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Phase diagrams of a classical two-dimensional Heisenberg antiferromagnet
with single-ion anisotropy
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A classical variant of the two-dimensional anisotropic Heisenberg model reproducing inelastic neutron
scattering experiments on £@a,Cu,,0,4, [M. Matsudaet al, Phys. Rev. B68, 060406R) (2003] is analyzed
using mostly Monte Carlo techniques. Phase diagrams with external fields parallel and perpendicular to the
easy axis of the anisotropic interactions are determined, including antiferromagnetic and spin-flop phases.
Mobile spinless defects, or holes, are found to form stripes which bunch, debunch, and break up at a phase
transition. A parallel field can lead to a spin-flop phase.
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I. INTRODUCTION ions in theac planes’ Our subsequent Monte Carlo simula-
tions on the classical variant of the model seem to indicate,
The compoundslLa, Ca1,Cu,40,, have been studied ex- however, that some of its thermodynamic properties tend to
perimentally rather extensively in recent yelrsThey dis-  deviate from experimental finding3.In particular, in an ex-
play interesting low-dimensional magnetic properties arisingernal field along theb axis, at low temperatures, the field
from Cuy,0; two-leg ladders and CuQchains. In addition, dependence of the susceptibility of the anisotropic Heisen-
for Lay4CaCu404, there is an intriguing interplay between berg model disagrees with the measured behavior. The dis-
spin and charge ordering due to hole doping wken8. agreement probably cannot be resolved by invoking quantum
In particular, LaCaCu,40,4, exhibits, at low temperatures effects. In particular, the critical temperature of the model
and small fields, antiferromagnetic long-range order associseems to be significantly lower than the measured one, as can
ated with the Cu@ chains which are oriented along tlte be seen by comparing results on related quantum and classi-
axis. The Cd" ions in those chains carry a spin-1/2. The cal modelst®!-%Indeed, in this paper we will argue that the
spins are ordered ferromagnetically in the chains, while thejualitative properties of the phase diagram of the model are
interchain coupling in thac planes is antiferromagnetic. The not affected by quantum effects.
magnetic interactions between the planes are believed to In any event, the classical variant of the model of Mat-
be very weak. The couplings in tlze planes are anisotropic sudaet al. deserves to be studied in more detail. Apart from
with an easy axis along thie axis, i.e., the magnet has an the previous qualitative comparisénwith experimental
Ising-type characteéx®8° Holes may originate from the La data, the classical model is of genuine theoretical interest as
and Ca ions, transforming Cu ions into spinless quantitieswell. Perhaps most interestingly, the phase diagram in the
with a hole content of about 10 percéat. (temperature, fieldplane is worth studying in the context of
Experiments on La&aCu,,04, include thermodynamic two-dimensional anisotropic Heisenberg models. Due to the
measurements on the specific heat, magnetization, arahisotropy, there is a spin-flop phase when applying a suffi-
susceptibility® as well as electron spin resonafie&d neu- ciently high external field along the axis. In two dimen-
tron scattering:® Motivated by the experimental findings, sions, that phase has interesting properties as it is believed to
different models have been proposed and studied. First, lbe of Kosterlitz-Thouless type with spin correlations decay-
two-dimensional Ising model has been introdué&t,where  ing algebraically with distance. Furthermore, the boundary
the spins correspond to the €uons, and mobile spinless line of the antiferromagnetic phase as well as the transition
defects mimic the holes. In addition to the ferromagneticbetween the antiferromagnetic and the spin-flop phase has
intrachain and antiferromagnetic interchain couplings bebeen discussed controversially for anisotropic nearest-
tween neighboring spins, a rather strong and antiferromagaeighbor Heisenberg models. In three and higher dimen-
netic exchange between next-nearest chain spins separatsidns, there is a bicritical point where the antiferromagnetic,
by a hole is assumed. The model has been shown to descritiee spin-flop, and the paramagnetic phases ffeas. it is
at low temperatures, antiferromagnetic domains separated hyell known, such a point could occur in two dimensions only
quite straight defect lines which break up at a phase transiat zero temperatur@dlermin-Wagner theoremActually, dif-
tion where also the long-range magnetic order gets deferent scenarios have been proposedowever, simulations
stroyed. The stripe instability is caused by an effectively atand other analyses on classical models lead to controversial
tractive interaction between the defects mediated by theesults!”*® Fairly recently, anS=1/2 quantum version has
antiferromagnetic interchain couplings. been simulated, suggesting a topology of the phase diagram
Even more recently, a two-dimensional anisotropicwith a tricritical and a critical end poirif Our work will deal
Heisenberg model has been shown by Matsedal. to re-  with this aspect. Note that quasi-two-dimensional anisotropic
produce the measured spin-wave dispersions which suppoBleisenberg antiferromagnets exhibiting a spin-flop phase
edly result from the collective spin excitations of the?Cu have attracted much experimental attention beginning some
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* * * a the dispersion is quantifi€dWhen going over to a classical
o . description with spins of fixed length, say, 1, the total aniso-
o o . tropy may be mimicked by a single-ion term. Such a term
R o c would be, of course, merely a trivial constant and unphysical
. (l,m)J . for a quantum system witts=1/2. The single-ion term,
acl avoiding ambiguities in distributing the anisotropy among
e Ja (hm+1) the different couplings, is quite reasonable in the classical
o (I+1m) a2 e variant. It leads to about the same transition temperature
2 without field as various exchange anisotropies of the same
. (+1,m+1) overall magnitudé® In addition, the entire phase diagram
@+2,m) o seems to be unaffected by the type of anisotropy. The aniso-

tropy has been estimated from the gap energy toDbe
=-0.211 me\® Then, the Hamiltonian can be written®d8

