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Renormalization approach for the two-dimensional Anderson model at the band edge:
Scaling of the localization volume
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We study the localization volumes (participation rati¢ of electronic wave functions in thed2Anderson
model with diagonal disorder. Using a renormalization procedure, we show that at the band edges, i.e., for
energie€E~ +4, V is inversely proportional to the varian¢é) of the site potentials. Using scaling arguments,
we show that in the neighborhood BE +4, V scales ad/=(e?)"1g((4—|E|)/(€?)) with the scaling function
g(x). Numerical simulations confirm this scaling ansatz.
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l. INTRODUCTION occurs. A Green’s function technigtfeyields A ~ (€%~ for

eE:O and in some distance from the band center, a second-

A large amount of work has been done in the past decad d bati h f the di | el f 1h
to understand the localization behavior in randomly disor-0rder perturbation theory of the diagonal elements of the

’ ik 1l i — _E2
dered systems. The standard model for a single-particle elegreensjunctmﬁ yields M(E) ~ (4-E?)/(€).
tronic wave function in tight binding approximation in the ~ For d=2, on the other hand, no analytical theory for the
presence of disorder is the Anderson mddéln d=2 and localization behavior is known yet. Numerical simulations

with diagonal disorder, it can be written as close to the band center exist on the basis of Green’s func-
tions calculationd? exact diagonalizatio®® and the Lanczos
Prermt Unimt Yomer t Uome1~ m algorithm?®* but do not lead to an exact or scaling form)of

= (E- 41— € mibm: (1) or related quantities. Moreover, it was shown in Ref. 14, that

the wave function in the two-dimensional Anderson model
HereE is the energy, the hopping potentials between nearesioes not decay exponentially. Instead, a subexponential de-
neighbor are all set to unityn,m) are the site indicesyis  cay of ¢ was found with\ increasing logarithmically with
the eigenfunction, andk,.|*> is the probability to find an the distance from the localization center.
electron at sitén,m). The €, ,, are the site potentials which In this paper, we concentrate on the band edges, i.e., on
are all uncorrelated random numbers with the variancenergiesE=~ +4 of the Anderson model id=2 with uncor-
(&=1IN)=N & Their average value (e)  related potentials. We develop a renormalization approach,

= (1/N2)Emm::'r::’::n i;'n;et equal to zero. The term #gh, on similar to the one ird=1 of Refs. 8 and 9 and use it to find
both sides of Eq(1) is explicitly written down in order to & scaling form for the localization volumé which is related
show the discretized Laplace operator on the left-hand sidé® the inverse participation rati™". In d=2 and with the
of the equation, that describes the hopping tefsee below. ~ Wave functiony;, , being normalized b, ¥4 ,=1, P is

It has been long recognized that =1 andd=2 all  defined by>*®

eigenstates of Eq.l) are localized, whereas a localization-

delocalization transition occurs uh=3. However, the shape i N 4
of the wave functions and the value of the localization length P= 2_ |l 3
M(E,(€?)) is still being discussed. nm=l

In d=1 and for uncorrelated site potentials, exponentialys jnyerse valueP is ad-dimensional volume and measures
localization was proven throughout the energy Beriind a 10 extension of a given state. If we divigeby the volume

lot of rigorous results and scaling theories exist for the Iocalv0 of the system, we get the relative volureof the eigen-
ization lengtha, defined via the Lyapunov exponent. Close ga10 \v=p/v,, i.e., the portion of the system where the
to the band edgeg.e., atE=+2 in d=1), a weak disorder a6 amplitude is large. It can be easily verified that in

