defined in the rhombohedral basis with a cubic
cell size ofa, we usedv=a®/4. The real- and reciprocal-
space sums converged at about the same rate for this value of
b o ab a. We obtained similar results fad2(q) using a=\m/2v
Yo =~ 3_ %) 8. (C22 and a=\27/v. Our Ewald results were checked by compar-
\NTT
ing the maximum eigenvalues od(q) to those generated
Collecting the results of Egs(C16), (C18—C20, and from a direct lattice sum afi(q) out to some cutoff distance
(C22), we write the Ewald representation of thedependent r.. Comparisons were done for the bcc and fcc lattices. We

where S12°(x) and S22%x) are given by Egs(C19 and
(C20), respectively, witer’}b replaced byx. To evaluate the
limit in Eq. (C21), one expands the exponential function to ,
O(x?) and the complementary error function to or@(x>).
The result is the constant,

dipole-dipole interaction as also performed tests of our Ewald equations for the pyro-
403 chlore lattice by calculating the soft-mode spectrundgf)
A(q) = - 37(?1“ -fv)§2P in the spin-ice regime, e.gQ=1. Ewald results alon¢00l)
N T

in the first Brillouin zone were compared to calculations with

A - Gf4a? G the dipolar sum cutoff at different maximum separation dis-
+ 72 Kuw(q-G)e™ “e! tances .. The cutoff-results approach the Ewald results as
¢ increases. This spectrum of eigenvalues agrees well with the
_1q-R2P i i i
n E ’[Slﬁf(Rﬁb) _ Szas(Ria}b)]e 19R” spectrum generated from a direct lattice sum.Agg) with a

cutoff distance ofr,=1000, Fig. 6 in Ref. 79. The Ewald
(€23 method eliminates the ripples in the soft-mode spectrum of
A(q) by effectively taking the range of interaction to infinity.
where The reciprocal space sum in E23) has a nonanalytic
~u b term at the poing=0 in the first Brillouin zone. If we con-
[""-(q —|G)][g|2' Q-6)] (C24)  sider theG=0 contribution to Eq(C16), we have,
q-

4z (- q) (1" - q) a4
In our derivation of the Ewald equations there is no ref- Wi(9,G=0) = T la%4e” - (c25)

erence to a specific lattice structure. Therefore, the Ewald
results encapsulated in E¢C23) hold for any lattice de- In the limit of smallq the exponential is expanded to yield

KUU(q - G) =
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4 (AY-q)(A¥ - q) a2 +79+39=0). For wave vectorQ=0,0,5 and Q=0,0,2
W(a,G=0) = o q[2 1- 12) (C26) +5,L one has the following:

where in the limitg — O the value of F2(0,0,0) = (1’]/'_’()[U1,a(5) - U2%(8)]
V3

4m (- (- ) -
o P +E2 0 -we) (02
;

depends on the direction in which one approaches the zone
center. The nonanalytic term can be related to the macrcand
scopic field of the dipoles and is shape dependse¢ Sec-

tion 30 in Ref. 58. We drop this term from our calculation to F%(0,0,2+5) = w[ul'“(é) —U2e(§)]

obtain a completely smooth spectrum all the way o V3

=0,0,0. Thephysics of spin ice is not affected by this omis- (1,-1,0

sion because all modes contribute to the PM scattering with - ——[U*(8) - U($)]. (D3)
g=0,0, 1going critical afT¥". The case of T§Ti,O; is more V3

subtle because it is tleg=0, 0, 0soft mode that goes critical.
However, our focus here is not the ordered state gD,
where ag=0 ordered state is expected for a pyrochlore AFM
with either (111) Ising?®28:3%or Heisenberg spins. Instead,
we are concerned with understanding the physics in the para-{F¢(0,0,6)|>=|F?(0,0,2 +5)|?
magnetic regime of this system as a first step toward unrav- . N N N
eling the mystery surrounding the failure of ;0 to or- = %{[Ul’ (&) —U(8) - U*(9) + UH*(9]

The modulus squared of these two functions, e.g., the nu-
merator of the scattering cross section, yields the same nu-
merical result,

der at 50 mK. +[UR(9) - U2(8) + U(0) - U (9.
This means the scattering cross section, given by(Hj, in
APPENDIX D: SYMMETRY EXCLUDED SCATTERING the limit 6—0, is the sameor exactly correlatedfor Q

_ ) =0,0,0 andQ=0,0,2, absent the magnetic form factor
The paramagnetic neutron scattering spectrum off(Q)). Therefore, the paramagnetic scattering ofTiO,
Th,Ti,07 in the (hhl) plane contains a strong but broad re- cannot be generated by a model with Ising spiimdinite
gion of intensity abouQ=0,0,2with no discernible corre- |ocal (111) anisotropy.
lations near the zone cent&®=0,0,0" In this appendix, In the case of Heisenberg spins with finite single-ion an-
we put forward arguments based only on the structure of thgsotropy, we consider the functioRy; | (q) is given by Eq.

lattice and the symmetry of spin space to demonstrate that7) Again, restricting ourselves to wave vectors along the
the PM scattering intensity profile described above can nofgq)) direction, we have the general result

be realized by111) Ising spins on the pyrochlore lattice, but

is allowed if the spins are Heisenberg-like. F.(0,0,6+09= U}Lﬁ(b‘) + Ui’j(é)
For the Ising pyrochlores, the map of scattering intensity N « -

is determined by the functioR“(q), Eq. (19), which con- +[ULL(9) + UL (9], (D4)

tains only information on the symmetry of the lattice throughyhere Ua’ci(g):[ugﬂ((s),U;W((s),o]_ For Q near 0,0,0 and

the eigenvector§l*“(q) and the phase-factor e r%) and 0,02, we obtain the following two forms:

the symmetry of spin space through the local quantization

axis z%. We consider a unit tetrahedron with scattering vec-  F ,(0,0,8) = U (8) + U2 (8) + U3 (8) + U} ()

tors Q restricted to thg00l) direction. To handle the situa- (D5)

tion near the origin, we express &llas a small displacement

from a reciprocal lattice vectori.e., Q=G+q=0,0,¢ and

+0,0,6), where 0<6<1, ¢ is an integer, and a factor of _, e 2a /o i3 da
2m/a’is implied. The ternD, 0,4 falls in the first zone and, F,1(0,0.2+8) =U, 1 () + U, (9) - [U,71(9) + U, (9)].

therefore, determines the eigenvalues and eigenvectors. Us- (D6)
ing the values for2 andZ? defined in Table | we write .
Taking the modulus squared we get
1,1,
F2(0,0,0 + 9 = =20 [uta(s) - u2e(9) [F2(0,0,6)2 = (A2 + B?) + (C?-+ D) + 2(AC+ BD)
V3
(D7)
1,-1,
LY = 0)[u“ﬂ(a) - Ue(g)]em2), and
\!
(D1) [F$#(0,0,2 +9)[* = (A*+B? + (C?+ D?) - 2(AC+BD),
(D8)

Note that the projections of the spins onto the plane perpen-
dicular to the direction ofQ sum to zero(i.e., 2"+2?  where
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A=Ura(8) +Uz(9), =UJe(8) +Uya(o). (D9)

EquationgD7) and(D8) are not strlctly equivalent. Hence, it

is possible to have paramagnetic spin-spin correlations about
Q=0,0,2 while intensity aboutQ=0,0,0 is suppressed.
This result puts on a firm theoretical footing the need to
3 describe TBTi,O; by a three-component Heisenberg model
=Uga(8) + Uyga(9), with finite anisotropy.

B=Uy%(8) +UZ(d),
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