FIG. 1. Sketch of the magnetic interactions for the two-

dimensional anisotropic Heisenberg model of Matsatlal. (Ref. H= —JﬂZ SmSim™ chE SmS+2m
9). The dots denote the sites of the Ziions in theac plane of (1, m) (I.m)
LasCaCupsOy;.
L8 hdDa _Jaclz S,m(s,m+1+3+l,m+1)
(I,m
years ag@°®2? Well-known examples are RBKINnCl, and
K,MnF,. The approach of our study may be also useful for _Jadlz Sm(S-1me1* Sezmsd)
the correct theoretical analysis of models describing these i
materials. o _ . +D X (Fm)?~Ha 2 St ()
Our main emphasis will be on a classical variant of the (1,m) (,m

model by Matsudat al. obtained from the spin-wave disper- _ . L
sions of LaCaCu,,0,4;. In addition, in an attempt to include Whereﬁ,m;](yﬁxm,sk’,m,ﬁm) denglt(fes thel spin at ﬂ:jm site in .
possible effects due to the holes, we shall extend the mode] e mih chain; a refers to differently oriented magnetic
by allowing for mobile defects following the previous lelds, with a:z_for the f|eld' parallel'to. the easy axis, and
considerations? In fact, the defects again form stripes which a=xory for a field perpendicular to it, i.e., along tiaeor ¢
are destabilized at a phase transition. Bunching and debuncAX'S:

ing of the stripes are interesting features. Effects of an exter- Extending thif He_lmiltonian of Matsudet a_I.,.we. intro-
nal field along theb axis will also be considered. duce defectﬁlm—o, induced by the hqles originating from
The layout of the article is as follows: In the next section,the La and Ca ion¥® We neglect direct interactions between

the model will be introduced. Its phase diagrams, withoutthe qefects, and there are no couplings between a defect and
defects and applying external fields parallel and perpendicua-‘ sdpln. Nex_t-r?ea(;e?t ”‘?'ggb"f Sp'ni in the samelciﬁbm, h
lar to the easy axis of the magnetic interactions, will be pre2"dSs2m With a defect in between them, are coupled by the

sented in Sec. lll. The possible influence of defects on therEXChar.}ge constan)g? (re%lacir%g\]cz), which vt\)/ef presume }0
mal properties will be discussed in Sec. IV, followed by a e ant erlr??magn.e_tlc and rather strong as before, i.e., of sev-
summary, eral meV:° Specifically, we choosd,=-6.25 meV. Then,

the Hamiltonian(1) is augmented by the term

Il. THE MODEL, SIMULATIONS, AND QUANTITIES Hy==30 > S nSeam(l=Nrn), )
OF INTEREST im :

Following Matsudaet al.? the magnetic properties of with n, ,=0, 1 being the occupation variable of a spin at site
LasCaCu,,04; depend on the Cii ions located in theac (I, m). The defects are allowed to hop to a neighboring site in
planes, having a centered rectangular geometry as depictedchain, transforming the spin at that site into a defect and
in Fig. 1. Based on their spin-wave analysis, the sfi8s |eaving a new spin with arbitrary orientation at its initial site.
=1/2) of the ions couple along the Cy@hains, i.e., along The probability of such a process is determined by the
the ¢ axis, through nearest neighbak;, and next-nearest Boltzmann factor of the change in the magnetic energy, Egs.
neighbor,J.,, exchange constants, wifly; =—0.2 meV being (1) and(2), associated with the hdg.It is easily incorpo-
antiferromagnetic and,=0.18 meV being ferromagnetic. rated in Monte Carlo simulations.

