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A classical variant of the two-dimensional anisotropic Heisenberg model reproducing inelastic neutron
scattering experiments on La5Ca9Cu24O41 [M. Matsudaet al., Phys. Rev. B68, 060406(R) (2003)] is analyzed
using mostly Monte Carlo techniques. Phase diagrams with external fields parallel and perpendicular to the
easy axis of the anisotropic interactions are determined, including antiferromagnetic and spin-flop phases.
Mobile spinless defects, or holes, are found to form stripes which bunch, debunch, and break up at a phase
transition. A parallel field can lead to a spin-flop phase.
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I. INTRODUCTION

The compoundssLa,Cad14Cu24O41 have been studied ex-
perimentally rather extensively in recent years.1–9 They dis-
play interesting low-dimensional magnetic properties arising
from Cu2O3 two-leg ladders and CuO2 chains. In addition,
for La14−xCaxCu24O41 there is an intriguing interplay between
spin and charge ordering due to hole doping whenx.8.

In particular, La5Ca9Cu24O41 exhibits, at low temperatures
and small fields, antiferromagnetic long-range order associ-
ated with the CuO2 chains which are oriented along thec
axis. The Cu2+ ions in those chains carry a spin-1/2. The
spins are ordered ferromagnetically in the chains, while the
interchain coupling in theac planes is antiferromagnetic. The
magnetic interactions between theac planes are believed to
be very weak. The couplings in theac planes are anisotropic
with an easy axis along theb axis, i.e., the magnet has an
Ising-type character.5,6,8,9 Holes may originate from the La
and Ca ions, transforming Cu ions into spinless quantities,
with a hole content of about 10 percent.12

Experiments on La5Ca9Cu24O41 include thermodynamic
measurements on the specific heat, magnetization, and
susceptibility5,8 as well as electron spin resonance6 and neu-
tron scattering.3,8 Motivated by the experimental findings,
different models have been proposed and studied. First, a
two-dimensional Ising model has been introduced,13,14where
the spins correspond to the Cu2+ ions, and mobile spinless
defects mimic the holes. In addition to the ferromagnetic
intrachain and antiferromagnetic interchain couplings be-
tween neighboring spins, a rather strong and antiferromag-
netic exchange between next-nearest chain spins separated
by a hole is assumed. The model has been shown to describe,
at low temperatures, antiferromagnetic domains separated by
quite straight defect lines which break up at a phase transi-
tion where also the long-range magnetic order gets de-
stroyed. The stripe instability is caused by an effectively at-
tractive interaction between the defects mediated by the
antiferromagnetic interchain couplings.

Even more recently, a two-dimensional anisotropic
Heisenberg model has been shown by Matsudaet al. to re-
produce the measured spin-wave dispersions which suppos-
edly result from the collective spin excitations of the Cu2+

ions in theac planes.9 Our subsequent Monte Carlo simula-
tions on the classical variant of the model seem to indicate,
however, that some of its thermodynamic properties tend to
deviate from experimental findings.15 In particular, in an ex-
ternal field along theb axis, at low temperatures, the field
dependence of the susceptibility of the anisotropic Heisen-
berg model disagrees with the measured behavior. The dis-
agreement probably cannot be resolved by invoking quantum
effects. In particular, the critical temperature of the model
seems to be significantly lower than the measured one, as can
be seen by comparing results on related quantum and classi-
cal models.10,11,15Indeed, in this paper we will argue that the
qualitative properties of the phase diagram of the model are
not affected by quantum effects.

In any event, the classical variant of the model of Mat-
sudaet al. deserves to be studied in more detail. Apart from
the previous qualitative comparison15 with experimental
data, the classical model is of genuine theoretical interest as
well. Perhaps most interestingly, the phase diagram in the
(temperature, field) plane is worth studying in the context of
two-dimensional anisotropic Heisenberg models. Due to the
anisotropy, there is a spin-flop phase when applying a suffi-
ciently high external field along theb axis. In two dimen-
sions, that phase has interesting properties as it is believed to
be of Kosterlitz-Thouless type with spin correlations decay-
ing algebraically with distance. Furthermore, the boundary
line of the antiferromagnetic phase as well as the transition
between the antiferromagnetic and the spin-flop phase has
been discussed controversially for anisotropic nearest-
neighbor Heisenberg models. In three and higher dimen-
sions, there is a bicritical point where the antiferromagnetic,
the spin-flop, and the paramagnetic phases meet.16 As it is
well known, such a point could occur in two dimensions only
at zero temperature(Mermin-Wagner theorem). Actually, dif-
ferent scenarios have been proposed.17 However, simulations
and other analyses on classical models lead to controversial
results.17,18 Fairly recently, anS=1/2 quantum version has
been simulated, suggesting a topology of the phase diagram
with a tricritical and a critical end point.19 Our work will deal
with this aspect. Note that quasi-two-dimensional anisotropic
Heisenberg antiferromagnets exhibiting a spin-flop phase
have attracted much experimental attention beginning some
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years ago.20–22 Well-known examples are Rb2MnCl4 and
K2MnF4. The approach of our study may be also useful for
the correct theoretical analysis of models describing these
materials.

