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We investigate analytically and numerically the dynamics of domain walls in a spin chain with ferromag-
netic Ising interaction and subject to an external magnetic field perpendicular to the easy magnetization axis
(transverse field Ising model). The analytical results obtained within the continuum approximation and numeri-
cal simulations performed for the discrete classical model are used to analyze the quantum properties of
domain walls using the semiclassical approximation. We show that the domain wall spectrum shows a band
structure consisting of 2S nonintersecting zones.
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I. INTRODUCTION

Nonlinear topologically nontrivial excitations, or solitons,
are known to exist in lower-dimensional magnetic systems.
There is both theoretical and experimental evidence of soli-
tons and in some cases soliton effects dominate the thermo-
dynamic behavior of one-dimensional(1D) magnets(spin
chains). Soliton effects possibly emerged first when absence
of long range order in lower-dimensional magnets was
proved: From simple entropy arguments it has been shown
that long range magnetic order is not possible in one-
dimensional magnets at nonzero temperature and it became
clear later that kink-type solitons, which in fact are magnetic
domain walls(DW), must be considered as elementary exci-
tations at nonzero temperature in one-dimensional magnets,
for reviews see Refs. 1 and 2. Whereas solitons in one-
dimensional magnets have not been directly observed, dy-
namic soliton effects such as soliton motion and the soliton-
magnon interaction result in soliton contributions to the
dynamic response functions, which can be studied experi-
mentally. For example, solitons contribute to the specific heat
and to the linewidth of electron spin resonance and the trans-
lational motion of kinks leads to the so-called soliton central
peak, which can be detected through neutron scattering
experiments.1,2

In most approaches solitons have been considered using
classical continuum models, such as the Landau-Lifshitz
equations or the sine Gordon equation, see Refs. 1–3. On the
other hand, in order to describe a material such as CsCoCl3
theXXZmodel with spinS=1/2 has to beused, and solitons
occur as quantum objects.4,5 Even for the material CsNiF3,
the well-known standard example for classical solitons in 1D
magnets, quantum effects due to its spinS=1 are essential.1

Although a detailed analysis concentrated on classical mod-
els, considerable achievements in the field of quantum soli-
tons were obtained rather early: We note, first of all, that the
first nonlinear excitations(spin complexes) were investigated
by Bethe in the isotropic one-dimensional ferromagnet as
long ago as 1931, essentially in parallel with the prediction
of magnons.6 Currently it is established that the more general

XYZ model with spinS=1/2 is exactly integrable, and the
quantum nonlinear excitations(spin complexes) are known
from the solution of this model.7

At first sight quantum and classical solitons constitute es-
sentially different objects. The main property of classical
solitons (or more precisely: solitary waves) is localization,
while a quantum soliton is characterized by a definite value
of the quasimomentumP and in virtue of this it is spatially
delocalized. However, this contradiction is removed if one
investigates the spin deviation localization in the coordinate
system with the origin moving with the group velocity of the
soliton.3 The comparison of classical and quantum solitons3

reveals a striking feature of theXYZ model: the dispersion
law (the dependence of energyE on the momentumP) of a
spin complex in this model with spinS=1/2 exactly coin-
cides with the corresponding dependence found for the soli-
ton in the classical Landau-Lifshitz equations. It is evident
that such an exact correspondence cannot be a general rule;
probably it is associated with the exact integrability of both
models. On the other hand, it has become clear that if one
compares the characteristics which are relevant for both
quantum and classical approaches, first of all the dispersion
law E=EsPd, then there are no fundamental distinctions be-
tween quantum and classical solitons. Renewed interest in
the problem of quantum properties of domain walls was
stimulated due to the study of quantum tunneling DW chiral-
ity effects,8–12 and also by the prediction of new effects of
destructive interference in kink tunneling between neighbor-
ing crystal lattice sites12 and Bloch oscillations of the
solitons.13

The structure and the properties of solitons in the one-
dimensional Ising model in the presence of a transverse mag-
netic field have been studied some time ago.14 It has been
demonstrated in the semiclassical limit of large spin values
S@1 how classical localization correlates with quantum de-
localization. Within the framework of the quantum approach
the emergence of a band structure has been revealed. How-
ever, the quantum kink dispersion law found in this work has
not been compared with the classical one. In Ref. 14 only
static solutions of the classical problem have been used, and
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the comparison of the quantum kink dispersion law with
those obtained within the semiclassical quantization model
has not been made.

In this article we investigate analytically and numerically
the dynamics of domain walls in a spin chain with ferromag-
netic Ising interaction and subject to a magnetic field perpen-
dicular to the easy magnetization axis(transverse field Ising
model). Analytical results obtained within the continuum ap-
proximation and numerical simulations performed for the
discrete classical model are used for the analysis of the semi-
classical dynamics of domain walls including an account of
the lattice pinning potential. We show that the spectrum of
the DW in the classical continuum approximation is charac-
terized by a periodic dependence of the kink energy on its
momentum. This produces a number of nontrivial features
for the DW motion in the presence of the pinning potential.
The quantum properties of the domain wall are discussed on
the basis of the semiclassical approximation. For the semi-
classical dynamics the role of lattice pinning effects in the
formation of the band structure of the domain wall spectrum
is investigated. The presence of the periodic character of the
DW dispersion law with lattice pinning taken into account
results in a band structure forEsPd with 2S nonintersecting
branches.

The outline of this article is as follows. In Sec. II we
formulate the discrete classical model and study the DW
properties within this model. The main results of this section
are the introduction of the DW coordinate,X, and the calcu-
lation of the pinning potential for the DW,UsXd. This is then
used for the analysis of both the classical dynamics of the
DW and its semiclassical quantization. In Sec. III the
complementary continuum approach is used to investigate
the motion of the DW with finite velocity. The DW linear
momentumP and the dispersion law of the DW,E=EsPd,
are calculated, andEsPd is found to be a periodic function of
the momentum. The results forUsXd andEsPd are employed
in the next two sections to describe the dynamics of the DW
in the framework of the method of collective variables, as-
suming that the DW is an effective quasiparticle with kinetic
energyEsPd, moving in the potentialUsXd: In Sec. IV the
specifics of forced DW motion as well as the detailed fea-
tures of the band spectrum of the DW in the case of the weak
potentialUsXd are discussed. The peculiarities of the dynam-
ics of the DW in a finite potential associated with the peri-
odic character ofEsPd are considered in Sec. V. Here it be-
comes clear that finite motion is typical for states which are
either close to the minimum or close to the maximum of the
potentialUsXd. In Sec. VI we consider the quantum tunnel-
ing transitions between these states, corresponding to an ad-
jacent unit cell. In this section the general character of the
DW dispersion law including the effects of lattice pinning is
discussed. In Sec. VII we discuss the generalization of our
approach to more general models of spin chains and Sec.
VIII gives our concluding remarks.

II. THE DISCRETE MODEL AND A DOMAIN
WALL STRUCTURE

We start from the Hamiltonian describing a spin chain

with Ising-type exchange interaction in a magnetic fieldHW

directed perpendicularly to the easy axis of a magnet. Spins

SWn are located at pointsna of a chain(distancea, n integer),

Ĥ = − Jo
n

Sn
zSn+1

z − gmBHo
n

Sn
x. s1d

J is the exchange integral,g the gyromagnetic ratio andmB
the Bohr magneton. The dimensionless fieldh=gmBH /2JS
will be used in the following(the notation 2h=g was used in
Ref. 14) This model is usually called transverse field Ising
model.

For classical spins the ground state of the model ath,1
sgmBH,2JSd is doubly degenerated with

Sx = Ssinu0, Sz = ± Scosu0, sin u0 = h. s2d

We begin to describe the semiclassical motion of the DW
within the discrete spin model by studying the solutions for
moving DW’s in the discrete classical model. We notice that
the exchange part for the model of Eq.(1) is the simplest
particular case of the so-calledXYZ model with three inde-
pendent parametersJ1ÞJ2ÞJ3

ĤXYZ= − o sJ1Sn
xSn+1

x + J2Sn
ySn+1

y + J3Sn
zSn+1

z d.