expansion yields d=1,2 or 3,V~\9 for all wave functions of the form
_ [E.~|E (r) ~exd-(r/\)®], ®>0. Therefore, one can define an ef-
A= () of 2F (2)  fective localization length/Xd~\, which measures the av-
erage diameter of the state. For numerical calculations in
with E.=2, «=1/3, and 8=2/3%" Recently, it has been d=2 andd=3, where the wave functions do not decay expo-
shown by a space renormalization procefdrhat Eq.(2) nentially, V is easier accessible than and therefore, we
also holds for the case of long-range correlated site potentiafecus onV in this paper.
with correlation exponeny, 0<y=<1. In this case, the ex- SinceV~N\ in d=1, Eg. (2) holds up to an irrelevant
ponents must be replaced ly=1/(4-7y) and B=2/(4-7) proportionality factor also fol. It is the purpose of this
and y=1 refers to the uncorrelated case of Refs. 6 and 7. Apaper to show that a similar scaling law as the one of(Ey.
the band center on the other hand, a different behavior of holds also forV in d=2,
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but with different exponentsp=1 and B=1, and with _@
E.=4. This scaling ansatz is confirmed by numerical calcu-
lations g y n-1,m+1 nm+[In+1,m+1

The paper is organized as follows: In Sec. Il we explain
the outline of the renormalization approach, while in Sec. Il
the scaling ansatz for the localization voluMeés developed
and tested by numerical simulations. Additional remarks
about former renormalization theories and the extension to
the vibrational problem are given in Sec. IV.

n-2,m n-1,m nm|n+lmn+2m
n-1,m-1 n,m-1 n+1m-1

Il. THE RENORMALIZATION APPROACH n’m_2
In the renormalization approach, we want to combine FIG.1. S_ketc_h of the Anderso_n lattice according to_Ed;)sand _
single sites of the lattice to blocks. This procedure must béE_i) as explalne.d in the text. The circles represent the different lattice
reasonable in the limit of small values of H, i.e., close to sﬂgs, the stralght lines between them indicate the usual nearest-

the band edges. In this context, we must recall that the waygeighbor coupling, whereas the couplings of &).are shown by
functions possess two characteristic length scalgsthe the oval lines. The b!ack circles stand for the site potentials that
wavelengthA of the ordered lattice that describes the peri—form the block potentiajsee Eq(9)].

odic fluctuating part of the wave function afid) the local-

ization length that describes their decaying envelope. As iffd- (1), we can see that the left-hand side of E&).is again
d=12 we assume that the periodic parttioes not depend @ Laplace operator, but with twice the distance betwgggp

on the disorder but is reminiscent of the functions of anand its neighbors. The first two terms on the right-hand side,
ordered lattice, where the disorder tergisare zero andsis ~ involving the disorder terms;; and the eigenvalue4-E),

a regular sin or cos function. By solving E(l) for the  are similar to the corresponding terms in Kg), with the
ordered case, we found id=1 that A>~(|E/-E)~~. In  only difference that they no longer depend on a single site

d=2, with the wavelengthg,, and A, in x andy direction, (n,m) but couple sites at distance® from (n,m) to blocks.

respectively, we have The last two terms, however, involve couplings between
) _1 ) —1 Ynm and its second nearest neighb@ks mi1, Yn+1m-1 and
A= (Ec—|E)and Ay = (E. - [E)) ™, (5  so on and do not occur in E€L) (nor in the corresponding

derivation ind=1). Using a Taylor expansion that holds in

where E;=4. At the band edges\ diverges and the wave third order, we approximate these terms by

function no longer resolves the details of the disorder poten
tials. In this case, we can imagine that neighboring sites of
the lattice move as blocks and the following renormalization Unermer * Ynerm1 ¥ Ynormer * Po1mes
appro?]Chfb”egonr:eS Ieeglél(?:gtger the uober band edig:e4 == 4"»[/n,m"' 2(‘/fn+l,m+ l//n—l,m+ '/’n,m+1+ ‘pn,m—l)

In the following, w i ,
but by cancelinggthe terms 4, on bgtF;\ sides of Eq(1) = 4nm= 20 m* 2E= 4 m (@)
and taking _into account that theg ,, are randomly distributed where Eq(1) has been inserted in the last step. This approxi-
a'\rou.nd their megn value ¢€)=0, we can §ee that the equa- mation is consistent with the standard interpretation of the
tion is symmetric under the transformati@h——E. There-  |ofi-hand side of Eq(1) as a discretized Laplacian operator,
fore, the renormalization approach is also valid for the lower,hich approximategd\y by the same kind of Taylor expan-
band edgee=-4. sion and with the same error bars of the or@%a*), where