Our main emphasis will be on a classical variant of the
model by Matsudaet al.obtained from the spin-wave disper-
sions of La5Ca9Cu24O41. In addition, in an attempt to include
possible effects due to the holes, we shall extend the model
by allowing for mobile defects following the previous
considerations.13 In fact, the defects again form stripes which
are destabilized at a phase transition. Bunching and debunch-
ing of the stripes are interesting features. Effects of an exter-
nal field along theb axis will also be considered.

The layout of the article is as follows: In the next section,
the model will be introduced. Its phase diagrams, without
defects and applying external fields parallel and perpendicu-
lar to the easy axis of the magnetic interactions, will be pre-
sented in Sec. III. The possible influence of defects on ther-
mal properties will be discussed in Sec. IV, followed by a
summary.

II. THE MODEL, SIMULATIONS, AND QUANTITIES
OF INTEREST

Following Matsudaet al.,9 the magnetic properties of
La5Ca9Cu24O41 depend on the Cu2+ ions located in theac
planes, having a centered rectangular geometry as depicted
in Fig. 1. Based on their spin-wave analysis, the spinssS
=1/2d of the ions couple along the CuO2 chains, i.e., along
the c axis, through nearest neighbor,Jc1, and next-nearest
neighbor,Jc2, exchange constants, withJc1=−0.2 meV being
antiferromagnetic andJc2=0.18 meV being ferromagnetic.
The ferromagnetic ordering in the chains is due to the strong
antiferromagnetic interchain couplings; see also Fig. 1:Jac1
=−0.681 meV refers to the two nearest neighbors in the ad-
jacent chain, andJac2=0.5 Jac1=−0.3405 meV denotes the
couplings to the two next-nearest neighbors.

Importantly, there is an uniaxial exchange anisotropy fa-
voring alignment of the spins along theb axis. Its contribu-
tion to the different couplings cannot be determined in the
spin-wave analysis, and only its integral effect on the gap in

the dispersion is quantified.9 When going over to a classical
description with spins of fixed length, say, 1, the total aniso-
tropy may be mimicked by a single-ion term. Such a term
would be, of course, merely a trivial constant and unphysical
for a quantum system withS=1/2. The single-ion term,
avoiding ambiguities in distributing the anisotropy among
the different couplings, is quite reasonable in the classical
variant. It leads to about the same transition temperature
without field as various exchange anisotropies of the same
overall magnitude.15 In addition, the entire phase diagram
seems to be unaffected by the type of anisotropy. The aniso-
tropy has been estimated from the gap energy to beD
=−0.211 meV.9 Then, the Hamiltonian can be written as9,15

H = − Jc1 o
sl,md

Sl,mSl+1,m − Jc2 o
sl,md

Sl,mSl+2,m

− Jac1 o
sl,md

Sl,msSl,m+1 + Sl+1,m+1d

− Jac2 o
sl,md

Sl,msSl−1,m+1 + Sl+2,m+1d

+ D o
sl,md

sSl,m
z d2 − Ha o

sl,md
Sl,m

a , s1d

whereSl,m=sSl,m
x ,Sl,m

y ,Sl,m
z d denotes the spin at thelth site in

the mth chain; a refers to differently oriented magnetic
fields, with a=z for the field parallel to the easy axis, and
a=x or y for a field perpendicular to it, i.e., along thea or c
axis.

