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We study the magnetization reversal and electromagnetic radiation due to collective Landau-Zener relaxation
in an ideal crystal of molecular magnets. Analytical and numerical solutions for the time dependence of the
relaxation process are obtained. The power of the radiation and the total emitted energy are computed as
functions of the crystal parameters and the field sweep rate.
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I. INTRODUCTION

Paramagnetic crystals of high-spin molecular magnets,
such as Mn12, Fe8, and others, exhibit unusual magnetic
properties related to the macroscopic time of the transition
between spin-up and spin-down states of individual magnetic
molecules.1 The latter is due to the high magnetic anisotropy
and a large value of spin,S@1. For example, a biaxial mol-
ecule(Fe8 of S=10) in the magnetic fieldH, parallel to the
anisotropy axisZ, the spin Hamiltonian is

H = − DSz
2 + ASx

2 − gmBHzSz, s1d

whereg is the gyromagnetic factor,mB is the Bohr magneton,
andD.A.0. Here the first term is responsible for the mag-
netic bistability of the molecule, while the second term in-
duces quantum transitions betweenS, looking up and down
the anisotropy axis. For smallA, the approximate energy
states of H are the eigenstates ofSz: Szuml=muml. At
Hz=kD/gmB, with k=0, ±1, ±2, . . ., thelevelsm,0 andm8
satisfyingm+m8=−k come to resonance. For the evenS, the
tunnel splitting of the resonant levelsDm appears(for evenk)
in the fsm8−md /2gth order of the perturbation theory onA:

Dsm=−Sd~ sA/Ddsm8−md/2. At, e.g., k=0 (see Fig. 1), Dsm=−Sd
~ sA/DdS and, thus, atS=10, the probability of the transition
between spin-up and spin-down states is low. Consequently,
at low temperature, the crystal can be prepared in a state with
inverse population of the spin-energy levels, e.g., magnetized
against the direction of the magnetic field. This allows one to
observe, in a macroscopic experiment, such quantum effects
as resonant spin tunneling,2,3 spin Berry phase,4 crossover
between quantum tunneling and thermal activation,5–7 and
quantum selection rules in the absorption of electromagnetic
radiation.8

Recently, it has been suggested9–11 that a crystal of mo-
lecular nanomagnets can be a source of coherent electromag-
netic radiation in the millimeter wavelength range, highly
desirable for applications.12 Some experimental evidence of
this effect has been obtained.10,13,14The effect is related to
Dicke superradiance.15 Normally, atoms or molecules of a
gas, initially prepared in the excited energy state, decay in-
dependently by spontaneous emission of light. The power of
the radiation obeys the lawP~N exps−t /td, whereN is the
total number of atoms andt is the lifetime of the excited
state. Dicke15 argued thatN atoms confined within a volume

of sized, which is small compared to the wavelength of the
radiationl, cannot radiate independently from each other. At
d,l a spontaneous phase locking of the atomic dipoles
takes place that results in the coherent radiation burst of
power PSR~N2, emitted within a time of ordertSR,t /N.
This phenomenon, called superfluorescence, has been widely
observed in gases. It can occur in any system of identical
quantum objects if the system is not very large compared to
the wavelength of the radiation.16 For crystals of molecular
magnets this is true for both, the transitions between the
tunnel-split levels, Fig. 2, and the transitions between the
adjacentuml levels, Fig. 1.

In a typical experiment, one magnetizes the crystal and
then sweeps the field in the opposite direction. In this paper
we will be concerned with the situation when the electro-
magnetic transitions occur between tunnel-split levels, Fig.
2. These can be, e.g., transitions betweenm=−10 and
m=10 levels shown in Fig. 1. The electromagnetic relaxation
of that kind corresponds to the total magnetization reversal
accompanied by the broadband superradiance. It is described
by a rigorous model9 which is reviewed in Sec. II. In es-
sence, if one neglects the electromagnetic radiation, the
crossing of thesm,m8d resonance by the magnetic field
sweep, Fig. 2, is described by the Landau-Zener theory.17

FIG. 1. Approximate energy levels of a spin-10 molecule in a
zero magnetic field. The tunnel splitting of the degenerate levels is
not shown. Arrows show the relaxation path fromm=−10 to
m=10 through thermally assisted quantum tunneling.
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When the coupling between the spins via electromagnetic
radiation is taken into account, the magnetic state resulting
from the LZ transition relaxes toward the lowest energy state
via superradiance. The rate of the superradiant decay, as well
as the time dependence of the relaxation, is sensitive to the
parameters of the crystal and to the shape of the magnetic
field pulse. Our goal is to compute the time dependence of
the radiation power and the total radiated energy as functions
of the field-sweep rate, the tunnel splitting, and the size of
the crystal. This is done in Sec. III by analytical and numeri-
cal methods. Numbers and limitations are discussed in Sec.
IV. We should emphasize that our study is performed for an
idealized clean case that neglects any decohering effects that
one might encounter in real systems.