_In order to transform Eq(1) into block form, we g s the |attice constant. Inserting E67) into Eq. (6) we
first replace the site indice®,m) of the central site in Eq. finally arrive at

(1) (see also Fig. QL successively byn+1,m), (n—1,m),

(n,m+1), and (n,m-1). Combining those four equations Yoo m+ Ynoom+ Unmea + Yo mep = 4 o

with Eq. (1) and rearranging the terms, we arrive at ' ' ' ' '
== (fn,m+l + fn,m—l + fn+1,m+ fn—l,m)

‘//n+2,m+ 1/’n—2,m + 'r//n,m+2 + dfn,m—z - 41//n,m + (E _ 4)(¢n,m+1 + l/’n,m—l + ‘//n+1,m+ lpn—l,m)- (8)

== (4fn,m+ fn,m+1 + fn,m—l + 1:n+1,m+ 1:n—l,m) . . o
Assuming that the potentials are randomly distributed, we

+(E=D@nm* Yrmt -1 introduce the smoothed wave functig{f’. of the block and
+ et t Ynm-1) + 8¢¥nm combine the term$;, 1.1+ fr -1t frer mt f-1m t0 ONE single
n,

term f? =€? 42 with the block potentiale® =g,
-2 + i + , (6 nm m¥nm ) nm—_ Enm+1
Wnetmes * Yt mea ¥ Ynotmes * i)y (6) +énm 1t €nimt €1 m EQuation (8) now shows a block
with the abbreviatiorf; ;= € ;¢ ;. Comparing this result with  form of block lengthv=2,
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@ V. Naturally, the form of the wave functionf~exp
X[=(r/\)®] does not depend on the arbitrary subdivision of
the lattice into blocks. Nevertheless, by applying the renor-
malization approach over a certain range of block lengths,
we gain information abouv.
d The following derivation applies aE=4, where A di-

[
O
@ ®Oe " NON | @ verges and the block form is legitimate for any block size
@
®

between 1 and infinity. AE=4, the only quantities that enter
® into the right-hand side of Eql) are the potentials; ;.

Accordingly V, which is an average quantity over many lat-

tice realizations, can only depend on the different moments

of them (the first moment(e) being zerg. As in d=1 we
Q/ presume a power-law behavior,

— -«

FIG. 2. Renormalization scheme for=4: the diagonal terms v <62> ' (12
fij=e i, that form the block potential are painted black and To derive the exponent, we apply the block transformation
show a chess-board pattern. The sitesm), (n+4,m), (n-4,m),  described above separately to both sides of @4). The
(n,m+4), and(n,m-4) that couple via a Laplace operator of dis- |eft-hand sideV, is a volume and therefore simply rescaled

tancev are symbolized by larger circles. by a factor ofi?,
Vv
wﬁl mt ‘ng)l mt ‘/’n me1 t ¢§122n— ‘/’(2) V=V, ~ ; . (13
== emiliom+ 4E - Ay, (9)

The right-hand side of Eq12) is determined by random
This is shown in Fig. 1. Couplings between nearestwalk theory. If we want to transforre?) into (€%),, we must

neighbor sites via Eg(l) are symbolized by straight lines first summarize over all? potentialse; ; of one block and

whereas the couplings between the sifgs, , and iy, and  then calculate the variance over many different blocks. This

so on of Eq.(9) are symbolized by the oval lines. The site is equivalent to calculating the mean square displacement of

potentials fp, mi = €nmsit¥nm+ and fn+| m= €n+im¥n+i,m With a random walk ofi? stepst’