The ferromagnetic ordering in the chains is due to the strong As before!® we assume that defects are separated along
antiferromagnetic interchain couplings; see also Figl,d;  the chain by at least one spin. The number of defects in each
=-0.681 meV refers to the two nearest neighbors in the adehain will be taken to be 10 percent of the number of sites in

jacent chain, andl,»=0.5J,4=-0.3405 meV denotes the that chain. The defect concentration is then close to that in
couplings to the two next-nearest neighbors. LasCayCuy0,4,.812

Importantly, there is an uniaxial exchange anisotropy fa- We shall study the model, with and without defects, using,
voring alignment of the spins along tieaxis. Its contribu-  apart from ground-state calculations, standard Monte Carlo
tion to the different couplings cannot be determined in thetechniques with local elementary processes changing at ran-
spin-wave analysis, and only its integral effect on the gap irdomly chosen sites the spin orientation and moving defects
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to neighboring sites. In the simulations, we consider lattices
with the same numbdr of chains and of sites per chain, i.e.,
with a total ofL? sites. Full periodic boundary conditions are -~
employed. To study finite-size effects allowing extrapola- -~
tions to the thermodynamic limit, — o, we consider typi- T
as

& o field along easy axis (HZ) _
=—a field perp. to easy axis (H )

paramagnetic

cally sizes ranging fronh =10 to L=200. Each run consists 41 spin-flop (for H #0) ]
of at least 16 and up to 5< 10° Monte Carlo steps per site.
To obtain averages and error bars, we take into account the 2§ .
results of up to ten realizations using different random num- antiferromagnetic .
bers. 0 . ! . N
We compute both quantities of direct experimental inter- (@) 0 02 04 kB%6 08 !
est as well as other quantities which enable us to determine . . .
critical properties and the phase transition lines. In particular, 2r P
we recorded the specific he@ both from the fluctuations [ 4
and from the temperature derivative of the energy perksite 19r A ]
In the absence of defects, various magnetizations were com- i spin-flop s
puted. Especially, we recorded = L8 ﬂ/ ]
(i) the @« component of the magnetization to study the i o paamagnetic
response to a field in the direction, witha=X,y,z 1'7._1__)5@_-@—_—_—_*3::_‘2;__35(__‘& ]
o
<M a> - < E Sc,ym>/|—21 (3) 1'6f I anufélzrromagneuT ?“\e\\;
m 074 076 078 08 082 084
(b} kT

(i) the z component of the absolute value of the stag-
H H V4
gergd magnetlzatloms and the Squa,re of the St_aggered mag- FIG. 2. Phase diagram of the model without defects, with fields
netization to describe the order in the antlferromagnetlcbara”eL H,, and perpendiculart,, to the easy axis(a@) Global
phase phase diagram(b) details in the(T,H,) plane. Crosses denote ap-

roximate locations of the tricritical point and the critical end point
<|M§|>=< Y o= 2 Sn 1>/L2 @ P P P

(all I;m even (all I;m odd (See the te)}t
(Summing separately over sites in even and odd clhaamsl 1. PHASE DIAGRAMS IN THE ABSENCE OF DEFECTS
similarly for (M2?); and
(iii) the square of the transverse sublattice magnetization
to describe the Kosterlitz-Thouless character of the spin-flog

We analyzed the anisotropic Heisenberg model of Mat-
udaet al? applying external fields along the easy ai)

phase when applying a field along the easy axis and perpendicular.to i(Fsay, H,), and va}rying the tempera-
5 ture; see the Hamiltonia(l). The resulting phase diagrams
(M§y>=< > [( > Sﬁ‘m) are depicted in Fig. 2.
a=xy L \(all ,m even In the case of a fielth, >0 perpendicular to the easy axis,
2 4 one encounters, at zero temperature and small fields,
’ ((an I%odq) Sfm) ]>/(L 2). ® H,<HP™ an antiferromagnetic ground state with the non-

zero, field-dependertcomponent of the spins in each chain
In addition, we recorded the magnetic susceptibilitis  pointing in the same direction and alternating sign from
which may be computed from the fluctuations or field de-chain to Chain'szm:_sizmﬂ' At zero temperature and larger
rivatives of the corresponding magnetizatiot,”), and the  fields, H,>HP™, the magnetic field term dominates, and the
(finite lattice) staggered susceptibility: defined by spins are aligned along the direction of the fiedf},=1. The
z_ 2 2y _ /INZN2 critical field HY™ is readily calculated. Inserting the values of
Xs= LAUMY) — (M2, ©® the intrachainJ; andJg,, and interchain coupling constants,
To identify the type of transition from the antiferromagnetic J,; and J,», as well as the spin anisotropy, as stated in
to the paramagnetic and the spin-flop phases, the fourththe preceding section, one ge#§™=8.594 meV. Certainly
order, size-dependent cumulant of the staggered magnetiztiis is an artificial unit, which had to be transcribed into the
tion, the Binder cumulaft Uy, is rather useful standard unit tesla, taking into account théactor and the
_ 4 22 actual spin value, when comparing results for nonvanishing
UL =1 ~((MIDKMI)), @) fields quantitatively to experimental findings. However, in
where((M2)?) is defined in analogy td(M?)?). the context of our analysis the artificial unit will be suffi-
In the presence of defects we also studied, apart from theient. In the following, the unit “meV” will be suppressed in
specific heat, magnetization, and susceptibility, microscopi@!l expressions for the energlg times temperaturgkgT),
quantities describing the topology and stability of the defecend the magnetic field.
stripest®14including the average minimal distance between At nonzero temperatures, a critical line arises fr¢m
defects in adjacent chains and the density of defect pairs:0,H,=HE™) ending at(T=Ty,H,=0); see Fig. 2a). The
Results will be discussed in Sec. IV. transition separates the ordered antiferromagnetic phase with
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see Eq.(1). The xy components of spins in neighboring
chains point in the opposite direction because of the antifer-
romagnetic interchain couplings. At>H?®", one has a fer-
romagnetic ordering witl&=1.

