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We study how good a flat slab of a bulk crystalline solid with a large elastic anisotropy exhibits a lensing
action for phonons or sound waves. The slowness and group-velocity surfaces of an ideal elastic solid for a flat
phonon lens are analyzed in the geometrical acoustic approximation. These surfaces are compared with the
corresponding surfaces of an existing bulk crystal(a zinc crystal) with hexagonal symmetry. To demonstrate
the lensing effect we calculate the intensity distribution of phonons emitted from a point source in an isotropic
medium (on one side of the lens), propagating through the slab lens and then transmitted into the isotropic
medium in the other side. A similar calculation for sound waves with a finite-difference-time-domain method
is performed to see the effects neglected in the geometrical acoustic approximation, that is, the effects of finite
wavelength, mode conversion, and finite transmission at the interfaces.
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I. INTRODUCTION

Recently, an electromagnetic(EM) wave propagation
through an interface between a positive and negative refrac-
tive index material has attracted much attention.1–8 An inter-
esting observation is the fact that the refraction of the EM
wave happens at the “wrong” side relative to the normal of
the interface(a “negative refraction”). This provides a poten-
tial of fabricating a “superlens” which overcomes the diffrac-
tion limit of conventional lenses.2 The material with a nega-
tive index of refraction(NIR) is sometimes called a left-
handed material and can be realized, for example, with a
specially designed photonic band gap material.4,6–8 The
negative refraction phenomena in photonic crystals happen
in frequency regimes of negative group velocity either above
the first frequency band(photonic band) near the Brillouin
zone center or on the lowest photonic band near the
Brillouin-zone corner farthest from theG point.4,8

A similar effect is expected to occur also for phonons or
ultrasounds in phononic crystals, for instance.9,10 Thus, we
consider the analogous problem for phonons but in a system
consisting simply of a bulk solid instead of an artificially
designed material such as a phononic crystal. The presence
of large elastic anisotropy and the resulting noncollinearity
of the wave and group-velocity vectors in a crystalline
solid11–13 makes it possible that a bulk solid behaves as a
material with a NIR. Accordingly, a parallel-sided slab of a
crystal may exhibit a superlensing effect for a specific branch
of phonons, i.e., the slow transverse(ST) phonons.11 A de-
sirable feature of a bulk crystal rather than the case of a
phononic crystal is the fact that the negative refraction, if
any, works for phonons(also sound waves) irrespective of
frequencies as far as the lattice dispersion is neglected, i.e.,
up to several hundred GHz. It should be noted that in a
phononic crystal(also in a photonic crystal) the lensing ef-
fect is highly frequency dependent.

Another merit is the focusing of phonons in the three
dimensional space. The majority of the simulations made for
the negative refraction and lensing effect of EM waves with
photonic crystals are valid in two dimensions. With the struc-
tural anisotropy of the photonic crystals it is not clear if the

photons or EM waves are really focused in the three dimen-
sional space. In contrast, with a crystal of hexagonal symme-
try exhibiting a transverse isotropy,14,15 the focusing of
phonons in three dimensions is guaranteed if the focusing in
two dimensions is confirmed.

The organization of the present paper is as follows. In
Sec. II, first we determine, with analytical calculations based
on the geometrical acoustic approximation, the shapes of the
slowness and group-velocity surfaces of phonons in an ideal
elastic medium working as a flat phonon lens. Next, in Sec.
III, we illustrate in the same approximation how a crystalline
slab of zinc with hexagonal symmetry acts as a phonon lens.
Finally, in order to take account of the effects neglected in
the previous analyses, such as the effects of finite wave-
length, mode conversion, and finite transmission at the inter-
faces, we develop a finite-difference-time-domain(FDTD)
calculation16–20 in Sec. IV and demonstrate how the sound
waves excited at a point source propagate and produce a
“point image” on the other side of the flat slab of zinc. In
Sec. V we discuss the implication of the results we have
obtained in the present work.

II. IDEAL MATERIAL FOR A FLAT PHONON LENS

First we analyze the conditions for the slowness and
group-velocity surfaces of phonons in an ideal elastic solid
working as a phonon lens. This analysis is made with the
geometrical acoustic approximation. Let us consider the
negative refraction effect of phonons in the system shown in
Fig. 1, that is, a parallel-sided slab(the region II) of a trans-
versally isotropic medium(similar to a hexagonal crystal
with thec axis normal to the sides of the slab) is sandwiched
in between two(identical) isotropic elastic solids(the re-
gions I and III). Phonons are emitted from a point sourceO
in the region I at a distancea apart from the edge of the
region II. Those phonons are supposed to be focused at a
point F in the region III(the distanceh above the edge of the
region II) after propagating through the anisotropic elastic
slab, or phonon lens of thicknessd.