i==x1 that form the block potenuad . m are indicated by the

2
black circles. It can be seen that they lie well inside an in- .
clined block, consisting of 2particles. g (€)= (e, = (2 €i> ~ X, (14)
This procedure can be continued. By replacing again
the site indices(n,m) of Eq. (9) by (n+1,m), (n-1,m),  Transforming Eq(12) by Eqgs.(13) and(14) we find
(n,m+1), and(n,m-1) and following the same procedure as vV
before, we arrive at block indices=4. As long as the block 2= vy, (15)

length is well belowA /2, the Taylor expansion is legitimate

and we arrive at higher and higher orders of the renormalAs the last step, we must take into account that the block
ization. The potential blocks form a chess-board patternength v is arbitrary for A — o and Eq.(15) must therefore
which is shown in Fig. 2 for the case oF4. The renormal- not depend orw. This determines the exponeatand we

ized Anderson equation of block Iengthbecomes finally find
¢<ni>1m+w<n“)1m+ 1+ Vi1~ AU =1 andV~(e)™ for E=4. (19
emn ) 4 2(E - 4)'//E1Vr)nv (10)  In order to test Eq(16), the eigenfunctions of systems of

size 500 500 with varying varianceée®) have been calcu-
lated by the Lanczos algorithm. The differevithave been
determined using Eq3). For each(€?), we took the average
0 = E . (11) over 40 _systems and calculated the eigenfunctions in a s_mall
n.m " energy interval ofE=4+0.0002. The results are shown in
Fig. 3, whereV is plotted versuge?) in a double-logarithmic
with the sum running over all pairs ofandj with i even,j  way. The line of slope —1/2 is a guide to the eye and repre-
odd and vice versachess-board patteynin a distance sents the result of the scaling thedisee Eq.(16)]. Apart
i2+j2< 17 from the site indexn,m). from slight finite-size effects for smalle?) (and therefore
large V*?) it agrees very well with the numerical results.

The scaling theory can be extended to energies in some
(small) distance from the band edge, whekeis still large
enough to perform the renormalization scheme over many

Now, the renormalization approach is complete and westeps. In Eq(10), (4-E) is rescaled withi?. Accordingly,
use it to derive a scaling theory for the localization volumewe have[cf. Eqgs.(13) and(14)]

where 1,0(V) is the smoothed wave function of a block of
length v and

i2+j2<,2i+jodd

Ill. THE SCALING ANSATZ: THEORY AND
NUMERICAL SIMULATIONS
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_ o _ FIG. 4. As a test of Eq(18), (V(e?))¥? is plotted versus the
FIG. 3. The effective localization lengt¥'/? in the 2D Ander- argument x=(4-E)/(¢) for different disorder widthsw=0.6
son model at the band edge is plotted versus the variadgef the (circles, w=0.8 (squarey w=1.0 (diamond3, w=1.2 (triangles
site potentials in a double-logarithmic pldf. was calculated nu- ) andw=1.5(triangles dowpwith (€2=w?/12 and for different
merically for lattices of size 508 500 with Dirichlet boundary con-  yajyes for 4-E between 0.001 and 0.06. The average was again
ditions and averaged over 40 systems. The line of slope —1/2is gyken over 40 systems of size 50G00.
guide to the eye and shows the theoretical behavior. Finite size

1/2
effects occur for small values ¢&%) (large values o2, [4—E-0.0002,4-E+0.0003 for different values of 4
5 ) between 0.001 and 0.06. With decreasing valueget V
Vie1((4 - [E) () ~ vAV,(%(4 - [E]) 2% €9). (A7) increases and finite size effects occur. Additionally, systems
Equation(17) is a generalized homogeneity relation. This Where(e”) and (4-E) are both small or both large, possess
means that the form of remains unchanged when bota?) large error bars, i.e., large fluctuations between different val-
and 4-E|, are rescaled according to the renormalizationues ofV. In the case of smalle®), this also gives rise to finite

theory. Thus,V does not depend on both quantities sepasize effects, because some very large value¥ aire sup-
rately, but only on a suitable combination of them. pressed by the finite system size. So, we restrict ourselves to

