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We study the localization volumesV (participation ratio) of electronic wave functions in the 2d-Anderson
model with diagonal disorder. Using a renormalization procedure, we show that at the band edges, i.e., for
energiesE< ±4, V is inversely proportional to the varianceke2l of the site potentials. Using scaling arguments,
we show that in the neighborhood ofE= ±4, V scales asV=ke2l−1gss4−uEud / ke2ld with the scaling function
gsxd. Numerical simulations confirm this scaling ansatz.
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I. INTRODUCTION

A large amount of work has been done in the past decades
to understand the localization behavior in randomly disor-
dered systems. The standard model for a single-particle elec-
tronic wave function in tight binding approximation in the
presence of disorder is the Anderson model.1–3 In d=2 and
with diagonal disorder, it can be written as

cn+1,m + cn−1,m + cn,m+1 + cn,m−1 − 4cn,m

= sE − 4dcn,m − en,mcn,m. s1d

HereE is the energy, the hopping potentials between nearest
neighbor are all set to unity,sn,md are the site indices,c is
the eigenfunction, anducn,mu2 is the probability to find an
electron at sitesn,md. The en,m are the site potentials which
are all uncorrelated random numbers with the variance
ke2l;s1/N2don,m=1

N en,m
2 . Their average value kel

;s1/N2don,m=1
N en,m is set equal to zero. The term −4cn,m on

both sides of Eq.(1) is explicitly written down in order to
show the discretized Laplace operator on the left-hand side
of the equation, that describes the hopping terms(see below).

It has been long recognized that ind=1 and d=2 all
eigenstates of Eq.(1) are localized, whereas a localization-
delocalization transition occurs ind=3. However, the shape
of the wave functions and the value of the localization length
lsE,ke2ld is still being discussed.

In d=1 and for uncorrelated site potentials, exponential
localization was proven throughout the energy band1,4,5and a
lot of rigorous results and scaling theories exist for the local-
ization lengthl, defined via the Lyapunov exponent. Close
to the band edges(i.e., atE= ±2 in d=1), a weak disorder
expansion yields

l = ke2l−afSEc − uEu
ke2lb D s2d

with Ec=2, a=1/3, and b=2/3.6,7 Recently, it has been
shown by a space renormalization procedure8,9 that Eq.(2)
also holds for the case of long-range correlated site potentials
with correlation exponentg, 0,gø1. In this case, the ex-
ponents must be replaced bya=1/s4−gd and b=2/s4−gd
andg=1 refers to the uncorrelated case of Refs. 6 and 7. At
the band center on the other hand, a different behavior ofl

occurs. A Green’s function technique10 yields l,ke2l−1 for
E=0 and in some distance from the band center, a second-
order perturbation theory of the diagonal elements of the
Green’s function1,11 yields lsEd,s4−E2d / ke2l.

For d=2, on the other hand, no analytical theory for the
localization behavior is known yet. Numerical simulations
close to the band center exist on the basis of Green’s func-
tions calculations,12 exact diagonalization,13 and the Lanczos
algorithm,14 but do not lead to an exact or scaling form ofl
or related quantities. Moreover, it was shown in Ref. 14, that
the wave function in the two-dimensional Anderson model
does not decay exponentially. Instead, a subexponential de-
cay of c was found withl increasing logarithmically with
the distancer from the localization center.

In this paper, we concentrate on the band edges, i.e., on
energiesE< ±4 of the Anderson model ind=2 with uncor-
related potentials. We develop a renormalization approach,
similar to the one ind=1 of Refs. 8 and 9 and use it to find
a scaling form for the localization volumeV, which is related
to the inverse participation ratioP−1. In d=2 and with the
wave functioncn,m being normalized byon,m cn,m

2 =1, P−1 is
defined by15,16

P−1 = o
n,m=1

N

ucn,mu4. s3d

Its inverse valueP is a d-dimensional volume and measures
the extension of a given state. If we divideP by the volume
V0 of the system, we get the relative volumeV of the eigen-
state,V; P/V0, i.e., the portion of the system where the
wave amplitude is large. It can be easily verified that in
d=1,2 or 3, V,ld for all wave functions of the form
csrd,expf−sr /ldFg, F.0. Therefore, one can define an ef-
fective localization lengthV1/d,l, which measures the av-
erage diameter of the state. For numerical calculations in
d=2 andd=3, where the wave functions do not decay expo-
nentially, V is easier accessible thanl and therefore, we
focus onV in this paper.

