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Hysteresis curves are investigated for finite arrays ofN3N ferromagnetic nanodots subject to the dipole-
dipole interaction(N=2, . . .,13). Spin arrangements up toN=6 are presented, which indicate the onset of
bulklike behavior associated with oddsN=5d and evensN=6d systems. The effect of field misalignment on the
hysteresis loops is also studied forN=3, . . .,6. The areaAN of the hysteresis loop is studied as a function ofN.
AN−A` approximately scales asN−3/ 2 for N odd and asN−2 for N even.
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I. INTRODUCTION

A ferromagnetic particle goes into a monodomain state if
its sizeD is below a critical valueDc=10–100 nm. This is
due to the competition between the exchange and dipolar
energies. Therefore, a nanoparticle in a monodomain state
may be viewed as a giant magnetic dipole with magnetic
moment of thousands of Bohr magnetons. For anN3N array
of well-separated nanoparticles the exchange energy is usu-
ally negligible in comparison with the dipolar and anisotropy
and Zeeman energies. The study of such systems is of in-
creasing importance because of their technological applica-
tions in data storage devices and magnetic field sensors. As
the technology of these devices moves towards higher den-
sities of stored information, it requires smaller particles of
magnetic media,1,2 for which finite size effects become rel-
evant. In finite arrays of such large dipole moment particles,
the dipolar field of the array becomes comparable with the
bulk anisotropy field. Dipolar effects in such systems affect
the static and dynamics properties of the array; and thus must
be taken into account.

The interest in magnetization processes and hysteretic be-
havior of finite arrays of nanoparticles in which the interac-
tion between particles is mediated by the dipole-dipole inter-
action has grown in recent years. Rosset al.3 experimentally
studied the remanent states in cylindrical arrays of ferromag-
netic nanoparticles as a function of the particle’s size and the
aspect ratio of the cylinder. They also performed micromag-
netic simulations and showed that the remanent state is either
a flower state or a magnetic vortex state depending on the
size of the particles used and the aspect ratio of the cylinder.

Camley and Stamps in Refs. 4–6 investigated the dynam-
ics and magnetization processes of a finite planar array of
N3N ferromagnetic nanodots, forN=3,4,5,6. The nanodots
were taken to interact only via the dipole-dipole interaction,
and they were subject to an external field applied either
along one side of the array or along its diagonal. They found
rather complicated hystesresis loops with the magnetization
reversal controlled by the shape anisotropy induced by the
array itself.

We consider the same model, and extend their results, for
N=2, . . .,13. Our results forN=3 qualitatively agree with
those of Ref. 4. We find that the behavior of these systems is
surprisingly complex, both for smaller and for larger values
of N, and we present the first systematic study of their

N→` behavior. We obtain a scaling function for the hyster-
esis loop area as a function ofN, for both odd and evenN
(which differ because only oddN has an uncompensated
spin). We also study the dependence of the hysteresis loop on
the inclination of the applied magnetic field with respect to
one of the array sides.

In the present work each dot is taken to have a radiusRd,
thicknessd and a single degree of freedom corresponding to
the orientation of a magnet of saturation magnetizationM0.
We consider only the case of zero temperature. The dots are
arranged on a square lattice with lattice spacinga.2Rd, and
the dots interact only via the dipole-dipole interaction. The
equation of motion for the magnetic moment of each dot is
governed by the Landau-Lifshitz-Gilbert equation(LLG),7

which reads

dM

dt
= gM 3 Heff − a

M 3 sM 3 Heffd
Ms

, s1d

whereg is the gyromagnetic ratio,a is the damping coeffi-
cient, M is the magnetic moment of the dot andMs= uM u is
the saturation magnetization,Heff is the average effective
magnetic field acting on the dot. The average effective mag-
netic field acting on theith dot is due to the applied external
field, the dipolar fields, and the anisotropy field

Heff
i = H0 cosux̂ + H0 sin uŷ − Hdip

i + 2K1
mz

i

M2ẑ. s2d

Here the dipole field acting on theith dot due to all other
dots in the array is given by

