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Semiclassical dynamics of domain walls in the one-dimensional Ising ferromagnet
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We investigate analytically and numerically the dynamics of domain walls in a spin chain with ferromag-
netic Ising interaction and subject to an external magnetic field perpendicular to the easy magnetization axis
(transverse field Ising modelThe analytical results obtained within the continuum approximation and numeri-
cal simulations performed for the discrete classical model are used to analyze the quantum properties of
domain walls using the semiclassical approximation. We show that the domain wall spectrum shows a band
structure consisting of 2nonintersecting zones.
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[. INTRODUCTION XYZ model with spinS=1/2 is exactly integrable, and the
quantum nonlinear excitationspin complexesare known
Nonlinear topologically nontrivial excitations, or solitons, from the solution of this modél.
are known to exist in lower-dimensional magnetic systems. At first sight quantum and classical solitons constitute es-
There is both theoretical and experimental evidence of solisentially different objects. The main property of classical
tons and in some cases soliton effects dominate the thermesolitons (or more precisely: solitary wavess localization,
dynamic behavior of one-dimensionélD) magnets(spin ~ while a quantum soliton is characterized by a definite value
chaing. Soliton effects possibly emerged first when absencef the quasimomentur® and in virtue of this it is spatially
of long range order in lower-dimensional magnets wasdelocalized. However, this contradiction is removed if one
proved: From simple entropy arguments it has been showimvestigates the spin deviation localization in the coordinate
that long range magnetic order is not possible in onesystem with the origin moving with the group velocity of the
dimensional magnets at nonzero temperature and it becanseliton® The comparison of classical and quantum solitons
clear later that kink-type solitons, which in fact are magneticreveals a striking feature of th€YZ model: the dispersion
domain walls(DW), must be considered as elementary exci-law (the dependence of ener§yon the momentuni) of a
tations at nonzero temperature in one-dimensional magnetspin complex in this model with spi§=1/2 exactly coin-
for reviews see Refs. 1 and 2. Whereas solitons in oneeides with the corresponding dependence found for the soli-
dimensional magnets have not been directly observed, dyton in the classical Landau-Lifshitz equations. It is evident
namic soliton effects such as soliton motion and the solitonthat such an exact correspondence cannot be a general rule;
magnon interaction result in soliton contributions to theprobably it is associated with the exact integrability of both
dynamic response functions, which can be studied experimodels. On the other hand, it has become clear that if one
mentally. For example, solitons contribute to the specific heatompares the characteristics which are relevant for both
and to the linewidth of electron spin resonance and the transtuantum and classical approaches, first of all the dispersion
lational motion of kinks leads to the so-called soliton centrallaw E=E(P), then there are no fundamental distinctions be-
peak, which can be detected through neutron scatteringpveen quantum and classical solitons. Renewed interest in
experiments:? the problem of quantum properties of domain walls was
In most approaches solitons have been considered usirggimulated due to the study of quantum tunneling DW chiral-
classical continuum models, such as the Landau-Lifshitity effects®-12 and also by the prediction of new effects of
equations or the sine Gordon equation, see Refs. 1-3. On thikestructive interference in kink tunneling between neighbor-
other hand, in order to describe a material such as CsCoCing crystal lattice sitdé and Bloch oscillations of the
the XXZ model with spinS=1/2 has to baised, and solitons solitons*®
occur as quantum objectS.Even for the material CsNiF The structure and the properties of solitons in the one-
the well-known standard example for classical solitons in 1Ddimensional Ising model in the presence of a transverse mag-
magnets, quantum effects due to its sBinl are essentidl. netic field have been studied some time &Yt has been
Although a detailed analysis concentrated on classical modiemonstrated in the semiclassical limit of large spin values
els, considerable achievements in the field of quantum soliS>1 how classical localization correlates with quantum de-
tons were obtained rather early: We note, first of all, that thdocalization. Within the framework of the quantum approach
first nonlinear excitationéspin complexeswere investigated the emergence of a band structure has been revealed. How-
by Bethe in the isotropic one-dimensional ferromagnet agver, the quantum kink dispersion law found in this work has
long ago as 1931, essentially in parallel with the predictionnot been compared with the classical one. In Ref. 14 only
of magnong.Currently it is established that the more generalstatic solutions of the classical problem have been used, and
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the comparison of the quantum kink dispersion law withdirected perpendicularly to the easy axis of a magnet. Spins
those obtained within the semiclassical quantization mode§ are |ocated at pointsa of a chain(distancea, n integes,
has not been made.

In this article we investigate analytically and numerically N _
the dynamics of domain walls in a spin chain with ferromag- H J% S g“BHg S @
netic Ising interaction and subject to a magnetic field perpen-
dicular to the easy magnetization axigansverse field Ising J is the exchange integrag, the gyromagnetic ratio andg
mode). Analytical results obtained within the continuum ap- the Bohr magneton. The dimensionless fibkdgugH/2JS
proximation and numerical simulations performed for thewill be used in the followingthe notation A=y was used in
discrete classical model are used for the analysis of the semRef. 14 This model is usually called transverse field Ising
classical dynamics of domain walls including an account ofmodel.
the lattice pinning potential. We show that the spectrum of For classical spins the ground state of the modéi <atl
the DW in the classical continuum approximation is charac{gugH < 2J9 is doubly degenerated with
terized by a periodic dependence of the kink energy on its
momentum. This produces a number of nontrivial features S, =Ssinfy, S,= +Scosk,, sin 6= h. (2
for the DW motion m_the presence o_f the pinning potential We begin to describe the semiclassical motion of the DW
The quantum properties of the domain wall are discussed on

the basis of the semiclassical approximation. For the semiWIthln the discrete spin model by studying the solutions for

; . . L . moving DW's in the discrete classical model. We notice that
classical dynamics the role of lattice pinning effects in the

! X the exchange part for the model of EQ) is the simplest
formation of the band structure of the domain wall spectrum articular case of the so-calledy Z model with three inde-

is investigated. The presence of the periodic character of the
DW dispersion law with lattice pinning taken into account pendent parameteds # J, # J;
results in a band structure f&(P) with 2S nonintersecting

branches. |:|XYZ= =2 (1S S1 + 1S Sr + 1S Shn) -

The outline of this article is as follows. In Sec. Il we  For an isotropic FM we havé =J,=J; and DW's strictly
formulate the discrete classical model and Study the DV\ére abserl‘d'm)wever7 “pu|5e solitons” may exjggor theXXZ
properties within this model. The main results of this sectior}node|(31:32<33) in the absence of the magnetic field the
are the introduction of the DW coordinaté, and the calcu-  exact static solution for the discrete model with classical
lation of the pinning potential for the DVW(X). This is then  gpins has been constructed by Gockes far as we know
used for the analysis of both the classical dynamics of thenis discrete problem has not yet been solvedet 0 or for
DW and its semiclassical quantization. In Sec. Il thethe more general classicXlYZ model even forH=0. The
complementary continuum approach is used to investigatgolution found by Gochev for thé&XXZ model readss;
the motion of the DW with finite velocity. The DW linear =Stanf x(n—ny)], with K=In[(J3+\"J§—J§)/J1], where 1k
momentumP and the dispersion law of the DVE=E(P),  measures the domain wall thickness. In the Ising limit the
are calculated, and(P) is found to be a periodic function of p thickness goes to zero, &+ 0 atJ, — 0. We emphasize
the momentum. The results fol(X) andE(P) are employed  that the value of which describes the DW position in this
in the next two sections to describe the dynamics of the DWso|ution (taken asn=n, above is an arbitrary(not necessar-
in the framework of the method of collective variables, as-jly integer number. Thus the model witH=0 has the non-
suming that the DW I.S an ef‘fectlve_quasmartlcle with klnetICtrivia| property that the energy of the DW does not depend
energyE(P), moving in the potentiall(X): In Sec. IV the  on its center position for arbitrarily large anisotropy. It is not
specifics of forced DW motion as well as the detailed fea<lear, whether this property is valid for the same Hamiltonian
tures of the band spectrum of the DW in the case of the wealq the quantum case.
potentialU(X) are discussed. The peculiarities of the dynam-  For the Ising model we easily understand the above result
ics of the DW in a finite potential associated with the peri-since atH=0 the DW is described by the following solution:
odic character oE(P) are considered in Sec. V. Here it be- S=-Satn<ng, S=+Satn>ny, howeverS atn=n, may
comes clear that finite motion is typical for states which arehave arbitrary values. I§ =0 the DW is localized on the
either close to the minimum or close to the maximum of thespin with n=n,; on the otﬁ)er hand, fo =-S or §i= +S at
potentialU(X). In Sec. VI we consider the quantum tunnel- n=n, the DW localized in the center of the bond which con-
ing transitions between these states, corresponding to an aflects the spin ah=n, with spins atn=n,+1 or n=ny—1,
jacent unit cell. In this section the general character of theorrespondingly. FoH=0 the energies of DW's centered on
DW dispersion law including the effects of lattice pinning is the spin[central spinCS) DW] or on the bondcentral bond
discussed. In Sec. VII we discuss the generalization of oufcB) DW] coincide. For all intermediate casgs+0, +1 at
approach to more general models of spin chains and Seg=n, it is natural to postulate that the DW is localized on a
VIl gives our concluding remarks. point X, which does not coincide with a site or the bond

