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Electromigration phenomena in metallic lines are studied by using a biased resistor network model. The void
formation induced by the electron wind is simulated by a stochastic process of resistor breaking, while the
growth of mechanical stress inside the line is described by an antagonist process of recovery of the broken
resistors. The model accounts for the existence of temperature gradients due to current crowding and Joule
heating. Alloying effects are also accounted for. Monte Carlo simulations allow the study within a unified
theoretical framework of a variety of relevant features related to the electromigration. The predictions of the
model are in excellent agreement with the experiments and in particular with the degradation towards electrical
breakdown of stressed Al–Cu thin metallic lines. Detailed investigations refer to the damage pattern, the
distribution of the times to failure(TTFs), the generalized Black’s law, the time evolution of the resistance,
including the early-stage change due to alloying effects and the electromigration saturation appearing at low
current densities or for short line lengths. The dependence of the TTFs on the length and width of the metallic
line is also well reproduced. Finally, the model successfully describes the resistance noise properties under
steady state conditions.

DOI: 10.1103/PhysRevB.70.174305 PACS number(s): 66.30.Qa, 85.40.Qx, 85.40.Ls, 64.60.Ak

I. INTRODUCTION

The phenomenon of electromigration(EM) is typical of
metallic conductors and consists of a nonsteady atomic trans-
port driven by electronic currents of high density.1,2 The non-
steady atomic transport gives rise to the formation and
growth of voids and hillocks in different regions of the con-
ductor (EM damage).1,2 This damage cumulates progres-
sively and, when the current is applied for a sufficiently long
time, a void grows enough to break completely the metallic
line, implying an irreversible failure process. The time re-
quired for this process defines the time to failure(TTF) of
the metallic line1,2 (though alternative failure criteria can be
found in the literature1–3). The importance of EM is largely
due to the fact that it is the most common mechanism of
failure of the metallic interconnects present in any electronic
device.1–3 As a consequence, a huge number of
experimental4–16 and theoretical17–25 studies have been and
are yet devoted to the subject, especially in the context of
modern nanoelectronics.

The central issue in EM degradation phenomena is the
determination of the TTF and its statistical properties.1–3

TTFs are measured under very high stress conditions(cur-
rents and temperature much higher than those corresponding
to the usual operating conditions of the devices) in the so
called accelerated tests.1,2 The extrapolation to normal oper-
ating conditions is generally performed on the basis of three
frequently adopted assumptions.1,2 First, TTFs are taken to
follow a lognormal distribution(which means that the loga-
rithms of TTFs are normally distributed). This distribution is

then characterized by two parameters: the median time to
failure, t50, and the shape factor,s, where t50 is the time
corresponding to the failure of 50% of the lines in the statis-
tical sample ands is the lognormal root-mean-square
deviation.1 This distribution has been observed in many EM
failure tests1–3,7,8,14 and, recently, new testing techniques14

allowing the analysis of very large statistical samples, have
shown that the TTF distribution follows a perfect lognormal
behavior down to four shape factors.14 In spite of this evi-
dence, no satisfactory eplanation has been given until now
for the lognormality of the TTF distribution.1,2,18

The second assumption concerns the independence of the
distribution shape factor of the stress conditions. Actually,s
was found to be independent of temperature in all the range
of values usually considered in accelerated tests.1–3,7,8,14On
the contrary, a broadening of the distribution has been ob-
served at the lowest current densities used in these tests.3,7,8

This broadening of the distribution at low stress conditions
has crucial implications on the evaluation of the minimum
time to failure, i.e., the time corresponding to the first failure
of a line of the family.7,8 We will discuss this point in Sec.
III B together with the results of our simulations.

The third assumption concerns the validity of the follow-
ing empirical law, known as Black’s law,1,2,26 relating t50 to
the current density,j , and temperature,T:

t50 = Cj−n expF E

kBT
G , s1d

whereC is a fitting amplitude,n the so called current expo-
nent,E the EM activation energy andkB the Boltzmann con-
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stant. The validity of this law is confirmed by many
experiments.1–3 However, the simple power law behavior de-
scribed by Eq.(1), generally holds in a limited range of
intermediate current densities.1–3 At high current densities,
another power law with a different(higher) exponent is fre-
quently observed and usually attributed to Joule heating
effects,1–3,23while at low current densitiest50 deviates from a
power law, showing a tendency to diverge.2,7 Furthermore,
even in the intermediate range ofj values, there is no agree-
ment in the literature about the value of the current
exponent.1–3,17,23We will come back on this subject in Sec.
III B, discussing our results.

The geometry of the line plays a crucial role on the EM
damage.1–3,9,27 In fact, the depletion and accumulation of
mass in different regions of the film, under the driving force
exerted by the electronic current, determines the growth of
mechanical stress gradients. The last ones give rise to an
atomic back-flow which contrasts the EM process.1,2,27 As
the strength of these gradients depends strongly on the line
geometry,1,2,9,27 geometrical parameters have a fundamental
role in the occurrence of failures. In particular, the competi-
tion between the driving force of the electronic current and
the action of mechanical stress gradients, results in the exis-
tence of a current density threshold below which EM is
stopped.27 This condition was expressed by Blech and
Herring27 in the following equation which relates the thresh-
old current density with the length of the line:

s jLdc =
sVaDsd
srZ * ed

, s2d

whereVa is the atomic volume,Ds is the maximum value of
the mechanical stress difference between the line terminals
that a line of lengthL can bear,r is the resistivity of the line,
e the electronic charge andZ* an average effective
charge.1,2,27 Equation (2), known as Blech’s law,27 defines
the so called threshold product,s jLdc. We will discuss the
role of the line geometry on the EM failure process in Sec.
III C.

Another fundamental ingredient in the understanding of
the EM damage of interconnects is represented by the granu-
lar structure of the materials employed, Al, Cu, Ag, Al alloys,
etc.1–3 Furthermore, it must be noted that a high degree of
disorder is usually present in alloy films(typically Al–Cu,
Al–Si) due to alloying effects2,10,11,28–30 and to thermal
gradients.1,2

A large number of models has been proposed for the study
of EM.17–25 Many of them are microscopic models which
address the problem of identifying the mechanisms respon-
sible for the degradation process in terms of the peculiarities
of the material considered.19,21,22,24,25Then, by using appro-
priate kinetic equations, some specific features of the damage
process are determined and compared with
experiments.19,21,22,24,25If the peculiarities of the material are
sufficiently well accounted for, the predictivity of these mod-
els is very high19,21,25and therefore they can be very useful
for applicative purposes. However, the approach used by
many of these models intrinsically limits their predictivity to
some specific features of the EM damage.