II. COLLECTIVE LANDAU-ZENER RELAXATION

Consider a crystal ofN magnetic molecules occupying an
m magnetic state that is close to the resonance with them8
state, e.g.,m=−S, m8=S in Fig. 1. We shall study collective
magnetic relaxation of the crystal due to the interaction of
the molecules via time-dependent electromagnetic field. In
the spirit of the Dicke model, we shall assume that the co-
herence of the magnetic dipolar moments, initially aligned
by the magnetic field and strong uniaxial anisotropy, is pre-
served during the relaxation process(see discussion in Sec.
IV ). As has been shown in Ref. 9, the quantum magnetic
relaxation of such a crystal satisfies the Landau-Lifshitz
equation

ṅ = gsn 3 Heffd − agfn 3 sn 3 Heffdg. s2d

Here n is a unit vector of the pseudospin describing the
two-state system, such thatnz=−1 corresponds to all mol-
ecules in them-state, whilenz=1 corresponds to all mol-
ecules in them8-state,g=gmB/" is the gyromagnetic ratio,
the effective magnetic field is given by

gmBHeff = Dex + Wez s3d

with Ẇstd= 1
2gmBsm8−mdḢz being the energy sweep rate(see

Fig. 2), anda!1 is a dimensionless effective damping co-
efficient,

a =
1

24
Nsm8 − md2g2aoS D

mec
2D2

, s4d

with ao=e2/"c<1/137 being the fine structure constant.
Note thata is independent of the magnetic field.

The first term in Eq.(2) gives dissipationless Landau-
Zener transitions when the field is swept through the reso-
nance such thatW=Wstd satisfiesWs±`d= ±`, and the initial
condition is ns−`d=−ez. Indeed, ata=0 the Schrödinger
equation for a two-level system is equivalent to the equation
for a precessing spin. The probabilitypstd for the molecule to
stay in the initial state is given by

pstd = f1 − nzstdg/2 s5d

For Wstd=vt, one obtains the famous Landau-Zener result:17

ps`d;pLZ=exps−ed, where

e =
pD2

2"v
s6d

The Landau-Zener effect corresponds to only partial mag-
netization reversal,

nz
LZs`d = 1 − 2 exps− ed s7d

see Fig. 3 ata=0. The value ofnz
LZs`d is close to −1 ate

!1, that is for the fast field sweep. In this case most of the
molecules, after crossing the resonance, remain in the initial
m state by passing from the lower to the upper branch in Fig.
2. On the contrary, for a slow sweep, that is whene@1, most
of the molecules follow the lower branch in Fig. 2, and the
final state of the crystal is exponentially close tonz

LZs`d=1.
The second term in Eq.(2) describes collective magnetic

relaxation via Dicke superradiance. Due to this term the
magnetization of the entire crystal at long times reverses
completely tonzs`d=1, as is shown in Fig. 3, for a finitea.
The collective relaxation due to superradiance is significant
for e&1, that is, whennz

LZs`d is not very close to 1. Thus,
the observation of the superradiance requires a fast field
sweep. Note that while we formally apply the field sweep
from t=−` to t=`, the physical duration of the relaxation
and the field-sweep range are always finite, as will be seen
from the analysis provided below.

FIG. 2. A pair of tunnel-split levels vs energy biasW. The
Landau-Zener(LZ) transition is followed by the emission of the
coherent light via superradiance.

FIG. 3. Time dependence of the magnetization reversal for two
values ofe due to pure Landau-Zener relaxation of individual mol-
eculessa=0d and due to collective relaxation via superradiance
sa=0.01d.