For an isotropic FM we haveJ1=J2=J3 and DW’s strictly
are absent(however, “pulse solitons” may exist) For theXXZ
model sJ1=J2,J3d in the absence of the magnetic field the
exact static solution for the discrete model with classical
spins has been constructed by Gochev.15 As far as we know
this discrete problem has not yet been solved forHÞ0 or for
the more general classicalXYZ model even forH=0. The
solution found by Gochev for theXXZ model readsSn

z

=Stanhfksn−n0dg, with k=lnfsJ3+ÎJ3
2−J1

2d /J1g, where 1/k
measures the domain wall thickness. In the Ising limit the
DW thickness goes to zero, 1/k→0 atJ1→0. We emphasize
that the value ofn which describes the DW position in this
solution(taken asn=n0 above) is an arbitrary(not necessar-
ily integer) number. Thus the model withH=0 has the non-
trivial property that the energy of the DW does not depend
on its center position for arbitrarily large anisotropy. It is not
clear, whether this property is valid for the same Hamiltonian
in the quantum case.

For the Ising model we easily understand the above result
since atH=0 the DW is described by the following solution:
Sn

z=−S at n,n0, Sn
z= +S at n.n0, howeverSn

z at n=n0 may
have arbitrary values. IfSn0

z =0 the DW is localized on the
spin with n=n0; on the other hand, forSn

z=−S or Sn
z= +S at

n=n0 the DW localized in the center of the bond which con-
nects the spin atn=n0 with spins atn=n0+1 or n=n0−1,
correspondingly. ForH=0 the energies of DW’s centered on
the spin[central spin(CS) DW] or on the bond[central bond
(CB) DW] coincide. For all intermediate casesSn

zÞ0, ±1 at
n=n0 it is natural to postulate that the DW is localized on a
point X, which does not coincide with a site or the bond
center and to describe the DW dynamics in terms of its co-
ordinateX treated as a collective variable. Let us introduceX
in the following way: we choose some lattice site and define
the DW located on this site to have the coordinateX=0. Let
us then find thez projectionStot

zs0d of the total spinStot
z of the
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DW localized on that site. It is then natural to determine the
coordinate of any DW via the value of the totalz projection
of the spinStot

z , associated with this DW from the expression
X=asStot

z −Stot
zs0dd /2S. In order to account appropriately for

possible divergencies in infinite chains the difference
Stot

z −Stot
zs0d is calculated ason=−`

n=` fSn
zsXd−Sn

zsX=0dg [hereSn
zsXd

and Sn
zsX=0d are thez projection of spins on siten for the

DW with the coordinateX and the DW withX=0 respec-
tively]. Then, for the DW in the model of Eq.(1) with
HÞ0 the complete definition reads

X =
a

2Scosu0
o

n=−`

n=`

fSn
zsXd − Sn

zsX = 0dg. s3d

For zero field the DW energyE does not depend on the
coordinateX. At HÞ0, as shown in Ref. 14, a dependence of
the DW energy on its coordinate emerges, pointing to the
presence of a lattice pinning potentialU=UsXd. The pinning
potentialUsXd has its minimum value forX=na, i.e., for the
CS DW, and its maximum value forX=sa/2ds2n+1d, i.e.,
for the CB DW.14 In order to investigate the nonstationary
dynamics of the DW we will treatUsXd as a potential energy.
The analysis of the related kinetic energy will be discussed in
the next section.

When the DW is moving in a discrete chain it is natural to
use the periodic potentialUsXd, UsX+ad=UsXd. The form of
the potential can be chosen as in Ref. 12,

Usxd = U0 sin2spX/ad, s4d

where U0 characterizes the intensity of pinning caused by
discreteness. With the choice of Eq.(4) for the potential, the
value of U0 can be found as the energy difference between
the static central spin and central bond DW’s.14 In order to
calculateECS and ECB we need in the solution of the corre-
sponding classical discrete problem, which is known for
small magnetic field only.14 Moreover, for our purpose we
need to know not only the energy differenceECS−ECB, but
the full dependenceUsXd in order to verify the dependence
of Eq. (4).

To revealUsXd we have carried out a numerical analysis
of the model of Eq.(1) in accordance with the definition Eq.
(3) for the coordinateX. We have searched the conditional
minimum of the energy as given by Eq.(1) for a finite spin
chain at a fixed value ofStot

z . To solve this problem, the
simplex type method with nonlinear constraints was chosen
as the method of minimization. This method is based on the
steepest descent routine applied to functions of a large num-
ber of variables, and it is able to find the conditional mini-
mum for a given function with fixing a small number of
combinations to given values. The method exhibits a fast
convergence when a spin distribution with only one domain
wall placed near the point of inflection is used as starting
condition. For our problem, the angular coordinates of each
spin were chosen as variables, and the minimum of the en-
ergy was found with fixing the value ofStot

z . The DW was
created by fixing the direction of two spins on the ends of the
chain corresponding to Eq.(2). The chain lengthN varied
from 20 to 100, and for the case of interest,HøJS, the result

was independent of the chain length forNù30. The value of
U0 in Eq. (4) was determined from the differenceECS−ECB;
the behavior of this quantity is shown in Fig. 1.

The analysis shown in Fig. 2 demonstrates that in the case
of interest to us,h!1, UsXd is fairly well described by Eq.
(4). If we consider a more general dependence, allowing for
one more Fourier component,

Usxd = U0 sin2spX/ad + U1 sin2s2pX/ad, s5d

the dependence ofUsXd is reproduced with a deviation of
less than 0.1%. However, as the correction related toU1 is
small, we will use in the following mainly the simplest ex-
pression, Eq.(4).

Note, asU0→0 for h→0, and forh→1 the transverse
field Ising model is characterized by a rather small pinning
potential. For comparison, in Fig. 1 the corresponding depen-
dence is presented for a ferromagnet with an isotropic
Heisenberg interaction and a single ion anisotropy of
the form Wa=−onKsSn

zd2, which has the same amplitude as

FIG. 1. The difference of the energies(in units of JS2) for CB
and CS domain walls(shown schematically at the bottom of the
figure) vs magnetic field. The corresponding dependence for the
model with single-ion anisotropy, normalized by 20, is also given
for comparison(open circles).

FIG. 2. Shape of the domain wall pinning potentialUsXd (in
units ofJS2) for the dimensionless magnetic fieldh=0.05. Symbols
denote the numerical data. The empirical dependence
0.024 sin2spx/2ad, and a fit for a more general dependence with
U0=0.024, U1=−0.00255 are shown as dashed and full lines,
respectively.
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Eq. (4) at K=J. For this modelU0 has a maximum atH=0;
the typical values ofU0 are approximately 20 times higher
than for the transverse field Ising model. Furthermore, the
quantity U0 has opposite sign, i.e., in contrast to the trans-
verse field Ising model one hasECB,ECS.

III. DOMAIN WALL DYNAMICS IN CONTINUUM
APPROXIMATION

Most of the results for the dynamics of domain walls or
kink-type solitons in magnets have been obtained in the con-

tinuum approach, replacingSWnstd by the smooth variable spin

density SWsx,td, where x is the coordinate along the chain.

Within this approach the dynamics of the vector fieldSWsx,td
is described by the well known Landau-Lifshitz equation
without dissipation16 (see also Refs. 2 and 3)

]SW

]t
=

a

"
SSW 3

dWhSWj

dSW
D . s6d

HereWhSWsx,tdj is the ferromagnetic energy as functional of
the spin density. For our model, the transverse field Ising

chain,WhSWsx,tdj corresponds to the Hamiltonian of Eq.(1)
and is written as14

WhSWj =E dx

a
HJ

a2

2
S ]Sz

]x
D2

− JSz
2 − gmBHSxJ . s7d

Using the continuum approach allows us to find a solu-
tion, which describes a DW moving with a given velocityV.
On the other hand, the discreteness effects are evidently lost
going from Eq.(1) to Eq. (7).