Now we look for a desirable shape of the constant-
frequencysv=v0d surface or slowness surface in the wave
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vector fk =skx,ky,kzdg space of the lens material. Note that
we assume a transverse isotropy for the lens and hence we
may determine the section of the surfacekz= fskxd. The ge-
ometry for this assumed system(Fig. 1) leads to the differ-
ential equation

FSv0

c
D2

− kx
2G1/2

kx
3

dfskxd
dkx

=
a + h

d
; b, s1d

wherec is the sound velocity in the isotropic media I and III
and b is the acoustic path length(along thez axis) in the
isotropic media relative to that in the slab lens. This equation
is readily solved to give

kz = fskxd = − bFSv0

c
D2

− kx
2G1/2

+ g̃, s2d

whereg̃= g̃sv0d is an integration constant independent ofkx.
We see that the consistency with the linear elasticity theory
requires thatg̃sv0d=gv0/c with g a dimensionless constant
related to the traveling time of phonons(see below). Equa-
tion (2) is equivalent to

kx
2 + 1kz − g
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. s3d

Thus the shape of the slowness curve in the lens material is
an ellipse(the slowness surface is an ellipsoid).

Next we have to check if the phonons leaving from the
point sourceO arrive at the focal pointF at the same time
irrespective of their traveling paths. We see that this is indeed
the case and the traveling time is given byt0=gd/c. How-
ever, for those phonons focusing at the pointF, there exists a
restriction for their transverse componentkx of the initial

wave vector. This is expressed asukxuø k̃c, where

k̃c = «
v0

c
, s4d

with «2=1−d2 and d;b /g=sa+hd /ct0,1. For ukxu= k̃c

phonons have to travel inside an ideal lens with an infinite
speed, though this cannot happen in a real material. This
situation is seen more clearly by calculating the group veloc-
ity v=]v /]k of phonons. We find from Eq.(2)

vx =
− bckx
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From these equations we findk ·v=v0. This is an important
relation to be satisfied byv if the group-velocity is derived

from the wave equation in the elasticity theory. Forkx= k̃c (or

kx=−k̃c) the wave vectork =kc of the phonon in the lens is
tangential to the slowness curve, hence perpendicular to the
group velocity vectorv=vc. Accordingly, the above restric-
tion leads to the infinite magnitude ofvc= uvcu, which can be
also seen from the geometry of Fig. 2.

Now we see from Eqs.(5) and (6) the group-velocity
curve is a hyperbola which is expressed as

FIG. 1. A schematic of the geometry consisting of an ideal flat
phonon lens of thicknessd (the region labeled II) sandwiched in
between the same isotropic elastic media(the regions labeled I and
III ). Phonon are launched from the pointO at a distancea below the
lower edge of the lens and focus at a focal pointF above a distance
h from the top of the lens. Phonons are also focused at a pointG
inside the lens. FIG. 2. Sections in thekx-kz plane of the constant-frequency

[vskd=v0] surfaces equivalent to the slowness surfaces of phonons
in the isotropic media(the regions I and III with phonon phase
velocity c) and in the ideal lens(the region II). kc with the compo-

nent k̃c along kx axis is a critical wave vector in the ideal lens
(satisfyingkc'vc with vc a critical group velocity) for which the
phonon has to travel with the infinite group velocitysuvcu=`d inside
the lens.
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Incidentally, we note that phonons are also focused inside the
lens atx=0 andz=a/b=ad/ sa+hd (point G), and at a time
t̃=a/dc.

The shapes of the wave fronts in the geometrical acoustic
approximation are displayed in Fig. 3 forb=1 andg=2 sa
=h=d/2d. In the regions I and III they are circles expressed
at a given timet as

x2 + sz+ ad2 = sctd2, region I, s8d

x2 + sz− d − ld2 = c2st − t0d2, region III, s9d

and in the region II they are hyperbola described by

− S x

«
D2

+ g2Sz−
ct − da

g«2 D2

= Sa − dct

«2 D2

. s10d

A critical trajectory along which the phonons have to travel
with an infinite group velocity inside the lens is shown by
arrows. The phonons incident on the slab lens at an angle
larger than this trajectory are reflected back from the inter-
face and they are not shown in the plot of Fig. 3.