Hdip
i = hdipo

jÞi
SM j

r i j
3 − 3

sM j · r i jdr i j

r i j
5 D , s3d

wherehdip=pRd
2d/a3 is the strength of the dipole field andr i j

is in units of the lattice spacinga. For all arrays studied, we
takehdip=0.5. The choice of anisotropy is determined by the
shape of the dot, which in our problem is directed along the
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symmetry axis of the(cylindrical) dots. We divide both sides
of Eq. (1) by sgMs

2d and define a dimensionless time variable
t=gMst. The LLG in these reduced units becomes

dm

dt
= m 3 heff −

a

g
m 3 sm 3 heffd, s4d

where m=M /Ms and heff=Heff /Ms. In our calculations,
magnetic fields are measured in units ofMs and the energy is
measured in units ofMs

2a3.
This paper is organized as follows. Section II presents the

numerical techniques we employed. Section III presents an
extensive discussion of magnetization processes and hyster-
esis for arrays ofN3N nanodots(N=2,3, . . .,13) when the
external field is applied along one side of the array. Section
IV considers the effects ofN even andN odd on the hyster-
esis loop of the finite array of nanodots. Section V considers
the relationship between the area of the hysteresis loop and
N. A brief summary is given in Sec. VI.

II. NUMERICS

We employ two different approaches to study the magne-
tization processes of ourN3N arrays of nanodots. The first
is the second order Runge–Kutta(RK) algorithm with fixed

time step to integrate the LLG equation. The second is the
“greedy algorithm.” The two approaches yielded similar re-
sults.

In the RK approach, the integration employs a fixed time
stepDt=5310−3 and a damping coefficienta /g=0.6, with
an initial state in which the magnetic moment of the dot is
randomly generated.(The ground state of the system is un-
affected by the value ofa /g; however, the choice of this
ratio strongly affects the convergence and the computational
time. For systems with many local minima, too large a value
of a /g could cause the algorithm to overshoot a local mini-
mum, and too small a value ofa /g could cause the algo-
rithm to get stuck in a local minimum. We found no indica-
tion of either effect in the present work.) Iterations are
stopped when the difference between the total energy of the
system from thesn+1dth iteration and that of thenth itera-
tion is of the order ofDEn=10−5. Our solutions converged
after almost 103 iterations.

The greedy algorithm takes the dot magnetization to align
along the direction of the total local field. In the initial state
each dot magnetization is chosen to point randomly. Next,
the total local field is calculated for each dot. Finally, the
magnetization for each dot is reoriented to point along its
total local field. The convergence of the final state is checked
in a manner similar to that used in the RK approach. We find

FIG. 1. Hysteresis loops
MsHd, both in units of Ms, for
weakly coupled arrays ofN3N
ferromagnetic nanodots. The ex-
ternal field is applied along they
axis, which coincides with one
side of the array. The top two
rows are forN even and the lower
two are forN odd.
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that the LLG approach converges faster than the greedy al-
gorithm. This is probably related to a phenomenon known in
RLC circuits, where a critically damped circuit approaches
equilibrium faster than a circuit with a larger amount of
damping.

Calculation of the dipolar field at theith dot is the most
computationally time-consuming aspect of both approaches
since it requires summation of the dipole fields from all other
dots in the array. However, due to the relatively small sizes
of our dot arrays this calculation is performed rather quickly.

III. HYSTERESIS LOOP AND EXTERNAL FIELD
ORIENTATION EFFECT

Hysteresis loopsMsHd for N3N arrays of nanodots sub-
ject to an external magnetic field applied along one side have
been calculated. Initially, a strong external fieldH0 is applied
to the array until saturation. The field is then decreased to
−H0, followed by an increase back toH0. We takeH0=2Ms,
and a fixed field-step ofDH=2310−3Ms is used in simulat-
ing the sweeping process. For each value of the external field
the system was iterated until a stable final state is reached. As
shown in Fig. 1, whereMsHd is plotted(both in units ofMs),
the odd and evenN arrays have somewhat different behav-
iors, especially for smallN. One aspect of this is that, be-

cause of their unpaired spin, the odd-N systems display mag-
netization jumps as the field changes. The odd-N and even-N
behavior becomes similar for larger values ofN, something
we study in a later section.