We use the relationSW2=S2=const to writeSW =SmW sx,td, i.e.,
to express the spin through the unit vector fieldmW sx,td. Its
direction is determined by two independent variables, we
will use the angular variablesu andw,

mz = cosu, mx = sinu cosw, my = sinu sinw.

In terms of these variables the Landau-Lifshitz Eq.(6) reads

"S

a
sinu

]u

]t
=

dW

dw
,

"S

a
sinu

]w

]t
= −

dW

du
, s8d

whereWhu ,wj is the ferromagnetic energy written as a func-
tional of u and w. These equations can be considered as
classical Hamiltonian equations for the canonically conju-
gate variables cosu (momentum) and w (coordinate), with
Hamilton functionW.

Kink solitons in such a continuum approach have been
described for a number of magnetic chain models. These
include the Heisenberg chain with two single ion
anisotropies,17–19 the Ising chain with transverse exchange
breaking thexy symmetry20 and thexy-like Heisenberg chain
with an external symmetry breaking field.21,22The qualitative
results for kink solitons with permanent shape are analogous

in all these models: The dispersion relation, energy vs veloc-
ity, has two branches and one distinguishes between the
lower energy domain wall(LDW) and the upper energy do-
main wall (UDW). The energies of these two solutions
merge at the maximum possible velocityV=Vc. A more natu-
ral formulation results when the momentum is introduced
instead of the velocity: then the dispersion relation becomes
single valued and periodic with the magnetic unit cell.23 In
particular the dispersion relations can be given explicitly for
the Heisenberg chain with two single ion anisotropies.17,18

Equations(6) and (8) are usually considered as purely
classical equations. To discuss their applicability to the quan-
tum regime one may use the quantum-field approach based
on the spin coherent states formalism.24 Then the quantum
phase(Berry phase) appears, leading to qualitative effects
such as the suppression of quantum fluctuations for antifer-
romagnetic chains25 and small magnetic particles with half-
odd-integer total spin.26 In this approach the spin state on
every siten is determined by the spin coherent stateumW l, for

which SW umW l=SmW umW l. Here mW , as before, is a unit vector,
mW 2=1. In this approach, the dynamics of the mean value of

spin SW =SmW is described by a Lagrangian which can be writ-
ten in the form

LhSWj = "SE dx

a
AWSẆ − WhSWj, s9d

where

AW sSWd =
nW 3 SW

SsSWnW + Sd
. s10d

nW is a unit vector with arbitrary direction, denoting the quan-

tization axis for coherent states. It is important thatAW has the
form of the vector potential of a magnetic monopole field in

the full spacehSWj (not subject to the constraintSW2=const).
The vector potential has a singularity(Dirac string) for

SWnW =−S, i.e., on a half-line in spacehSWj. Usually, the “north

pole” gauge withn=ez is used, then the quantityAW sSWdSẆ ac-
quires the familiar form

AWSẆ = s1 − cosuds]w/]td. s11d

In the saddle point approximation for the Lagrangians Eq.
(9) or (11) one recovers the classical Landau-Lifshitz equa-
tions in the form of Eq.(6) or (8) for the mean value of spin

SW. The potentialAW of the monopole field permits gauge trans-
formations(in particular, the change of the direction of the
spin quantization axisnW and, hence, the positions of singu-
larities). These do not change the equations of motion, but
make a contribution to the Lagrangian in the form of a total
time derivative of some function of spin. This may in prin-
ciple be significant for the calculation of the DW momentum.
Naturally, the classical equations are not affected by the
gauge transform. On the other hand, the term with]w /]t in
Eq. (11) is of crucial importance for the quantum dynamics
of domain walls in spin chains with half-odd integer spins.12,
For example, this term is responsible for the destructive in-
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terference of paths for DW tunneling from one minimum of
the crystal potential to an adjacent one.12

In order to construct a solution corresponding to a DW
moving with velocityV, we have to write down the Landau-
Lifshitz equations in angular variables, and to restrict our-
selves to traveling wave-type solutions,u=usjd, w=wsjd, j
=x−Vt, with the natural boundary conditions,Sx→Ssinu0 at
j→ ±`, and

Sz → sScosu0, Sz → − sScosu0

at j→` or j→−`, respectively. Heres= ±1 is p0, the to-
pological charge of the DW and cosu0 characterizes the
ground state, see Eq.(2). Then, using Eq.(7), the equations
for ]u /]t=−Vu8 acquire the simple formvu8=−2h sinw.
Here and below the prime denotes differentiation with re-
spect toj, and we have introduced the dimensionless vari-
able

v = V/V0, V0 = aJS/"

and puta=1 in all intermediate equations. We will restore
the dimensional parameters in final results only.

The set of Eqs.(8) with the traveling wave ansatz has one
integral of motion, which after taking boundary conditions
into account can be written as

1

2
fscosud8g2 − sin2 u + 2h sinu cosw = h2 = const.

s12d

Using the simple relation betweenu8 and sinw, this can
be rewritten in the variableu only. Finally we arrive at the
simple differential equation foru,

scosud8 = s1
Î2 sin2 u − v2 + s2

Î2h2 − v2. s13d

s1,2= ±1 are two independent discrete parameters which
determine the topological charge of the kink as
p0-topological soliton and the spin direction in the kink cen-
ter, j=0, with respect to the magnetic field. Thuss1,2 fixes
the type of the DW(i.e., DW with lower energy and DW
with upper energy; see next paragraph).

Equation (13) determines, in particular, the maximum
possible value of the velocity of the DW(p kink), the critical
velocity vc

vc = Î2h. s14d

Equation (13) can be integrated in terms of elementary
functions, generalizing the solution forv=0 as given
before.14,27 The analysis shows that the equation has both
LDW and UDW solutions as described above. ForvÞ0 the
solutions are obtained by substituting

cosu = coscÎ1 − v2/2, sina = s2Îvc
2 − v2

2 − v2 , s15d

and can be given in the implicit form

Î2s1sj − j0d = c + tana lnU sinfsc − ad/2g
cosfsc + ad/2g

U . s16d

As for v=014 and in related models(see above) there are two
types of DW’s, with different energies. Forv=0, the DW
with lower energy(LDW) in its center has the direction of

spin SWs0d parallel to the magnetic fieldHW , whereas for the

DW with higher energy(UDW) SWs0d is antiparallel toHW .

This applies similarly for moving DW’s, however,SWs0d and

HW are not exactly parallel respectively antiparallel forVÞ0.
As for v=0, the solution for the upper DW has a discon-

tinuity in the space derivativeu8. At the critical velocityv
=vc LDW and UDW become identical and the solutionusjd
can be given in explicit form:

cosu = s cosu0 sinsÎ2j/ad at uju , ap/2Î2

and

cosu = s cosu0sj/ujud otherwise.

It has a discontinuity in the second space derivatives.
In order to find energy and momentum, the DW param-

eters of interest, we do not need the solution for LDW and
UDW in explicit form. It is easy to use Eq.(13) and to pass
from the integrals overj to the integration overu. Then an
elementary calculation of the kink energies gives

Elower = JS2Î2FS1 −
v2

2
DarcsinÎ 1 − h2

1 − v2/2
G

− JS2Îs1 − h2ds2h2 − v2d, s17d

Eupper= Elower + 4hJS2Îs2 − v2dS1 −
v2

vc
2D , s18d

for the lower and upper DWs respectively. Thus the depen-
denceEsvd consists of two branches,Elower andEupper which
merge atv=vc, and the full dependenceE=Esvd is a con-
tinuous double-valued function; see Fig. 3. For the most in-
teresting case of small magnetic fields,h!1, or vøvc!v0,
it is given by the unified equation

FIG. 3. The dependence of the DW energy(in unitsJS2) and its
momentum(in units "S/a) on its velocity for the value ofh=0.5.
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EsVd = Î2JS2FarcsinÎ1 − h2 7 2hÎ1 −
v2

vc
2G , s19d

where the sign7 corresponds to the lower and upper
branches ofE=EsPd, respectively.