Since V,l in d=1, Eq. (2) holds up to an irrelevant
proportionality factor also forV. It is the purpose of this
paper to show that a similar scaling law as the one of Eq.(2)
holds also forV in d=2,
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V = ke2l−agSEc − uEu
ke2lb D s4d

but with different exponents,a=1 and b=1, and with
Ec=4. This scaling ansatz is confirmed by numerical calcu-
lations.

The paper is organized as follows: In Sec. II we explain
the outline of the renormalization approach, while in Sec. III
the scaling ansatz for the localization volumeV is developed
and tested by numerical simulations. Additional remarks
about former renormalization theories and the extension to
the vibrational problem are given in Sec. IV.

II. THE RENORMALIZATION APPROACH

In the renormalization approach, we want to combine
single sites of the lattice to blocks. This procedure must be
reasonable in the limit of small values of 4−uEu, i.e., close to
the band edges. In this context, we must recall that the wave
functions possess two characteristic length scales,(i) the
wavelengthL of the ordered lattice that describes the peri-
odic fluctuating part of the wave function and(ii ) the local-
ization length that describes their decaying envelope. As in
d=1,9 we assume that the periodic part ofc does not depend
on the disorder but is reminiscent of the functions of an
ordered lattice, where the disorder termsei,j are zero andc is
a regular sin or cos function. By solving Eq.(1) for the
ordered case, we found ind=1 that L2,suEcu−Ed−1. In
d=2, with the wavelengthsLx and Ly in x and y direction,
respectively, we have

Lx
2 ù sEc − uEud−1 andLy

2 ù sEc − uEud−1, s5d

whereEc=4. At the band edges,L diverges and the wave
function no longer resolves the details of the disorder poten-
tials. In this case, we can imagine that neighboring sites of
the lattice move as blocks and the following renormalization
approach becomes legitimate.

In the following, we consider the upper band edgeE=4,
but by canceling the terms −4cn,m on both sides of Eq.(1)
and taking into account that theen,m are randomly distributed
around their mean value ofkel=0, we can see that the equa-
tion is symmetric under the transformationE→−E. There-
fore, the renormalization approach is also valid for the lower
band edgeE=−4.

In order to transform Eq.(1) into block form, we
first replace the site indicessn,md of the central site in Eq.
(1) (see also Fig. 1) successively bysn+1,md, sn−1,md,
sn,m+1d, and sn,m−1d. Combining those four equations
with Eq. (1) and rearranging the terms, we arrive at

cn+2,m + cn−2,m + cn,m+2 + cn,m−2 − 4cn,m

= − s4fn,m + fn,m+1 + fn,m−1 + fn+1,m + fn−1,md

+ sE − 4ds4cn,m + cn+1,m + cn−1,m

+ cn,m+1 + cn,m−1d + 8cn,m

− 2scn+1,m+1 + cn+1,m−1 + cn−1,m+1 + cn−1,m−1d, s6d

with the abbreviationf i,j ;ei,jci,j. Comparing this result with

Eq. (1), we can see that the left-hand side of Eq.(6) is again
a Laplace operator, but with twice the distance betweencn,m
and its neighbors. The first two terms on the right-hand side,
involving the disorder termsf i,j and the eigenvalues4−Ed,
are similar to the corresponding terms in Eq.(1), with the
only difference that they no longer depend on a single site
sn,md but couple sites at distances,2 from sn,md to blocks.