Extending this Hamiltonian of Matsudaet al., we intro-
duce defectsSl,m=0, induced by the holes originating from
the La and Ca ions.13 We neglect direct interactions between
the defects, and there are no couplings between a defect and
a spin. Next-nearest neighbor spins in the same chain,Sl,m
andSl±2,m, with a defect in between them, are coupled by the
exchange constantJ0 (replacingJc2), which we presume to
be antiferromagnetic and rather strong as before, i.e., of sev-
eral meV.13 Specifically, we chooseJ0=−6.25 meV. Then,
the Hamiltonian(1) is augmented by the term

Hd = − J0 o
sl,md

Sl,mSl+2,ms1 − nl+1,md, s2d

with nl,m=0, 1 being the occupation variable of a spin at site
sl ,md. The defects are allowed to hop to a neighboring site in
a chain, transforming the spin at that site into a defect and
leaving a new spin with arbitrary orientation at its initial site.
The probability of such a process is determined by the
Boltzmann factor of the change in the magnetic energy, Eqs.
(1) and (2), associated with the hop.13 It is easily incorpo-
rated in Monte Carlo simulations.

As before,13 we assume that defects are separated along
the chain by at least one spin. The number of defects in each
chain will be taken to be 10 percent of the number of sites in
that chain. The defect concentration is then close to that in
La5Ca9Cu24O41.

8,12

We shall study the model, with and without defects, using,
apart from ground-state calculations, standard Monte Carlo
techniques with local elementary processes changing at ran-
domly chosen sites the spin orientation and moving defects

FIG. 1. Sketch of the magnetic interactions for the two-
dimensional anisotropic Heisenberg model of Matsudaet al. (Ref.
9). The dots denote the sites of the Cu2+ ions in theac plane of
La5Ca9Cu24O41.

R. LEIDL AND W. SELKE PHYSICAL REVIEW B 70, 174425(2004)

174425-2



to neighboring sites. In the simulations, we consider lattices
with the same numberL of chains and of sites per chain, i.e.,
with a total ofL2 sites. Full periodic boundary conditions are
employed. To study finite-size effects allowing extrapola-
tions to the thermodynamic limit,L→`, we consider typi-
cally sizes ranging fromL=10 to L=200. Each run consists
of at least 106 and up to 53106 Monte Carlo steps per site.
To obtain averages and error bars, we take into account the
results of up to ten realizations using different random num-
bers.

We compute both quantities of direct experimental inter-
est as well as other quantities which enable us to determine
critical properties and the phase transition lines. In particular,
we recorded the specific heatC, both from the fluctuations
and from the temperature derivative of the energy per siteE.
In the absence of defects, various magnetizations were com-
puted. Especially, we recorded

(i) the a component of the magnetization to study the
response to a field in thea direction, witha=x,y,z

kMal = Ko
sl,md

Sl,m
a LY L2; s3d

(ii ) the z component of the absolute value of the stag-
gered magnetizationMs

z and the square of the staggered mag-
netization to describe the order in the antiferromagnetic
phase

kuMs
zul = KU o

sall l;m evend
Sl,m

z − o
sall l;m oddd

Sl,m
z U1LY L2 s4d

ssumming separately over sites in even and odd chainsd, and
similarly for ksMs

zd2l; and
(iii ) the square of the transverse sublattice magnetization

to describe the Kosterlitz-Thouless character of the spin-flop
phase when applying a field along the easy axis

kMxy
2 l = K o

a=x,y
FS o

sall l,m evend
Sl,m

a D2

+ S o
sall l,m oddd

Sl,m
a D2GLY sL4/2d. s5d

In addition, we recorded the magnetic susceptibilitiesxa,
which may be computed from the fluctuations or field de-
rivatives of the corresponding magnetizations,kMal, and the
sfinite latticed staggered susceptibilityxs

z defined by

xs
z = L2sksMs

zd2l − kuMs
zul2d/2. s6d

To identify the type of transition from the antiferromagnetic
to the paramagnetic and the spin-flop phases, the fourth-
order, size-dependent cumulant of the staggered magnetiza-
tion, the Binder cumulant23 UL, is rather useful

UL = 1 − ksMs
zd4l/s3ksMs

zd2l2d, s7d

whereksMs
zd4l is defined in analogy toksMs

zd2l.
In the presence of defects we also studied, apart from the

specific heat, magnetization, and susceptibility, microscopic
quantities describing the topology and stability of the defect
stripes,13,14 including the average minimal distance between
defects in adjacent chains and the density of defect pairs.
Results will be discussed in Sec. IV.