In the three-dimensional ferromagnet the UDW is un-
stable. However, this instability develops as an inhomoge-
neous perturbation(in the plane of the DW) and is not
present for DW’s in one-dimensional magnets. Below we
will show that for the more natural representation of the DW
energy, namely as a function of its momentum, the function
EsPd is single-valued, and the upper branch just corresponds
to the larger values of momentum. This explains its stability
in the one-dimensional case.

The kink momentum is determined as the total field mo-
mentum of the magnetization field,23 i.e.,

P = −E dj
dL
dSẆ

SW8 = −E 1

a
AW dSW . s20d

The dynamical part of the Lagrangian in Eq.(9) and the
expression(20) for the momentum display singularities as-

sociated with the singular behavior of the vector potentialAW .
The vector potential for a monopole inevitably has a singu-
larity on a line(Dirac string) and moreover is not invariant
with respect to gauge transformations. The kink momentum
also seems not to be invariant under these gauge transforma-
tions. If one uses a Lagrangian written in angular variables,
problems due to the nondifferentiability of the azimuthal
anglew at the pointsu=0 andu=p appear.(This problem is
also important for the theory of moving two-dimensional to-
pological solitons, see Ref. 28.) It is important, however, that
the difference of the momenta for two different states of the
DW is a gauge-invariant quantity.29 To show this, let us

imagine the DW as a trajectory in spin spacehSWj, SW =SWsjd.
The trajectories emerging from one point, say,SW

=SseWx sinu0−eWz cosu0d and ending at another pointSW

=SseWx sinu0+eWz cosu0d can be associated with DW’s that
move with different velocities but obey identical boundary
conditions at infinity. In this case, the kink momenta are

determined by integrals of the formeAWdSW along these trajec-
tories. It is clear that the difference of the momenta is deter-

mined by the integralrAWdSW along a closed contour. Accord-
ing to Stokes integral theorem, the integral in question can be

represented as the flux of the vectorBW =curlAW through the

surface bounded by this contour,eBWdVW . Here the integral is
taken over that region on a sphere which is bounded by the
trajectories corresponding to the two kinks in question. The

vector BW =curlAW =SW / uSW u3 involves no singularities. Returning
to angular variables, this difference can be written as
s"S/ad ·e sinu du dw, that is just the area on the sphere.
Thus, the dependenceVsPd or EsPd has been reconstructed,
apart from the arbitrariness to choose the reference point for
the momenta.

The trajectories describingv=0 kinks appear to belong to
the large circle passing through the polesu=0,p and the end

point of the magnetic field vectorHW . Obviously, the differ-
ence of the momentaP for the immobile LDW and UDW is
determined by the area of the half-sphere,DP=2p"S/a. All
the remaining trajectories that correspond to moving kinks
cover the regions between these trajectories. In particular,
kinks at the critical velocities ±vc correspond to two non-
planar trajectories. Thev= ±vc trajectoriesv can be reached
by proceeding from either type ofv=0 domain walls, LDW
or UDW. Thus, we can see thatEsvd has two branches, one
characterized by a higher energy and the other characterized
by a lower energy. These two branches merge at the critical
velocity v=vc. If we assumeP=0 for the v=0 LDW, then
the momentum grows up toP= ±Pc, Pc,2p"S/a as the
absolute value of the kink velocity increases tovc. As we
proceed further along the upper branch of the dependence
EsVd, the kink velocity decreases, while the momentum in-
creases further toP= ±2p"S/a when the velocity ap-
proaches again zero. When we continue, we begin to cover
the area of the sphere once more and the momentumP
grows, while the kink energy takes the same values as be-
fore: thus we do indeed arrive at a periodic dependenceEsPd
with period P0 determined by the total area of the sphere.
The value ofP0 depends only on the spin valueS and the
lattice spacinga,

P0 =
4p"S

a
. s21d

The presence of two planar solutions(with w=const) de-
scribing the DW’s withv=0 and different energies is a com-
mon feature for any model with uniaxial anisotropy subject
to a transverse magnetic field. As we know, for Heisenberg
exchange interaction and single-ion anisotropy, only numeri-
cal solutions describing mobile DW’s can be found.30 But
even in this case the periodicity continues to be the same. On
the other hand, for the Ising model considered here, the exact
solution is known, and the momentum can be calculated ex-
plicitly. As a result the momentum for LDW and UDW takes
the following form:

Plower =
2"S

a
arcsinS v

vc

Î 1 − h2

1 − v2/2
D

−
v"SÎ2

a
arcsinÎ 1 − h2

1 − v2/2
, s22d

Pupper= Plower +
4"S

a
Î1 −

v2

2
arcsinÎ1 −

v2

vc
2 . s23d

These equations together with Eqs.(17) and(18) give us the
dispersion law for the DW in implicit form as shown in Fig.
4.

For the mostly interesting case of small magnetic fields
h!1, orvøvc!v0 the dependencePsvd can be given as the
unified expression
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Pl, u =
2"S

a
Sp

2
± arcsinÎ1 −

v2

vc
2D , s24d

where 6 correspond to UDW and LDW, respectively. Fi-
nally, limiting ourselves to the caseh!1, the dispersion law
for both DW’s takes the form

EsPd = Î2JS2Fp

2
− 2h cosS2pP

P0
DG . s25d

This equation will be used in the remaining part of the
paper to describe the classical dynamics of domain walls and
to perform their semiclassical quantization. It is based on the
continuum approximation and this is the only conceivable
approach to analytically describe moving DW’s; however,
the validity of the continuum approximation has to be justi-
fied before doing so since it seems to be non-adequate for the
Ising model ferromagnet. This applies in particular to the
limit h!1, when the DW thickness becomes comparable or
even less than the lattice spacinga. To check the applicabil-
ity of the continuum approximation we present in Fig. 5 a
comparison of the DW energies as obtained from the numeri-
cal approach to those obtained from Eq.(25) at P=0. The
discrepancy is seen to be of the order of 10% forh→0 and
thus surprisingly small. In addition, the linear dependence of
the DW energy on the magnetic field,EsHd=JS2sA±hBd is
valid for both approaches, with valuesA<2.0 andB<2.0
for the numerical data andA=p /Î2<2.2 andB=2Î2<2.8
from Eq. (25). As we will see below, the use of the depen-
denceEsPd=JS2fA−hBcoss2pP/P0dg, with “improved” co-
efficients A and B, gives much better agreement with the
numerical data for the dispersion law of quantum solitons.14

One more important parameter, the maximum value of
the pinning potential U0 was treated numerically for
arbitrary values ofh. For extremely small values ofh,
U0=ECB−ECS=2JS2hf1−3sh/2d1/3g was obtained from the

analytical expressions forECS and ECB [see Eqs. 11 and 12
in Ref. 14]. As we will see below, the ratio ofU0 to the
difference of the DW energies withP=0 and P=P0/2,
T0=JS2hB is an important parameter for the description of
the DW dynamics. Whereas the dependence ofU0 on h is
nonlinear at small values ofh because of the presence of the
nonanalytical term proportional toh1/3, the DW “kinetic en-
ergy” T0, is linear in h; see Sec. V below. The maximum
value ofU0/T0=1/2 isrealized in the limith→0, but in fact
this important ratio decreases fast to rather small values
whenh grows (see Fig. 6).

In the limit of small values of momentum,P→0, the
parabolic approximation can be used and the energy takes
the formE=P2/2M, where the effective mass of a kink is

M =
4Î2"2

a2hJ
. s26d

It is seen from Eq.(26) that the effective mass turns to in-
finity at h→0. This is one more manifestation that in a
purely uniaxial model of a ferromagnet in the absence of a
transverse magnetic field domain wall motion is
impossible.30 The use of the parabolic approximation(26)
seems to be adequate for DW’s moving with small velocities.
However, some important features are lost in this approxima-
tion: For example, the correct value of the energy bands

FIG. 4. The dependence of the DW energy on its momentum for
different values of the magnetic field(given next to the curves);
arrows indicate the position of the momentum corresponding to the
critical velocity vc.