Il THE DISCRETE MODEL AND A DOMAIN center and to describe the DW dyngmlcs in terms of its co-
WALL STRUCTURE _ordmateX trgated as a collective variable. I__et us mtrod&(cg
o - _ ~ in the following way: we choose some lattice site and define

We start from the Hamiltonian describing a spin (ihalnthe DW located on this site to have the coordindte0. Let

with Ising-type exchange interaction in a magnetic field us then find the projection (()?) of the total spinS, of the
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DW localized on that site. It is then natural to determine the

coordinate of any DW via the value of the totaprojection 0.03. FesFes

of the spin%g, associated with this DW from the expression —e—Ising
X=a(S,—-S,,)/2S In order to account appropriately for .05 —o— Single-ion,1/20
possible divergencies in infinite chains the difference

S~ S9 s calculated aZ"=", [ F(X) - SH(X=0)] [hereS(X) 0.014

and §(X=0) are thez projection of spins on site for the

DW with the coordinateX and the DW withX=0 respec- 0:00 e
tively]. Then, for the DW in the model of Eql) with oot ' , ...... ’ ’

H # 0 the complete definition reads

2> [§0)-s(x=0)]. 3

X=—
25C0S6y =0
CB

For zero field the DW energ¥ does not depend on the
coordinateX. At H # 0, as shown in Ref. 14, a dependence of
the DW energy on its coordinate emerges, pointing to the FIG. 1. The difference of the energiéis units of J) for CB
presence of a lattice pinning potentidkU(X). The pinning and CS domain wallgshown schematically at the bottom of the
potentialU(X) has its minimum value foX=na, i.e., for the ~ figure) vs mqgnetip field: The correspon_ding depenc_ience fo_r the
CS DW, and its maximum value foX=(a/2)(2n+1), i.e., model Wlth. single-ion gnlsotropy, normalized by 20, is also given
for the CB DW2 In order to investigate the nonstationary 1" comparisonopen circles

dynamics of the DW we will tredt)(X) as a potential energy. . _

The analysis of the related kinetic energy will be discussed ifvas independent of the chain length fo& 30. The value of

the next section. Uy in Eq. (4) was determined from the differen&gs—Ecg;
When the DW is moving in a discrete chain it is natural tothe behavior of this quantity is shown in Fig. 1.
use the periodic potenti&l(X), U(X+a)=U(X). The form of The analysis shown in Fig. 2 demonstrates that in the case
the potential can be chosen as in Ref. 12, of interest to ush<1, U(X) is fairly well described by Eq.
(4). If we consider a more general dependence, allowing for
U(x) = Ug sir?(wX/a), (4) one more Fourier component,
where Uy characterizes the intensity of pinning caused by U(x) = Ug siré(wX/a) + U, sirf(2mX/a), (5)

discreteness. With the choice of Eg) for the potential, the
value of U, can be found as the energy difference betweerihe dependence dfi(X) is reproduced with a deviation of
the static central spin and central bond D\W*dn order to  less than 0.1%. However, as the correction relatetd as
calculateEcg and E-g we need in the solution of the corre- small, we will use in the following mainly the simplest ex-
sponding classical discrete problem, which is known forpression, Eq(4).
small magnetic field only# Moreover, for our purpose we  Note, asUy,—0 for h—0, and forh—1 the transverse
need to know not only the energy differenEgs—Ecg, but  field Ising model is characterized by a rather small pinning
the full dependence(X) in order to verify the dependence potential. For comparison, in Fig. 1 the corresponding depen-
of Eq. (4). dence is presented for a ferromagnet with an isotropic
To revealU(X) we have carried out a numerical analysis Heisenberg interaction and a single ion anisotropy of
of the model of Eq(1) in accordance with the definition Eq. the formW,=-2K(S)? which has the same amplitude as
(3) for the coordinateX. We have searched the conditional
minimum of the energy as given by E() for a finite spin U
chain at a fixed value of,. To solve this problem, the
simplex type method with nonlinear constraints was chosen / 0021
as the method of minimization. This method is based on the \ K A ‘
steepest descent routine applied to functions of a large num- . ; 3 /
ber of variables, and it is able to find the conditional mini- p0.01{ \ ]
mum for a given function with fixing a small number of 1 ; . ;
combinations to given values. The method exhibits a fast v ‘
convergence when a spin distribution with only one domain
wall placed near the point of inflection is used as starting
condition. For our problem, the angular coordinates of each G 2. shape of the domain wall pinning potentifX) (in

spin were chosen as variables, and the minimum of the enmits ofJ<) for the dimensionless magnetic fiehie:0.05. Symbols
ergy was found with fixing the value &,. The DW was denote the numerical data. The empirical dependence
created by fixing the direction of two spins on the ends of the.024 sif(wx/2a), and a fit for a more general dependence with
chain corresponding to E@2). The chain lengtiN varied  U,=0.024, U;=-0.00255 are shown as dashed and full lines,
from 20 to 100, and for the case of interdst=JS the result  respectively.

1 0 1 2 Xla
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Eq. (4) at K=J. For this modelJ, has a maximum ati=0; in all these models: The dispersion relation, energy vs veloc-
the typical values ofJ, are approximately 20 times higher ity, has two branches and one distinguishes between the
than for the transverse field Ising model. Furthermore, théower energy domain wallLDW) and the upper energy do-
quantity Uy has opposite sign, i.e., in contrast to the trans-main wall (UDW). The energies of these two solutions

verse field Ising model one h&&g<Ecs merge at the maximum possible velocity V.. A more natu-
ral formulation results when the momentum is introduced
I1l. DOMAIN WALL DYNAMICS IN CONTINUUM instead of the velocity: then the dispersion relation becomes
APPROXIMATION single valued and periodic with the magnetic unit é2lln

) _ particular the dispersion relations can be given explicitly for
Most of the results for the dynamlcs of domain walls ol the He|senberg chain with two s|ng|e ion amsotroﬁk@
kink-type solitons in magnets have been obtained in the con- Equations(6) and (8) are usually considered as purely
tinuum approach repIacw@(t) by the smooth variable spin classical equations. To discuss their applicability to the quan-
density S(x,t), wherex is the coordinate along the chain. UM regime one may use the quantum-field approach based

ithin thi h th . f th (& on the spin coherent states formalihiThen the quantum
Within this approach the dynamics of the vector fiéla,t)  hase(Berry phasg appears, leading to qualitative effects

is described by :ge well known Landau-Lifshitz equationgych as the suppression of quantum fluctuations for antifer-
without dissipatioft” (see also Refs. 2 and 3 romagnetic chairf8 and small magnetic particles with half-
P SWIS odd-integer total spif® In this approach the spin state on
- = 2<§x E }) (6) every siten is determined by the spin coherent stai®, for
oS

which §rﬁ>:sﬁ1rﬁ>. Here m, as before, is a unit vector,

- . ) ) m?=1. In this approach, the dynamics of the mean value of
Here W{S(x,t)} is the ferromagnetic energy as functional of inS=Sis described by a Laaranaian which can be writ-
the spin density. For our model, the transverse field IsinqSpl —=>ml : y grangian whi wii