In Fig. 1, the angle of the field to one of the sides(the y
axis) is taken to beu=0. Experimentally, however, field mis-
alignment is almost inevitable, so that we also study field
misalignmentsuÞ0d.

Figure 2 shows results forN=3, . . .,6 andanglesu=5°,
30°, and 45°.(We present only some ofthe more representa-
tive results; angles between 0° and 45° were studied in 5°
increments.)

Comparison of Fig. 1 with Fig. 2 foru=5° shows that a
small misalignment of the applied field can change the hys-
teresis loop drastically.

For N=3, Fig. 2 shows that the central part of the hyster-
esis loop shrinks asu increases. Foru=45°, the central part
almost disappears completely, and new small loops start to
develop away from the center of the hysteresis loop. Our
results for N=3 agree with those given in Ref. 4, which
studied the casesu=0° and 45°.

For N=4, atu=0° there is no central loop, but there is a
prominent loop at finite field. On the other hand, atu=5°,
there is a central loop, and the finite field structure becomes
rather complex. Further increase ofu leads to a filling out

FIG. 2. Hysteresis loops
MsHd, both in units ofMs, for N
=3. . .,6 arrays for the field atu
=5° ,30° and 45° going from left
to right. Foru=0 see Fig. 1.
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and connecting of various subloops. Also, note the appear-
ance of jumps for nonzerou.

For N=5, a small field misalignment has an enormous
effect, atu=5° shrinking the loop to a relatively small cen-
tralregion. Asu increases, the central loop grows, but the
loop for u=45° pinches off to yield three subloops, as for
N=3.

For N=6, again a small field misalignment has an enor-
mous effect, atu=5° shrinking the loop to a relatively small
centralregion. Asu increases, the central loop grows, but in
contrast toN=5, the loop foru=45° does not pinch off, and
closely resembles the loop forN=4.

These different types of behavior indicate that this is a
complex system, for which it is difficult to generalize.

IV. HYSTERESIS AND EVEN-ODD SIGNATURE IN FINITE
ARRAY OF NANODOTS

In the absence of an external magnetic field the array of
N3N nanodots favors antiferromagnetic ordering, thus mini-
mizing its magnetostatic energy. A large external magnetic
field applied to the array tends to orient the magnetic mo-
ments along the field, thus minimizing the Zeeman field en-
ergy. However, the spins at the array corners tip by a small
angle, as shown in Figs. 3–6, forming a two-dimensional
“flower“ state.8,9 The flower state persists until the applied
field falls to H0=Ms. For lower values of the applied field,
the competition between the dipole-dipole interaction and the
Zeeman energy becomes significant, and changes the array
ordering.

For N=2, Fig. 3 shows that for 0,H0,Ms the spins
form a snakelike domain structure that winds either clock-
wise or counterclockwise. ForH0=0, the array has zero net
per-dot magnetization, due to a vortexlike structure that per-
sists for −3MsøH0ø0.3Ms.

The N=3 array was analyzed by Camley and Stamps in
Ref. 4. This array also shows snakelike arrangements below
H0=Ms. ForH0=0 the final state of the array shows what we
call a “barrel” state in which the spins at the left and right
columns are oriented opposite to the central column with a
slight tipping of the corner spins, as shown in Fig. 4. This
agrees with Ref. 4 except that Ref. 4 shows no tipping of the
corner spins. We have confirmed our numerics by making a
small tipping angle expansion of the energy with the spins
nearly but not completely aligned, and finding the tipping

FIG. 3. Spin arrangements for an array of 232 ferromagnetic
nanodots in external magnetic field.

FIG. 4. Spin arrangements for an array of 333 ferromagnetic
nanodots in an external magnetic field.

FIG. 5. Spin arrangements for an array of 434 ferromagnetic
nanodots in external magnetic field.
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angle that minimizes the energy. In both the numerics and in
the minimization the corner spin tipping angle is(to five
places) uau=9.1115°. The spin snapshots in Fig. 4 and the
hysteresis loop analysis both show that the barrel state
switches to an inverted barrel state when the applied field
changes sign, as expected for the unpaired spin of theN=3
system.