FIG. 5. The dependence of the DW energy with zero velocity(in
unitsJS2) on the dimensionless magnetic fieldh; symbols depict the
numerical data for the discrete model; the solid line is the theoret-
ical result in the continuum approximation Eq.(25); the approxima-
tion of numerical data by the linear functionE=2s1−hdJS2 is
shown as a dashed line.

FIG. 6. The ratio of the maximum value of the pinning potential
to the quantityT0 characterizing the dispersion of the DW. ForT0,
the “improved” value of the coefficientB=2 is used. Also shown as
a dotted line is the limit of this quantity for extremely small values
of the magnetic fields(Ref. 14), U0/T0=0.5f1−3sh/2d1/3g.
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forming the DW spectrum should be found within the analy-
sis of the full periodic dependenceEsPd.

We note that for smallh the value of the effective
mass for the upper DW branch, defined byEuppersPd
=EsP0/2d−sP−P0d2/2Mup agrees withM from Eq. (26).
However,M and Mup are substantially different at finiteh;
see Fig. 4 above.

To conclude this section, we emphasize that within the
macroscopic classical approach the dispersion law(25) ex-
hibits a periodic dependence ofEsPd which, from Bloch’s
theorem, is characteristic for discrete quantum models.
Moreover, the maximum value of momentum,P0=4p"S/a,
which may be called the size of magnetic Brillouin zone, and
the size on the crystalline Brillouin zonePB=2p" /a have
values of the same order atS,1. The expression forP0
contains Planck’s constant" and the lattice constanta and
formally seems to characterize both the quantum nature and
the discreteness of the model. As discussed above, this is not
the case: if one accounts for themacroscopic(continuous)
character of the magnetizationM0=gmBS/a (otherwise the
discussion of ferromagnetism is meaningless), P0 can be
written using onlyM0 and the classical gyromagnetic ratio
g=e/2mc, P0=4pM0/gg.

IV. FORCED MOTION AND DISPERSION RELATION
OF DOMAIN WALLS

The periodic dependence discussed in the preceding sec-
tion means that one can restrict the values of momentumP to
the magnetic Brillouin zone, −P0/2, P, P0/2. On the other
hand, as with Bloch electrons, in order to analyze the motion
under the influence of an external force, it is useful to con-
sider that the DW momentum obeys the equationdP/dt
=Fe, whereFe is external force, and to allow thatP increases
without limits beyond the first Brillouin zone. The expres-
sion for the DW energyEsPd can be used to describe the DW
dynamics in the spin chain in terms of the DW coordinateX
considered as a collective variable. Its dynamics is governed
by the Hamiltonian

HsP,Xd = E0shd + T0 sin2SpP

P0
D + UsXd, s27d

whereE0shd is the DW energy atP=0. E0shd has no effect
on the dynamics of the DW coordinateX and will be omitted
below. Here we have introduced the parameter

T0 = 4Î2hJS2 = 2Î2gm0SH

which describes the magnitude of free DW dispersion, and
added the potentialUsXd, without specifying its physical ori-
gin. For the discrete spin chain, the potential is the pinning
potential originating from the discreteness effects introduced
above.

It is easily seen that the relationẊ;V=]H /]P as in ana-
lytical mechanics immediately gives the periodic(oscillat-
ing) dependence of the DW velocity on DW momentum

V =
pT0

P0
sinS2pP

P0
D . s28d

Inverting this equation we recover the expression for the mo-
mentum(24) for small magnetic field.

The dynamical equation for the Hamiltonian reads
dP/dt=−]H /]X. Choosing different forms of the potential
U=UsXd one can consider different problems such as the
interaction between a DW and the inhomogeneities in the
medium or with external magnetic fieldHz directed along the
easy axis. In the last case we have

UsXd = − 2gmBSHzX/a, Ṗ = 2gmBHzS/a. s29d

Therefore the DW velocity under the action ofconstant
magnetic field(constant force) oscillates with time. Note that
for a DW in the uniaxial ferromagnet this equation is nothing
but the one-dimensional version of familiar Slonczewsky
equations.31 It describes the nontrivial properties of DW dy-
namics, such as the oscillating motion of DW’s as response
to a constant external force. These effects were observed in a
number of experiments on DW dynamics in bubble materi-
als; see Ref. 31. Formally, such a motion corresponds to the
Bloch oscillations well known for quantum mechanical elec-
tron in an ideal crystal lattice. Bloch oscillations for solitons
in different media were recently reviewed by Kosevich.32

Also, such effects for DW’s in spin chains withS=1/2 have
been discussed from the viewpoint of Bloch particles
recently.13 However, it is important to note that for DW’s in
a continuum model the origin of the effects is different in
principle: It is not associated with discreteness and it exists
even in the continuum limit. Thus, even in the classical con-
tinuum model the dynamics of a DW exhibits a number of
properties peculiar to Bloch particles(electrons), i.e., to
quantum objects moving in the periodic potential of the crys-
tal lattice. On the other hand, the time dependence of this
forced DW velocity is oscillating with the classical Larmor
frequencyVL=ggHz. Combining Eqs.(28) and(29) one can
find

Vstd = VmaxsinVLt, Vmax= pT0/P0.

Thus the quantum and classical regularities intertwine in a
very intricate manner in the problem of domain wall dynam-
ics.

To analyze the quantum DW motion in the spin chain
including discreteness effects, we will use Eq.(27) as a
quantum Hamiltonian, using the periodic potential of Eq.(4)
andU0 as found in the Sec. II. Let us start with the case of
nearly free motion, whenU0!T0. In this case the DW en-
ergy is given not by the usual momentum, but instead by the
quasi-momentumP which is determined only up to a recip-
rocal lattice vector. According to Bloch’s theorem, the energy
EsPd should be periodic with periodPB=2p" /a. When
U0→0, the dispersion law is described by Eq.(25), or Eq.
(27) with U0=0, for almost allP values(with small correc-
tions ,U0

2). Only when the nonperturbed dispersion laws
intersect,EsPd=EsP+nPBd with n integer, corrections be-
come essentials,U0d and energy gaps appear.
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We now want to discuss the situation for different values
of spin S, since the ratioP0/PB=2S depends on the spin
value. Strictly speaking, small spin values, e.g.,S
=1/2,1, . . .,cannot be described in the frame of our semi-
classical approach. But we argue that our approach will be
valid at least qualitatively also for these cases.

For spinS=1/2 wehaveP0=PB, and there is no intersec-
tion of the nonperturbed dispersion law with its image
shifted byPB (the intersection of two parabolas in Ref. 12 is
an artifact of the parabolic approximation). In this case the
effect of smallUsXd on the DW dispersion relationEsPd is
only quadratic in the small parameterU0 and is negligibly
small. For all other spin values,S.1/2, we haveP0. PB
and dispersion curvesE0sPd extended periodically with pe-
riod PB=2p" /a do intersect. However, all intersections oc-
cur on the boundaries of the Brillouin zone, namely, at
P= ±p" /a. It is clear that in this case the DW spectrum
containsNb=2S energy bands.

V. CLASSICAL DYNAMICS OF DOMAIN WALLS IN A
FINITE POTENTIAL AND ITS QUANTIZATION

In this section we will analyze the classical DW dynamics
and its quantization for an arbitrary(finite) periodic potential
of the form given in Eq.(4). The most important ingredient
to this analysis is that the Hamiltonian of Eq.(27), just as the
classical energy, is a periodic function of momentum, and
that there is an upper bound for the energy. As already men-
tioned, this property is already present in the classical theory
of DW motion and has nothing to do with quantum mechan-
ics. We will show below that this property leads to results
which are qualitatively different from those obtained in the
standard quadratic approximation, both for the pure classical
DW motion as well as for its quantization.