For the set of couplings obtained from the spin-wave
analysis, the critical fields ard$'=1.808 andH?™=7.75. At
H,=HS", thez component takes the val@(Hs")=0.233, cor-
responding to an angle of 76.5 deg formed by ztexis and
the orientation of the spins.

The complete phase diagram in tf#/e H,) plane consists
of the antiferromagnetic, the spin-flop, and the paramagnetic
or disordered states; see Figga2and 2b). The antiferro-

FIG. 3. Specific heat vs temperature at fixed fieltissH,=0  magnetic phase exhibits long-range order with the staggered
(solid liney, H,=4.0 (dotted line3, andH,=4.0 (dashed lines for magnetizationMZ as order parameter. The spin-flop phase
systems, without defects, of various sies has been argued to be of Kosterlitz-Thouless chardgt&t,

o where transverse spin correlations, 4SS+ S )
a nonzero staggered magnetizatigMZ)), see Eq(4), from decay algebraically with distance(l—1")2+(m—m')2. Ac-
the disorderedparamagneticphase, wherd|Mg)=0. The  cordingly, the transverse sublattice magnetization, see Eq.
phase transition is expected to be continuous and of Isings), being the order parameter of the spin-flop phase in three

type, i.e., with the well-known critical exponents of the two- dimensions, is expected to behave Tor 0 and sufficiently
dimensional Ising model. The critical line has been obtainedarge systems as

by fixing either the temperature and varying the field or by

fixing the field and varying the temperature. Then, standard <M)2(y> o« L9, (8)
finite-size analyses on the peak positions of the specific heat,

TS(L), were done. Indeed, these positions approach, for suf¢ith g approaching 1/4 at the transition from the spin-flop to
ficiently large system sizes, the critical temperafyef the ~ the paramagnetic phadé,and g=2 in the paramagnetic

infinite system as,—TS(L) < 1/L, which is consistent with phase. Then, the order parameter vanishes in the Kosterlitz-

the transition belonging to the Ising universality class. Forl houless phase ak—c at all temperaturesT>0. Of
illustrative purposes, some raw data on the specific heat a@Urse, in the disordered phase spin correlations decay expo-

shown in Fig. 3. nentially with distance.
The thermal behavior of the staggered magnetization is YWhile the existence of these phases for weakly aniso-
shown, for a few selected examples, in Fig. 4. tropic Heisenberg antiferromagnets in two dimensions is un-

In the case of an external field,> 0 along the easy axis, disputed, pasic aspects pf the topology of the phase diagra'm
one obtains a more complex and more interesting phase dignd especially the transitions between the antiferromagnetic
gram; see Fig. 2. In the ground stdf=0), one has to dis- phase and the spin-flop as well as tr;e paramagnetlc_phases
tinguish two critical fieldsHS' and H™™ For H,<H, the ~have been discussed controversially.® and they may, in-

antiferromagnetic structure, as described above, has the lo/#€€d, depend on details of the model. _ ,
est energy. At larger field#iS'< H,< HP™ the spin-flop state We determined the boundary line of the antiferromagnetic
" z z z

is stable. There, the component of the spins in all chains P1aseé by monitoring especially the specific héat the
acquires the same field-dependent valiél,) > 0. The pla-  (Sduare of thestaggered magnetizatiofMg) and((Mg)°),
nar, xy components of the spins are aligned parallel to eacil® staggered susceptibility;, and the Binder cumulant),,
other in each chain, pointing in an arbitrary direction due toEd- (7). A few raw data for the specific heat and the stag-

the rotational invariance of the interactions in theplane; ~ 9ered magnetization are included in Figs. 3 and 4.
The transition from the antiferromagnetic to the disor-

SR A R R dered phase at low fields and high temperatures is continuous

08F and of Ising type. Its location, as displayed in Fig&)2nd
X 2(b), follows from finite-size analyses of the various physical
SA 0.61 quantities. The data are consistent with a logarithmic diver-
=~ I gence of the specific heat as well as with the well-known
S 04y Ising values for the critical exponents of the order parameter,
Vv