Another class of EM models has also been developed in
the literature,20,28 based on a “coarse grain” random resistor
network(RN) approach.31–34Actually, the use of this kind of
model is particularly appropriate in consequence of the
granular structure of the materials used for the interconnects.
Indeed, it has been observed that the atomic transport
through grain boundaries and interfaces(transport channels)
far exceeds that through the bulk of the grains.1,2 Therefore,
it is generally possible to neglect mass transport everywhere
except within these channels and to describe the film as an
interconnected network of atomic conducting paths.1

Bradleyet al.20 were the first to propose and apply to the
study of EM a kinetic version of the random fuse model.35

The dynamic fuse model introduced by these authors20

adopts a failure criterion for the elementary resistor of the
network suitable for the description of the EM process. The
predictions of this model concerning the damage pattern and
TTFs (maximum and minimum TTF, relationship of the me-
dian time to failure with the current, the temperature and the
line geometry) shows the effectiveness and the potentiality of
the resistor network approach.20 However, the model of Bra-
dley et al.cannot describe many other features of EM. In fact
this model, though giving a good description of the driving
force of the electronic current, does not take into account the
antagonist action exerted by mechanical stress gradients. On
the other hand, the competition between these two effects is
essential for giving rise to a threshold current for EM.1,2

Therefore, all the phenomenology related to the Blech’s
law1,2,9,27 and saturation effects9 cannot be accounted for
within Bradley’s model. Moreover, this model completely
neglects Joule heating effects which are present in the high
stress condition.1,2

Here, we illustrate a theoretical approach to EM which
aims at studying the different features associated with this
phenomenon within a unified theoretical framework. Simi-
larly to the approach of Bradleyet al., our study is performed
by renouncing to provide a description of the kinetics at an
atomistic level and by adopting the RN approach, thus focus-
ing on the correlations established by the electronic current
among the different components of the system(grains, clus-
ters of grains, interfaces, etc., i.e. atomic transport channels).
However, in contrast to the dynamic fuse model,20 we use the
biased percolation model,36,37 which adopts a probabilistic
failure criterion for the elementary resistor of the network.
The EM damage is described in terms of competition be-
tween two biased stochastic processes taking place in a re-
sistor network.28 Then, by means of Monte Carlo(MC)
simulations, we are able to study a variety of relevant fea-
tures of EM degradation. Early stage results have been pre-
sented in Refs. 28 and 38. In this article, we present a com-
prehensive study which includes many fundamental new
features.

As a first we will show results concerning the damage
pattern, the resistance evolution and alloying effects. Then,
large attention will be devoted to the behavior of TTFs. We
will show that the model correctly predicts a lognormal dis-
tribution for them, perfectly superimposing with the experi-
mental one. The dependence of the parameters of the TTF
distribution on temperature and current has also been inves-
tigated. Black’s law1,2,26has been recovered not only for low
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but also for high current values and the current exponents are
in good agreement with the experimental results in both
cases. By using a rectangular geometry, the dependence of
TTFs on the length and width of the metallic line has been
investigated, so that, for a fixed width, Blech’s law1,2,27 has
been tested and a general expression has been obtained for
the dependence of TTFs on both length and width. Finally,
but not of minor interest, we have considered resistance satu-
ration effects9 and the properties of resistance fluctuations,
by focusing on the non-Gaussianity of the distribution and on
their power spectrum. Thus, our approach is able to account
for a phenomenological scenario much wider than that con-
sidered by all existing EM models.

Finally, we emphasize the fact that the interest in EM
phenomena is not limited to strictly applicative and practical
purposes. Indeed, the understanding of nonequilibrium and
failure phenomena in disordered systems represents a funda-
mental topic which has attracted a large attention in the re-
cent literature.31–37,39–46In this respect, it must be noted that
EM, which occurs in granular materials, in the presence of a
significant disorder, driven by an external bias and contrasted
by growth of mechanical stress gradients, exhibits practically
all the main ingredients to represents a paradigmatic example
of a failure process in a disordered system.

The paper is organized as follows. In Sec. II we briefly
survey the theoretical model and define the parameters of
interest. In Sec. III we present the results in connection with
(A) resistance evolution,(B) stress conditions,(C) geometri-
cal effects,(D) resistance saturation and fluctuations. In Sec.
IV we draw the main conclusions.

II. MODEL

We describe a thin metallic line of lengthL, width W and
thicknessth as a two-dimensional resistor network of rectan-
gular shape and square-lattice structure. The network of re-
sistanceR is made byNL andNW resistors in the length and
width directions, respectively. The external bias, represented
by a constant voltageV or a constant currentI, is applied to
the RN through electrical contacts realized by perfectly con-
ducting bars at the left and right hand sides of the network.
Thus, the total number of network resistors(excluding the
contacts) is Ntot=2NLNW+NL−NW. Each resistor can be as-
sociated with a single grain, a small cluster of grains or an
interfacial path. By denoting withd the average size of the
grains, of the grain clusters or of the interfacial path, the
values ofNL and NW can be related to the ratiosL /d and
W/d, respectively. The network lies on an insulating sub-
strate at temperatureT0, acting as a thermal bath, and it is
made by three kinds of resistors:(i) regular resistors,(ii )
impurity resistors,(iii ) broken resistors. The regular resistors
are associated with grains of “normal” resistivity(void free).
The resistance of these resistors depends linearly on tempera-
ture, according to the expression

rreg,nsTnd = rreff1 + asTn − Trefdg, s3d

wheren is the resistor label,a the temperature coefficient of
the resistance(TCR), Tn the local temperature,Tref and rref
the reference values for the TCR. When the Joule heating is

negligible Tn=T0 and the regular resistors are all equal to
r0; rregsT0d. The impurity resistors of resistancer imp, r0 are
associated with the formation/dissolution of CuAl2 precipi-
tates (low-resistivity cluster) during the stress conditions.
Thus, they account for the variation in the alloy composition
during the EM test due to the electron wind and/or to thermal
effects(alloying effects).11,28–30Finally, the broken resistors
correspond to the presence of microvoids at the grain bound-
ary and, possibly, inside the grains. These broken resistors of
resistancerOP (OP stays for open circuit) are thus associated
with very high resistivity regions inside the line. Here, we
have takenrOP=109r0. The existence of temperature gradi-
ents due to current crowding and Joule heating effects is
accounted for by taking the local temperature of then-th
resistor(regular, impurity or broken) of resistancern given
by the following expression:37

Tn = T0 + AFrnin
2 +

B

Nneig
o
m=1

Nneig

srm,nim,n
2 − rnin

2dG , s4d

whereA is the thermal resistance of the single resistor,Nneig
is the number of first neighbors of then-th resistor,in the
current flowing in it andim,n is the current flowing in them
-th neighbor. The valueB=3/4 ischosen to provide uniform
heating of the perfect network, i.e. made by identical resis-
tors. Equation(4) is the Fourier equation written by taking
the simplifying assumption of instantaneous thermalization
of the resistor, i.e. by taking a stationary regime and neglect-
ing time dependent effects in the heat diffusion.47 Under this
hypothesis, the diffusive term must balance the term related
to the power supplied by the external current and generated
on the resistor or transmitted to it by mutual interactions. A
simplified form of Eq.(4), not including thermal exchanges
with neighbor resistors, has been first proposed by Ginglet
al.36 For a perfect48 or nearly perfect network of resistance
R0, when a mean-field approach is meaningful, the average
temperature increase is thus49

DT = AR0I
2/Ntot ; uR0I

2, s5d

whereu=A/Ntot is the structure thermal resistance.1,2

The EM damage, consisting of the formation of micro-
voids under the action of the electron wind, is simulated by a
stochastic process of resistor breaking. In other terms, we
consider that the transformation of then-th resistor(regular
or impurity) into a broken one,rn→ rOP, can occur with
probability WOP,n. By adopting the biased percolation
model,36,37 we have taken the following expression for
WOP,n:

WOP,n = expf− EOP/kBTng, s6d

whereEOP is a characteristic activation energy. In fact, Eq.
(6) coupled with Eq.(4) implies that the void formation pro-
cess is a biased percolation.36,37 This means a probability of
breaking a resistor(generation of microvoids) higher for re-
sistors crossed by high current values.36,37Thus, the breaking
probability is nonuniform for the different resistors in the
network and it changes with time. We note thatWOP,n de-
pends on the current distribution, which in turn depends on
the network configuration.36,37As the last one results from a
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progressive accumulation of damage, the history of the net-
work is partly accounted for by the biased percolation model.