The last two terms, however, involve couplings between
cn,m and its second nearest neighborscn+1,m+1, cn+1,m−1 and
so on and do not occur in Eq.(1) (nor in the corresponding
derivation ind=1). Using a Taylor expansion that holds in
third order, we approximate these terms by

cn+1,m+1 + cn+1,m−1 + cn−1,m+1 + cn−1,m−1

< − 4cn,m + 2scn+1,m + cn−1,m + cn,m+1 + cn,m−1d

= 4cn,m − 2fn,m + 2sE − 4dcn,m, s7d

where Eq.(1) has been inserted in the last step. This approxi-
mation is consistent with the standard interpretation of the
left-hand side of Eq.(1) as a discretized Laplacian operator,
which approximatesDc by the same kind of Taylor expan-
sion and with the same error bars of the orderOsa4d, where
a is the lattice constant. Inserting Eq.(7) into Eq. (6) we
finally arrive at

cn+2,m + cn−2,m + cn,m+2 + cn,m−2 − 4cn,m

= − sfn,m+1 + fn,m−1 + fn+1,m + fn−1,md

+ sE − 4dscn,m+1 + cn,m−1 + cn+1,m + cn−1,md. s8d

Assuming that the potentials are randomly distributed, we
introduce the smoothed wave functioncn,m

s2d of the block and
combine the termsfn,m+1+ fn,m−1+ fn+1,m+ fn−1,m to one single
term fn,m

s2d ;en,m
s2d cn,m

s2d with the block potentialen,m
s2d ;en,m+1

+en,m−1+en+1,m+en−1,m. Equation (8) now shows a block
form of block lengthn=2,

FIG. 1. Sketch of the Anderson lattice according to Eqs.(1) and
(8) as explained in the text. The circles represent the different lattice
sites, the straight lines between them indicate the usual nearest-
neighbor coupling, whereas the couplings of Eq.(8) are shown by
the oval lines. The black circles stand for the site potentials that
form the block potential[see Eq.(9)].
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cn+1,m
s2d + cn−1,m

s2d + cn,m+1
s2d + cn,m−1

s2d − 4cn,m
s2d

= − en,m
s2d cn,m

s2d + 4sE − 4dcn,m
s2d . s9d

This is shown in Fig. 1. Couplings between nearest-
neighbor sites via Eq.(1) are symbolized by straight lines
whereas the couplings between the sitescn+2,m andcn,m and
so on of Eq.(9) are symbolized by the oval lines. The site
potentials fn,m+i ;en,m+icn,m+i and fn+i,m;en+i,mcn+i,m with
i = ±1 that form the block potentialen,m

s2d are indicated by the
black circles. It can be seen that they lie well inside an in-
clined block, consisting of 22 particles.

This procedure can be continued. By replacing again
the site indicessn,md of Eq. (9) by sn+1,md, sn−1,md,
sn,m+1d, andsn,m−1d and following the same procedure as
before, we arrive at block indicesn=4. As long as the block
length is well belowL /2, the Taylor expansion is legitimate
and we arrive at higher and higher orders of the renormal-
ization. The potential blocks form a chess-board pattern
which is shown in Fig. 2 for the case ofn=4. The renormal-
ized Anderson equation of block lengthn becomes

cn+1,m
snd + cn−1,m

snd + cn,m+1
snd + cn,m−1

snd − 4cn,m
snd

= − en,m
snd cn,m

snd + n2sE − 4dcn,m
snd , s10d

where cn,m
snd is the smoothed wave function of a block of

lengthn and

en,m
snd ; o

i2+j2,n2,i+jodd

ei,j s11d

with the sum running over all pairs ofi and j with i even, j
odd and vice versa(chess-board pattern) in a distance
i2+ j2,n2 from the site indexsn,md.

III. THE SCALING ANSATZ: THEORY AND
NUMERICAL SIMULATIONS

Now, the renormalization approach is complete and we
use it to derive a scaling theory for the localization volume

V. Naturally, the form of the wave functionc,exp
3f−sr /ldFg does not depend on the arbitrary subdivision of
the lattice into blocks. Nevertheless, by applying the renor-
malization approach over a certain range of block lengths,
we gain information aboutV.