B=1/8, and of thestaggered susceptibility,=7/4.
More interestingly, the transition from the antiferromag-
I : ) netic to the paramagnetic phase eventually becomes first or-
0 P EEe— e der when increasing the field and lowering the transition
04 0506 07 1?'% 09 1 L temperature, with a tricritical point &;T,,=0.79+0.015 and
HY=1.665+0.01. The boundary line of the antiferromagnetic
FIG. 4. Staggered magnetization vs temperature for variouphase remains first order at lower temperatures when sepa-
fields parallel(H,) and perpendiculatH,) to the easy axis, simu- rating the antiferromagnetic and the spin-flop phase. The
lating systems, without defects, of sikze=100. Kosterlitz-Thouless line separating the spin-flop phase from
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' -1F% 5
0.6 Sl 1
g = -
'_1 0.5 NEK [ E—EH2514 -
g v A —=Hea , 7
= = [ |aaH=48 1
0.4 — -5 |l =49 -
’ L |swH=50
-6 |>pH=52 4
L[4 I0=5.4
0.3 iy 4 T S
2.5 3 3.5 4 4.5
InL
FIG. 5. Binder cumulant(80, 100, close to the boundary line FIG. 6. Logarithm of the transverse sublattice magnetization
of the antiferromagnetic phase, as a function of temperature. (M) versus the logarithm of the system slzat fixed temperature

kgT=0.6 and for various fieldsl,, close to the boundary between
the paramagnetitdisorderegl state hits the boundary of the the spin-flop and the disordered phase.
antiferromagnetic phase in a critical end point kgfce,

=0.75+0.015 andiy*P=1.675+0.01; see Fig.(B). Note that d In(M2)
the phase diagram has qualitatively the same topology as the Oeri(L) = — ——2%, (9
one suggested for the spin-1/2 quantum version of the stan- dinL

dard nearest-neighbor antiferromagnet with exchange anisgrom two consecutive system sizes, typicallyand L+ 20.
tropy in two dimensions? in agreement with the classical |ngeed, when crossing the phase boundary by fixing the tem-
quantum effects are of minor importance for the main fea]ump from 2, characterizing the decay in the disordered

tures of the phase diagram. _ phase, to 1/4 at the transition to the spin-flop phase. Deeper
_ The tricritical point may be Iocate_d _by_ studying the i the spin-flop phaseg,; decreases slightly.
Binder cumulant. In the thermodynamic limit the value of  The Kosterlitz-Thouless character of the transition be-
the cumulant at the transition point) ., is known to de-  yyeen the spin-flop and the paramagnetic phases is also re-
pend on the type and universality class of the transition. Ifecteq in the thermal behavior of the specific h€awhich
simulations,U, -. can be estimated from systematic finite- gisplays a noncritical maximum close to, but not exactly at
size extrapolations of the intersection values of the Bindefhg {ransition. Of course, from simulational data one cannot
cumulant for different system sizels, and Lp,UL, =Ui,  jdentify the expected essential singularity®fat the transi-
=U(L4,L,).2% In Fig. 5, we depict results fdd(80,100, ob-  jon.
tained usually at fixed temperature and varying the field in
the vicinity of the boundary of the antiferromagnetic phase.
Obviously, U(80,100 is nearly constant at high tempera-

tures,U=0.6, with a fairly rapid change aroungT = 0.80. As discussed befor®,experiments on L#aCu,,0,; in
This finding and further finite-size analyses 0flL,,L,) for  a fieldH, along the easy axis provide no evidence for a sharp
other system sizes allow us, indeed, to approximately locatgansition from the antiferromagnetic to the spin-flop phase.
the tricritical point which separates the transition of IsingInstead, when fixing the temperature and increasing the field,
type, whereU, -.=0.61062527 and the transition of first or- the antiferromagnetic phase eventually becomes unstable
der. Note that the value &f, _. may be slightly affected due against the disordered phase, and spin-flop structures seem to
to the interactionsg,Jep, andJye. If only the predominant  occur at higher fields only locally as indicated by a quite
coupling J,; Were nonzero, the model is easily seen to belarge, but noncritical maximum in the susceptibifiy.The
equivalent to a nearest-neighbor Heisenberg antiferromagne¢ason for this experimentally observed behavior is not un-
on a square latticecf. Fig. 1). Clearly, the Hamiltonian then derstood yet. Tentatively, one possible explanation invokes
respects the full symmetry of the lattice. Any of the cou-the holes or defects which may drive the transition and
plings J.1,Jcp, @andJ,e, destroys this lattice isotropy, leading suppress the spin-flop phase.
to a spatially anisotropic system for which cumulant ratios In the following, we shall explore this possibility by ex-
usually exhibit (smal) deviations from their “isotropic” tending the classical variant of the anisotropic Heisenberg
values?6:28 model of Matsudaet al. by adding defects as described in
To determine the boundary of the spin-flop phase, we anaSec. Il. Actually, 10 percent of the lattice sites will be occu-
lyzed the size dependence of the transverse sublattice magied by these spinless, mobile defects, in accordance with the
netization,<M§y>. We apply the criterion that the exponent  experiments? We neglect the quantum nature of the holes
see Eq(8), is 1/4 at the transition. Typical data are shown inand do not, e.g., include a kinetic energy or “hopping” term
Fig. 6, demonstrating that the magnetization decays muchn the Hamiltonian as one would normally expect in the case
more rapidly with system size in the paramagnetic phasef a doped quantum antiferromagnet. Of course, quantum
than in the spin-flop phase. To estimate the transition pointeffects may play an important role for the phase behavior of
we determined the local slog# a double-logarithmic plot  the doped model. For example, quantum fluctuations lead to

IV. EFFECTS OF DEFECTS
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a nonzero mobility of the holes even @t0, where our
spinless defects are static due to the absence of thermal fluc
tuations. Nevertheless, our classical description is believed tc
provide some guidance to effects induced by the holes.