The effect of the atomic back-flow, which contrasts the
EM, is simulated by introducing a recovery process consist-
ing in a stochastic healing of the broken resistors.28,49,50

Therefore, the transformationrOP→ rreg,n is allowed with
probability

WR,n = expf− ER/kBTng, s7d

whereER is a recovery activation energy. Furthermore, the
variation of the line composition due to alloying effects is
described by allowing the stochastic transitions:28 rreg,n
→ r imp and r imp→ rreg,n, occurring with probabilitiesWRI,n
=expf−ERI/kBTng and WIR,n=expf−EIR/kBTng, respectively,
whereERI andEIR are two characteristic activation energies.
By adopting this description of alloying effects, we are lim-
iting ourself to consider the change in the elementary resis-
tances due to a variation inside any grain or cluster of grains
(single resistor) of the number of Cu atoms dispersed in the
matrix or present in small CuAl2 precipitate.28

The initial configuration of the RN can contain some ini-
tial concentrations of broken and impurity resistors,pini and
pini

imp, respectively. Alternatively this initial configuration can
be chosen as the perfect one:pini =0 andpini

imp=0. The net-
work evolution is obtained by Monte Carlo simulations
which are carried out according to the following iterative
procedure.

(i) Starting from the initial network, we calculatehinj and
the network resistanceR by solving Kirchhoff’s loop equa-
tions. Moreover, we calculatehTnj by using Eq.(4).

(ii ) OP and r imp are generated with the corresponding
probabilities WOP and WRI and the remainingrreg are
changed according tohTnj. Then hinj and hTnj are recalcu-
lated.

(iii ) OP andr imp are recovered with probabilitiesWR and
WIR, respectively, and the resistancesrreg are changed again
according tohTnj.

(iv) hinj, hTnj andR are recalculated.
This procedure is iterated from(ii ), thus the loop(ii )–(iv)

corresponds to an iteration step, which is associated with a
unit time step on an arbitrary time scale to be calibrated by
comparison with experiments. Depending on the parameter
values, which are related to the physical properties of the line
and to the external conditions, the two following possibilities
can be achieved during the iteration procedure: irreversible
failure or steady-state evolution. In the first case, at least one
percolating cluster of broken resistor(i.e., a cluster connect-
ing the top and the bottom of the network) is formed and
thus the resistanceR diverges.32 In the second case, the net-
work resistance fluctuates around an average valuekRl (satu-
ration value).49,50 The average over the statistical ensemble
(different realizations of the failure of networks with the
same parameters and in the same external conditions) of the
values of the fraction of broken resistors corresponding to
the appearance of at least one percolating cluster, is called
the percolation threshold and it is denoted aspc.

32

To check the model we have considered EM tests per-
formed with a standard median time to failure technique1,2

on Al-0.5%Cu lines. The tests have been carried out at dif-
ferent currents and temperatures by adopting a 2-metal level
configuration with tungsten vias1,2 and by using a 20% rela-
tive resistance variation as the failure criterion. The lines
used in the tests were 3000mm long, 0.45mm wide and
0.8 mm thick. The last thermal treatment undergone by these
lines occurred during fabrication and it consisted of a high
temperature annealing followed by a rapid cooling. This
treatment left a nonequilibrium concentration of Cu dis-
solved into the Al matrix. Therefore, in the early stage of the
EM test, the heating associated with the stress conditions
gives rise to a formation of CuAl2 precipitates. The low re-
sistivity of these clusters and, mainly, the reduction of the
internal disorder, i.e. the reduction of the number of scatter-
ing centers of Cu in the solid solution, cause an initial de-
crease of the line resistance.11 Here, we consider the data
obtained atT=492 K, shown in Ref. 28, and the data ob-
tained atT=467 K, reported in the following section. In both
cases the stress current density wasj =3 MA/cm2. The resis-
tance of the lines at the reference temperatureTref=273 K
was Rref

line=269V (averaged over a family of 40 samples),
while the TCR was 3.6310−3 K−1.

The values of the parameters used in the simulations have
been chosen as follows. We have taken the values corre-
sponding to the actual stress conditions and to the physical
parameters of the metallic line whenever possible, i.e., when-
ever it was possible to make a direct correspondence with the
model parameters and the line properties and when this
choice was not too heavy computationally. The remaining
parameters have been chosen to fit the experimental results
and/or to reduce the computational effort. Concerning this
point, we notice that the present approach allows for a direct
simulation of lines with ratioL /W up to <150. To describe
the resistance evolution of lines characterized by higher val-
ues of this ratio, as the lines tested in the experiments shown
in the next section(whereL /W=6667), we have adopted the
following further approximation. The network is taken to
represent the region of dominant void growth inside a longer
line, i.e., the region responsible for the resistance variation of
the line. We can take the length of this region given byL /F,
whereF is an integer number. Thus, in the initial conditions,
R0,line=FR0. On the other hand according to the above as-
sumption we haveDRline=DR. Therefore, the relative resis-
tance variation of the whole line can be expressed as
DRline/R0,line=s1/FdsDR/R0d. We underline that this approxi-
mation is used only to check the model by a direct compari-
son of the measured resistance evolutions of long lines(Fig.
2, later) and the evolutions calculated by the present model
(Fig. 3, later). All the other results concern short lines and do
not make use of the above approximation.

Thus, except when differently specified, we have used the
following values of the parameters:NW=12, NL=400,F=1,
T0=492 K, I =JWth=10.8 mA(which corresponds to the val-
ues of j , W and tth used in the EM tests cited above), a
=3.6310−3 K−1, Tref=273 K, rref=0.048V, r imp=0.016V.
For the long lines used in the EM tests, whenF=200, this
value of rref provides the correct value forRref

line, reported
above. Moreover, we have takenA=2.73108 K/W. Accord-
ing to Eq.(5), this value ofA provides an initial heating of
the network of 8.3 K, comparable with that estimated in the
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experiments of Ref. 28. The initial network configuration
corresponds topini =0 and pini

imp=0. Furthermore, we have
taken EOP=0.41 eV andER=0.35 eV as reasonable values
for the activation energiesEOP and ER. We notice that the
value ofEOP controls the range of the time scale, neverthe-
less this range is in any case arbitrary within our model.
Thus, the value ofEOP can be considered as a free parameter
which can be chosen with the purpose of saving computa-
tional time. More crucial is the choice ofER, whose value
sets the importance of the recovery process,49 i.e. the
strength of the atomic back-flow due to the mechanical
stress. Consequently with this choice ofEOP and ER, the
values ofERI and EIR have been taken sufficiently small to
account for the separation of the temporal scales of the void
formation and of the alloying processes, observed in the ex-
periments. Here, we have takenERI=0.22 eV and EIR
=0.17 eV.