Let us consider the dynamical system described by the
classical Hamiltonian of Eq.(27), takingUsXd into account.
The corresponding Hamilton equations

]P

]t
= −

]H
]X

,
]X

]t
=

]H
]P

,

have an obvious integral of motion,

HsP,Xd = T0 sin2 pP

P0
+ U0 sin2 pX

a
= const. s30d

Here we have omitted the constant partE0shd which does not
affect the equations of motion. These equations cannot be
integrated in terms of elementary functions, however, a suf-
ficiently complete understanding of the DW dynamics can be
found using the phase plane analysis. This system is charac-
terized by the periodicity in momentumP and by the pres-
ence of an upper bound for the Hamiltonian. In view of this
its dynamics shows characteristic features which do not
manifest themselves for standard dynamic systems with a
parabolic dependence on momentum.

It is easy to show that at arbitraryU0/T0 there are two sets
of centerlike singular points in the phase plane; see Fig. 7.
One of them(C1-type center) corresponds to the minimum
of the potentialUsXd and the minimum of the “kinetic en-
ergy” TsPd=T0 sin2spP/P0d,

C1:X = an, P = P0m, HC1 = 0,

the other set of centers(C2-type center) is located at the
maximum of both potential and kinetic energies,

C2:X = as2n + 1d/2, P = P0s2m+ 1d/2, HC2 = U0 + T0.

Here and belown, m are integers. The existence ofC2-type
centers describing the steady small oscillations of the UDW
near the potentialmaximum, is a unique property of Hamil-
tonian systems with an upper bound in the Hamilton function
HsP,Xd.

There are also two sets of saddle points in the phase
plane,S1 andS2. PointsS1 correspond to the maxima of the
potentialUsXd and the minima ofTsPd

S1:X = as2n + 1d/2, P = P0m, HS1 = U0,

pointsS2 correspond to the minima ofUsXd and the maxima
of TsPd,

S2:X = an, P = P0s2m+ 1d/2, HS2 = T0.

At the allowed values of the integral of motion,HC1
øHøHC2, the phase planesP,Xd separates into regions
with different types of motion. Two types of finite motion are
present within one interatomic distance(one period of the
potential). One type of finite motion corresponds to the os-
cillations of the LDW near the minimum of the potential, it
requiresHC1øHøHS1 and is standard in the analytical dy-
namics of a particle.(We suggestedU0øT0 here.) A second
type of finite motion, namely oscillations of the UDW near
the potential maximum, is realized forHS2øHøHC2.
These regimes are separated from the rest of the phase plane
with different types of infinite motion by separatrix trajecto-

FIG. 7. The phase planesP,Xd for the DW dynamics for(a)
U0=T0 and(b) U0=0.25T0. Separatrix trajectories are shown by full
lines, other trajectories by dashed lines; full and open circles denote
the positions of centerlike singular pointsC1 andC2, and crosses
correspond to the saddle points.
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ries, ending in one of the saddle points. The only exception is
the caseU0=T0 or HS1=HS2 when the separatrix trajectories
connect saddle points of different type and form a two-
dimensional net; as a consequence infinite motion is absent.
For the transverse field Ising model with smallU0 this is
hard to realize, see Sec. II(in particular Fig. 6), but for
methodological purposes we find it convenient to start with
this case.

In this case we haveT0=U0, and one easily verifies that
the area of the phase plane(mechanical action) per unit cell
and one period of momentum is equal toA0=4p"S. Thus,
from the Bohr-Sommerfeld quantization rules, there are
sA0/2p"d=2S quantum eigenstates of a DW, related to its
oscillations per one unit cell. It is clear that if one takes into
account tunneling transitions between equivalent points of
the lattice, these localized states will turn into energy bands.

This result coincides with the result obtained in the pre-
vious section for the opposite limit of an infinitely weak
pinning potential. An additional argument on the number of
energy bands is obtained from the well-known exact result
for so-called Harper equation,33 familiar in the problem of
electronic quantum motion in a periodic potential in the pres-
ence of a finite magnetic field. In accordance with Ref. 33
the problem is reduced to a Hamiltonian as in Eq.(30),
HH=sin2sp/2d+sin2spbqd. For the rational case of the
Harper equation, atb=m/n, the eigenvalue spectrum for the
HamiltonianHH showsn nonoverlapping bands. The simple
canonical transformationp→pP/P0, q→XP0/p, leads to
our Hamiltonian(30) with b=1/2S. This gives immediately
the above result,Nb=2S.

For T0,U0, a case more realistic for the Ising model, the
situation is different: in addition to the localized trajectories
in phase space, trajectories corresponding to the infinite mo-
tion above the potential barrier appear; see Fig. 7(b). These
trajectories describe the overbarrier dynamics of DW’s in the
pinning potential. It is clear, that such states should be de-
scribed well by the model of the nearly-free particle, dis-
cussed in the previous section.

The other limiting case, largeU0, i.e., U0.T0 is hard to
realize in the transverse field Ising model. On the other hand,
it could be interesting for other models of ferromagnets sup-
porting DW states, and we want to discuss it briefly. The
phase plane for largeU0/T0 can be obtained from Fig. 7(b)
by replacingP/P0 by x/a and vise versa. Then, the topology
of the phase plane is fundamentally changed: trajectories
with finite changes of the kink coordinate andinfinite range
in momentum, appear. For these trajectories the DW coordi-
nate oscillates near certain positions, which do not coincide
with a minimum or maximum of the pinning potential. This
is nothing but Bloch oscillations in the pinning potential
UsXd.

At this point we want to emphasize that the semiclassical
result A0=4p"S does not depend on the details of the
model. Only the periodicities of the Hamiltonian inP andX
with periodsP0 and a are essential for the argument. The
considerations presented in the previous section are model
independent as well, and lead to the same value ofP0 for all
transverse field models. Therefore the final result for the
number of energy bands remains valid for more general
models of ferromagnets subject to a transverse magnetic

field. Thus the numberNb of energy bands for DW’s in all
these models should be equal to 2S. This is in agreement
with the numerical result for the kink dispersion law in the
quantum transverse field Ising model with spinS=5, where
10 energy bands were obtained.14

VI. DW TUNNELING

In the classical case, there are states corresponding to
finite motion (oscillations) of DW’s near the extrema of
the potential in the phase plane both at small and large
values ofU0. This applies to the LDW near the minimum of
UsXd and as well to the UDW near the maximum ofUsXd.
Owing to the symmetry present in the Hamiltonian(30),
P→P0/2−P, X→a/2−X, their dynamics is described simi-
larly; therefore one can consider only, say, the LDW case. In
the quantum case, the tunneling of DW’s from one site to
another becomes possible, and these states form the energy
bands. It is clear that for extremely smallU0 the nearly free
approximation discussed in Sec. IV is valid. But the standard
situation for semiclassical systems(like DW’s for large spin
ferromagnets) is the tight-binding limit, for which the prob-
ability of tunneling is small, and the states with energyEn are
almost localized in a potential well. In order to estimateEn,
we consider the parabolic approximation for bothUsXd and
TsPd. In this case we haveEn="v0·n, where

v0 =Î 1

M
Sd2U

dx2 D
X=0

=
ÎU0T0

4"S
.

M is the effective mass of Eq.(26). Both U0 and T0 are
proportional to S2, thereforev0~S and for semiclassical
spinsS@1 the value ofEn for n!S can be smaller thanU0
even in the caseU0!T0. Then the width of thenth energy
band,DEn, resulting from the tunneling between the quan-
tized energy levelsEn, is smaller that the value ofT0 and
evenEn. It is clear that this first of all should correspond to
the lowest levelEn, i.e., n=0 (the “ground state of the DW”
in the pinning potential), but it could be true as well for some
higher levels withn.1.