) - S en in the form
chain, W{S(x,t)} corresponds to the Hamiltonian of E{.)

e R dx o )
and is written a¥ 1S = hSJ EXAS—W{S}, ©
dx s,
WS} = f { (5) -J§- gMBH&}. D where
Using the continuum approach allows us to find a solu- .. AXS

tion, which describes a DW moving with a given velocity AS=——"". (10)

On the other hand, the discreteness effects are evidently lost S&+9

going from Eq.(1) to Eq. (7). fi is a unit vector with arbitrary direction, denoting the quan-

We use the relatiof?=S’=const to writeS=Si(x,1), i.e.,  tization axis for coherent states. It is important tAdtas the
to express the spin through the unit vector figdk,t). ItS  form of the vector potential of a magnetic monopole field in

direction is determined_ by two independent variables, We&he full space{é} (not subject to the constraiézzcons).
will use the angular variables and ¢, The vector potential has a singularitirac string for

m, = cos#, M, =sinf cose, m,=singsin¢. $i=-S, i.e., on a half-line in spacEs}. Usually, the “north

In terms of these variables the Landau-Lifshitz E).reads pole” gauge withn=g, is used, then the quantité?(é)é ac-
quires the familiar form

hS a0 oW
—sinf—=—, -
a e AS= (1 - cosf)(dgldt). (12)
%S I SW In the saddle point approximation for the Lagrangians Eq.
— sin QE =- 50" (8)  (9) or (11) one recovers the classical Landau-Lifshitz equa-

t|ons in the form of Eq(6) or (8) for the mean value of spin

whereW{#, ¢} is the ferromagnetic energy written as a func- S The potentlaA of the monopole field permits gauge trans-
tional of # and ¢. These equations can be considered asormations(in particular, the change of the direction of the
classical Hamiltonian equations for the canonically conju-spin quantization axig and, hence, the positions of singu-
gate variables co8 (momentum and ¢ (coordinate, with larities). These do not change the equations of motion, but
Hamilton functionW. make a contribution to the Lagrangian in the form of a total
Kink solitons in such a continuum approach have beertime derivative of some function of spin. This may in prin-
described for a number of magnetic chain models. Theseiple be significant for the calculation of the DW momentum.
include the Heisenberg chain with two single ion Naturally, the classical equations are not affected by the
anisotropied/ 19 the Ising chain with transverse exchangegauge transform. On the other hand, the term wighdt in
breaking thexy symmetry° and thexy-like Heisenberg chain  Eq. (11) is of crucial importance for the quantum dynamics
with an external symmetry breaking fielti??The qualitative  of domain walls in spin chains with half-odd integer spi@s.
results for kink solitons with permanent shape are analogouSor example, this term is responsible for the destructive in-
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E P

terference of paths for DW tunneling from one minimum of 6
the crystal potential to an adjacent ore.

In order to construct a solution corresponding to a DW
moving with velocityV, we have to write down the Landau- 4
Lifshitz equations in angular variables, and to restrict our- 3
selves to traveling wave-type solution®s 6(¢), ¢=¢(§), &
=x-Vt, with the natural boundary condition8{— Ssin 6, at
&— +oo, and

-~ EV)
— AV

-
-

0.0 0.2 0.4 06
& — 0Scosb, §— - Scosh, Vivy
FIG. 3. The dependence of the DW enefgyunits JS) and its

at © or -, respectively. Herer=+1 is m, the to- N X :
¢ & P Y 7o momentum(in units#S/a) on its velocity for the value oh=0.5.

pological charge of the DW and c@g characterizes the
ground state, see E(R). Then, using Eq(7), the equations
for 90/9t=-V6' acquire the simple formy 6’ =-2hsin¢.
Here and below the prime denotes differentiation with re-
spect to&, and we have introduced the dimensionless vari-

able As for v=0'and in related modelsee abovethere are two
types of DW's, with different energies. Far=0, the DW
v =VIVy, Vo=2al3% with lower energy(LDW) in its center has the direction of

. . . . . spin §(O) parallel to the magnetic fieldﬁ, whereas for the
and puta=1 in all intermediate equations. We will restore e . _ -
the dimensional parameters in final results only. DW with higher energy(UDW) S(0) is antiparallel toH.

_ The set of Eqs8) Wi_th the traveli_ng wave ansatz has one This applies similarly for moving DW's, howeve§0) and
integral of motion, which after taking boundary conditions | 516 not exactly parallel respectively antiparallel ¥o¢ 0.

into account can be written as As for v=0, the solution for the upper DW has a discon-
tinuity in the space derivative’. At the critical velocityv
=v. LDW and UDW become identical and the solutié(€)
can be given in explicit form:

sinl(y - a)/2]

V20,(€- &) = ¢+ tanaln cod(y+ a)2] |’

(16)

1
=[(cos#)’]? - sirf 6+ 2h sin 6 cose = h? = const.
2

(12

Using the simple relation betweeh and sing, this can
be rewritten in the variabl® only. Finally we arrive at the
simple differential equation fo#,

c0s = o cosb, sin( V2¢/a) at |g < aml242

and

(00S6)’ = N2 ST =02 + o 2P =02, 13) cosf= o coshy(&|é) otherwise.

o1 ,=%1 are two independent discrete parameters whicht has a discontinuity in the second space derivatives.
determine the topological charge of the kink as In order to find energy and momentum, the DW param-
mo-topological soliton and the spin direction in the kink cen- eters of interest, we do not need the solution for LDW and
ter, £=0, with respect to the magnetic field. Thas, fixes ~ UDW in explicit form. It is easy to use Eq13) and to pass
the type of the DW(i.e., DW with lower energy and DW from the integrals ovet to the integration ovep. Then an
with upper energy; see next paragraph elementary calculation of the kink energies gives

Equation (13) determines, in particular, the maximum

possible value of the velocity of the D\ kink), the critical = v? ) 1-h?
velocity v Eower=JSV2| | 1 - Jaresiny| T
b= V2h. (14) - JISV(1 -hd)(2n? - v?), (17)

Equation(13) can be integrated in terms of elementary
functions, generalizing the solution for=0 as given > v?
before!4?” The analysis shows that the equation has both Eupper= Eiower + 43S (2 —v?) T 2) (18
LDW and UDW solutions as described above. bet 0 the ¢

solutions are obtained by substituting for the lower and upper DWs respectively. Thus the depen-

> denceE(v) consists of two brancheg,qyer andE,ppe, Which
U~V (15) merge atv=v,, and the full dependencé=E(v) is a con-
-v?’ tinuous double-valued function; see Fig. 3. For the most in-
teresting case of small magnetic fielthsg 1, orv<v.<v,
and can be given in the implicit form it is given by the unified equation

cosf=cosyn1 —v?/2, sina= o,
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= . _ v? point of the magnetic field vectd. Obviously, the differ-
— ./ SZ / 2
E(V) =v2JS] arcsiél -h” = 2h /1 - 2 (19 ence of the moment for the immobile LDW and UDW is

¢ determined by the area of the half-sphex®=2=#S/a. All
where the sign= corresponds to the lower and upper the remaining trajectories that correspond to moving kinks
branches oE=E(P), respectively. cover the regions between these trajectories. In particular,