III. PHASE DIAGRAMS IN THE ABSENCE OF DEFECTS

We analyzed the anisotropic Heisenberg model of Mat-
sudaet al.9 applying external fields along the easy axissHzd
and perpendicular to it(say, Hx), and varying the tempera-
ture; see the Hamiltonian(1). The resulting phase diagrams
are depicted in Fig. 2.

In the case of a fieldHx.0 perpendicular to the easy axis,
one encounters, at zero temperature and small fields,
Hx,Hx

pm, an antiferromagnetic ground state with the non-
zero, field-dependentz component of the spins in each chain
pointing in the same direction and alternating sign from
chain to chain,Sl,m

z =−Sl,m+1
z . At zero temperature and larger

fields,Hx.Hx
pm, the magnetic field term dominates, and the

spins are aligned along the direction of the field,Sl,m
x =1. The

critical field Hx
pm is readily calculated. Inserting the values of

the intrachain,Jc1 andJc2, and interchain coupling constants,
Jac1 andJac2, as well as the spin anisotropy,D, as stated in
the preceding section, one getsHx

pm=8.594 meV. Certainly
this is an artificial unit, which had to be transcribed into the
standard unit tesla, taking into account theg factor and the
actual spin value, when comparing results for nonvanishing
fields quantitatively to experimental findings. However, in
the context of our analysis the artificial unit will be suffi-
cient. In the following, the unit “meV” will be suppressed in
all expressions for the energy,kB times temperatureskBTd,
and the magnetic field.

At nonzero temperatures, a critical line arises fromsT
=0,Hx=Hx

pmd ending atsT=TN,Hx=0d; see Fig. 2(a). The
transition separates the ordered antiferromagnetic phase with

FIG. 2. Phase diagram of the model without defects, with fields
parallel, Hz, and perpendicular,Hx, to the easy axis.(a) Global
phase diagram;(b) details in thesT,Hzd plane. Crosses denote ap-
proximate locations of the tricritical point and the critical end point
(see the text).
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a nonzero staggered magnetizationkuMs
zul, see Eq.(4), from

the disordered(paramagnetic) phase, wherekuMs
zul=0. The

phase transition is expected to be continuous and of Ising
type, i.e., with the well-known critical exponents of the two-
dimensional Ising model. The critical line has been obtained
by fixing either the temperature and varying the field or by
fixing the field and varying the temperature. Then, standard
finite-size analyses on the peak positions of the specific heat,
Tm

CsLd, were done. Indeed, these positions approach, for suf-
ficiently large system sizes, the critical temperatureTc of the
infinite system asTc−Tm

CsLd~1/L, which is consistent with
the transition belonging to the Ising universality class. For
illustrative purposes, some raw data on the specific heat are
shown in Fig. 3.

The thermal behavior of the staggered magnetization is
shown, for a few selected examples, in Fig. 4.

In the case of an external fieldHz.0 along the easy axis,
one obtains a more complex and more interesting phase dia-
gram; see Fig. 2. In the ground statesT=0d, one has to dis-
tinguish two critical fields,Hz

sf and Hz
pm. For Hz,Hz

sf, the
antiferromagnetic structure, as described above, has the low-
est energy. At larger fields,Hz

sf,Hz,Hz
pm, the spin-flop state

is stable. There, thez component of the spins in all chains
acquires the same field-dependent valueSzsHzd.0. The pla-
nar, xy components of the spins are aligned parallel to each
other in each chain, pointing in an arbitrary direction due to
the rotational invariance of the interactions in thexy plane;

see Eq.(1). The xy components of spins in neighboring
chains point in the opposite direction because of the antifer-
romagnetic interchain couplings. AtH.Hz

pm, one has a fer-
romagnetic ordering withSz=1.

For the set of couplings obtained from the spin-wave
analysis, the critical fields areHz

sf=1.808 andHz
pm=7.75. At

Hz=Hz
sf, thez component takes the valueSzsHz

sfd=0.233, cor-
responding to an angle of 76.5 deg formed by thez axis and
the orientation of the spins.