In order to understand the possibility of semiclassical dy-
namics of the lower DW, consider the limit of smallU0
sU0!T0d. The areaAL under the separatrix trajectoriesS1 is
easily found and the number of quantum states for the finite
motion of the LDW,NL=AL /2p" is defined by the follow-
ing expression:

NL =
8S

p2ÎU0

T0
.

This is of the same order of magnitude as the value obtained
from NL ·"v0=U0. The same expression is obtained for the
number of states of the upper DW, localized near the poten-
tial maximum,NU=NL. At U0!T0, the values ofNU andNL
are much smaller than the total number of DW states 2S, but
can still be large compared to 1: When the inequality
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1

S2 !
U0

T0
! 1

(meaningful forS@1) holds, the states of finite motion are a
small fraction of all DW states, butNU=NL@1. It is easy to
estimate the mean values ofP2 andX2 in these states,

kP2l = P0
2 1

2pS
ÎU0

T0
, kX2l = a2 1

2pS
ÎT0

U0
.

In view of that, it is not easy to satisfy the condition of
applicability of the parabolic approximation for bothUsXd
andTsPd, kP2l! sP0

2d andkX2l!a2 simultaneously. Thus, in
order to investigate the tunneling splitting of the levels it is
preferable to use the full non-parabolic Hamiltonian Eq.
(30). The best way to analyze such models is the instanton
technique, which can be applied for arbitrary field theories;
see Ref. 34. In this approach, the amplitude of probability
P12 of the transition of the DW from one given state to
another is determined by the path integral
eDX·exphiAfXg /"j, where AfXg=edt·LfXstdg is the me-

chanical action functional. HereLsX,Ẋd is the Lagrangian
describing the dynamics of the DW coordinateX, and the
integrationDX goes over all configurationsXstd satisfying

the given boundary conditions. The LagrangianLsX,Ẋd is

easily obtained, as in standard mechanics, fromL=PẊ−H:

expressP andH in terms ofẊ, using the known expressions
for P=PsVd andH=EsVd+UsXd (see Sec. III), replacingV

by Ẋ.
It is convenient to make a Wick rotationt→ it, passing to

the Euclidean space-time. Then one has the Euclidean propa-
gatoreDX expf−AE/"g, where the Euclidean action is writ-
ten as

AE =E LEsX,Vddt,

with V=dX/dt. For the LDW this gives

LE =
2"S

a
FV arcsinhS V

Vc
D + Vc − ÎVc

2 + V2G + UsXd.

s31d

Constructing the instanton solution can then be viewed as
minimization of AE with respect toXstd. The minimum of
the Euclidean action is realized on the solution of the Euler-
Lagrange equation forLE. The first integral of this equation
has the form

2"S

a
sÎVc

2 + V2 − Vcd − UsXd = C,

with C=0 on the instanton solution. Then, the expression for
AE reduces to the integral

AE =
2"S

a
E

0

a

arcsinhS V

Vc
DdX,

which has to be calculated using the connection betweenV
andX from the first integral,sVT0/Vcd2=4UsXdfT0+UsXdg.

Finally, the expression for the Euclidean action on the instan-
ton solution takes the form

AE

"
=

8SÎU0

p
E

0

p/2 cdc sinc

ÎT0 + U0 sin2 c
. s32d

For the most natural caseU0!T0 this gives the result

AE
s0d =

8"S

p
ÎU0

T0
at U0 ! T0, s33d

as usual for a Lagrangian with quadratic dependence on the
velocity. For arbitraryU0/T0 the calculations are more com-
plicated but the tendency is seen as follows:AE is smaller
than predicted by Eq.(33) for the same value ofU0/T0; see
Fig. 8. Thus, the band width for finiteU0/T0 is larger than
follows from Eq.(33).

For energy bandsDEn with 1!n!NL and U0!T0 we
can use the fact that in the regime of classical motion the
simple parabolic dispersion law is valid to calculate the tun-
neling splitting of the levels. This allows to use the standard
expression for the tunnel splitting of the levels(see Ref. 35,
problem 3 after Sec. 50) and results in

DE = s"v0/pdexpH−E
−a8

+a8
h2mfUsXd − Egj1/2dX/"J .

Herea8 is the turnover point of the classical trajectory with
energyEn (corresponding to a nonsplit level) defined by the
equationUsa8d=E. It is convenient to rewrite it using the
Euclidean action only. After some simple algebra we arrive
at the following universal formula:

DEn . "v0SAE

"
Dn+1/2

expS−
AE

"
D , s34d

whereAE is given by Eq.(32) or Eq. (33), with AE~S in
both cases. This equation shows that the energy splitting for
n.1 continues to be exponentially small inS, but with
larger preexponential factor.

The characteristic feature of the Ising model is that the
two important parametersU0 and T0 of the theory are gov-
erned by only one quantity, the dimensionless magnetic field
h; practically alwaysU0!T0 holds. However, the behavior

FIG. 8. The dependence of the Euclidean action on the value of
U0/T0 as found numerically(symbols) and from the asymptotic Eq.
(33), AE~ÎU0/T0, valid for smallU0/T0 (dotted line). The maxi-
mum value ofAE/"S=1.533 is reached atU0/T0=0.5, that is the
maximum value ofU0/T0 for the transverse field Ising model.
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of the quantum DW spectrum depends also on the value of
the atomic spinS. If U0!T0, butS2.T0/U0, top and bottom
energy bands are very narrow. The neighboring bands are
narrow also, butS timer wider, and the intermediate part of
the spectrum consists of wide bands with narrow energy
gaps.

At this point it is interesting to compare the results of the
instanton approach with data from an analysis of the model
for extremely small field, when spin zero-point fluctuations
far from a DW can be neglected and the one-site approxima-
tion can be applied.14 Figure 9 presents the numerical data
form this article for the spin valueS=5 together with the
analytical dispersion law found here.

In both approaches the widths of the energy bands with
lower energies are exponentially small in the spin magnitude
S. The one-site approximation yields an exponential factor of
the form of exps−2S ln 2d<exps−1.39Sd,14 which is quite
close to the value exps−AE/"d→exps−1.53Sd at h→0, ob-
tained in the instanton approach using improved data forT0,
U0/T0→1/2. It is interesting to note that using the data ob-
tained directly from the continuum approximation,U0/T0
=1/s2Î2d, the factor takes the form exps−1.34Sd which is
much closer to the value obtained in Ref. 14. The agreement
between the data can be considered rather good, regarding
the conceptual difference between the two approaches.

Good agreement is also found with respect to the fact that
the bandwidth increases with energy, the ratio of the widths
of neighboring energy bands is given by a factor ofS. But
the preexponential factors for these, essentially alternative,
approaches differ by a factor ofÎS. It is most likely that
taking into account fluctuations far from the DW center be-
comes essential for the determination of the preexponential
factor. It is worth noting the formal agreement that, within
the instanton approach, this factor is determined by the fluc-
tuation determinant only, again, far from the instanton center.

Again, the compliance of data of these two approaches can
be considered as satisfactory.

Unfortunately, the direct quantum mechanical approach
used in Ref. 14 can be applied for small values ofh only;
then the discreteness effects are large and the continuum ap-
proximation is not appropriate. But the discrepancies are not
too large, and even in this unfavorable situation we can claim
at least qualitative agreement. The data are fitted quantita-
tively only with use of fitted dependenceEshd (see end of
Sec. II and Fig. 6). It is worth to mention that there are at
least two reasons for discrepancies, caused by(i) nonappli-
cability of the continuum limit to the small field discrete
classical Ising model, and(ii ) the fact that the Landau-
Lifshitz equation is not adequate to describe quantum DW’s.
We believe that discreteness is the main source of the dis-
crepancy, and for models with wide enough DW’s(such as
models of ferromagnets with nearly-isotropic exchange inter-
action and weak magnetic anisotropy), the description of
quantum dynamics of DW’s based on the scheme proposed
in this paper will be at least semiquantitative.