In the three-dimensional ferromagnet the UDW is un-kinks at the critical velocities o, correspond to two non-
stable. However, this instability develops as an inhomogeplanar trajectories. The= *uv, trajectoriesv can be reached
neous perturbatior(in the plane of the DW and is not by proceeding from either type of=0 domain walls, LDW
present for DW’s in one-dimensional magnets. Below weor UDW. Thus, we can see th&(v) has two branches, one
will show that for the more natural representation of the DWcharacterized by a higher energy and the other characterized
energy, namely as a function of its momentum, the functiorby a lower energy. These two branches merge at the critical
E(P) is single-valued, and the upper branch just correspondsgelocity v=v.. If we assumeP=0 for thev=0 LDW, then
to the larger values of momentum. This explains its stabilitythe momentum grows up t®@=+P; P.<2#7AS/a as the

in the one-dimensional case. absolute value of the kink velocity increasesuo As we
The kink momentum is determined as the total field mo-proceed further along the upper branch of the dependence
mentum of the magnetization fiefd,.e., E(V), the kink velocity decreases, while the momentum in-
creases further toP=+27AS/a when the velocity ap-
oL - 1. - proaches again zero. When we continue, we begin to cover
P——Jdg—;s __f ;Ads (20 the area of the sphere once more and the momerfum

S grows, while the kink energy takes the same values as be-

fore: thus we do indeed arrive at a periodic dependé&iiée

The Qynammal part of the Lagrangian in H) an_d_ the with period Py determined by the total area of the sphere.
expression(20) for the momentum display singularities as- .

) . . ) - The value ofP, depends only on the spin vali&and the
sociated with the singular behavior of the vector poteriial |atiice spacing,
The vector potential for a monopole inevitably has a singu-
larity on a line(Dirac string and moreover is not invariant
with respect to gauge transformations. The kink momentum p. = 4mhS (21)
also seems not to be invariant under these gauge transforma- 0 a
tions. If one uses a Lagrangian written in angular variables,

problems due to the nondifferentiability of the azimuthal o presence of two planar solutionsith ¢=cons} de-
alng"?‘P at the pfomta@d; andesz appear(This problem ';5 scribing the DW's withv =0 and different energies is a com-
also important for the theory of moving two-dimensional t0- o feature for any model with uniaxial anisotropy subject

pological solitons, see Ref. 28t is important, however, that , 5 transverse magnetic field. As we know, for Heisenberg

the difference of the momenta for two different states of theyy change interaction and single-ion anisotropy, only numeri-
DW is a gauge-invariant quantify. To show this, let us

Bl cal solutions describing mobile DW’s can be foufidBut
imagine the DW as a trajectory in spin spd@&, S=S(§).  even in this case the periodicity continues to be the same. On
The trajectories emerging from one point, saﬁ the other hand, for the Ising model considered here, the exact
=9(8,sin 6,-6,c0s6;) and ending at another poiné sqlgtlon is known, and the momentum can be calculated ex-
=S(&, sin f,+6,cosf,) can be associated with DW's that plicitly. As a result the momentum for LDW and UDW takes

move with different velocities but obey identical boundarythe following form:
conditions at infinity. In this case, the kink momenta are

determined by integrals of the fory‘b&déalong these trajec- P - 2hS v [ 1-h?

tories. It is clear that the difference of the momenta is deter- lower™ o arcsi ve V1-0v22

mined by the integrafAdS along a closed contour. Accord- S B 112

ing to Stokes integral theorem, the integral in question can be _ by resim | ———— 29
a 1=v22’ (22)

represented as the flux of the vec®rcurlA through the

surface bounded by this contoyiBd(). Here the integral is

taken over that region on a sphere which is bounded by the 44S 5 5
trajectoIies cqrrefpgnding to the two kinks in question. The Pupper= Plower+ —— 1 /1- v arcsim /1 _v_z_ (23)
vector B=curlA=S/|S? involves no singularities. Returning a 2 e

to angular variables, this difference can be written as

(hSla)-[ sinfdfde, that is just the area on the sphere. These equations together with E¢s7) and(18) give us the
Thus, the dependend4P) or E(P) has been reconstructed, dispersion law for the DW in implicit form as shown in Fig.
apart from the arbitrariness to choose the reference point fot.

the momenta. For the mostly interesting case of small magnetic fields

The trajectories describing=0 kinks appear to belong to h<1, orv <v.<vg the dependenc(v) can be given as the
the large circle passing through the potes0,7 and the end  unified expression
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Eq(h)

2
E(P)IJS

1.5

1.04

0.5

0.0 T T T i
0.0 0.2 0.4 0.6 0.8 1.0 h

FIG. 5. The dependence of the DW energy with zero velqaity
unitsJS) on the dimensionless magnetic figlpgsymbols depict the
numerical data for the discrete model; the solid line is the theoret-
ical result in the continuum approximation Eg5); the approxima-
tion of numerical data by the linear functioB=2(1-h)JS is
shown as a dashed line.

|
0 T T T T
ool 02 04 06 08 10 analytical expressions fdf.g and Ecg [see Egs. 11 and 12
Iin Ref. 14. As we will see below, the ratio ofJy to the

FIG. 4. The dependence of the DW energy on its momentum for . . g -
different values of the magnetic fieldjiven next to the curvgs ~ difierence of the DW energies witlP=0 and P=P/2,

arrows indicate the position of the momentum corresponding to '[h(::'_Oz‘]SZhB is an_ important parameter for the descriptipn of
critical velocity v, the DW dynamics. Whereas the dependencé&Jgfon h is

nonlinear at small values ¢f because of the presence of the
: nonanalytical term proportional o3, the DW “kinetic en-
=£S<z+arcsin ll_U_) (24) ergy” Ty, is linear inh; see Sec. V below. The maximum
a\2~ § ’ value ofUy/Ty=1/2 isrealized in the limith— 0, but in fact
this important ratio decreases fast to rather small values
whenh grows(see Fig. 6.
In the limit of small values of momentun?—0, the

parabolic approximation can be used and the energy takes

— | 2P the formE=P?/2M, where the effective mass of a kink is
E(P) =12S 5 2hco N (25)

0

I, u

where = correspond to UDW and LDW, respectively. Fi-
nally, limiting ourselves to the cage<1, the dispersion law
for both DW's takes the form

_ 4\e’§ﬁz
This equation will be used in the remaining part of the T a?hd e
paper to describe the classical dynamics of domain walls and
to perform their semiclassical quantization. It is based on thét is seen from Eq(26) that the effective mass turns to in-
continuum approximation and this is the only conceivablefinity at h—0. This is one more manifestation that in a
approach to analytically describe moving DW's; however’purew uniaxial model of a ferromagnet in the absence of a
the validity of the continuum approximation has to be justi-transverse magnetic field domain wall motion is
fied before doing so since it seems to be non-adequate for tH@Possible?® The use of the parabolic approximati¢26)
Ising model ferromagnet. This applies in particular to theseems to be adequate for DW's moving with small velocities.
limit h<1, when the DW thickness becomes comparable offowever, some important features are lost in this approxima-
even less than the lattice spaciagTo check the applicabil- tion: For example, the correct value of the energy bands
ity of the continuum approximation we present in Fig. 5 a

(26)

comparison of the DW energies as obtained from the numeri- 054 U, /T,

cal approach to those obtained from E85) at P=0. The

discrepancy is seen to be of the order of 10%Hes 0 and 0.4+ —o— U,/2HS
thus surprisingly small. In addition, the linear dependence of 03l% | 0.5 -1.5(h/2)"3
the DW energy on the magnetic field(H)=JS(A+hB) is

valid for both approaches, with valués~2.0 andB~=~2.0 021
for the numerical data and=m/y2~2.2 andB=2y2~2.8
from Eq. (25). As we will see below, the use of the depen-
denceE(P)=JS[A-hBcog27P/Py)], with “improved” co- 0.0 , , , : ,
efficients A and B, gives much better agreement with the 000 002 004 006 008 010k
numerical data for the dispersion law of quantum solitths.  FiG. 6. The ratio of the maximum value of the pinning potential
One more important parameter, the maximum value ofo the quantityT, characterizing the dispersion of the DW. Fiy;
the pinning potentialU, was treated numerically for the “improved” value of the coefficiel8=2 is used. Also shown as
arbitrary values ofh. For extremely small values off, a dotted line is the limit of this quantity for extremely small values
Ug=Ecg—Ecs=2JSh[1-3(h/2)'®] was obtained from the of the magnetic field§Ref. 14, Uy/To=0.1-3(h/2)*3].
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forming the DW spectrum should be found within the analy- 7Ty . (2m7P
sis of the full periodic dependenégP). V= a sin B )
We note that for smallh the value of the effective 0 0

mass for the upper DW branch, defined ,e(P)  |nverting this equation we recover the expression for the mo-

=E(Po/2)-(P-Pg)?/2M,, agrees withM from Eq. (26).  mentum(24) for small magnetic field.