The scaling form ofV can now be derived by standard not too large values of 4E and to combinations, where such
techniques. Choosing=(e?)"2 (which is permitted for large fluctuations do not occur.

large (€2) even if A is not infinite) we find The results are shown in Fig. 4 and confirm the scaling
- ansatz(18) very well. Different symbols that indicate differ-
L [4-IE ent (€ fall onto the same universal curve. We can see that
- - 16 ==
V(4= [ED(£)) ~ (&) g( (%) ) (18) indeedg(x) reaches a plateagy(x) =~ const for small values

of x whereV is simply described by Eq16) (see abovg For
large valuex> 1, on the other hand, the scaling theory must
4-|E| break down, possibly after an intermediate range with a dif-
X="2 (190 ferent power-law behavior af(x). It would be very interest-
ing to investigate also this regime, However, large values of
For |[E|=4, Eqg. (18) must reduce to Eq(16), yielding x have not been calculated, because—due to the increasing
9(0)=1 forx=0. For small values of 4{E| (largeA) or large  values of\V—we needed much larger system sizes for the
values of(e?) (smallV), \W<A andx<1. In this case, the simulations. This is currently not possible.
effective localization Iength“‘\7 is smaller tham\, the system
behaves as if\ were infinite andy(x) should therefore be a
constant function. Fox>1, the maximum block size be- IV. CONCLUDING REMARKS
comes smaller and smaller, so that gradually, the sc_aling In summary, a renormalization scheme has been devel-
theory must break down. However, asdr1, an intermedi-  gpeq close to the band edgée., in the limit of large wave-
ate range may exist, whegx) still shows a power-law be- |engthg that analytically reduces the Anderson equatihs
havior. into block form where the block sizes may become arbi-
In order to test Eq(18), we have plotted\V(e’))*? as @  rarily large at the band edges. A Taylor expansion consistent
function of (4-E)/(e?) for different disorder widthsv of  with the standard interpretation of the Anderson equations
the potentials,¢ e [-w/2,w/2] with (€2)=w?/12 and for has been used. A scaling form for the localization volwhe
different values of 4£. The numerical simulations were has been derived from this. Contrary to former renormaliza-
again carried out on 500500 lattices and the average tion schemed®°it does not involve sucessive recalculations
was performed over 40 systems and in an energy intervalf the matrix elements in each step, but simply replaces Eq.

with the scaling functiorg(x) and the argument
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(1) by Eg. (10), where the off-diagonal elements are un- 1
changed and the diagonal elements of arbitrary block size
are directly related to the diagonal elements of the original

system. The works of Refs. 18 and 19 proposed the mobilityyith the sum going over all neighbors of the site,m).

edge ind=3 and scaling laws for the conductivity and re- |ngerting the above transformation into E&), we find for
lated quantities. Therefore, it will be very interesting to ex-i,¢ wavelength in the vibrational cage= ((m)2w)™. The
tend also the present theory to the three-dimensional Ande

E (‘ﬂn’,m' - ¢n,m) == wzwn,mv (21)

nMp/ m'

son model. However, as it is developed for energies close t
the band edge it is for the moment not clear, if it can b
applied to the vicinity of the mobility edge, where compari-

sions to former renormalization theories can be made.

As a last remark, we would like to note that the regime
x>1 is also relevant to the vibrational problem with unit

spring constants and fluctuating masseg,=(m)+m,

where(m) describes the average mass ang, the disorder

of them. If we transform Eqg(1) according to

4-E— (Ma? €nm— fﬁn'mwz (20)

with the eigenfrequencw of the vibration, we find the vi-

brational equation

e

fimit of long wavelengths applies thus far><1/(m). Posi-
flve masses lead 1) <(m)? and together with Eq(19)
we finally arrive atx>1.

So, in the vibrational case, only the branch of higher val-
ues of the scaling variabbe exists and it will be very inter-
esting to investigate also this part. However, since this de-
mands much larger system siZésie to the increasing values
of V), this should be done in the future.
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