We also exhibit the calculated snapshot of the instanta-
neous density(or intensity) distribution of phonons in a sta-
tionary state in Fig. 4. Phonons are assumed to be emitted
continuously from the point sourceO with a given time in-
terval Dt=1310−3 d/c with a=d/4. The initial propagation
directions of phonons are uniform with an angular interval
Duk =0.18°. Also, we have subdivided thex-z plane into
small grids with side lengthsDx=Dz=5310−3 d and
counted the number of phonons in each grid to obtain a
phonon density distribution. Thus the darkness in Fig. 4(a)
represents the relative densities of phonons and we find that
they are focused at the focal pointF (h=0.672d, so b
=0.922 andg=5.92)21 as well as the pointG inside the lens.

Here we note that in the medium with a slower phonon
group velocity, the distance between the phonons emitted in
a consecutive time interval becomes small, giving a larger
phonon density distribution. This induces the phonon density
distribution apparently discontinuous at interfaces, which is
seen in Fig. 4(and also Fig. 6 below) calculated based on the
geometrical acoustic approximation. However, as shown in
Fig. 7 (in Sec. IV), there exists no real discontinuity in the
field intensity at the interfaces because the lattice displace-
ment should be always continuous. The abrupt changes in
phonon density at the interfaces are also understood by the
fact that the wave field is large in an elastic medium with a
small acoustic impedance but it is small in an elastic medium
with large acoustic impedance when we consider the elastic
wave propagation through an interface between the media
with an impedance mismatch. In the present example, dia-
mond has an acoustic impedance much larger than zinc and
hence the lattice displacement and the associated phonon
density is larger in zinc side of both interfaces.

Finally, it should be noted here that in Fig. 4 only a single
mode of phonons is considered and neither the effect of
transmission probability nor the effect of mode conversion at
the boundaries between regions I and II and II and III are
taken into account.

III. THE CASE OF HEXAGONAL CRYSTAL

Next we study how bulk crystalline solids resemble an
ideal lens analyzed in the preceding section. This can be
done first by relating the parametersb and g of the ideal
material to the mass density and elastic constants of an ex-
isting crystal. For this purpose we consider a hexagonal crys-
tal which has the rotationally symmetry about thez axis, a

FIG. 3. Wave fronts in the ideal lens system calculated in the
geometrical acoustic approximation withb=1 and g=2. Arrows
show a critical trajectory for which phonons have to travel with an
infinite velocity inside the lens(the region II).

FIG. 4. (a) A snapshot of phonon density distribution in thex-
z plane of an ideal lens system.(b) The relative phonon density
alongx=0 of (a). The density at the phonon sourcesz=−ad is nor-
malized to unity. Several contours at low phonon density are shown
in (a) by dashed lines. In these figuresa=0.25d andh=0.67d.
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favorable property to focus phonons in three-dimensional
space. Among three acoustic branches of phonons, only
those of the ST branch exhibit negative refraction effect if
the elastic constants satisfy an appropriate inequality. To see
this we note that the slowness curve of the ST phonons is
determined by

kz
2 =

1

2c33c44
fsc33 + c44drv2 − sc11c33 + c44

2 − c̃13
2 dkx

2 + D1/2g,

s11d

where cIJ is the Voigt elastic constants with two indices,
c̃13;c13+c44 and

D = fsc11c33 + c44
2 − c̃13

2 d − sc33 + c44drv2g2kx
2

− 4c33c44fc11c44kx
4 − sc11 + c44dkx

2rv2 + srv2d2g.

s12d

Also the group-velocity of ST phonons in thex-z plane of
a hexagonal crystal is

vx =
sc11 + c44drv2 − 2c11c44kx

2 − sc11c33 + c44
2 − c̃13

2 dkz
2
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2 3
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2 dkx

2 − 2c33c44kz
2
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2 3
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For a hexagonal crystal the ratioR of the elastic constants
defined by

R=
c̃13

2

c11sc33 − c44d
s15d

is an important parameter related to the shape of the slow-
ness surfaces. ForR.1 the slowness surface of the ST
branch is concave along thekz direction and exhibits the
negative refraction for phonons.14,15 This inequality is satis-
fied, for example, by zincsR=2.09.1d.22