However,M and M, are substantially different at finite; The dynamical equation for the Hamiltonian reads

see Fig. 4 above. dP/dt=-gH/3X. Choosing different forms of the potential
To conclude this section, we emphasize that within they=U(X) one can consider different problems such as the

macroscopic classical approach the dispersion (2% ex-  interaction between a DW and the inhomogeneities in the

hibits a periodic dependence &P) which, from Bloch’s  medium or with external magnetic field, directed along the
theorem, is characteristic for discrete quantum modelseasy axis. In the last case we have
Moreover, the maximum value of momentuRy=4#%S/a,

(28)

which may be called the size of magnetic Brillouin zone, and X) = - 2 P = 20uH 2
the size on the crystalline Brillouin zoneg=2x7%/a have UR) QupSHX/a, GueH,Sa. (29
values of the same order &~ 1. The expression foP, Therefore the DW velocity under the action cbnstant

contains Planck’s constarit and the lattice constarst and  magnetic field constant forcgoscillates with time. Note that
formally seems to characterize both the quantum nature arfdr a DW in the uniaxial ferromagnet this equation is nothing
the discreteness of the model. As discussed above, this is nbut the one-dimensional version of familiar Slonczewsky
the case: if one accounts for tmeacroscopic(continuoug  equations! It describes the nontrivial properties of DW dy-
character of the magnetizatidvi,=gugS/a (otherwise the namics, such as the oscillating motion of DW’s as response
discussion of ferromagnetism is meaning)es’, can be to a constant external force. These effects were observed in a
written using onlyM, and the classical gyromagnetic ratio number of experiments on DW dynamics in bubble materi-
y=el2mc¢, Py=47My/gy. als; see Ref. 31. Formally, such a motion corresponds to the
Bloch oscillations well known for quantum mechanical elec-
tron in an ideal crystal lattice. Bloch oscillations for solitons
IV. FORCED MOTION AND DISPERSION RELATION in different media were recently reviewed by Kosevigh.
OF DOMAIN WALLS Also, such effects for DW’s in spin chains wi=1/2 have
heen discussed from the viewpoint of Bloch particles
recently’® However, it is important to note that for DW'’s in
a continuum model the origin of the effects is different in

the magnetic Brillouin zone, Pp/2< P < Po/2. On the other rinciple: It is not associated with discreteness and it exists
hand, as with Bloch electrons, in order to analyze the motior pie: : - : :
even in the continuum limit. Thus, even in the classical con-

under the influence of an external force, it is useful to con—tinuum model the dvnamics of a DW exhibits a number of
sider that the DW momentum obeys the equatd®/dt y

=F,, WhereF, is external force, and to allow th&increases properties peculiar to B.IOCh part_icle_(salectron_$, .e., to
without limits beyond the first Brillouin zone. The expres- quantum objects moving in the periodic potential of the crys-

sion for the DW energ¥(P) can be used to describe the DW tal lattice. On th? o_ther h_anq, the_ume dependence of this
. : J . forced DW velocity is oscillating with the classical Larmor
dynamics in the spin chain in terms of the DW coordindte

considered as a collective variable. Its dynamics is governeﬁﬁguencmL:ngz' Combining Eqs(28) and(29) one can
by the Hamiltonian

The periodic dependence discussed in the preceding se
tion means that one can restrict the values of momerRum

= V(t) = VmaXSin QLt, Vmax: ’7TTO/P0
ko

P, ) +U(X), (27)

P,X) = Eg(h) + T Sir? . L N
H(P,X) =Bo(h) +To s ( Thus the quantum and classical regularities intertwine in a

very intricate manner in the problem of domain wall dynam-

whereEgy(h) is the DW energy aP=0. Ey(h) has no effect ICS: o _ _
on the dynamics of the DW coordinaxeand will be omitted To analyze the quantum DW motion in the spin chain

below. Here we have introduced the parameter including discreteness effects, we will use E@7) as a
guantum Hamiltonian, using the periodic potential of &.

and U, as found in the Sec. Il. Let us start with the case of
nearly free motion, whetdy<<T,. In this case the DW en-
ergy is given not by the usual momentum, but instead by the
which describes the magnitude of free DW dispersion, an@juasi-momentun® which is determined only up to a recip-
added the potentidl(X), without specifying its physical ori-  rocal lattice vector. According to Bloch’s theorem, the energy
gin. For the discrete spin chain, the potential is the pinning=(P) should be periodic with periodPg=27#/a. When
potential originating from the discreteness effects introduced),— 0, the dispersion law is described by E85), or Eq.
above. ) (27) with Uy=0, for almost allP values(with small correc-

It is easily seen that the relatiot=V=0H/JP as in ana- tions ~U§). Only when the nonperturbed dispersion laws
lytical mechanics immediately gives the periodmscillat-  intersect,E(P)=E(P+nPg) with n integer, corrections be-
ing) dependence of the DW velocity on DW momentum  come essential~U,) and energy gaps appear.

To=4/2h3$ = 2\2gu,SH
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We now want to discuss the situation for different values PIPy . Lre
of spin S, since the ratioPy/Pz=2S depends on the spin 19 Ry ST !
value. Strictly speaking, small spin values, e.dS, NN RN
=1/2,1,...,cannot be described in the frame of our semi- 051 = B3
classical approach. But we argue that our approach will be AN NG SN
valid at least qualitatively also for these cases. 001 £ B2 B2
For spinS=1/2 wehaveP,=Pg, and there is no intersec- AT
tion of the nonperturbed dispersion law with its image 05] e
shifted byPg (the intersection of two parabolas in Ref. 12 is (a) 00 08 10xia

an artifact of the parabolic approximatiorin this case the

effect of smallU(X) on the DW dispersion relatioB(P) is 1.0
only quadratic in the small parametely and is negligibly

small. For all other spin value§>1/2, we haveP,> Pg 051
and dispersion curveBy(P) extended periodically with pe-

riod Pg=2=#/a do intersect. However, all intersections oc- 001
cur on the boundaries of the Brillouin zone, namely, at

P=+mhl/a. It is clear that in this case the DW spectrum 051
containsN,=2S energy bands. )

V. CLASSICAL DYNAMICS OF DOMAIN WALLS IN A ,
FINITE POTENTIAL AND ITS QUANTIZATION FIG. 7. The phase plangP,X) for the DW dynamics for(a)
Uy=T, and(b) Uy=0.25T,. Separatrix trajectories are shown by full

In this section we will analyze the classical DW dynamicslines, other trajectories by dashed lines; full and open circles denote
and its quantization for an arbitra¢finite) periodic potential the positions of centerlike singular poin® andC2, and crosses
of the form given in Eq(4). The most important ingredient correspond to the saddle points.
to this analysis is that the Hamiltonian of E&7), just as the
classical energy, is a periodic function of momentum, and
that there is an upper bound for the energy. As already men- Cl:X=an, P=Pym, Hc; =0,
tioned, this property is already present in the classical theor¥ i
of DW motion and has nothing to do with quantum mechan-he other set of center€C2-type centey is located at the
ics. We will show below that this property leads to results™Maximum of both potential and kinetic energies,
which are qualitqtively diff_eren.t from those obtained in the C2:X=a(2n+ 1)/2, P=Py(2m+ 1)/2, Hey = Ug+ To.
standard quadratic approximation, both for the pure classical
DW motion as well as for its quantization. Here and below, m are integers. The existence G2-type