JOSEPH, CALERO, AND CHUDNOVSKY PHYSICAL REVIEW B70, 174416(2004)

174416-2



III. RADIATION POWER

The power of the superradiance described by Eq.(2) can
be obtained from the classical formula for the magnetic di-
pole radiation9

Pstd = f2/s3c3dgm̈z
2std, s8d

where

mzstd = 1
2Nsm− m8dgmBnzstd. s9d

Close to thesm,m8d resonance, nearly any field sweep of
practical interest is linear in time,W=vt. It is convenient to
use dimensionless variables

t8 =
tD

"
, W8st8d =

vt

D
=

"vt8

D2 =
pt8

2e
. s10d

In terms of these variables, Eq.(2) and Eq.(8) become

dn

dt8
= fn 3 „ex + W8st8dez…g − ahn 3 fn 3 „ex + W8st8dez…gj

s11d

and

P = aN"−1D2Sd2nz

dt82D2

. s12d

The total emitted energy,E=edtPstd, is given by

E = aNDE8, s13d

where we have introduced dimensionless

E8 =E dt8Sd2nz

dt82D2

. s14d

Note thata~N, so that coefficients in Eqs.(12) and(13) are
proportional toN2, as in the Dicke model. We will see, how-
ever, that because of the dynamics ofnzst8d, the maximum
power is proportional toN, while the total emitted energy is
proportional toN1/2. The superradiant nature of the process
shows in the 1/ÎN scaling of the decay time(see below).

Our model is insensitive to the parameters of the Hamil-
tonian as long as the terms that do not commute withSz
(transversal magnetic field included) are constant. In the fol-
lowing analysis, the value of the parameterD is fixed and the
physically relevant parameters aree and a. At constantD,
the parametere [Eq. (6)] depends on the field sweep rate
only, while the parametera [Eq. (4)] for a given resonance is
a function of the crystal volume only.

A. Analytical

We shall start by developing an analytical approximation
for the practical case ofe,1 anda!1. The time interval of
interest is the one past the Landau-Zener transition:W8@1.
In this case, retaining the leading terms in Eq.(11), we get

dnx

dt8
= W8ny s15d

dny

dt8
= − W8nx s16d

dnz

dt8
= − ny + aW8st8ds1 − nz

2d. s17d

These equations show thatnx andny oscillate rapidly in time,
while nz, in accordance with Fig. 3, has a slowly varying
average. Averaging Eq.(17) over the period of oscillations of
ny, one obtains

dn̄z

dt8
= aW8st8ds1 − n̄z

2d. s18d

Equation(18) describes the superradiant stage of the evolu-
tion of n̄z. Therefore, it must be solved with the initial con-
dition n̄z=nz

LZ at t=0. At smalle, Eq. (7) gives for that initial
condition

n̄zs0d = − 1 + 2e. s19d

The corresponding solution of Eq.(18) reads14

n̄zst8d = tanhSapt82

4e
−

1

2
ln

1

e
D . s20d

It is shown by the solid line in Fig. 4. Fore=0.1, Eq.(18) is,
clearly, a good approximation to the full solution averaged
over oscillations. Ase increases, some discrepancy is ob-
served. One can improve the analytical approximation by
writing nz= n̄z+dnz and solving Eq.(17) through iterations,
but this, at the end, will require a numerical integration, so
that the improvement obtained by this method does not give
much advantage over the direct numerical solution of Eq.
(11).

The approximate solution of Eqs.(15) and(16), satisfying
n2=1, is given by

nx = Î1 − n̄z
2 sinSpt82

4e
+ f0D

FIG. 4. Approximate analytical solution fornzst8d averaged over
oscillations[Eq. (20)] for two values ofe anda=0.01 (solid line).
The numerical solution of Eq.(11) is shown by the dash line.
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ny = − Î1 − n̄z
2 cosSpt82

4e
+ f0D , s21d

wheref0 is a phase that we are not attempting to compute
analytically. One can see from Eqs.(20) and (21) that n̄z,
indeed, changes slowly with time, compared to the oscilla-
tions of nxst8d andnyst8d, because of the conditiona!1.

Let us now turn to the analytical approximation for the
power and the total radiated energy. It is easy to see from
Eqs.(17)–(21) that the main contribution tod2nz/dt82 is de-
termined by the rapidly oscillatingny-term in the right-hand
side of Eq.(17),

d2nz

dt82 = − Spt8

2e
D sinfspt82/4ed + f0g

coshFsapt82/4ed +
1

2
ln eG . s22d

Substituting this expression into Eq.(14) and replacing the
rapidly oscillating sin2spt82/4ed under the integral by 1/2,
one finally obtains

E8 =
Îp

e1/2a3/2E
0

` x2dx

cosh2Sx2 +
1

2
ln eD . s23d

Equations(12)–(14), (22), and (23) give the dependence of
the radiation power and the total emitted energy on the field-
sweep rate and on the parameters of the crystal.

B. Numerical

We shall now computePstd andE by numerical integra-
tion of Eq.(11), and compare them to our analytical findings.