III. RESULTS

A. Resistance evolution

A typical resistance evolution and the corresponding dam-
age pattern near the final failure are reported in Figs. 1(a) and
1(b), respectively. In this caseNL=48 while all other param-
eters take the values specified at the end of the previous
section. In Fig. 1(a) we observe a resistance drop at the early
stages of the evolution due to the generation of impurity
resistors. This processrreg,n→ r imp simulates the variation of
composition of the line associated with the initial precipita-
tion of part of the Cu dissolved in the Al matrix, as discussed
in Sec. II. On the other hand, this process together with the
antagonist one,r imp→ rreg,n, takes place on a time scale that
is much shorter than that associated with the generation of

broken resistors. Therefore, after a given amount of time
(relaxation time of the alloying process), the concentration of
the impurity resistors reaches its steady-state value28 corre-
sponding to the temperatureT0+DT. On a longer time scale,
the fraction of broken resistors increases and the network
becomes more and more unstable. This implies an increase
of both the resistance value and the resistance fluctuations, as
shown in Fig. 1(a). Finally, at a given time(time to failure)
the fraction of broken resistors reaches the percolation
threshold andRstd diverges. Figure 1(b) reports the damage
pattern just before the final failure. Precisely, this figure
shows the temperature distribution inside the network: the
broken resistors are the missing ones while the different gray
levels, from black(cold) to white (hot), correspond to differ-
ent Tn values ranging from the substrate temperature up to
700 K, with a temperature step of 10 K. The damage pattern
mainly consists of a channel of broken resistors elongated in
the direction perpendicular to the current flow, a characteris-
tic feature of the biased percolation.36,37This simulated dam-
age pattern reproduces well the experimental pattern ob-
served by scanning electron or x-ray microscopy in metallic
lines which are failed due to EM.1,2,15,16

Figure 2 shows the resistance evolutions of seven Al–
0.5%Cu lines measured in the EM tests performed atT
=467 K, as described in Sec. II. These lines were stressed by
a current densityj =3 MA/cm2 which corresponds toI
=10.8 mA. Figure 3 reports the resistance evolutions ob-
tained by simulations. Here, different curves correspond to
different realizations of failure. In this case, we have taken
NW=12, NL=400, F=200, T0=467 K, rref=0.044V, r imp
=0.006V, pini =s2.5±0.2d310−2 (the broken resistors in the
initial network configuration are supposed uniformly distrib-
uted), while the remaining parameters have the same values
specified at the end of Sec. II. The time scale in Fig. 3 has
been calibrated according to the following procedure. The
statistical sample tested in the experiments was composed by
thirteen lines and the resulting median time to failure,t50,
was:t50,exp<1.33106 s. A sample of thirteen simulated fail-
ure realizations was considered and the correspondingt50,sim
was calculated in units of iteration steps. From these two
values, we obtained the valueDt=185 s for the time interval

FIG. 1. (a) Typical resistance evolution of a 12348 network.
The values of all the other parameters are specified at the end of
Sec. II. The stress conditions areI =10.8 mA andT0=492 K. The
resistance is expressed in Ohm and the time in arbitrary units cor-
responding to the number of iteration steps.(b) Damage pattern at
the iteration stept=2150 of the evolution shown in(a). The differ-
ent gray levels, from black to white, are associated with differentTn

values, ranging from 492 to 700 K with a step of 10 K.

FIG. 2. Experimental resistance evolutions of seven Al-
0.5%0.5Cu lines stressed atT=467 K by a current densityj
=3 MA/cm2 (which corresponds toI =10.8 mA within the model).
The resistance is expressed in Ohm and the time in seconds.
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to be associated with each iterative step. The comparison
between Figs. 2 and 3 shows that the calculated evolution of
the resistance well reproduces the main features of the ob-
served evolution. We note that a small discrepancy between
measured and simulated evolutions appears just before the
failure, where the abrupt increase of the resistance shown by
the simulated curves contrasts with a pre-failure increase of
the resistance generally present in the experimental ones.
This discrepancy is partly due to the factor 1/F relating the
relative resistance variation of the network with that of the
metallic line. In fact, the simulated evolutions obtained for
short lines, see Fig. 1(a), when the full metallic line can be
directly simulated and the approximation adopted for long
lines can be avoided(i.e., F=1), also display a pre-failure
region.

The agreement is further confirmed by the comparison
between the distributions of the measured and calculated
TTFs reported in Fig. 4. This figure shows on a lognormal
plot51 the cumulative distribution function(CDF) of the fail-

ure probability as a function of the times to failure obtained
from the EM tests(full circles) and simulations(open
circles) considered above. The agreement between experi-
ments and simulations is excellent and the shape factor of the
two distributions iss=0.16 in both cases. Thus, the direct
comparison of the results of the model and of the EM tests,
shown in Figs. 2–4, validate the present computational ap-
proach for the study of EM failures.

As anticipated in Sec. I, two central problems encountered
in the study of EM phenomenon concern the role played by
the stress conditions and the line geometry on the damage
process.1,2,27Therefore, with the purpose of further checking
the predictivity of the model and of extracting new informa-
tion from it, we have calculated the effect on TTFs of tem-
perature, stress current, length and width of the lines. To
contain the computational effort and to avoid the approxima-
tion used for long lines, the study has been limited to short or
moderately short lines. Thus, in the following we will dis-
cuss the results of simulations carried out by takingF=1, by
varying T0, I, NL, NW, while keeping all the remaining pa-
rameters to the values specified at the end of Sec. II.

B. Stress conditions: Temperature and current effect

We start by considering the effect of temperature on the
times to failure of 20 networks of sizes 123400 stressed by
a current ofI =10.8 mA. Accordingly, we analyze the depen-
dence on temperature oft50 ands, the two parameters which
determine a lognormal distribution. We consider fourteen
values ofT0 ranging from 400 K to 800 K, a considerably
wider range with respect to standard accelerated tests.1,2 Fig-
ure 5 shows the cumulative distribution functions of the fail-
ure probability calculated forT0=800 K (triangles left), T0
=650 K (open squares), T0=467 K (open circles) and T0
=400 K (triangles down), while the solid lines fit the CDFs
with lognormal distributions. These fourT0 values are se-
lected as representative for the behavior ofs. Indeed, we
have found thats is nearly independent of temperature in a
wide range of intermediate temperature values, while it in-

FIG. 3. Calculated resistance evolutions of the Al-0.5%Cu lines
in Fig. 2. The simulations have been performed by takingT0

=467 K andI =10.8 mA. The value of the remaining parameters are
specified in the text. The resistance is expressed in Ohm and the
time in seconds by using the valueDt=185 s for the time interval
associated with each iterative step(see the text).

FIG. 4. Lognormal plot of the cumulative distribution function
of the failure probability(expressed in percentages) as a function of
the time to failure:(full circles) TTFs experimentally measured and
(open circles) calculated by the model. The data correspond to the
same statistical samples considered in Figs. 2 and 3, respectively.
The stress conditions areT0=467 K andI =10.8 mA. The dashed
line fits the CDFs with a lognormal distribution.

FIG. 5. Lognormal plot of the cumulative distribution functions
of the failure probability(expressed in percentage) as a function of
the time to failure. The different functions are calculated at different
substrate temperatures:T0=800 K (triangles left), T0=650 K (open
squares), T0=467 K (open circles), T0=400 K (triangles down).
The stress current isI =10.8 mA. The solid lines fit the CDFs with
lognormal distributions.
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creases significantly at low temperatures and decreases at the
highest temperatures considered here. The broadening of the
distribution at low temperatures and its narrowing at high
temperatures witness the different importance of the network
microgeometry in the two extreme stress conditions of 400
and 800 K, respectively. Indeed, the network microgeometry,
resulting from the stochasticity of the defectiveness, give rise
to a kind of network individuality. At very high stress, the
differences in the network microgeometry loose their impor-
tance. The contrary occurs at low stress, where this diversity
becomes of importance in determining the actual TTF. We
underline that the broadening of the TTF distribution at low
temperatures has important implications in the interpretation
and use of the results of accelerated EM tests. In fact, when
evaluating the reliability of a family of lines under standard
operating conditions(usually close to room temperature and
relatively low current density), it is crucial to estimate not
only t50 but also the minimum time to failure.7,8 The deter-
mination of these two quantities is usually obtained from
accelerated tests performed at high temperatures on a statis-
tically significant, but in any case small, sample of the entire
family. Then, the estimate of the minimum time to failure of
the family is obtained by an extrapolation of the CDF in the
region of low failure probability.7,8 Such an estimate is very
sensitive to a possible broadening of the TTF’s distribution at
the operation temperature. For this reason it is crucial to
estimate and to take into account the dependence ofs on
temperature. We remark that the increase ofs at low tem-
peratures is a source of the following apparent paradox:8 the
minimum time to failure at low temperatures can be shorter
than the minimum time to failure at high temperatures. We
will face a similar paradox by discussing the dependence ofs
on the current.8 Solutions to this apparent paradox has been
proposed in the literature,8,14 based on the necessity of test-
ing large samples and on the introduction of a three param-
eters lognormal distribution, where the third parameter is a
characteristic incubation time.8

The analysis of the temperature dependence of the TTFs
is completed by Fig. 6 which displays on a linear-log scale
the calculated values oft50 as a function of the inverse of the
substrate temperature. Here, the dashed line is the best fit

obtained with the functionZ expfE/kBT0g, whereZ is a fit-
ting amplitude. Thus, the calculated values oft50 perfectly
follow, within the numerical uncertainty, the Black’s law1,2,26

discussed in Sec. I. The value ofE extracted from the fit is
E=0.41 eV; thusE=EOP, and we can identify the activation
energy of the resistor breaking process with the EM activa-
tion energy.