Let us consider the dynamical system described by theenters describing the steady small oscillations of the UDW
classical Hamiltonian of Eq27), taking U(X) into account. near the potentialnaximumis a unique property of Hamil-
The corresponding Hamilton equations tonian systems with an upper bound in the Hamilton function

H(P,X).
@z_ﬂ, Q(:ﬂ, There are also two sets of saddle points in the phase
ot X g IP plane,S1 andS2. PointsS1 correspond to the maxima of the

have an obvious integral of motion, potential U(X) and the minima off (P)

P Sl:X=a(2n+1)/2, P=Pym, Hg = Uy,

X
H(P,X) =Ty sir? = +Uosin2%=const. (30)

0 points2 correspond to the minima &f(X) and the maxima

Here we have omitted the constant gagth) which does not of T(P),

_affect the equations of motion. These_equatlons cannot be 2:X=an, P=Py(2m+ 1)/2, Ho = To.

integrated in terms of elementary functions, however, a suf-

ficiently complete understanding of the DW dynamics can be At the allowed values of the integral of motioft{c;

found using the phase plane analysis. This system is charass <"Hc,, the phase planéP,X) separates into regions

terized by the periodicity in momentui® and by the pres- with different types of motion. Two types of finite motion are

ence of an upper bound for the Hamiltonian. In view of thispresent within one interatomic distan¢ene period of the

its dynamics shows characteristic features which do nopotentia). One type of finite motion corresponds to the os-

manifest themselves for standard dynamic systems with aillations of the LDW near the minimum of the potential, it

parabolic dependence on momentum. requiresHqc1<H <'Hg and is standard in the analytical dy-
It is easy to show that at arbitralyy/ T, there are two sets namics of a particle¢We suggestet),< T, here) A second

of centerlike singular points in the phase plane; see Fig. fype of finite motion, namely oscillations of the UDW near

One of them(Cl-type center corresponds to the minimum the potential maximum, is realized foHo<H <Hco.

of the potentialU(X) and the minimum of the “kinetic en- These regimes are separated from the rest of the phase plane

ergy” T(P)=T, sir?(wP/Py), with different types of infinite motion by separatrix trajecto-
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ries, ending in one of the saddle points. The only exception igield. Thus the numbeN, of energy bands for DW’s in all
the casdJy=T, or Hg;=Hg When the separatrix trajectories these models should be equal t8. Z'his is in agreement
connect saddle points of different type and form a two-with the numerical result for the kink dispersion law in the
dimensional net; as a consequence infinite motion is absenguantum transverse field Ising model with sf@a5, where
For the transverse field Ising model with smaly this is 10 energy bands were obtain&d.

hard to realize, see Sec. (in particular Fig. 6, but for

methodological purposes we find it convenient to start with

this case. _ B VI. DW TUNNELING
In this case we havé,=U, and one easily verifies that
the area of the phase plag@echanical actionper unit cell In the classical case, there are states corresponding to

and one period of momentum is equal #p=47#S. Thus,  finite motion (oscillationg of DW’s near the extrema of
from the Bohr-SommerfgId guantization rules, there arghe potential in the phase plane both at small and large
(Ao/27)=2S quantum eigenstates of a DW, related to itsg|yes ofU,. This applies to the LDW near the minimum of
oscillations per one unit cell. It is clear that if one takes mtoU(X) and as well to the UDW near the maximum GfX).
account tunneling transitions between equivalent points obwing to the symmetry present in the Hamiltoni¢go)
theTIﬁ\_ttice, ti?ese_ Ioc_:glized_s;;tathes will tlurnbint_o egt_arg;rq band — Po/2-P, X—al2-X, their dynamics is described si,mi-

is result coincides with the result obtained in the pre-_ , . ' ’ :
vious section for the opposite limit of an infinitely weak Itﬁgy’ Lgirifgiggg Ctag iﬁgig?nr Oglfybsﬁls’ tfr;gr:]‘%vr\]/eczﬁg'g
pinning potential. An additional argument on the number of not?ler becomes ’ ossible andgthese states form the ener
energy bands is obtained from the well-known exact resulf 7o 1! 22C2 T tr?at for xtremely smbl the nearly free 9y

for so-called Harper equatic,familiar in the problem of 2 : ) ; :
electronic quantum motion in a periodic potential in the pres-&PProximation discussed in Sec. IV is valid. But the standard
ituation for semiclassical systertike DW’s for large spin

ence of a finite magnetic field. In accordance with Ref. 33° ) - DY STEIUTRE .
the problem is reduced to a Hamiltonian as in E80), ferromagnetgis the tight-binding limit, for which the prob-

H,=sif(p/2)+siri(mBq). For the rational case of the ability of tunneling is small, and the states with eneEgyare

Harper equation, g8=m/n, the eigenvalue spectrum for the almost chalized in a potgntial weI.I. In'order to estimaje
HamiltonianHy showsn nonoverlapping bands. The simple we conS|d_er the parabolic approximation for baitX) and
canonical transformatiomp— wP/Py, q— XPy/, leads to  1(F)- In this case we havE,=fw,-n, where
our Hamiltonian(30) with 8=1/2S. This gives immediately
the above resultN,=2S. 1/d2U VUoT,
For To<U,, a case more realistic for the Ising model, the wo = M\ ae
situation is different: in addition to the localized trajectories %=0
in phase space, trajectories corresponding to the infinite mo-
tion above the potential barrier appear; see Fi).7These M is the effective mass of Eq26). Both Uy and T, are
trajectories describe the overbarrier dynamics of DW’s in theProportional to S, therefore wy> S and for semiclassical
pinning potential. It is clear, that such states should be despinsS>1 the value ofg, for n<S can be smaller thatl,
scribed well by the model of the nearly-free particle, dis-€ven in the cas&Jy<T,. Then the width of thenth energy
cussed in the previous section. band, AE,, resulting from the tunneling between the quan-
The other limiting case, largd,, i.e., Uy>T, is hard to  tized energy levels,, is smaller that the value of, and
realize in the transverse field Ising model. On the other handgVenE,. It is clear that this first of all should correspond to
it could be interesting for other models of ferromagnets supihe lowest leveE,, i.e.,n=0 (the “ground state of the DW"
porting DW states, and we want to discuss it briefly. Thein the pinning potentig) but it could be true as well for some
phase plane for largely/ Ty can be obtained from Fig.(B)  higher levels withn>1.
by replacingP/ P, by x/a and vise versa. Then, the topology  In order to understand the possibility of semiclassical dy-
of the phase plane is fundamentally changed: trajectorieBamics of the lower DW, consider the limit of small,
with finite changes of the kink coordinate amdinite range  (Uo<<To). The aread, under the separatrix trajectori€s is
in momentum, appear. For these trajectories the DW coordieasily found and the number of quantum states for the finite
nate oscillates near certain positions, which do not coincidénotion of the LDW,N, =A, /277 is defined by the follow-
with a minimum or maximum of the pinning potential. This ing expression:
is nothing but Bloch oscillations in the pinning potential
U(X).
At this point we want to emphasize that the semiclassical
result Ap=47AS does not depend on the details of the
model. Only the periodicities of the Hamiltonian fhand X
with periodsP, and a are essential for the argument. The This is of the same order of magnitude as the value obtained
considerations presented in the previous section are modébm N_-Awg=Uy. The same expression is obtained for the
independent as well, and lead to the same value,dbr all number of states of the upper DW, localized near the poten-
transverse field models. Therefore the final result for thdial maximum,Ny=N,. At Uy<<T,, the values ofNy andN_
number of energy bands remains valid for more generaire much smaller than the total number of DW statgshit
models of ferromagnets subject to a transverse magnetican still be large compared to 1: When the inequality