The complete phase diagram in thesT,Hzd plane consists
of the antiferromagnetic, the spin-flop, and the paramagnetic
or disordered states; see Figs. 2(a) and 2(b). The antiferro-
magnetic phase exhibits long-range order with the staggered
magnetizationMs

z as order parameter. The spin-flop phase
has been argued to be of Kosterlitz-Thouless character,16–19

where transverse spin correlations, i.e.,kSlm
x Sl8m8

x +Slm
y Sl8m8

y l,
decay algebraically with distanceÎsl − l8d2+sm−m8d2. Ac-
cordingly, the transverse sublattice magnetization, see Eq.
(5), being the order parameter of the spin-flop phase in three
dimensions, is expected to behave forT.0 and sufficiently
large systems as

kMxy
2 l ~ L−g, s8d

with g approaching 1/4 at the transition from the spin-flop to
the paramagnetic phase,24 and g=2 in the paramagnetic
phase. Then, the order parameter vanishes in the Kosterlitz-
Thouless phase asL→` at all temperaturesT.0. Of
course, in the disordered phase spin correlations decay expo-
nentially with distance.

While the existence of these phases for weakly aniso-
tropic Heisenberg antiferromagnets in two dimensions is un-
disputed, basic aspects of the topology of the phase diagram
and especially the transitions between the antiferromagnetic
phase and the spin-flop as well as the paramagnetic phases
have been discussed controversially,17–19 and they may, in-
deed, depend on details of the model.

We determined the boundary line of the antiferromagnetic
phase by monitoring especially the specific heatC, the
(square of the) staggered magnetization,kuMs

zul and ksMs
zd2l,

the staggered susceptibility,xs
z, and the Binder cumulant,UL,

Eq. (7). A few raw data for the specific heat and the stag-
gered magnetization are included in Figs. 3 and 4.

The transition from the antiferromagnetic to the disor-
dered phase at low fields and high temperatures is continuous
and of Ising type. Its location, as displayed in Figs. 2(a) and
2(b), follows from finite-size analyses of the various physical
quantities. The data are consistent with a logarithmic diver-
gence of the specific heat as well as with the well-known
Ising values for the critical exponents of the order parameter,
b=1/8, and of thestaggered susceptibility,g=7/4.

More interestingly, the transition from the antiferromag-
netic to the paramagnetic phase eventually becomes first or-
der when increasing the field and lowering the transition
temperature, with a tricritical point atkBTtr=0.79±0.015 and
Hz

tr=1.665±0.01. The boundary line of the antiferromagnetic
phase remains first order at lower temperatures when sepa-
rating the antiferromagnetic and the spin-flop phase. The
Kosterlitz-Thouless line separating the spin-flop phase from

FIG. 3. Specific heat vs temperature at fixed fieldsHx=Hz=0
(solid lines), Hx=4.0 (dotted lines), andHz=4.0 (dashed lines), for
systems, without defects, of various sizesL.

FIG. 4. Staggered magnetization vs temperature for various
fields parallelsHzd and perpendicularsHxd to the easy axis, simu-
lating systems, without defects, of sizeL=100.

R. LEIDL AND W. SELKE PHYSICAL REVIEW B 70, 174425(2004)

174425-4



the paramagnetic(disordered) state hits the boundary of the
antiferromagnetic phase in a critical end point atkBTcep
=0.75±0.015 andHz

cep=1.675±0.01; see Fig. 2(b). Note that
the phase diagram has qualitatively the same topology as the
one suggested for the spin-1/2 quantum version of the stan-
dard nearest-neighbor antiferromagnet with exchange aniso-
tropy in two dimensions,19 in agreement with the classical
version of that model as well.25 Therefore, we conclude that
quantum effects are of minor importance for the main fea-
tures of the phase diagram.

The tricritical point may be located by studying the
Binder cumulant. In the thermodynamic limit the value of
the cumulant at the transition point,UL=`, is known to de-
pend on the type and universality class of the transition. In
simulations,UL=` can be estimated from systematic finite-
size extrapolations of the intersection values of the Binder
cumulant for different system sizesL1 and L2,UL1