To investigate the effect of current on the failure process,
we have calculated the TTFs of 123400 networks stressed
at T0=492 K by different (thirteen) current values in the
range 5.0–60 mA. For each current values andt50 have been
determined by considering twenty realizations of failure.
Figure 7 shows the CDFs of the failure probability versus
failure time, calculated forI =7.5 mA (triangles down), I
=30 mA (open squares), I =60 mA (open circles). The solid
lines fit the CDFs with lognormal distribution. We have
found that the shape factor of the distribution exhibits a
minimum at intermediate values ofI. Thus, we can identify
two regions of current values: a moderate current(m.c.) re-
gion, wheres decreases at increasing current, and a high
current(h.c.) region, wheres increases at increasing current.
Such a broadening of the TTF’s distribution at low currents
has been actually observed in several EM tests.7,8 Its impli-
cations concerning the evaluation of the reliability of metal-
lic lines are similar to those previously mentioned in connec-
tion with the effect of temperature. A detailed discussion of
these problems can be found in Ref. 8. Here, we underline
that the non-monotonic behavior ofs versus current contrasts
the general monotonic behavior found versus temperature.
This non-monotonic behavior ofs can be understood by con-
sidering also the dependence oft50 on the current that is
reported in Fig. 8. More precisely, we show in the inset of
this figure a log-log plot of the calculated values oft50 versus
I. We can see thatt50 exhibits two power-law regions. A first
one is in the moderate current region and is characterized by
a current exponentn=2.1, in good agreement with Black’s
law.17,26 A second power-law with a higher exponent,n
=5.7, is found in the high current region. We notice that
similar behaviors at high current densities have actually been

FIG. 6. Median time to failure,t50, as a function of the inverse
substrate temperature. The median times to failure are expressed in
arbitrary units and the temperature in K. The stress current isI
=10.8 mA. The dashed line is the fit with the exponential function
Z expf4700/T0g.

FIG. 7. Lognormal plot of the cumulative distribution functions
of the failure probability(expressed in percentage) as a function of
the time to failure. The different functions are calculated at different
stress currents:I =7.5 mA (triangles down), I =30.0 mA (open
squares), I =60.0 mA (open circles). The substrate temperature is
T0=492 K. The solid lines fit the CDFs with lognormal
distributions.
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observed in EM measurements and are frequently reported in
the literature.1–3 Furthermore, the same inset of Fig. 8 shows
that t50 drastically increases at the lowest currents. Here, for
I =4.0 mA the networks are found to remain stable over more
than 53105 iterations. This strong increase oft50 is associ-
ated with the existence of a threshold current,IB, below
which a steady state condition is achieved, manifesting itself
in a saturation of the network resistance. Accordingly, for
I , IB the electrical breakdown no longer occurs. For this
reason, in Fig. 8 the region corresponding toI , IB is evi-
denced in gray. Previous investigations of the general prop-
erties of the model, reported in Refs. 49, have shown the
existence of this threshold. Some of the properties of the
steady state of the network will be discussed later in connec-
tion with the results concerning resistance noise and we refer
the reader to Refs. 49 for a deeper analysis of these proper-
ties. We emphasize that this sharp increase oft50 at low cur-
rents has also been observed in EM tests.2,7 Therefore, the
dependence oft50 on the current obtained by simulations
agrees with the behavior measured over the full range of
current values. To complete the analysis, Fig. 8 reports in a
log-log plot the median time to failure versus the difference
I − IB (full squares). By taking for IB the value given above,
IB=40 mA, we have found thatt50 scales as

t50 , sI − IBd−ng. s8d

This expression, first proposed by Filippiet al.,7 can be con-
sidered as a generalization of Black’s law andng can be
called as generalized current exponent, to distinguish it from
the current exponentn of the conventional Black’s law, Eq.
(1). Figure 8 displays two current regions, each characterized
by a given value ofng. These two regions correspond to the
different current dependence of the distribution shape factor,
reported in Fig. 7. The common behavior oft50 and s with
current originates from the change with the bias of both the
damage pattern and the magnitude of Joule heating and can
be understood as follows.

First, let us consider a simpler system: a network in which
two stochastic processes of resistor breaking and recovery
occur with uniform probabilities:WD0=expf−EOP/kBT0g and
WR0=expf−ER/kBT0g. A similar network, subjected to ran-
dom percolation32,52 describes well the instability of very
thin metallic films due to agglomeration phenomena.53 The
stability of this network has been studied in Ref. 52 where
the failure condition and the expression for the average time
to failure54 (ATTF) have been derived in the limit of net-
works of infinite size. Here, to point out the dependence of
the percolation threshold on the system size, it is convenient
to write the failure condition in the following form:

WD0 .
pc

s1 − pcd
WR0

s1 − WR0d
; s9d

similarly, the average time to failure can be written as

ATTF =
lns1 − qd

lnfs1 − WD0ds1 − WR0dg
, s10d

with

q ; pcF1 +
WR0

WD0s1 − WR0dG , s11d

whereq,1 for failing networks, according to Eq.(9). For
this simple system it is quite easy to determine the role of the
size and of the geometry of the network on the value of the
percolation threshold. In fact, an ideally infinite network(
NL→` andNW→`), with percolation thresholdpc,`, would
have a zero probability of breaking for a fraction of defects
p,pc,` and a breaking probability equal to 1 forp.pc,`.32

However, for networks of finite size there is a nonvanishing
probability of formation of the percolating cluster of defects
(thus, of breaking) also when the defect fraction isp,pc,`
and, for contrast, a probability less than 1 forp.pc,`.32 For
this reason, when networks of finite size are considered,pc is
defined as the average over the statistical ensemble of the
minimum values ofp corresponding to the formation of at
least one percolating cluster,32 as anticipated in Sec. II. In the
case ofN3N networks withN finite, it has been found32 that
spc−pc,`d=cN−1/n, wheren is the correlation length exponent
(with universal valuen=4/3 in two-dimensions), while the
proportionality constant,c, depends on the lattice structure.
In particular, for networks with a square-lattice structure, it
has been found55 that c<0 and thuspc<pc,`=0.5, indepen-
dently of N. In the case of rectangularNW3NL networks
with a square-lattice structure, we have found that for a fixed
value ofNW, pc decreases withNL, by reaching its minimum
value, pW,`, when NL→`. More precisely, spc−pW,`d
,NL

−1/2n, wherepW,` decreases withNW. The reduction ofpc
when increasing the length, by keeping constant the width of
the network, can be explained as a consequence of the exis-
tence of a higher number of possible paths of defects con-
necting the top and the bottom of such a network compared
to a square network with the same width. These feature is
associated with the greatest instability of networks with this
geometry.