44S

N =25 Y
LN T,
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1 U, 1.5{Ac/hS
< =<1
g T
(meaningful forS> 1) holds, the states of finite motion are a 101
small fraction of all DW states, bud, =N, >1. It is easy to
estimate the mean values Bf and X? in these states, 0.5] 4
14
1 U 1 T / Up/ T,
(P =Pi==c\/ =0 O =al-—o /0. Y
27S V Ty 27S ¥V Ug 00 01 02 03 04 05

In view of that, it is not easy to satisfy the condition of k|G, 8. The dependence of the Euclidean action on the value of
applicability of the parabolic approximation for bot(X)  Uy/T, as found numericallysymbolg and from the asymptotic Eq.
andT(P), (P?) < (P2) and(X?) <a? simultaneously. Thus, in  (33), Age\Uy/T,, valid for smallUy/T, (dotted ling. The maxi-
order to investigate the tunneling splitting of the levels it ismum value ofAg/%S=1.533 is reached dlly/Tp=0.5, that is the
preferable to use the full non-parabolic Hamiltonian Eq.maximum value olo/T, for the transverse field Ising model.

(30). The best way to analyze such models is the instanton

technique, which can be applied for arbitrary field theories;

see Ref. 34. In this approach, the amplitude of probabilityFinally, the expression for the Euclidean action on the instan-
P,, of the transition of the DW from one given state to ton solution takes the form

another is determined by the path integral A T ral2 i

/DX exdi A[X/#}, where A[X]=fdt-L[X(t)] is the me- Ze_85U, f __ydysing (32)

chanical action functional. Her€(X,X) is the Lagrangian h ™ Jo \To+Upsir ¢

describing the dynamics of the DW coordinate and the For the most natural casg,<T, this gives the result

integrationDX goes over all configurationX(t) satisfying

the given boundary conditions. The LagrangiéfiX,X) is A(O)—%S /Yo atUp<T, (33
. E — y

easily obtained, as in standard mechanics, fldmPX-"H: ™ To

expressP and in terms ofX, using the known expressions as usual for a Lagrangian with quadratic dependence on the
for P=P(V) and H=E(V)+U(X) (see Sec. I}, replacingV  velocity. For arbitraryU,/ T, the calculations are more com-
by X. plicated but the tendency is seen as followk: is smaller

It is convenient to make a Wick rotatidn-ir, passing to ~ than predicted by Eq(33) for the same value dflo/To; see
the Euclidean space-time. Then one has the Euclidean prophid. 8. Thus, the band width for finitdo/T, is larger than

gator /DX ex—Ag/#], where the Euclidean action is writ- follows from Eq.(33). .
ten as For energy banddE, with 1<n<N_ and Uy<T, we

can use the fact that in the regime of classical motion the
simple parabolic dispersion law is valid to calculate the tun-
neling splitting of the levels. This allows to use the standard
expression for the tunnel splitting of the levétee Ref. 35,

Ag= f Le(X,Q)d,

with Q=dX/d7. For the LDW this gives problem 3 after Sec. 5&nd results in
_2hS Q2 N2+ 02 sl
Le=3 [Q arcsm!(vc) HVem Vet ] +UR). AE= (hwolw)exp{— J 2mu(x) - E]}l’de/ﬁ}.
(3D) -

) , , , Herea’ is the turnover point of the classical trajectory with
C(_)r!st_ruct_lng the instanton solution can then _bg viewed a8nergyE, (corresponding to a nonsplit leyelefined by the
minimization of Ag with respect toX(). The minimum of g ationU(a’)=E. It is convenient to rewrite it using the

the Euclidean action is realized on the solution of the Eulergclidean action only. After some simple algebra we arrive
Lagrange equation fofg. The first integral of this equation 4 the following universal formula:

has the form
Zhs £ n+1/2 AE
T (WEra2-vy) -u =, A =fhoo 7)o =57 (39

with C=0 on the instanton solution. Then, the expression foPéVhireAE is %i]\(en by E_q.(32h) or Eﬂ' (3?’ with AEOC? i_n f
A reduces to the integral oth cases. This equation shows that the energy splitting for

n>1 continues to be exponentially small B but with
2hS [ Q larger preexponential factor.

Ae=—~ . ey, dX, The characteristic feature of the Ising model is that the

two important parameterd, and T, of the theory are gov-

which has to be calculated using the connection betwi@en erned by only one quantity, the dimensionless magnetic field

and X from the first integral(QTo/V)?=4U(X)[To+U(X)]. h; practically alwaysU,<T, holds. However, the behavior

C
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144 E(P)/ 2nJS? Again, the compliance of data of these two approaches can

1.2] be considered as satisfactory.
1.0 Unfortunately, the direct quantum mechanical approach
0.8] used in Ref. 14 can be applied for small valueshadnly;
0'6- then the discreteness effects are large and the continuum ap-
] proximation is not appropriate. But the discrepancies are not
04 too large, and even in this unfavorable situation we can claim
0.2 at least qualitative agreement. The data are fitted quantita-
0.0 tively only with use of fitted dependendgh) (see end of
0.2 Sec. Il and Fig. & It is worth to mention that there are at
0.4 least two reasons for discrepancies, causedipyonappli-
0.6 cability of the continuum limit to the small field discrete
08] classical Ising model, andii) the fact that the Landau-
1'0- Lifshitz equation is not adequate to describe quantum DW's.
'1'2'. We believe that discreteness is the main source of the dis-

crepancy, and for models with wide enough DW&sich as
models of ferromagnets with nearly-isotropic exchange inter-

FIG. 9. The dependence of the DW energy on its momentum foracnon and weak magnetic anisotrgpyhe description of

the magnetic fieldv=0.05 as obtained in the continuum approxima- quantum dynamics of DW's based on the scheme proposed

tion. The dashed line presents the result of the continuum approachr;] t'lr']fl'ns papter }[N'” be ?t I?ajt semliua:ntlttaglvte. hile the field i
the solid line is improved by using the fitted depende&¢e) for € Instanton analysis demonstrates that whiie the neid Is

small h (see Fig. 3 Symbols show the numerical data for the inpreasing,AE/h very rapidly decrease_S; see Fig. 8. Thus the

dispersion law of the quantum D\(Ref. 14. width of the energy band grows rapidly, the gaps become
narrow and the nearly-free limit can be realized for all ener-

of the quantum DW spectrum depends also on the value djies. At S=5 the value ofAg/% becomes of the order of

the atomic spirs. If Ug<T,, but S >T,/U,, top and bottom  unity andAEy=~fw, already atJ,/ Ty < 0.008(equivalent to

energy bands are very narrow. The neighboring bands arée magnetic field becoming close ko-0.3). But for any

narrow also, bus timer wider, and the intermediate part of values of the parametér 2S energy bands are present in the

the spectrum consists of wide bands with narrow energypW spectrum.

gaps.