The following derivation applies atE=4, whereL di-
verges and the block form is legitimate for any block size
between 1 and infinity. AtE=4, the only quantities that enter
into the right-hand side of Eq.(1) are the potentialsei,j.
Accordingly V, which is an average quantity over many lat-
tice realizations, can only depend on the different moments
of them (the first momentkel being zero). As in d=1 we
presume a power-law behavior,

V , ke2l−a. s12d

To derive the exponenta, we apply the block transformation
described above separately to both sides of Eq.(12). The
left-hand side,V, is a volume and therefore simply rescaled
by a factor ofn2,

V → Vn ,
V

n2 . s13d

The right-hand side of Eq.(12) is determined by random
walk theory. If we want to transformke2l into ke2ln, we must
first summarize over alln2 potentialsei,j of one block and
then calculate the variance over many different blocks. This
is equivalent to calculating the mean square displacement of
a random walk ofn2 steps,17

ke2l → ke2ln =KSo
i=1

n2

eiD2L , n2ke2l. s14d

Transforming Eq.(12) by Eqs.(13) and (14) we find

V

n2 = n−2ake2l−a. s15d

As the last step, we must take into account that the block
length n is arbitrary forL→` and Eq.(15) must therefore
not depend onn. This determines the exponenta and we
finally find

a = 1 andV , ke2l−1 for E = 4. s16d

In order to test Eq.(16), the eigenfunctions of systems of
size 5003500 with varying varianceske2l have been calcu-
lated by the Lanczos algorithm. The differentV have been
determined using Eq.(3). For eachke2l, we took the average
over 40 systems and calculated the eigenfunctions in a small
energy interval ofE=4±0.0002. The results are shown in
Fig. 3, whereV is plotted versuske2l in a double-logarithmic
way. The line of slope −1/2 is a guide to the eye and repre-
sents the result of the scaling theory[see Eq.(16)]. Apart
from slight finite-size effects for smallke2l (and therefore
largeV1/2) it agrees very well with the numerical results.

The scaling theory can be extended to energies in some
(small) distance from the band edge, whereL is still large
enough to perform the renormalization scheme over many
steps. In Eq.(10), s4−Ed is rescaled withn2. Accordingly,
we have[cf. Eqs.(13) and (14)]

FIG. 2. Renormalization scheme forn=4: the diagonal terms
f i,j ;ei,jci,j that form the block potential are painted black and
show a chess-board pattern. The sitessn,md, sn+4,md, sn−4,md,
sn,m+4d, and sn,m−4d that couple via a Laplace operator of dis-
tancen are symbolized by larger circles.
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Vn=1ss4 − uEud,ke2ld , n2Vnsn2s4 − uEud,n2ke2ld. s17d

Equation (17) is a generalized homogeneity relation. This
means that the form ofV remains unchanged when both,ke2l
and 4−uEu, are rescaled according to the renormalization
theory. Thus,V does not depend on both quantities sepa-
rately, but only on a suitable combination of them.

The scaling form ofV can now be derived by standard
techniques. Choosingn=ke2l−1/2, (which is permitted for
large ke2l even if L is not infinite) we find

Vss4 − uEud,ke2ld , ke2l−1gS4 − uEu
ke2l

D s18d

with the scaling functiongsxd and the argument

x =
4 − uEu

ke2l
. s19d

For uEu=4, Eq. (18) must reduce to Eq.(16), yielding
gs0d=1 for x=0. For small values of 4−uEu (largeL) or large
values ofke2l (small V), ÎV!L andx!1. In this case, the
effective localization lengthÎV is smaller thanL, the system
behaves as ifL were infinite andgsxd should therefore be a
constant function. Forx@1, the maximum block size be-
comes smaller and smaller, so that gradually, the scaling
theory must break down. However, as ind=1, an intermedi-
ate range may exist, wheregsxd still shows a power-law be-
havior.

In order to test Eq.(18), we have plottedsVke2ld1/2 as a
function of s4−Ed / ke2l for different disorder widthsw of
the potentials,ei P f−w/2 ,w/2g with ke2l=w2/12 and for
different values of 4−E. The numerical simulations were
again carried out on 5003500 lattices and the average
was performed over 40 systems and in an energy interval

f4−E−0.0002,4−E+0.0002g for different values of 4−E
between 0.001 and 0.06. With decreasing values ofke2l, V
increases and finite size effects occur. Additionally, systems
whereke2l and s4−Ed are both small or both large, possess
large error bars, i.e., large fluctuations between different val-
ues ofV. In the case of smallke2l, this also gives rise to finite
size effects, because some very large values ofV are sup-
pressed by the finite system size. So, we restrict ourselves to
not too large values of 4−E and to combinations, where such
large fluctuations do not occur.