We note that Eqs.(9)–(11) and the subsequent discussion
apply to the case of random percolation, therefore the aver-

FIG. 8. Log-log plot oft50 versusI − IB, whereIB is the break-
down current defined in the text. The two lines of slope −1.5 and
−5.2 represent the fits with a power-law in the moderate current and
in the high current regions, respectively. The inset shows the log-
log plot of t50 versusI. In both the main figure and the inset, the
median times to failure are expressed in arbitrary units and the
current in mA. The gray region in the inset corresponds to the
stationary region attainable for currents lower than theIB value.
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age time to failure given by Eq.(10) is independent of the
current. On the other hand, electromigration is a current
driven phenomenon which, within our approach, is described
by a biased percolation.36,37 The effect of the biased perco-
lation can be roughly decomposed in two components:(i) a
correlated growth of the defect pattern, which exhibits an
increasing degree of filamentation at increasing currents;(ii )
an average heating of the network due to the Joule effect.

The filamentation driven by the external current implies a
bias dependent percolation thresholdpcsId, as shown in Fig.
9. In this figure the full circles represent the values of the
percolation threshold calculated by averaging the fraction of
defects which corresponds to the failure of 20 networks of
sizes 123400 subjected to external currentsI . IB. The gray
region in Fig. 9 corresponds to valuesI , IB (stationary re-
gion), while the solid curve is the best-fit with a quadratic
expression. We notice that for low currents the defect pattern
is found to exhibit a relatively week degree of filamentation
and the value ofpc=0.21 is not very far from the random
percolation threshold(which, for these values ofNW andNL,
is pc=0.37). Then, for currents up toI <40 mA the filamen-
tantion achieves its maximum level and consequentlypc its
minimum value. At further increasingI values, the onset of a
multi-filamentation pattern is observed56 with the simulta-
neous growth of several filaments of defects(voids) elon-
gated perpendicular to the direction of the current flow.56

This effect manifests itself in a smooth increase of the per-
colation threshold at the highest currents, as shown in Fig. 9.

By introducing the above dependence ofpc on I in Eqs.
(10) and (11) we obtain the average time to failure versus
current shown in Fig. 10(up-triangles). For the sake of com-
parison, we also show in this figure(open circles) the values
of t50 obtained by MC simulations and already reported in
the inset of Fig. 8. We can see that at low currents the ATTFs
obtained from Eq.(10) by accounting for the bias driven
filamentation, tend to merge with the MC results. Then, in
the moderate current region the ATTF exhibits a power-law
behavior, with a current exponentn=1.5(the dashed curve in
Fig. 10 is the best-fit with such a power-law). Finally, for
currentsI <40 mA the ATTF nearly saturates. The discrep-
ancy at intermediate and high currents between the two sets
of data[ATTFs from Eq.(10) and MC simulations] can be
explained in terms of Joule heating effects. These effects can

be included in Eq.(10), in the spirit of a mean field theory,
by replacing in the random percolation expressions of the
breaking and recovery probabilities, the temperatureT0 with
an average temperaturekTl=T0+DT, whereDT is given by
Eq. (5). By introducing into Eq.(10) these new average
probabilities kWOPl and kWRl and by simultaneously ac-
counting for the dependencepcsId, we obtain the average
time to failure reported as down-triangles in Fig. 10. Thus,
the up-triangles in this figure correspond to a value of the
structure thermal resistanceu=0 and the down triangles to
uÞ0. The excellent agreement found between MC results
and those obtained through Eq.(10) supports the interpreta-
tion suggested here. Thus, the generalization of Eq.(10) to
the case of biased percolation, made by accounting for both
Joule heating effects and for the dependence of the percola-
tion threshold on the bias, is able to describe quite well both
the results of the MC simulations and the behavior observed
in many EM experiments.1–3,7

The results reported in Fig. 10 shed new light on the role
played by Joule heating effects in determining the value of
the current exponent in Black’s law. Indeed, though many
accelerated EM tests1–3 provide a value ofn=2, other values
of n have been frequently measured.1–3,23Values ofn greater
than 2 have been usually attributed to Joule heating.1–3,23 In
this respect, Fig. 10 points out quite well the importance of
this effect in the high current region, thus confirming the
interpretation made in the literature. However, Fig. 10 shows
that Joule heating can affect the value ofn also in the mod-
erate current region. In this region values 1,n,2 have
been reported by different authors.1,2,23 Many EM models
have been proposed to explain the value of the current
exponent.1,2,17,23These models fall into two main categories:
“void growth” and “nucleation” models.23 In the void growth
models, the failure is taken to occur after a void grows up to
a critical size. It is generally accepted that this category of
models provides a valuen=1.23 In nucleation models, the
failure arises from the buildup of a critical vacancy concen-

FIG. 9. Percolation threshold for broken resistors,pc, versus
current(this last is expressed in mA). The curve is a quadratic fit
(see the text). The gray region evidences the stationary region.

FIG. 10. Log-log plot oft50 versusI. The median times to fail-
ure are expressed in arbitrary units and the current in mA. The open
circles (from MC simulations) represent the same data reported in
the inset of Fig. 8. The up-triangles are obtained by Eq.(10) but
taking into account the dependencepcsId shown in Fig. 9. The
down-triangles are obtained with the same procedure but replacing
the probabilitiesWD0 and WR0 with kWOPl and kWRl. The solid,
long-dashed and dotted curves represent the best-fit with a power-
law with slopes −2.1, −1.5, −5.7, respectively.
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tration. It is generally believed that this second category of
models provides a valuen=2.17 Recently, Tammaro and
Setlik23 have proved that even when nucleation is the limit-
ing process it can be 1,n,2. Our results confirm this con-
clusion. As a matter of fact, the present model, which relates
the failure to the achievement of a percolation threshold for
the defect fraction, belongs to the second category of models.
In fact, as shown by Fig. 10, metallic lines with different
structure thermal resistanceu, thus exploiting different sen-
sitivity to Joule heating effects, can exhibit different current
exponent values, even in the moderate current region. Con-
cerning this point, we underline the fact that a power-law
behavior of the ATTF versus current is predicted by the
model merely as a consequence of the filamentation of the
damage pattern, even neglecting the effect of the average
heating of the metallic line. Moreover, the dependence ofn
on the length of the lines, reported in EM tests,3 can be
explained in terms of dependence of both, heating effects and
pc, on the length of the system. Finally, from Fig. 10 we can
see that Joule heating is also responsible for the shift towards
lower current values of the crossover between the high-
current and the moderate-current regions(in this case from
40 mA to 30 mA). On the basis of the above considerations
we can now understand the dependence with current of the
shape factor of the TTFs distribution shown in Fig. 7. At
relatively low currents, just above theIB threshold, the de-
gree of filamentation of the defect pattern is weak and there
is a wide spread in the network microgeometries and thus in
the TTFs. Then, at increasing currents, the degree of filamen-
tation increases and the effect of the different network mi-
crogeometries is reduced together with the spread in the
TTFs. Finally, in the highest current region, because of
strong Joule heating, multi-filamentation occurs.56 This im-
plies a high degree of stochasticity and in turn a high vari-
ability of microgeometries together with an increase of the
TTFs spreading.