At this point it is interesting to compare the results of the

instanton approach with data from an analysis of the model VII. MORE GENERAL MODELS

for extremely small field, when spin zero-point fluctuations

far from a DW can be neglected and the one-site approximaé"

tion can be applied Figure 9 presents the numerical data

141

In this section we discuss briefly the possibility to gener-
ze the model to apply our approach to other related mod-
. . i " . els. As we argued above, our results, in particular, the num-
form this article for the spin valu&=5 together with the ber of energy bands, are not specific to the Ising model. It is

an?lytt;c?rlldlspersmrr: Iavtvhfour.](cjiﬂ:leref. th bands wit mostly due to the value of the perid®,, which is universal
N both approaches the widths of the energy bands wi I?or all models of uniaxial ferromagnets in a transverse mag-

Igv_\ll_e;]r energnis are exponetntlally Isdmall in the Sp'rt'. T?gr;'tUde{:etic field. Thus, the result thaS2Znergy bands exist should
€ one-site approximation yields an exponential 1aclor oy, \4jiqg for all transverse field models of ferromagnets.

the form of ex§-2SIn 2) ~exp(~1.39%5), which is quite The results obtained here for ferromagnets can be applied
C"?Se t? the yalue eXpAE/h)—>exp(.—1.§$) ath—0, ob- to Ising antiferromagnets as well. The simple canonical
tained in the ms_ta'nton approach using |mprpved datd§or  transformation
Uo/To—1/2. It is interesting to note that using the data ob-
tained directly from the continuum approximatiody/ T, S — (- 1)"o%?, S — oh,
=1/(2V2), the factor takes the form efpl.345) which is . . .
much closer to the value obtained in Ref. 14. The agreemerll’{as_mts_In t[\e same commutz_mgn relations for staggered mag-
between the data can be considered rather good, regardif§tizationoy, as for usual spin&, and reproduces the same
the conceptual difference between the two approaches. form for the Hamiltonian, Eq(1), replacingS, by &, and
Good agreement is also found with respect to the fact thathanging the sign od. It is easy to prove, after the appro-
the bandwidth increases with energy, the ratio of the widthgriate gauge transformation, that the form of the Lagrangian,
of neighboring energy bands is given by a factorSsoBut  Eq.(10) is also unchanged. Thus all the results obtained here
the preexponential factors for these, essentially alternativéor the DW dynamics, its dispersion law and its semiclassical
approaches differ by a factor ofS. It is most likely that quantization are valid for Ising antiferromagnets as well. We
taking into account fluctuations far from the DW center be-note that such a simple relation can be true only for models
comes essential for the determination of the preexponentialith a Hamiltonian depending on two components of spin
factor. It is worth noting the formal agreement that, within only. This excludes near Heisenberg antiferromagnets. For
the instanton approach, this factor is determined by the flucthe near Heisenberg antiferromagnets with weak anisotropy
tuation determinant only, again, far from the instanton centerof any origin, exchange or single-ion, treated on the basis of

174409-12



SEMICLASSICAL DYNAMICS OF DOMAIN WALLS IN... PHYSICAL REVIEW B 70, 174409(2004)

the sigma model, the singularities in the Lagrangian for thdarge half-integer spin$=(2k+1)/2, k=1, one hasP ,
staggered magnetization are absent for a sufficiently generalPg(2n+1)/2, and some intersections are inside the Bril-
set of modelg(including antiferromagnets subject to strong |ouin zone atP=(2n+1)7#/2a, with integern. This leads to
external magnetic fields and in the presence Ofihe gppearance of some additional gaps, which could be as-
Dzyaloshinski-Moriya interactions of arbitrary symméfly g ciated with the tunneling of chirality. In this case the num-

and a periodic DW dispersion law is not realizéd. ber of gaps increases and for half-integer spithe number

It is interesting to apply the approach developed here t : ; : : )
models with 180-degree DW’¢ém kinks) in ferromagnets Qéfv\?gei}gggqggrsosén the dispersion relation for 180-degree

with rhomic anisotropy as considered by Braun and '8ss.
In this model there are two different DW's with lowest en-
ergy (Bloch DW9 and the correspondin§(¢) trajectories
are the halves of the large circle passing alone the different In this article we have developed a new approach to the
directions through the easy axis and the axis with the intersemiclassical dynamics of kink-type solitons or DW’s in spin
mediate value of anisotropy. chains. Explicit results have been obtained for the transverse
It is easy to argue, that in this case the depend&t®® field Ising model, but the approach can be easily applied to
found in the continuum approximation is again periodic, butmore general models. The essential steps of our approach are
the period of this dependend® ; is determined byhalf of  the following onesti) Investigate the pinning potentitl(X)
the spher&&®=%, and it is two times smaller than that for the for DW's in the discrete classical model, then establ$R),
transverse field modelP, ,=277S/a.1"?32° The specific the dependence of the kink energy on its momentdisper-
model treated in Ref. 12 is exactly integrable, and the fre&ion relation for the classical continuum model, and analyze
dispersion lawE(P) with this period can be constructed ex- the nonlinear DW dynamics of the basis of the classical
plicitly; see Refs. 2 and 3. On the other hand, for the fullHamilton function(P,X)=U(X)+E(P). (ii) Use the Bohr-
classification of DW's, i.e., to describe the presence of twaSommerfeld quantization on the phase plaReX) and ap-
different, but energetically equivalent DW's one can in thisply the instanton analysis for the tunneling between DW
situation introduce the discrete parametdirality. Braun  states localized on different lattice sites in the classical ap-
and Loss have shown from a different argument that theyroximation.(iii ) Find the width of the energy bands and the
minima of the dispersion law&(P) for DW's with different  energy gaps using the instanton approach or the nearly-free
chiralities have to be located at different points of (haxis,  limit. Finally, (iv) find the quantum dispersion relation for
with distance equal t®, , (in our terminology. Owing to  the DW for all possible values of its momentum.
the parabolic approximation, used in Ref. 12, the dispersion We have carried through this approach step by step for the
curveskE(P) for different chiralities seem to be intersecting transverse field Ising model, providing, to the best of our
in some point. But accounting for the real periodic depenknowledge, the first complete investigation of this model,
dence forE(P), these two minima are smoothly connected,including the analysis of moving domain walls and of the
with the maximum at the energy of the Néel DW, and nodependenciebl(X) andE(P). For other models some of the
intersection occurs. Thus, there is no reason for the chiralityntermediate steps can be found in the literature and could be
tunneling to take place in this formulation. The deep connecused as input for analogous calculations: the dispersion rela-
tion of chirality and linear momentum and the suppression otion for the 180-degree DW, e.g., has been given decades ago
guantum tunneling of chirality for free 180-degrees DWs in(for reviews, see Refs. 3 and 31
ferromagnets has been discussed recently by Shibata and As an interesting new result in classical DW dynamics we
Takagi!® It is worth to note here, that also for 180-degreefound the existence of a new class of classical solutions lo-
DW's in nearly Heisenberg antiferromagnets two nonequiva<alized near the maximum of the pinning potential. For large
lent DW’s with equal energies are present, but the depenenough pinning potentialU,>T,, classical states exist
denceE(P) is not periodic. Chirality is not connected with which have finite range in the coordinate, and an infinite
the value of linear momentum and the effects of quantunmrange for the momentum. Evidently such trajectories do not
tunneling of chirality are present even without the pinningexist for standard mechanical systems with a parabolic dis-
potential® persion lawH =P?/2M +U(X), but they are typical for DW’s
Finally we want to discuss the perturbation of the disper-with a periodic dependence E(P). As we have shown here,
sion law for a 180-degree DW caused by a small periodiche presence of such states is of crucial importance for the
pinning potentialU(X). For this case, one has to locate thequantum features of the DW dynamics. Because of this,
intersections of nonperturbed specE€P), periodically ex-  within the semiclassical Bohr-Sommerfeld approximation,
tended with periodPz=27#/a. The situation here is slightly the number of quantized states of DW motion per unit cell is
more complicated than for transverse field models: For smalliletermined by the value of spiiand by the type of domain
spins S=1/2 and S=1 one hasP,,=<Pg, intersections wall and does not depend on the ratio of the parameigrs
are absent and no gaps are preg#rmis is the same situation andT,. The full analysis leads to the universal result, that the
as for the transverse field model with si8r1/2). For inte- DW dispersion law has the form of a finite number of non-
ger spinsS=k, k> 1 intersections occur and energy gaps ap-ntersecting energy bands with finite gaps between them. The
pear at the intersection points. However, all these gaps am@umber of bands is, for a given class of DW, determined by
located on the boundaries of the Brillouin zone. Then, thehe value of spirS only and is a universal characteristic of
number of energy bands is equal $0 But for sufficiently  this domain wall.

VIIl. CONCLUSIONS
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