Without external fieldH,=0) in the ground stat€éT=0),
the defects will form straight stripes perpendicular to the
chains. Due to the next-nearest-neighbor interactidnsnd
Jae, the stripes are bunched with two consecutive defects in
a chain, keeping the minimum distance of two lattice spac-
ings with one spin in between the two defects. Such a bunch
ing did not occur in the related Ising descriptihwhere
only nearest-neighbor couplings were assumed. In any even
the bunching may be suppressed, for example, by a pinninc
of the defects or repulsive interactions between the defects
The spins, in the ground state, are oriented alongzthris
with an antiferromagnetic ordering from chain to chain, as in
the case without defects.

At low temperatures, the bunching dominates the typical
equilibrium configurations, as illustrated in Figay.

Upon increasing the temperature, the stripes tend to de,

bunch, thereby gaining entropy; see Figh)7 The debunch-
ing is reflected by a steep decrease in the density of defec
pairs, i.e., consecutive defects in the same chain separated t
merely one spin. The pronounced drop takes place in a rathe
narrow range of temperatures at roughyr =0.55. How-
ever, the debunching seems to be a gradual, smooth proces
without any thermal singularities.

A phase transition occurs &;T.~0.7, i.e., at a signifi-
cantly lower temperature than in the absence of defects. A
the transition, the defect stripes destabilize. As for the Ising
model with mobile defects, the stripe instability may be in-
ferred from the average minimal distandg between each
defect in chainm, at position(l4,m), and those in the next
chain, at(l},m+1), defined by*14

da= 2 (min|ly = 13}/Ng,

I

(10

dividing the sum by the numbe\, of defects. This quantity
increases rapidly at the transition. The transition is also
marked in the simulations by a pronounced peak in the spe
cific heat and a drastic decrease in the sublattice magnetize
tion, which is expected to vanish &&=T, in the thermody-
namic limit.

DI W g Pirg W g
e e e 2040+ OO
RPN, We We g il

‘,
DRI g M g DI TG I g DU
AR SR TIRRIRSI: o YRS Mo /AR

e b B e B T Ol e S L g A @ I
T e e e e ()t = q( ) () e

-——
-

o
= ettt =t 4t 4= = ()OO

ettt o o e ot i e o e (O

R b R G ORI O O

NN gy gt g i g

-

+Q+(+ 4t 4+

~O

).
pa
AR R, g SIS R oy g TN

AR o VIR o IRTIRT o o
[ SRS SRR o VR o o R

B e e e s O s sl O e i O L O L I R
D R D e e @ e N @ L e O s O Lt
bttt et et ettt e e 4 (ot 4 ot 4 et 4 1 2 Yottt
e b e b )t A et o bbb (ot () A
ot e ot et et (e e 4 e Ot ¢ e )t )
e e rrrrrrr(Detrttr Qe rrrrr e QO e+
+t 4ttt ttt At A4+ttt 4+Orr rrrQrrrrrerttcOr+O++ < «
Bt R el O e e e O L e @ R @ T
POPSSSSPSRBPA ; AN, SRS, AR AN
i s e o () 4 = = () 3 3 o 4 (ot (e
PRSHSIBESISRBESRSREE. o YRrs SIS YA g s

-~

-+t
-

et et S R O R OAs O
bttt ittt ettt ) # I I )t 4ttt o8 et e 4ttt

e e O OO+ O
—rrrrtrtt2tetOrOtOr+0

-

bttt sttt A OOttt - 4 e

O0~0+0~0

-
——

-

-

e e ()
-

O+O

D~ ~<DOw+
SRS SURNS. o Y, SRR o o ST

ekt il @ s O o O R L O Rl SR E

-

0=0-0+0O

e (4O
Attt bttt 4 4 4=+

- -

<+t A+ 4ttt bt 4ttt At

YRR AR g B yre VRIS A NS

-

or¥e s e AN A SRR

O+»O=+0O>0

- - -
-

- -

-

~O+0+0+0O
-+ 4ttt -ttt -ttt 4 ()OO =

-

4O ++ O et Oa =

L i O @ Lk g B g e e
e e e e I I G O T R O @ L e P e o)
Rkl e e O L O L @ L O

-

-+

-

O+ # s+

PRSI, g s «ih-g Si)