Comparing the terms up toOskx
2d in Eq. (11) with Eq. (2),

the parametersb and g are expressed in terms of the mass
density and elastic constants of the hexagonal crystal. Thus
we find

b =
− cl

2

ctc
s1 − Rd, s16d

g =
c

ct
F1 −

cl
2

c2s1 − RdG , s17d

wherec11=rcl
2 andc44=rct

2.
As far as we know, zinc is the best hexagonal crystal that

has a large elastic anisotropy suitable for a lens material. In
order that the phonons impinging on the slab lens are sub-
jected to negative refraction irrespective of their wave vector
directions, an elastically hard material with a small size of
the slowness surface is required for a substrate of the lens.
Hence, to demonstrate the lensing effect of zinc and compare

with the case of ideal lens, we assume diamond(with isotro-
pic approximation) as the isotropic media in the regions I
and III, and thusc is the transverse sound velocity in dia-
mond.

The slowness and group-velocity curves of ST phonons in
zinc are compared in Fig. 5 with those of the ideal material
with b andg calculated from Eqs.(16) and(17).23 The slow-
ness curve in zinc well coincides with that of the ideal ma-
terial only over the concave region in betweenA and B
around thez axis. (The pointsA and B are the inflection
points of the slowness curve but in the three-dimensional
space they are the parabolic points with zero Gaussian cur-
vature.) Although the size of this concave region on zinc is
rather small, the negative refraction happens quite effectively
when the phonons radiated from a diamond substrate are
incident on a slab of zinc. We see in Fig. 5(b) that the group-
velocity curve of ST phonons in zinc coincides very well
with that in the ideal material in between the foldsA8 andB8
defining caustic directions. These pointsA8 and B8 corre-
spond to the inflection pointsA andB in the slowness curve.

For the diamond-Zn-diamond system assumed, the simu-
lated snapshot of the instantaneous density distribution of the
transverse mode(the ST mode inside the lens) has been il-
lustrated in Fig. 6(a). The calculation has been carried out
with the same condition as for Fig. 4. The focusing of

FIG. 5. Comparison of both the slowness and group-velocity
curves of phonons in the ideal lens material(bold solid lines) and
those of the slow-transverse phonons in zinc(dotted lines). (a) Sec-
tions of the slowness surfaces in the upper half of thekx-kz plane
(the slowness curve of the transverse phonons in diamond is also
illustrated by a thin solid line). (b) Sections of the group-velocity
surfaces in the upper half of thevx−vz plane. The points labeledA
andB in (a) are the inflection points of the slowness curve in Zn,
which correspond to the foldsA8 andB8 of the group-velocity curve
in (b).
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phonons at a pointF8 sz=1.61dd after transmitted through
the zinc slab can be seen, though not as sharp as the case
with the ideal lens material[Fig. 6(b)]. This focal pointF8 is
not identical to the pointF sz=d+h=1.67dd) of the ideal
case. However, the position ofF8 becomes closer toF when
the angle of incidence(measured from thez axis) is re-
stricted to a small value. The reason of this deviation of the
focal point is the existence of the defocusing components
that are originated from the phonons with wave vectors de-
flected outside the concave region of the slowness surface of
a zinc slab. However, the contribution of these defocused
components relative to the focused phonons is not very large.

Also the existence of sharp ridges in phonon density dis-
tribution is seen in Fig. 6(a), though they are absent for the
system with an ideal lens[Fig. 4(a)]. These ridges arise from
the folded structures in the group velocity curve and define
the phonon caustics. Here we note again that neither the
effect of transmission probability nor the effect of mode con-
version at the interfaces are taken into account in these cal-
culations.

IV. FINITE-DIFFERENCE-TIME DOMAIN
(FDTD) SIMULATIONS

In the preceding sections the lensing action of an aniso-
tropic elastic slab has been studied in the geometrical acous-
tic approximation and we have neglected the effects due to
wave nature of phonons, such as, the diffraction and interfer-
ence characteristic of finite wavelength, mode conversions,
and finite transmissions and reflections at interfaces. In order
to see these effects we have also performed FDTD simula-
tions for the sound wave propagation in the same diamond-

Zn-diamond system studied above. In the FDTD scheme we
have solved the elastic wave equations with acoustic mis-
match boundary conditions.19 Also Mur’s first-order absorb-
ing boundary conditions16 are applied to the outer boundaries
of the assumed system. The sound waves excited at a point
source(in the isotropic diamond region I) are the transverse
sTd mode, which are coupled to the longitudinalsLd waves at
the interfaces.