Figure 5 shows that theN=4 array also features snakelike
arrangements of the spins, for intermediate values of the ap-
plied field. However, in zero field the total per-dot magneti-
zation is zero, which can be attributed to the formation of a
vortex in the array’s central 232block. The magnetic mo-
ments of the rest of the dots in the array form a ring that
surrounds the vortex with opposite circulation. This state is
stable for applied fieldsH0 satisfying −0.2MsøH0ø0.2Ms.

For all N, the flower state appears at high fields(here,
uH0u=2.0Ms). The hysteresis loops shown in Fig. 1 show a
subtle difference in shape between arrays with oddN and
arrays with evenN. For oddN the loops show well-defined
jumps whereas for evenN this behavior is absent. This be-
havior is due to unpaired spins with uncompensated dipole
fields. The jumps become less apparent for largeN, where
the distinction between even and oddN becomes unimpor-
tant.

When an array was placed in zero external field and given
random initial conditions, the solutions converged to the
same states as obtained in the hysteresis-cycle calculations,
up to the degeneracy of the system. Thus, forN=2,4 there
are two degenerate metastable states of opposite chirality
(winding) with zero net magnetization in zero field, each of
which has a fourfold rotational symmetry. ForN=6 there are
two degenerate states of opposite chirality, with nonvanish-
ing net magnetization, each of these states has no apparent
rotational symmetry. ForN=3 there are two degenerate bar-
rel states, with no rotational symmetry, andN=5 is similar to

N=6. The hysteresis loop areaAN will produce further evi-
dence that large system behavior commences withN=5 and
N=6. Metastable states with vanishing net magnetization
may appear for arrays with evenN. However, our simula-
tions showed that these states appear only forN=2,4. For
arrays with oddN the unpaired dipoles prevent the occurence
of such states.

V. HYSTERESIS LOOP AREA AN VS PARTICLE
NUMBER N

Although the area of the hysteresis loopAN tends to zero
for the N=2 array, it is clearly nonzero for all other arrays.
Figure 8 presents the hysteresis loop areas as circles(N even)
and squares(N odd). Figure 8 shows that the area of the
hysteresis loop decreases with increasingN except forN=3
for N odd andN=2,4 forN even. TheN=5 andN=6 arrays,
which are the first to show something like bulk behavior,

FIG. 6. Spin arrangements for an array of 535 ferromagnetic
nanodots in external magnetic field.

FIG. 7. Spin arrangements for an array of 636 ferromagnetic
nanodots in external magnetic field.

FIG. 8. The area of the hysteresis loop as a function of the
number of particlesN.
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have maximumAN for odd and even, respectively; their spin
arrangements are given in Figs. 6 and 7. We have fitted our
data to the asymptotic form

AN = A` +
C

Np , s5d

whereA`, C, andp are constants to be determined. If larger
values ofN had been computationally feasible, we would
have considered only large values ofN for the fit. In practice,
for N odd the data are fit starting fromN=7 and forN even
from N=6. (The fit is not as good whenN=5 is included, so
we do not show this case.) Both fits are shown as solid lines
in Fig. 8, where the values ofA`, C, andp are given in Table
I. The fits have values ofx2 that are less than 10−5.

For odd N, AN varies approximately asAN,N−3/ 2

whereas for evenN it varies approximately asN−2. We at-
tribute no fundamental significance to these exponents, al-

though the difference surely can be traced to the effect of the
unpaired spin for oddN.

VI. SUMMARY

We have studied the hysteresis and magnetization pro-
cesses forN3N arrays(with N=2, . . .,13) of uniaxial ferro-
magnetic nanodots interacting via the dipole-dipole interac-
tion. For an external magnetic field aligned or misaligned
with one side of the array, the hysteresis loops are surpris-
ingly complex. For arrays with oddN the hysteresis loops
possess jumps, whereas for evenN they do not. AsN in-
creases, the areaAN of the hysteresis loop begins to saturate,
approaching a nonzero finite value determined from a data
fit. The area of the hysteresis loop scales withN approxi-
mately asN−3/ 2 for N odd, and approximately asN−2 for
even.
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TABLE I. Fitting parameters for data given in Fig. 8, using
Eq. (5).

N A` C p

Even 0.278 6.31±0.42 1.95±0.03

Odd 0.278 6.92±0.86 1.61±0.06
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