-
-

-
OO+ OrOr o e e e e e e e

-
-
+ 4ttt #4444+ ++O)+O+O+O

O O e e ()OO

PAPRSRMSAAPPAAPEEING TS AR /s A

NASAARARR AT S -ARSYS AR G s A

PIRSISS. S ¢ IV, s SIS
SRS o VY o AR RSIIVG o L

e e e b b (T4 (T o e e ()t e
PPN, g AP o SIS

- - -
-

-+ .-

-

e

YRR s G

O+O+OrQ=+=+=

O<O+0=0O
ettt trerttrtrtrttetc)rOrOrOrrt sttt sttt trerterreetr

[y g YN

Q> +»

ra
0
+arre 4ttt et a1ttt ea0r+rrDrrrrtrcertOrOertree

-

-

RO O R Y @ LR ot

ot ot e et e 2 e e 2 (e ()« e

O

"

-

PHYSICAL REVIEW B 70, 174425(2004

—————

<Orr e 2O 4+t

O
A

-

L e

FIG. 7. Typical low-temperature Monte Carlo equilibrium con-
figurations showinga) at kgT=0.3, the bunching of defect lines,
and (b) at kgT=0.6, the onset of debunching, both for systems of
size L=40. The open circles denote the mobile defects, while the
arrows symbolize the componentss;,, of the spins.

Applying an increasing external fielti,>0 along the
easy axis, the results of the ground-state calculdfmmeven
numbers of at least four defects per chaimay be summa-
rized as follows. First, one has to distinguish two fiele;é)
and H(ZZ). For O<H,< Hgl) one keeps the same antiferromag-
netic structure with bunched defect stripes as in the case of _ " @ _ _
vanishing field. Then, foH(Z1)<HZ< H(ZZ), precisely one ad- The two fleldsH(Z andH.” are readily found to be given by
ditional spin(pointing along the field directignis inserted H(Zl):—Jacz+Jc2/2 and HZZ)ZZH(Zl). Inserting the values of
between two consecutive defects in every other chain, see interaction constantgsee Sec. ) one obtainsHS)

Fig. 8a). =0.4305 ancH'?=0.861. Note that broader regions of “in-

This configuration becomes unstabld—Ql:H(zz), and now serted” spins are, however, not favored energetically even
an additional spin pointing in the direction is inserted be- when increasing the field. Instead, for larger fields, eventu-
tween two consecutive defects in every chiiig. 8b)]. For  ally a spin-flop transition occurs &', followed by a ferro-
simplicity and by analogy to the Ising cakewe refer to  magnetic structure at higher fields, as in the case without
these two ground-state configurations as “zigzag” structureslefects.
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4 ¥ 4 ¥ 4 ¥ 4 ¥ 4 4 ¥ 4 v 4 ¥ 4 ¥ 4 Indeed, the anisotropic Heisenberg model with mobile de-
4 ¥ 4 ¥ 4 ¥ 4 ¥ 4 4 ¥ 4 Y 4 ¥ 4 ¥ 4 fects still displays, at low temperatures, a sharp transition
4 ¥ 4 H 4 H 4 ¥ 4 4 O Iy O 4 O 4 O Iy from the antiferromagnetic phase, with straight or zigzag de-
OOOOOOOOO O } O } O i O i C fect stripes, to a spin-flop phase, as signaled by a delta-like
 § Y  { 'y Y 'y Y Y Y Y i Y A Y i Y i Y peak in the susceptibility” (see Fig. 9. The topology of the
OOOOOOOOO OOOOOOOOC phase diagram in theT,H,) plane seems to resemble that in

4 Y 4 ¥ 4 ¥ 4 Y 4 4 ¥ Iy Y 4 ¥ 4 ¥ Iy the absence of defects; see Fig&)2and 2b). Actually, at

4 O 4 O 4 O 4 O 4 4 O Iy O 4 O 4 O Iy the triple point(or critical end point between the antiferro-

O } O } O } O } O O } O } O } O } O magnetic, spin-flop, and paramagnetic phases, located
Y O Y O ¥ O ¥ O Y ¥ O ¥ O ¥ O ¥ O ¥ roughly at (kgT=0.5,H,=1.7), the presumably noncritical
O ¥ O ¥ O ¥ O ¥ O O ¥ O Y O Y O Y C debunching line seems to meet as well. However, we did not
4 H 4 H 4 H 4 H 4 A H A H A H A H A attempt to map the phase diagram accurately, because obvi-
4 H 4 H 4 H 4 H 4 A H J\ H A H A H I\ ously the introduction of defects does not suffice to reconcile
A 4 4 4 4 A A A A A the experimental findings on t8&,Cu,40,4,, showing no di-

rect transition from the antiferromagnetic to the spin-flop
phase. In fact, the possible destruction of the spin-flop phase

FIG. 8. lllustration of the ground-state configurations in an ex-py the instability of the defect stripes tends to be hindered by
te(rlr)lal fle|dH(zz)>0 for a sy(g}em with four defects per chain; f@  the bunching of the stripes. Further investigations are desir-
H,” <H,<H,”, and(b) H,” <H,<HS" able, but beyond the scope of the present study.