The time dependence of the reduced power
P8=sd2nz/dt82d2 is shown in Fig. 5. The comparison with Eq.
(22) is performed by fitting the value off0 until the match
with the numerical solution of Eq.(11) for sd2nz/dt82d2 is
obtained. Even fore as large as 0.3, the agreement of the
numerical results with the analytical formula is rather good.
Note that the oscillation of the power in time is a quantum
effect related to the oscillation ofnz.

Figure 6 shows the dependence of the total emitted energy
on the parametere, that is, on the inverse field sweep rate.

Figure 7 shows the dependence ofE8 on the parametera.
The question of significant importance for experiment is

the spectral composition of the radiation. The total emitted
energy can be presented as

E =E dvIsvd, s24d

where

Isvd = "aNI8sv8d s25d

is the spectral power. HereI8sv8d is a dimensionless function
of the dimensionless frequency,v8="v /D. It must be com-
puted via the Fourier transform ofd2nz/dt82

I8sv8d =
1

2p
UE dt8eiv8t8Sd2nz

dt82DU2

. s26d

This function is shown in Fig. 8. The peak of the power
occurs at

"vmax=
D

Îa
fsed. s27d

This scaling of"vmax on a follows from Eq.(11). The func-
tion fsed, computed numerically, is shown in Fig. 9.

FIG. 5. Time dependence of the reduced radiation power,
P8=sd2nz/dt82d2 at e=0.3 anda=0.05. Solid line represents nu-
merical results. Dash line corresponds to Eq.(22) at f0=2.576.

FIG. 6. Thee dependence of the total emitted energy at two
values ofa. Points represent numerical results. Solid line corre-
sponds to Eq.(23).

FIG. 7. The a dependence ofE8 at two values ofe. Points
represent numerical results. Solid line corresponds to Eq.(23).
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IV. DISCUSSION

The formulas and the numerical results obtained above
are valid if the energy distance between the resonant levels
W is small compared to the distance between the adjacentm
levels. For numerical estimates, we shall stick to the
s−S,Sd resonance. The conclusions of this section, however,
will apply to other resonances as well. For the model illus-
trated by Eq. (1) and Fig. 1, the distance between the
m=−S level and them=−S+1 level iss2S−1dD<2SD. The
validity condition we are looking for is thenWstd!2SD. For
W=vt one should verify this condition atWmax=vtmax, where
tmax="t8max/D is the time when the superradiance drops ex-
ponentially due to the hyperbolic cosine in Eq.(22). Accord-
ing to this equation and Eq.(10), t8max,Îe /a and
Wmax,D /Îea. Substituting this intoWmax!2SD and using
Eq. (4) for a, one obtains the validity condition in the form
of the lower bound on the total number of molecules,

N @
1

eao
Smec

2

Ua
D2

, s28d

whereUa=DS2 is the energy barrier betweenm= ±S states
due to magnetic anisotropy. Equation(28) shows that a high
magnetic anisotropy and a not very smalle are needed if the
size of the system is to remain within reasonable limits. The
optimal would bee,1 since, according to Eq.(7), e&1
(that is, a sufficiently high field-sweep rate) is needed to
create an inverse population of spin levels. For Mn12 and
Fe8, the anisotropy barrier is of order 60 K and 30 K, respec-

tively, and the lower bound onN, according to Eq.(28), must
be between 1018 and 1019 molecules. With account of the unit
cell volume(3.7 nm3 and 2.0 nm3 for Mn12 and Fe8, respec-
tively), this translates into a volume of order or greater than
1 mm3. Remarkably, this agrees with the reported lower
bound on the volume of the crystal(or crystal assembly) that
shows evidence of electromagnetic radiation during magne-
tization reversal.10,13,14

We shall now estimate the total emitted energy and
the power of the radiation. According to Eq.(23),
E8,e−1/2a−3/2. This gives forE of Eq. (13): E,ND /Îea.
With the help of Eq.(4) one obtains

E , e−1/2N1/2mec
2. s29d

For the purpose of the order-of-magnitude estimate, we have
dropped the factorgSÎa0 of order unity. Note that the
total emitted energy is proportional to the square root of the
crystal volume. Ate,1 and N,1018, Eq. (29) provides
E,0.1 mJ.