=UL2
=UsL1,L2d.23 In Fig. 5, we depict results forUs80,100d, ob-
tained usually at fixed temperature and varying the field in
the vicinity of the boundary of the antiferromagnetic phase.
Obviously, Us80,100d is nearly constant at high tempera-
tures,U<0.6, with a fairly rapid change aroundkBT<0.80.
This finding and further finite-size analyses onUsL1,L2d for
other system sizes allow us, indeed, to approximately locate
the tricritical point which separates the transition of Ising
type, whereUL=`=0.6106,26,27 and the transition of first or-
der. Note that the value ofUL=` may be slightly affected due
to the interactionsJc1,Jc2, andJac2. If only the predominant
coupling Jac1 were nonzero, the model is easily seen to be
equivalent to a nearest-neighbor Heisenberg antiferromagnet
on a square lattice(cf. Fig. 1). Clearly, the Hamiltonian then
respects the full symmetry of the lattice. Any of the cou-
plings Jc1,Jc2, andJac2 destroys this lattice isotropy, leading
to a spatially anisotropic system for which cumulant ratios
usually exhibit (small) deviations from their “isotropic”
values.26,28

To determine the boundary of the spin-flop phase, we ana-
lyzed the size dependence of the transverse sublattice mag-
netization,kMxy

2 l. We apply the criterion that the exponentg,
see Eq.(8), is 1/4 at the transition. Typical data are shown in
Fig. 6, demonstrating that the magnetization decays much
more rapidly with system size in the paramagnetic phase
than in the spin-flop phase. To estimate the transition point,
we determined the local slope(in a double-logarithmic plot)

geffsLd = −
d lnkMxy

2 l
d ln L

, s9d

from two consecutive system sizes, typically,L and L+20.
Indeed, when crossing the phase boundary by fixing the tem-
perature and lowering the field,geffsLd, for largeL, tends to
jump from 2, characterizing the decay in the disordered
phase, to 1/4 at the transition to the spin-flop phase. Deeper
in the spin-flop phase,geff decreases slightly.

The Kosterlitz-Thouless character of the transition be-
tween the spin-flop and the paramagnetic phases is also re-
flected in the thermal behavior of the specific heatC, which
displays a noncritical maximum close to, but not exactly at
the transition. Of course, from simulational data one cannot
identify the expected essential singularity ofC at the transi-
tion.

IV. EFFECTS OF DEFECTS

As discussed before,15 experiments on La5Ca9Cu24O41 in
a fieldHz along the easy axis provide no evidence for a sharp
transition from the antiferromagnetic to the spin-flop phase.
Instead, when fixing the temperature and increasing the field,
the antiferromagnetic phase eventually becomes unstable
against the disordered phase, and spin-flop structures seem to
occur at higher fields only locally as indicated by a quite
large, but noncritical maximum in the susceptibility.5,8 The
reason for this experimentally observed behavior is not un-
derstood yet. Tentatively, one possible explanation invokes
the holes or defects,13 which may drive the transition and
suppress the spin-flop phase.

In the following, we shall explore this possibility by ex-
tending the classical variant of the anisotropic Heisenberg
model of Matsudaet al. by adding defects as described in
Sec. II. Actually, 10 percent of the lattice sites will be occu-
pied by these spinless, mobile defects, in accordance with the
experiments.12 We neglect the quantum nature of the holes
and do not, e.g., include a kinetic energy or “hopping” term
in the Hamiltonian as one would normally expect in the case
of a doped quantum antiferromagnet. Of course, quantum
effects may play an important role for the phase behavior of
the doped model. For example, quantum fluctuations lead to

FIG. 5. Binder cumulantUs80,100d, close to the boundary line
of the antiferromagnetic phase, as a function of temperature.

FIG. 6. Logarithm of the transverse sublattice magnetization
kMxy

2 l versus the logarithm of the system sizeL at fixed temperature
kBT=0.6 and for various fieldsHz, close to the boundary between
the spin-flop and the disordered phase.
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a nonzero mobility of the holes even atT=0, where our
spinless defects are static due to the absence of thermal fluc-
tuations. Nevertheless, our classical description is believed to
provide some guidance to effects induced by the holes.

Without external fieldsHz=0d in the ground statesT=0d,
the defects will form straight stripes perpendicular to the
chains. Due to the next-nearest-neighbor interactions,Jc2 and
Jac2, the stripes are bunched with two consecutive defects in
a chain, keeping the minimum distance of two lattice spac-
ings with one spin in between the two defects. Such a bunch-
ing did not occur in the related Ising description,13 where
only nearest-neighbor couplings were assumed. In any event,
the bunching may be suppressed, for example, by a pinning
of the defects or repulsive interactions between the defects.
The spins, in the ground state, are oriented along thez axis
with an antiferromagnetic ordering from chain to chain, as in
the case without defects.

At low temperatures, the bunching dominates the typical
equilibrium configurations, as illustrated in Fig. 7(a).