The results are shown in Fig. 4 and confirm the scaling
ansatz(18) very well. Different symbols that indicate differ-
ent ke2l fall onto the same universal curve. We can see that
indeedgsxd reaches a plateau,gsxd<const for small values
of x whereV is simply described by Eq.(16) (see above). For
large valuesx@1, on the other hand, the scaling theory must
break down, possibly after an intermediate range with a dif-
ferent power-law behavior ofgsxd. It would be very interest-
ing to investigate also this regime, However, large values of
x have not been calculated, because—due to the increasing
values ofÎV—we needed much larger system sizes for the
simulations. This is currently not possible.

IV. CONCLUDING REMARKS

In summary, a renormalization scheme has been devel-
oped close to the band edges(i.e., in the limit of large wave-
lengths) that analytically reduces the Anderson equations(1)
into block form where the block sizes may become arbi-
trarily large at the band edges. A Taylor expansion consistent
with the standard interpretation of the Anderson equations
has been used. A scaling form for the localization volumeV
has been derived from this. Contrary to former renormaliza-
tion schemes,18,19it does not involve sucessive recalculations
of the matrix elements in each step, but simply replaces Eq.

FIG. 3. The effective localization lengthV1/2 in the 2D Ander-
son model at the band edge is plotted versus the varianceke2l of the
site potentials in a double-logarithmic plot.V was calculated nu-
merically for lattices of size 5003500 with Dirichlet boundary con-
ditions and averaged over 40 systems. The line of slope −1/2 is a
guide to the eye and shows the theoretical behavior. Finite size
effects occur for small values ofke2l (large values ofV1/2).

FIG. 4. As a test of Eq.(18), sVke2ld1/2 is plotted versus the
argument x;s4−Ed / ke2l for different disorder widthsw=0.6
(circles), w=0.8 (squares), w=1.0 (diamonds), w=1.2 (triangles
up), andw=1.5 (triangles down) with ke2l=w2/12 and for different
values for 4−E between 0.001 and 0.06. The average was again
taken over 40 systems of size 5003500.
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(1) by Eq. (10), where the off-diagonal elements are un-
changed and the diagonal elements of arbitrary block sizen
are directly related to the diagonal elements of the original
system. The works of Refs. 18 and 19 proposed the mobility
edge ind=3 and scaling laws for the conductivity and re-
lated quantities. Therefore, it will be very interesting to ex-
tend also the present theory to the three-dimensional Ander-
son model. However, as it is developed for energies close to
the band edge it is for the moment not clear, if it can be
applied to the vicinity of the mobility edge, where compari-
sions to former renormalization theories can be made.

As a last remark, we would like to note that the regime
x@1 is also relevant to the vibrational problem with unit
spring constants and fluctuating massesmn,m=kml+m̃n,m,
wherekml describes the average mass andm̃n,m the disorder
of them. If we transform Eq.(1) according to

4 − E → kmlv2,en,m → m̃n,mv2 s20d

with the eigenfrequencyv of the vibration, we find the vi-
brational equation

1

mn,m
o

n8,m8

scn8,m8 − cn,md = − v2cn,m, s21d

with the sum going over all neighbors of the sitesn,md.
Inserting the above transformation into Eq.(5), we find for
the wavelength in the vibrational caseL* skml1/2vd−1. The
limit of long wavelengths applies thus forv2,1/kml. Posi-
tive masses lead tokm̃2l, kml2 and together with Eq.(19)
we finally arrive atx.1.

So, in the vibrational case, only the branch of higher val-
ues of the scaling variablex exists and it will be very inter-
esting to investigate also this part. However, since this de-
mands much larger system sizes(due to the increasing values
of V), this should be done in the future.
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