According to Eqs.(12) and (22) (see also Fig. 5), the
power of the radiation oscillates in time. In most cases, ob-
servation of these oscillations must be impeded by the finite
time resolution of the measuring equipment, so that only the
envelope of the curve shown in Fig. 5 will be observed. The
peak power can be estimated asPmax,E/ tmax,ND2/"e.
Substituting heree of Eq. (6), one obtains

Pmax, Nv , dM
dH

dt
, s30d

where we have introduceddM =gmBsm8−mdN, the change in
the total magnetic moment of the crystal due to collective
electromagnetic relaxation. The relationsE~ÎN and Pmax
~N are specific to the radiation problem we have studied.
Note that because of the negligible rate of single-molecule
magnetic dipolar transitions, not a singlesm,m8d electromag-
netic decay will occur during the experimental time if the
relaxation is not collective. Thus, even thoughPmax~N, as
for a nonsuperradiant decay, the gain in the power due to the
collective effect is apparent. For an assembly of a few
millimeter-size crystals, Eq.(30) gives Pmax,10 mW at a
typical laboratory field sweep rate of 0.01 T/s10,13 and
Pmax,1 W for a fast field pulse,dH/dt,103 T/s.14 Note,
however, that in the case of an ultrafast sweep, the condition
e,1 can be satisfied only by a large tunnel-splittingD, mak-
ing the preparation of the initially magnetized state less
simple than in the case of smallD.

During the adiabatic sweep, the frequency of the radiation
is determined by the distance between the spin levels,
"v=ÎD2+W2. For most of the relaxation process,W@D,
and, thus,v=Wstd /". The peak of the spectral power(Fig. 8)
corresponds to"vmax,Wstmaxd,D /Îea. Up to a factor of
order unity, which depends logarithmically one, this coin-
cides with Eq.(27). The logarithmic difference offsed in Fig.
9 from 1/Îe is due to lne in Eq. (22). With the help of Eq.
(4), we obtain that by order of magnitude

FIG. 8. Spectral functionI8sv8d for three values of alpha at
e=0.1.

FIG. 9. Dependence off of Eq. (27) on e.
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vmax,
mec

2

"ÎeN
, s31d

where we again omitted the factorgSÎa0 of order unity. For
e,1 andN,1018, required to produce significant radiation
(see above), this frequency is in the terahertz range.

The model studied in this paper is highly idealized be-
cause it neglects all decohering effects that are always
present in real systems. For the radiation to be coherent, the
inhomogeneous broadening ofe must be small throughout
the crystal. This translates into a narrow distribution of the
tunnel splitting and of the magnetic field felt by the spins.
The latter can be satisfied in a system of elliptical shape if
dipolar moments of the molecules precess coherently during
the relaxation process. This condition is the same as for the
conventional Dicke superradiance of electric dipoles(see
discussion in Ref. 18). In Dicke theory, the fastest decay
mode is the one for which the phase of the dipoles is locked.
Such self-organization of atomic dipoles is commonly
known in laser physics. It can be greatly assisted by placing
the sample inside a resonant cavity or a resonant coil.19 This,
however, is a different problem that requires treatment of
electromagnetic radiation in terms of quantized modes.

The temperature of the system should be sufficiently low
to insure that spin-phonon processes do not enter the picture.
Since magnetism of the known molecular magnets exists in
the Kelvin range only, this does not seem to be a significant
restriction. Nuclear spins provide the source of decoherence
that should be of greater concern. The effect of hyperfine
interactions on Landau-Zener relaxation has been studied
theoretically20 and demonstrated experimentally in Mn12

(Ref. 21) and Fe8 (Ref. 22). In addition to nuclear spins, the
situation in Mn12 is complicated by dislocations and solvent
disorder.23–27 The suitability of Mn12 for the study of super-
radiance depends on whether the distribution ofD is continu-
ous or consists of a finite number of narrow lines due to, e.g.,
finite number of nuclear spin states, finite number of isomers
in the structure of the molecule25 etc. Recent neutron studies
of Mn12 seem to favor the narrow line picture.28 In general,
the greater is the broadening of the lines, the higherD is
required for observation of collective electromagnetic ef-
fects. LargeD can be achieved by placing the crystal in a
strong transverse magnetic field. Since it would shorten the
lifetime of the metastable magnetic state, coordinated short
pulses of longitudinal and transverse fields would be needed
to induce collective electromagnetic relaxation. We hope that
suitable candidates will be found among hundreds of mo-
lecular magnets synthesized in recent years.

V. CONCLUSIONS

We have studied magnetic relaxation via coherent electro-
magnetic radiation, produced by the magnetic field sweep in
an ideal crystal of molecular magnets on crossing the tunnel-
ing resonance. We find that the effect exists starting roughly
with crystals (or crystal assembly) of millimeter size. The
radiation is broadband with the cutoff in the terahertz range.
The power of the radiation is proportional to the field-sweep
rate and ranges from microwatts to watts for the existing
sweep rates.
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