Upon increasing the temperature, the stripes tend to de-
bunch, thereby gaining entropy; see Fig. 7(b). The debunch-
ing is reflected by a steep decrease in the density of defect
pairs, i.e., consecutive defects in the same chain separated by
merely one spin. The pronounced drop takes place in a rather
narrow range of temperatures at roughlykBT<0.55. How-
ever, the debunching seems to be a gradual, smooth process,
without any thermal singularities.

A phase transition occurs atkBTc<0.7, i.e., at a signifi-
cantly lower temperature than in the absence of defects. At
the transition, the defect stripes destabilize. As for the Ising
model with mobile defects, the stripe instability may be in-
ferred from the average minimal distanceda between each
defect in chainm, at positionsld,md, and those in the next
chain, atsld8 ,m+1d, defined by13,14

da = o
ld

kminuld − ld8ul/Nd, s10d

dividing the sum by the numberNd of defects. This quantity
increases rapidly at the transition. The transition is also
marked in the simulations by a pronounced peak in the spe-
cific heat and a drastic decrease in the sublattice magnetiza-
tion, which is expected to vanish atTùTc in the thermody-
namic limit.

Applying an increasing external fieldHz.0 along the
easy axis, the results of the ground-state calculation(for even
numbers of at least four defects per chain) may be summa-
rized as follows. First, one has to distinguish two fieldsHz

s1d

andHz
s2d. For 0,Hz,Hz

s1d one keeps the same antiferromag-
netic structure with bunched defect stripes as in the case of
vanishing field. Then, forHz

s1d,Hz,Hz
s2d, precisely one ad-

ditional spin (pointing along the field direction) is inserted
between two consecutive defects in every other chain, see
Fig. 8(a).

This configuration becomes unstable atHz=Hz
s2d, and now

an additional spin pointing in thez direction is inserted be-
tween two consecutive defects in every chain[Fig. 8(b)]. For
simplicity and by analogy to the Ising case,13 we refer to
these two ground-state configurations as “zigzag” structures.

The two fieldsHz
s1d andHz

s2d are readily found to be given by
Hz

s1d=−Jac2+Jc2/2 and Hz
s2d=2Hz

s1d. Inserting the values of
the interaction constants(see Sec. II) one obtainsHz

s1d

=0.4305 andHz
s2d=0.861. Note that broader regions of “in-

serted” spins are, however, not favored energetically even
when increasing the field. Instead, for larger fields, eventu-
ally a spin-flop transition occurs atHsf, followed by a ferro-
magnetic structure at higher fields, as in the case without
defects.

FIG. 7. Typical low-temperature Monte Carlo equilibrium con-
figurations showing(a) at kBT=0.3, the bunching of defect lines,
and (b) at kBT=0.6, the onset of debunching, both for systems of
size L=40. The open circles denote the mobile defects, while the
arrows symbolize thez componentsSlm

z of the spins.
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The zigzag structures lead to a stepwise increase in the
total magnetization, which gives rise to rather small maxima
in the susceptibilityxz at low temperatures, as depicted in
Fig. 9. One observes a small, noncritical peak atHz<0.9,
which is the remnant of the transition atT=0 between the
two zigzag structures depicted in Fig. 8. Moreover, a very
weak, noncritical maximum can be identified atHz<0.5 (see
the inset). This peak is associated with the zigzag structure of
Fig. 8(a). At higher fields a pronounced peak occurs, signal-
ing the transition to the spin-flop phase.

We found, however, no evidence for a phase transition at
finite temperatures associated with the small peaks inxz.
Instead, upon increasing the field, straight stripes seem to
transform gradually into zigzag stripes, as for the Ising
model with mobile defects.29 The first peak already vanishes
at aboutkBT<0.3, and the position of the second small peak
shifts to somewhat higher fields and gets less pronounced as
the temperature is increased. It disappears at aboutkBT
<0.5, possibly due to the debunching. Obviously, the occur-
rence of zigzag structures cannot be identified with the phase
transition in La5Ca9Cu24O41 observed well below the onset
of spin-flop structures.