C. Geometrical effects

In this section we investigate the effect of the length and
width of the network on the failure process. First, we have
analyzed the dependence oft50 on the lengthNL of the net-
work. Figure 11 displays the simulated median time to fail-
ure as a function ofNL. The data indicated by full circles are
obtained by takingNW=12 andI =10.8 mA, while the data
reported as open squares and shown in the inset of Fig. 11
correspond toNW=36 andI =32.4 mA. Thus, in both cases
the current density(measured in current units)57 is j = I /NW
=0.9 mA. We have found thatt50 sharply increases by de-
creasingNL and it diverges for network lengths below a cer-
tain value,NLc

. This length can be considered as a critical
length of the network and it is dependent on the network
width, as shown in Fig. 11. Furthermore, for sufficiently long
networks,t50 nearly saturates to a value independent of the
length and increasing when increasing the width. In the fol-
lowing, this asymptotic value of the median time to failure in
the limit of infinitely long lines will be denoted astinf. The
behavior oft50 shown in Fig. 11 is in qualitative good agree-
ment with the behavior observed in the EM experiments.2

To determine more precisely the dependence of the me-
dian time to failure on the geometrical parameters, we have
analyzed the simulated values oft50 as a function of the
differencesNL−NLc

d. Figure 12 reports the log-log plot of the
differencet50− tinf as a function of the differencesNL−NLc

d.
Here, together with the data already shown in Fig. 11 we
have also reported the data forNW=48 andI =43.2 mA(open
circles). In this way, all the data in Fig. 12 correspond to the
same value ofj . We have found the following values of
critical length:Lc=2.5, 7.5, 10.0, forNW=12, 36, 48, respec-
tively. Therefore, in all the cases it issNLc

/NWd=0.21±0.01.
The values oftinf range between 23103–33103. Figure 12
shows that the differencet50− tinf follows a power-law as a
function of the differencesNL−NLc

d; indeed, the solid,
dashed and long dashed curves in this figure fit the data with
a power-law with exponent −l, wherel=0.62±0.02. In par-
ticular, as shown in the inset of Fig. 12, we have found that
the three sets of data collapse onto the same curve once the
differencet50− tinf is considered as a function of the normal-

FIG. 11. Median time to failure,t50, as a function of the network
lengthNL for NW=12 andNW=36 (inset). The median time to fail-
ures are expressed in arbitrary units. The dashed lines are a guide to
the eyes.

FIG. 12. A log-log plot of the differencet50− tinf versus the
differencesNL−NLc

d, wheretinf is the median time to failure in the
limit of infinitely long lines andNLc

is the critical length. Both
quantities are expressed in arbitrary units. The full circles are ob-
tained by takingNW=12, I =10.8 mA. In this case isNLc

=2.5. The
open squares correspond toNW=36, I =32.4 mA andNLc

=7.5 while
the open circles toNW=48, I =43.2 mA andNLc

=10.0. The solid,
dashed and long dashed curves fit the data with a power-law of
exponent −0.62±0.02. In the inset the same data oft50− tinf are
reported as a function ofsNL−NLc

d /NLc
.
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ized quantity sNL−NLc
d /NLc

. Thus, the differencet50− tinf

scales with the ratiosNL−NLc
d /NLc

:

t50 − tinf ,FNL − NLc

NLc

G−l

, F NL

NLc

− 1G−l

. s12d

With the aim of identifying the physical parameters deter-
mining the value ofl, we have investigated the dependence
of t50 on the length of the networks when these are stressed
by different current densities. The results of simulations are
reported in Figs. 13(a) and 13(b). Figure 13(a) displays the
difference t50− tinf versus sNL−NLc

d for NW=36 and j
=0.9 mA (open squares) and j =0.75 mA(up-triangles). The
first set of data is the same of Fig. 12(thusNLc1

=7.5), while
for the second set it isNLc2

=8.9 and thereforeNLc
/NW

=0.25. First we note that it is

s jNLc
d1 < s jNLc

d2, s13d

in agreement with Blech’s law1,2,27 (in this case we have
obtained for the threshold product a value 6.8 mA). Second,
we have found that the value ofl is different for the two sets
of data. Precisely, for the data obtained by takingj
=0.75 mA it isl=1.04±0.03.

Figure 13(b) displays the differencet50− tinf versussNL

−NLc
d for NW8 =48. The current densitiesj =0.9 mA (open

circles) and j =0.75 mA (down-triangles) are the same of
those in Fig. 13(a), while the values of the critical lengths
are, respectively,NLc3

8 =10.0 andNLc4
8 =12.0. The value of the

exponent found forj =0.75 mA is nowl=1.20±0.04. This
result suggests a dependence of the exponentl not only onj .
We note that also for this set of data Blech’s condition, Eq.
(13), is satisfied withs jNLdc8=9.0 mA. Thus, by considering
the threshold product as a function of the different param-
eters,s jNLdc=Fsr0,NW,ER,T0, . . .d, F is found to be an in-
creasing function ofNW.

According to the model proposed by Blech,27 the thresh-
old product is determined by the ratiosVaDsd / srZ* ed [Eq.
(2) in Sec. I]. The quantitysrZ* ed is related to the intrinsic
properties of the material and, within our model, can be as-
sociated with the parameterr0, defined in Sec. II. On the
other hand, the productsVaDsd, being a function of the ge-
ometry of the line, of the properties of the electrical contacts,
of the presence of passivation layers and of the
temperature,1,2,9,27within our model is controlled by the ge-
ometry of the network, by the efficiency of the recovery
process(i.e., the energyER) and by the temperatureT0. In
particular, according to Eq.(2), the value of the threshold
product s jLdc is an increasing function ofDs which is the
maximum value of the mechanical stress difference between
the line terminals that the line can bear.1,2,27 On the other
hand, the value of this maximum stress difference increases
with the line width. Therefore, the dependence of the thresh-
old product on the width predicted by our model is in quali-
tative agreement with the behavior described by Eq.(2). In
any case, further studies are necessary to determine the de-
pendence oftinf, l and of the threshold product onr0, NW,
ER, T0, and the other parameters of the model.

Below we analyze in more detail the dependence of the
simulated median time to failure on the width of the network.
To this purpose Fig. 14 reportst50 versusNW for networks of
different lengths, stressed by a current densityj =0.9 mA.
Going from the top to the bottom of the figure the different
sets of data correspond toNL=15, 18, 36, 48, 100, respec-
tively. The different curves in Fig. 14 fit the corresponding
data with the expression

t50 = KFSNL − NLc

NLc

D−l

− tGFsNW/NW0d, s14d

whereFsxd;s1−e−xd, l=0.62,NLc
=0.21NW, W0=7–12,t is

a constant related to the value oftinf, andK is a fitting con-
stant. As a general trend,t50 increases systematically at in-
creasing the width of the network. However, in the case of
long lines the dependence oft50 on the width shows a satu-
ration at the largest width. By contrast, in the case of short
lines this saturation disappears andt50 exhibits a final sharp

FIG. 13. (a) A log-log plot of the differencet50− tinf versus the
differencesNL−NLc

d, wheretinf is the median time to failure in the
limit of infinitely long lines andNLc

is the critical length. Both
quantities are expressed in arbitrary units. The network width is
NW=36. The open squares are obtained by takingI =32.4 mA, in
this caseNLc

=7.5. The up-triangles correspond toI =27.0 mA and
NLc

=8.9. (b) NW=48; open circles:I =43.2 mA andNLc
=10.0;

down-triangles:I =36.0 mA andNLc
=12.0.