—
(Y
g
—

o
=

The zigzag structures lead to a stepwise increase in the
total magnetization, which gives rise to rather small maxima V. SUMMARY
in the susceptibilityy” at low temperatures, as depicted in
Fig. 9. One observes a small, noncritical peakdat=0.9,
which is the remnant of the transition &0 between the
two zigzag structures depicted in Fig. 8. Moreover, a ver

}/;l]ea_k, nor_ﬁ:!tlcal nlla}XImurg (.:atgg)e !?he?;g'ed_@tz O.t5(steee Particular, we determined the phase diagrams of the model
€ Insey. IS peak 1S assoclated wi ZIgzag structur oapplying fields parallelH,, and perpendiculad,, to the

Fig. 8@). At higher fields a pronounced peak occurs, signal- . . :

ing the transition to the spin-flop phase easy axis of the spin anisotropy.

! gW ; nd”h wever npl vid pnp ; r. h transition In the case of a transverse fidit) (perpendicular to the
_VVe Tound, however, no evidence for a pnase transitio aéasy axig the transition from the antiferromagnetic phase to

finite temperatures associated with the small peakg?“in

Instead, upon increasing the field, straight stripes seem tthe paramagnetic phase belongs to the Ising universality

transform gradually into zigzag stripes, as for the Ising&ass' The phase diagram in the case of a fi¢)dointing

. . 4 : along the easy axis consists of the antiferromagnetic, the
model with mobile defect® The first peak already vanishes _ . * : )
at aboutkz T~ 0.3, and the position of the second small peakSpln flop, and the disorderggaramagneticphases. Exten

hifts t mewhat higher fields and aets | ronounced sive analyses have been performed to locate the phase
STiTts to somewhat higher TIelds and gets 1ess pronounce %%undaries, partly motivated by conflicting analyses of re-
the temperature is increased. It disappears at abkgut

~0.5, possibly due to the debunching. Obviously, the OCCur[ated models. Indeed, our analysis, studying especially the

: - e ) Binder cumulant and the transverse sublattice magnetization,
rence of zigzag structures cannot be identified with the pha g

o SSllows one to locate reasonably well both the tricritical point
transition in LaCa,Cu,,0,, observed well below the onset on the phase boundary betwgen the antiferromagnetri)c and
of spin-flop structures.

the paramagnetic phases as well as the critical end point
between these two phases and the spin-flop phase. Quantum

We have analyzed in detail a classical variant of a two-
dimensional Heisenberg antiferromagnet with weak, uniaxial
anisotropy proposed by Matsudd al. to reproduce spin-
Ywave dispersions measured in the magnetagCu,,0,;. In

12+ 0.14

effects seem to play no essential role for the topology of the
L 0.2} phase diagram, which is in qualitative disagreement with ex-
I o perimental observations on {@a,Cu,4O41.
0.8 | o.08" We extended the classical variant of the model of Matsuda
. "1 o006 et al. by including spinless mobile defects mimicking the
0.0 holes in LgCaCu,40,4, thereby following previous sugges-

tions on a related Ising model. In the antiferromagnetic
phase, the defects, at low temperatures and low fields, are
found to form stripes as in the corresponding Ising case.
However, due to next-nearest-neighbor couplings, the stripes
tend to bunch. The debunching, occurring at higher tempera-
tures, seems to be noncritical, although it takes place in a
rather narrow temperature range. A phase transition at which

FIG. 9. Susceptibility? as a function of the magnetic fiel, at ~ the antiferromagnetic order is destroyed is driven by a de-
fixed temperaturégT=0.3, for a system of size=40. The inset  Struction of the defect stripes losing their coherency at the
shows the existence of a very weak maximuniat=0.5. transition.
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The model with defects has also been studied in the pres- In any event, the models display various interesting be-
ence of a field along the easy axis. There, a spin-flop phase fsavior, and they may well contribute to arriving at a really
observed as well, separated from the antiferromagnetic phasatisfying theoretical description of the intriguing experi-
presumably by a transition of first order. Therefore, we conmental observations on the 4@a,Cu,,0,; magnets. More-
clude that adding the mobile defects is not sufficient to reCover, the methods used in our Study may be he|pfu| in ana-
OnC”e mOde| properties W|th experimental ﬁndings I‘u|ing 0Ut|yzing phase diagrams of other two_dimensionaL Weak'y
a direct transition from the antiferromagnetic to the spin-flopgpjsetropic Heisenberg antiferromagnets.
phase. Perhaps a destruction of the spin-flop phase may oc-
cur when the bunching is suppressed.

However, when interpreting our findings for the model ACKNOWLEDGMENTS
with defects one should keep in mind that our description of
the holes is a purely classical one. Quantum fluctuations re- It is a pleasure to thank B. Bichner, M. Holtschneider,
duce the clustering tendency of the holes and may also dend R. Klingeler for very useful discussions, information,
stroy the bunched structures that we find from our classicaind help. An inspiring correspondence with M. Matsuda is
ground-state analysis. Thus, the role of quantum effectalso much appreciated. Financial support by the Deutsche
should certainly be investigated more carefully when com+orschungsgemeinschaft under Grant No. SE324 is grate-
paring with actual experiments. fully acknowledged.
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