The instanton analysis demonstrates that while the field is
increasing,AE/" very rapidly decreases; see Fig. 8. Thus the
width of the energy band grows rapidly, the gaps become
narrow and the nearly-free limit can be realized for all ener-
gies. At S=5 the value ofAE/" becomes of the order of
unity andDE0<"v0 already atU0/T0,0.008(equivalent to
the magnetic field becoming close toh,0.3). But for any
values of the parameterh, 2Senergy bands are present in the
DW spectrum.

VII. MORE GENERAL MODELS

In this section we discuss briefly the possibility to gener-
alize the model to apply our approach to other related mod-
els. As we argued above, our results, in particular, the num-
ber of energy bands, are not specific to the Ising model. It is
mostly due to the value of the periodP0, which is universal
for all models of uniaxial ferromagnets in a transverse mag-
netic field. Thus, the result that 2Senergy bands exist should
be valid for all transverse field models of ferromagnets.

The results obtained here for ferromagnets can be applied
to Ising antiferromagnets as well. The simple canonical
transformation

Sn
y,z → s− 1dnsn

y,z, Sn
x → sn

x,

results in the same commutation relations for staggered mag-

netizationsW n as for usual spinsSWn and reproduces the same

form for the Hamiltonian, Eq.(1), replacingSWn by sW n and
changing the sign ofJ. It is easy to prove, after the appro-
priate gauge transformation, that the form of the Lagrangian,
Eq. (10) is also unchanged. Thus all the results obtained here
for the DW dynamics, its dispersion law and its semiclassical
quantization are valid for Ising antiferromagnets as well. We
note that such a simple relation can be true only for models
with a Hamiltonian depending on two components of spin
only. This excludes near Heisenberg antiferromagnets. For
the near Heisenberg antiferromagnets with weak anisotropy
of any origin, exchange or single-ion, treated on the basis of

FIG. 9. The dependence of the DW energy on its momentum for
the magnetic fieldh=0.05 as obtained in the continuum approxima-
tion. The dashed line presents the result of the continuum approach;
the solid line is improved by using the fitted dependenceEshd for
small h (see Fig. 5). Symbols show the numerical data for the
dispersion law of the quantum DW(Ref. 14).
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the sigma model, the singularities in the Lagrangian for the
staggered magnetization are absent for a sufficiently general
set of models(including antiferromagnets subject to strong
external magnetic fields and in the presence of
Dzyaloshinski-Moriya interactions of arbitrary symmetry36)
and a periodic DW dispersion law is not realized.29

It is interesting to apply the approach developed here to
models with 180-degree DW’s(p kinks) in ferromagnets
with rhomic anisotropy as considered by Braun and Loss.12

In this model there are two different DW’s with lowest en-
ergy (Bloch DWs) and the correspondingSWsjd trajectories
are the halves of the large circle passing alone the different
directions through the easy axis and the axis with the inter-
mediate value of anisotropy.

It is easy to argue, that in this case the dependenceEsPd
found in the continuum approximation is again periodic, but
the period of this dependenceP0,p is determined byhalf of

the sphereSW2=S2, and it is two times smaller than that for the
transverse field model,P0,p=2p"S/a.17,23,29 The specific
model treated in Ref. 12 is exactly integrable, and the free
dispersion lawEsPd with this period can be constructed ex-
plicitly; see Refs. 2 and 3. On the other hand, for the full
classification of DW’s, i.e., to describe the presence of two
different, but energetically equivalent DW’s one can in this
situation introduce the discrete parameterchirality. Braun
and Loss have shown from a different argument that the
minima of the dispersion lawsEsPd for DW’s with different
chiralities have to be located at different points of theP axis,
with distance equal toP0,p (in our terminology). Owing to
the parabolic approximation, used in Ref. 12, the dispersion
curvesEsPd for different chiralities seem to be intersecting
in some point. But accounting for the real periodic depen-
dence forEsPd, these two minima are smoothly connected,
with the maximum at the energy of the Néel DW, and no
intersection occurs. Thus, there is no reason for the chirality
tunneling to take place in this formulation. The deep connec-
tion of chirality and linear momentum and the suppression of
quantum tunneling of chirality for free 180-degrees DWs in
ferromagnets has been discussed recently by Shibata and
Takagi.10 It is worth to note here, that also for 180-degree
DW’s in nearly Heisenberg antiferromagnets two nonequiva-
lent DW’s with equal energies are present, but the depen-
denceEsPd is not periodic. Chirality is not connected with
the value of linear momentum and the effects of quantum
tunneling of chirality are present even without the pinning
potential.8

Finally we want to discuss the perturbation of the disper-
sion law for a 180-degree DW caused by a small periodic
pinning potentialUsXd. For this case, one has to locate the
intersections of nonperturbed spectraEsPd, periodically ex-
tended with periodPB=2p" /a. The situation here is slightly
more complicated than for transverse field models: For small
spins S=1/2 and S=1 one hasP0,pø PB, intersections
are absent and no gaps are present(this is the same situation
as for the transverse field model with spinS=1/2). For inte-
ger spinsS=k, k.1 intersections occur and energy gaps ap-
pear at the intersection points. However, all these gaps are
located on the boundaries of the Brillouin zone. Then, the
number of energy bands is equal toS. But for sufficiently

large half-integer spinsS=s2k+1d /2, kù1, one hasP0,p

=PBs2n+1d /2, and some intersections are inside the Bril-
louin zone atP=s2n+1dp" /2a, with integern. This leads to
the appearance of some additional gaps, which could be as-
sociated with the tunneling of chirality. In this case the num-
ber of gaps increases and for half-integer spinS the number
of energy bands in the dispersion relation for 180-degree
DW’s is equal to 2S.

VIII. CONCLUSIONS

In this article we have developed a new approach to the
semiclassical dynamics of kink-type solitons or DW’s in spin
chains. Explicit results have been obtained for the transverse
field Ising model, but the approach can be easily applied to
more general models. The essential steps of our approach are
the following ones:(i) Investigate the pinning potentialUsXd
for DW’s in the discrete classical model, then establishEsPd,
the dependence of the kink energy on its momentum(disper-
sion relation) for the classical continuum model, and analyze
the nonlinear DW dynamics of the basis of the classical
Hamilton functionHsP,Xd=UsXd+EsPd. (ii ) Use the Bohr-
Sommerfeld quantization on the phase planesP,Xd and ap-
ply the instanton analysis for the tunneling between DW
states localized on different lattice sites in the classical ap-
proximation.(iii ) Find the width of the energy bands and the
energy gaps using the instanton approach or the nearly-free
limit. Finally, (iv) find the quantum dispersion relation for
the DW for all possible values of its momentum.

We have carried through this approach step by step for the
transverse field Ising model, providing, to the best of our
knowledge, the first complete investigation of this model,
including the analysis of moving domain walls and of the
dependenciesUsXd andEsPd. For other models some of the
intermediate steps can be found in the literature and could be
used as input for analogous calculations: the dispersion rela-
tion for the 180-degree DW, e.g., has been given decades ago
(for reviews, see Refs. 3 and 31).

As an interesting new result in classical DW dynamics we
found the existence of a new class of classical solutions lo-
calized near the maximum of the pinning potential. For large
enough pinning potential,U0.T0, classical states exist
which have finite range in the coordinate, and an infinite
range for the momentum. Evidently such trajectories do not
exist for standard mechanical systems with a parabolic dis-
persion lawH=P2/2M +UsXd, but they are typical for DW’s
with a periodic dependence inEsPd. As we have shown here,
the presence of such states is of crucial importance for the
quantum features of the DW dynamics. Because of this,
within the semiclassical Bohr-Sommerfeld approximation,
the number of quantized states of DW motion per unit cell is
determined by the value of spinS and by the type of domain
wall and does not depend on the ratio of the parametersU0
andT0. The full analysis leads to the universal result, that the
DW dispersion law has the form of a finite number of non-
intersecting energy bands with finite gaps between them. The
number of bands is, for a given class of DW, determined by
the value of spinS only and is a universal characteristic of
this domain wall.
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