Figure 7(a) depicts the snapshot of the calculated dis-
placement amplitude, where initial transverse waves(with
the direction of polarization vector approximately parallel to
equiamplitude circular contours inside thex-z plane) are ex-
cited continuously at the pointO with a frequency v
=15c/d (the corresponding wavelength isd/15). At the in-
terfaces between diamond and zinc both intramode(T to ST
and vice versa) and intermode(T to L and vice versa) trans-
missions and reflections occur. These effects induced by
rather large acoustic impedance mismatch between zinc and
diamond as well as the deviation of the ST slowness surface
in zinc from the one in an ideal material should act to de-
struct the focusing of phonons and sound waves in the sys-
tem considered here. In spite of the presence of those effects,

FIG. 6. (a) A snapshot of the density distribution of transverse
phonons(slow-transverse phonons in zinc) in the x-z plane of a
diamond-Zn-diamond system calculated in the geometrical acoustic
approximation.(b) The relative phonon density alongx=0 of (a).
The density at the phonon sourcez=−a is normalized to unity. In
these figuresa=0.25d andh=0.67d for the comparison with Fig. 4.

FIG. 7. (a) A snapshot of the wave amplitude in thex-z plane of
the diamond-Zn-diamond system(same as for Fig. 6) calculated by
a finite-difference time domain(FDTD) simulation. The excited
wave in the region I is the transverse mode polarized inside the
x-z plane and the polarization direction is assigned approximately
parallel to the equiamplitude circular contours. The frequency as-
sumed isv=15c/d. (b) The relative amplitude alongx=0 of (a). (c)
The relative amplitude alongx=0 for v=5c/d. In these figures the
maximum wave amplitude in region I is normalized to unity, and
a=0.25d andh=0.67d for the comparison with Figs. 4 and 6.
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however, we find that the transmitted acoustic field is fo-
cused at the pointF9 near the focal pointF8 (about one
wavelength closer to the lens) found in the ray picture[Fig.
6(a)]. We can expect thatF9 becomes closer toF8 as the
frequency is increased further.

For comparison, the profiles of the wave amplitudes along
the z axis atv=15c/d andv=5c/d are shown in Figs. 7(b)
and 7(c), respectively. The focusing effect is more efficient at
higher frequencies. Figures 7(b) and 7(c) also indicate that
the transmitted amplitudes are quite large in region III, con-
trary to our naive expectation. Also the mode conversions
due to the coupling of waves with different polarizations at
layer interfaces do not seem to smear out the lensing effect.
The reasons can be discussed with the help of the transmis-
sion coefficients(Fig. 8) in the diamond-Zn-diamond system
described in the Appendix. First of all, we note that one of
the transverse modes polarized perpendicular to thex-z plane
is not excited by the initialT mode wave polarized in the
x-z plane.L phonons are produced by the mode conversions
at the interfaces but the resulting transmission coefficients
are small at angles close to the direction normal to the layer
interfaces where the focusing effect is strong for theT mode.
(For the normal incidence, oruk =0° of the T waves, the
mode-conversion rate to theL waves is exactly zero.) In
Fig. 8 a typical example of the transmission coefficient of the
L waves mode converted from the incidentT waves has been
shown foruk =25°, the angle ofT waves in diamond(region
I). It becomes as large as.0.5 for certain ranges of fre-
quency. For theT wave incidence theL waves in the focal
region (region III) are produced by the following two pro-

cesses.(A) L to L transmission at the II-III interface after the
mode-converted transmission fromT to L at the I-II inter-
face.(B) ST toL conversion at the II-III interface after theT
to ST mode-converted transmission at the I-II interface. In
these two processes(and foruk =25°) the propagation direc-
tions of the transmittedL waves in the focal region are the
same and 37.5° rotated away from the normal of the inter-
faces. This angle is large and thus the effect ofL waves
produced by the mode conversion becomes important only at
large propagation angles in the focal region(region III) and
is small at small angles close to the normal axis where the
focusing effect of theT waves is explicitly seen.

V. DISCUSSIONS AND CONCLUSIONS

Stimulated by the negative refraction of EM waves and
the related topic on the photon superlens, we have consid-
ered the conditions for a bulk elastic material which works as
a flat lens for phonons. Advantages of a single crystalline
solid (if it works) over other possible candidates for phonon
lenses such as phononic crystals is the fact that no frequency
dispersion exists up to several hundred GHz and also the
focusing of phonons in a three-dimensional space is possible
by using hexagonal crystals with transverse isotropy. How-
ever, we have found that the shape of phonon slowness sur-
face required for an ideal lens material should be a part of
ellipsoid (concave outward) that is quite different from the
one in an existing bulk crystal.