Indeed, the anisotropic Heisenberg model with mobile de-
fects still displays, at low temperatures, a sharp transition
from the antiferromagnetic phase, with straight or zigzag de-
fect stripes, to a spin-flop phase, as signaled by a delta-like
peak in the susceptibilityxz (see Fig. 9). The topology of the
phase diagram in thesT,Hzd plane seems to resemble that in
the absence of defects; see Figs. 2(a) and 2(b). Actually, at
the triple point(or critical end point) between the antiferro-
magnetic, spin-flop, and paramagnetic phases, located
roughly at skBT=0.5,Hz=1.7d, the presumably noncritical
debunching line seems to meet as well. However, we did not
attempt to map the phase diagram accurately, because obvi-
ously the introduction of defects does not suffice to reconcile
the experimental findings on La5Ca9Cu24O41, showing no di-
rect transition from the antiferromagnetic to the spin-flop
phase. In fact, the possible destruction of the spin-flop phase
by the instability of the defect stripes tends to be hindered by
the bunching of the stripes. Further investigations are desir-
able, but beyond the scope of the present study.

V. SUMMARY

We have analyzed in detail a classical variant of a two-
dimensional Heisenberg antiferromagnet with weak, uniaxial
anisotropy proposed by Matsudaet al. to reproduce spin-
wave dispersions measured in the magnet La5Ca9Cu24O41. In
particular, we determined the phase diagrams of the model
applying fields parallel,Hz, and perpendicular,Hx, to the
easy axis of the spin anisotropy.

In the case of a transverse fieldHx (perpendicular to the
easy axis), the transition from the antiferromagnetic phase to
the paramagnetic phase belongs to the Ising universality
class. The phase diagram in the case of a fieldHz pointing
along the easy axis consists of the antiferromagnetic, the
spin-flop, and the disordered(paramagnetic) phases. Exten-
sive analyses have been performed to locate the phase
boundaries, partly motivated by conflicting analyses of re-
lated models. Indeed, our analysis, studying especially the
Binder cumulant and the transverse sublattice magnetization,
allows one to locate reasonably well both the tricritical point
on the phase boundary between the antiferromagnetic and
the paramagnetic phases as well as the critical end point
between these two phases and the spin-flop phase. Quantum
effects seem to play no essential role for the topology of the
phase diagram, which is in qualitative disagreement with ex-
perimental observations on La5Ca9Cu24O41.

We extended the classical variant of the model of Matsuda
et al. by including spinless mobile defects mimicking the
holes in La5Ca9Cu24O41, thereby following previous sugges-
tions on a related Ising model. In the antiferromagnetic
phase, the defects, at low temperatures and low fields, are
found to form stripes as in the corresponding Ising case.
However, due to next-nearest-neighbor couplings, the stripes
tend to bunch. The debunching, occurring at higher tempera-
tures, seems to be noncritical, although it takes place in a
rather narrow temperature range. A phase transition at which
the antiferromagnetic order is destroyed is driven by a de-
struction of the defect stripes losing their coherency at the
transition.

FIG. 8. Illustration of the ground-state configurations in an ex-
ternal fieldHz.0 for a system with four defects per chain; for(a)
Hz

s1d
,Hz,Hz

s2d, and(b) Hz
s2d

,Hz,Hsf.

FIG. 9. Susceptibilityxz as a function of the magnetic fieldHz at
fixed temperaturekBT=0.3, for a system of sizeL=40. The inset
shows the existence of a very weak maximum atHz<0.5.
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The model with defects has also been studied in the pres-
ence of a field along the easy axis. There, a spin-flop phase is
observed as well, separated from the antiferromagnetic phase
presumably by a transition of first order. Therefore, we con-
clude that adding the mobile defects is not sufficient to rec-
oncile model properties with experimental findings ruling out
a direct transition from the antiferromagnetic to the spin-flop
phase. Perhaps a destruction of the spin-flop phase may oc-
cur when the bunching is suppressed.

However, when interpreting our findings for the model
with defects one should keep in mind that our description of
the holes is a purely classical one. Quantum fluctuations re-
duce the clustering tendency of the holes and may also de-
stroy the bunched structures that we find from our classical
ground-state analysis. Thus, the role of quantum effects
should certainly be investigated more carefully when com-
paring with actual experiments.

In any event, the models display various interesting be-
havior, and they may well contribute to arriving at a really
satisfying theoretical description of the intriguing experi-
mental observations on the La5Ca9Cu24O41 magnets. More-
over, the methods used in our study may be helpful in ana-
lyzing phase diagrams of other two-dimensional, weakly
anisotropic Heisenberg antiferromagnets.
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