FIG. 14. A plot of t50 as a function of network widthNW. The
different sets of data correspond to networks of different length:
NL=15 (down-triangles), NL=18 (open squares), NL=36 (full
squares), NL=48 (up-triangles), NL=100 (stars). The curves fit the
corresponding data with the expression specified in the text.
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increase with the width and a tendency to diverge when ap-
proaching the Blech condition. This behavior oft50 is in
overall agreement with the results of EM tests performed on
lines larger than about 2mm.1,2 On the other hand, it has
been found that narrow lines, with width smaller than 2mm,
exhibit a sharp lengthening of the median time to failure.1–4

This phenomenon occurs because for such narrow lines
(known as bamboo structures) the grain size becomes com-
parable with the line width.1,2 As a consequence, the lack in
these lines of grain boundaries along the direction of current
implies that EM can only occur within the bulk of the grains
or along interfaces. These processes usually require an acti-
vation energy significantly higher than that associated with
EM along grain boundaries.1,2 Therefore, bamboo structures
exhibit median time to failure longer than that displayed by
other kinds of lines.1–4 Figure 14 shows that our model, in
the present formulation, is unable to describe the lengthening
of t50 for very narrow lines. This is not surprising consider-
ing the fact that here we have taken a single value for the
activation energy of the breaking process,EOP, that is a value
common to all the resistors in the network. A further imple-
mentation of the model which introduces two different acti-
vation energies for the breaking of bulk resistors and surface
resistors,EOP,B and EOP,S respectively, withEOP,B.EOP,S,
would account also for this lengthening oft50 for narrow
lines typical of bamboo structures.

D. Saturation and resistance fluctuations

In this section we consider the situation occurring at low
current densities or for short line lengths, when the product
of the current density and of the line length is lower than the
threshold value. In this case electromigration stops and the
resistance of the line achieves a steady state value(saturation
value) dependent on the external conditions and on the prop-
erties of the line.27,9 The steady state is characterized by
fluctuations of the resistance around the average valuekRl
(this value is calculated by averaging over all the steady state
values of the resistance, i.e., the values taken after the tran-
sient time associated with the termination of the EM
process).49 The study of resistance saturation effects and of
their dependence on the stress current, temperature, geom-
etry and other properties of the metallic line, can provide an
important tool to investigate EM phenomena,9 alternative to
the study of the median time to failure. Actually, studies of
EM based on saturation effects exhibit the advantage to be
nondestructive and, in particular, they reveal their effective-
ness in the analysis of short lines.9 Furthermore, from a fun-
damental point of view, they provide the possibility to inves-
tigate fluctuation phenomena under far from equilibrium
conditions.

Below we consider the steady state of networks biased by
currents below the electrical breakdown thresholdI ø IB. Fig-
ure 15 shows the resistance evolution of a 123400 network
with the same parameters considered in Sec. III B. More pre-
cisely, we report the differenceRstd−R0 versus time for a
network stressed atT0=492 K by the currentI =4.0 mA
which corresponds to the threshold for electrical failure.
Saturation tokRl and large resistance fluctuations are well

evident in Fig. 15 for this current value. The inset in this
figure reports on an enlarged time scale the initial transient
values ofR−R0, evidencing also the initial decrease of the
resistance due to alloying effects, discussed in Sec. II. De-
tails concerning the dependence ofkRl on the value of the
stress current, on the bias conditions(constant current or
constant voltage) and on the TCR can be found in Refs. 49.

Here we discuss two important features of the resistance
fluctuations occurring in a metallic line in a nonequilibrium
steady state, stressed by a current near the EM threshold.
First, we consider the non-Gaussianity property58–60 of the
distribution ofdR;R−kRl. To this purpose, we have calcu-
lated the probability density function,F, of the distribution
of dR for the steady state signal in Fig. 15. Figure 16 reports
the productFs as a function ofskRl−Rd /s in a lin-log plot,
wheres is the root mean square deviation from the average
resistance. For comparison, in the same figure we also report
the Gaussian distribution(dashed curve), which in this nor-
malized representation has zero mean and unit variance. This
representation has been adopted because, by making the dis-
tribution independent of its first and second moments, it is
particularly convenient for exploring the functional form of a
distribution.60 The results in Fig. 16 show a considerable
non-Gaussianity of the distribution ofdR, which is associ-
ated with the fact that the system is close to breakdown con-

FIG. 15. Rstd−R0 versus time for a network 123400 stressed at
T0=300 K by a currentI = IB=4 mA. HereR0 is the perfect network
resistance. The inset shows on an enlarged time scale the evolution
of the resistance in the initial stage.

FIG. 16. Normalized probability density function,F;Fs, of
the resistance fluctuations reported in Fig. 16. The solid curve fits
the data with a generalized Gumbel distribution(see the text), while
the dashed curve is the Gaussian distribution.
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ditions. We have found that this non-Gaussianity is suffi-
ciently well fitted by a generalized form60 of the Gumbel
distribution (solid curve), where this last is commonly used
for the analysis of extreme events.1 The role of the stress
current and of the size of the system on the distribution of
the resistance fluctuations has been studied in Refs. 61,
where the conditions under which the distribution achieves
the universal behavior described by the Bramwell, Hold-
sworth and Pinton distribution60 have been identified.

As a second feature, we consider the power spectral den-
sity of resistance fluctuations. To this purpose, Fig. 17 dis-
plays the power spectrum associated with the steady state
signal in Fig. 15. Both the frequency and the spectral density
are expressed in arbitrary units. Two regions can be identi-
fied in the spectrum: a 1/f like branch at low frequencies and
a Lorentzian cut-off at high frequencies. This feature is here
interpreted as due to the presence of three relaxation mecha-
nisms:(i) the slowest one related to the breaking and recov-
ery of the regular resistors and describing the generation and
recovery of microvoids;(ii ) the fastest one associated with
the transformation of regular resistors into impurity resistors
(and vice versa) and describing alloying effects;(iii ) an in-
termediate one corresponding to the generation and breaking
of impurity resistors. Accordingly, the Lorentzian branch de-
scribes the evolution occurring on a fast scale when only the
second transformation is present. On the slow scale, the other
two transformations become of importance and thus all the
relaxation mechanisms coexist. Therefore, a 1/f-like spec-
trum appears in the low frequency region, in agreement with
resistance noise measurements performed on Al–Cu
alloys.2,6,13 We notice that by taking different activation en-
ergies for bulk and surface resistors, as described at the end
of Sec. III C, a further relaxation time would be added.

IV. CONCLUSIONS

We have applied the biased percolation model to the study
of degradation and failure phenomena induced by EM in a
metallic line. Our “coarse grain” approach focuses on the
correlations established by the electronic current among the
different elemental resistors of the network which mimic the
structural components of the system(grains, clusters of
grains, interfaces, etc. i.e., atomic transport channels). This
approach provides a unified theoretical framework able to
account successfully for many relevant features of the ex-
periments, including the damage pattern, the resistance evo-
lution, alloying effects and the statistical properties of TTFs.
In particular, the model correctly predicts a lognormal distri-
bution for TTFs, perfectly superimposing with the experi-
mental one and it is able to estimate the dependence of the
shape factor of the distribution on current and temperature.
In what concerns the dependence of the median time to fail-
ure on the stress conditions, the model predictions agree with
the experiments over the full range of current and tempera-
ture values considered. Simulations performed on rectangu-
lar networks of different length and width have allowed us to
investigate the dependence of TTFs on these parameters. The
results of the model agree with the existence of Blech’s
length, moreover, they predict the existence of a scaling re-
lation between the MTF and the line length. Finally, we have
considered resistance saturation effects. In this case we have
studied the properties of the resistance fluctuations, by focus-
ing on the non-Gaussianity of the distribution and on their
power spectrum. The flexibility of the theoretical approach
offers a further possibility to describe and interpret phenom-
ena which at present have not been considered. We finally
emphasize that EM, which occurs in granular materials, in
the presence of a significant disorder, driven by an external
bias and contrasted by the growth of a mechanical stress
gradient, represents a paradigmatic example of the failure
process in a disordered system. Therefore, the ability of our
approach to account for a wide scenario of the EM related
phenomenology should be of interest in the more extensive
perspective of understanding nonequilibrium and failure phe-
nomena in disordered systems.
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