Despite this rather disappointing finding, the calculations
of the transverse phonon propagation based on the ray pic-
ture shows that the majority of phonons passing through the
slab of hexagonal zinc crystal with large elastic anisotropy
exhibit negative refraction and are focused at a point close to
the focal point of the ideal lens. This is because, for a finite
range of wave vector directions around the normal of the slab
lens, the shape of the slowness surface for the ST phonons in
zinc coincides well with the one required for an ideal lens.

Actually, for phonons there exist three different polariza-
tions and the associated mode conversions at interfaces of
elastically dissimilar media as well as the finite-wavelength
effects. The latters become significant when the wavelength
is comparable to the lens thicknessd, for instance. The
FDTD simulations for the sound wave propagation taking
account of these additional effects still reveal the focusing
effect for the transmitted transverse sound waves similar to
the one expected with the ray picture.

Evidently, more elaborated analysis on the lensing action
of artificially designed elastic materials such as three-
dimensional phononic crystals is necessary. However, our
results suggest that a simple slab structure of zinc can focus
phonons and sound waves emitted from a point source quite
effectively. Thus, a slab of bulk solid has a potential to be
used for locally concentrating vibrational energy that is radi-
ated(in a wide range of directions) from a point source in an
isotropic elastic medium. This effect can then be utilized for
a heating of a small spot in an isotropic solid, for example.

The present study would stimulate to further efforts for
finding or designing better anisotropic media working as a
flat lens for phonons in a various frequency range. Also the

FIG. 8. The transmission coefficients of the transverse(solid
lines) and longitudinal(dotted line) phonons from diamond to dia-
mond through the zinc layer of thicknessd. The horizontal axis is
the normalized wave number(or frequency) in diamond. The inci-
dent wave is the transverse mode same as for Fig. 7 and the angles
of incidenceuk in diamond measured from thez direction (the
interface normal) are assumed to be 0°(thin solid line) and 25°
(bold solid line and dotted line). At uk =25° for the transverse mode
in diamond the angle of transmission of the longitudinal mode in
diamond is 37.5°.(Incidentally, the group-velocity directions in
zinc is 29.7° and −17.2° for the longitudinal and transverse modes,
respectively.) It should be noted that the transmission coefficient of
the longitudinal phonons is zero foruk =0°.
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analysis and comparison with the cases of two dimensional
and three dimensional phononic crystals exhibiting a lensing
action should be interesting. These studies are currently un-
der way.
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APPENDIX

In order to understand the sharpness of the focused acous-
tic field observed in the FDTD calculation, we analyze in this
Appendix the transmission coefficients of sound waves
through the diamond-Zn-diamond system. The acoustic mis-
match model yields the transmission coefficients ofT andL
waves(incident mode is transverse) versus wave number for
two typical angles of incidenceuk =0 anduk =25° in diamond
as shown in Fig. 8(for uk =0 the transmission coefficient of
L waves is zero). For propagation directions oblique to the

layer interfaces, i.e.,uk Þ0, the expressions for the transmis-
sion coefficients are very complicated. But for the normal
incidenceuk =0 the two acoustic modes(T andL) compris-
ing the sagittal mode are decoupled from each other and the
transmission coefficientuaTu (defined by the modulus of the
transmitted amplitude relative to the amplitude of an incident
wave) of the T mode is expressed as

uaTu = F1 +
1

4
S ZC

ZZn
−

ZZn

ZC
D2

sin2svd/ctdG−1/2

, sA1d

where ZC and ZZn are the acoustic impedances of theT
modes in diamond and zinc, respectively. Thus at the fre-
quencies satisfyingv=npct /d, sn=0,1,2, . . .d the resonance
occurs suaTu=1d but at v=sn+1/2dpct /d the transmission
becomes minimum and for the present case the minimum
value is uaTumin=0.734. Thus, we see that the transmission
coefficient is rather large in spite of the fact that diamond
(with ZC/ZZn=2.27) is chosen for the substrate material. At
an oblique angle of incidence the transmission coefficient of
T waves becomes more or less smaller comparing with the
case of the normal incidence but there still exist resonances
for certain magnitudes of wave vectors.
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