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First-principles calculations for development of low elastic modulus Ti alloys
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The elastic constants of the;IjX, (X=V, Nb, Ta, Mo, and W and Zx_,X, (X=Nb and M9 binary alloys
were calculated fok=0.0, 0.25, 0.5, 0.75, and 1.0 by the ultrasoft pseudopotential method within the gener-
alized gradient approximation to density functional theory to clarify the mechanisms by which the low elastic
moduli of the Ti binary alloys are realized. The Young's moduli of the polycrystals for these Ti or Zr binary
alloys were calculated from the calculated elastic constants of the single crystal by using the Voigt-Reuss-Hill
averaging scheme. The results show that the Young’s moduli of thé @n-Zr-X binary alloys have the
minimum values in the vicinity ok=0.25. From the calculation results, we have found @af-C, is
correlated with the valence electron number per atom and the valGg fC;, becomes nearly zero with the
valence electron number of around 4.20-4.24,—C;, also represents the stability of the bcc structure in
these alloys and we thus emphasize that controlling the valence electron number at around 4.20-4.24 is
important to realize a low-Young's-modulus material in the Ti or Zr binary alloys having bcc structure.
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I. INTRODUCTION calculated. However, it is necessary to estimate Young's

The Ti alloys are well known as light and high-strength Medulus of a polycrystal from the elastic constants of the
materials and have been used in various engineering fieldindle crystal because materials actually used in many cases
including for the automobile and aerospace applicatichs. &€ Polycrystals. We employed the Voigt-Reuss-KMRH)
Recently, Ti alloys have been paid attention as the biomatdl'ethed to evaluate a bulk modulus and a shear modulus of
rials for artificiai bones because of their biocompatibifity. e Polycrystal from elastic constants of a single crystal.
However, the Young’s modulus of a human bone is about The elastic constants have been calculated by the first-

30 GPa, which is much lower than conventional Ti a"OyS.principIes calculations, and it is known that the calculated
The difference of Young's moduli between a human bone2lU€s agree with the experiments within an accuracy of
and an artificial bone causes elastic incompatibility and majout +10%.%1 Although differences from the experiment
harmfully influence healthy bones in the vicinity of the arti- values exist, the elastic constants such as a bulk modulus are

ficial bone. Therefore, not only lightness and high strengtHeProduced well by these calculations, and it is expected as

but also a low Young’s modulus as a human bone is require@n effective method to show how to develop a new material
to the Ti alloys for artificial bones. whose Young’s modulus is controlled. Some examples of

It is well known that the addition of Va or Vla family calculating the Young's modulus by the VRH method have
elements such as Nb or V to pure Ti realizes low elastideen reported so faf:'* However, a systematic calculation
characteristicgi.e., low Young's modulus* However, the in Ti binary alloys has not been reported yet.
mechanisms of the low elastic moduli have not been clear. If In this research, in order to examine the Young's moduli
the mechanisms are clarified, the effective materials desigof Ti binary alloys systematically, we executed the first-
for the low elastic characteristic will be available. principles calculations of the T (X=V, Nb, Ta, Mo, and

Addition of Va family element changes the phase stabilityw) binary alloys and calculated their elastic constants.
of Ti alloys. Although bcc and hcp phases are stable in thegzr-X (X=Nb and Mg binary alloys were also calculated to
Ti-X (X=V, Nb, Ta, Mo, and W binary alloys, metastable find tendencies compared with that in the Ti binary alloys.
phases such as’ or » phases should be considered in orderthe Young's modulus was estimated from the calculated
to evaluate the Young's moduli of the alloy.Especially  gjastic constants by the method introduced by Voigt, Reuss,
the » phase is known to appear in Ti binary alloy containing ynq Hill. From the calculated results, we discuss a guideline
certain amounts of the Va family element. Thephase is to realize low-Young's-modulus materials.
quite important to discusasically it should be avoidgdor This paper is organized as follows. In Sec. Il calculation

practical uses of Ti alloys because the existence ofdghe , .
phase increases the Young’s modulus of the alloy. It is obvi-methOdS are reviewed. Calculation results to pure metals

ous that thew phase must be avoided to realize Iow-elastic-N:S’;ﬁ)'e'\goi’nvgeE’ ﬁlndAZZraitrifafheanr;r)ngzrbtlgargaﬁ!gyz ?or\?v-
modulus alloys as a prerequisite. The amount of metastab ) - Il A critical p X .
phases varies depending on heat treatment conditions angq "9 s—mod.ulus material is discussed in Sec. IV. Section V
phases without the metastable phases can be obtained Bg)/ncludes this study.

certain _heat treatments. Thus we focus_ed on the investigation Il. METHODS OF CALCULATION
of elastic moduli of Ti binary alloys having bcc or hep struc- _ )
tures in this research. A. Calculation methods of electronic states

From elastic constant€,; of a single crystal, Young's The present calculations are performed by the ultrasoft
modulus of an arbitrary direction in a single crystal can bepseudopotential methdt within generalized gradient ap-
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proximation (GGA) to the density functional theofy.We  value corresponding to the Young’'s modulus of the polycrys-
adopt the expression proposed by Perdew, Burke, anthl from the elastic constants of the single crystal. To this
Ernzerhot® for the exchange-correlation energy. end, we utilize the Voigt-Reuss-Hill approximation proposed
All pseudopotentials are constructed from the results oby Voigt? Reuss, and Hill® for averaging the elastic con-
scalar-relativistic all-electron calculatiohs.The pseudo- stants of the single crystal.
wave functions and the pseudoaugmentation charge func- As shown in Refs. 6-9, once a bulk modukigzy and a
tions are optimized by the method similar to that proposedshear moduluss, gy are obtained by the VRH method, one
by Rappeet all® can calculate the averaged Young’s modulus fiépg, and
In constructing the pseudopotentials, 3p, 3d, 4s, and  Gyry by the expression
4p states are chosen as the reference states for Ti and V
atoms. For Zr, Nb, and Mo atomss,44p, 4d, 5s, and % EVRH:%-
states and for Ta and W atomss, Bp, 5d, 6s, and @ states 1+ (BKyr{GyrH
are chosen as the reference states, respectively. We use
double-projector functions for all angular momentum com-
ponents of all the atoms. The partial core correcfiois D. Structure models used in the present calculations
adopted for all pseudopotentials to enhance their transferabil-

1)

In the calculations of the pure metals, the structures with

ity. . i _.space grougm3m and P6;/mmcare assumed for bcc and
In the solid-state calculations, the Kohn-Sham equation ificp structures, respectively.

solved by the iterqtive diagonalization schéfand the For binary alloysM-X, we selected the chemical compo-
Broyden charge mixing methé’t_jls adopted to accelerate the SitionsM g 76Xo 25 Mo £X0.5 aNdMg »5Xo 75 The calculation of
convergence. _The macroscopic stress tensor _and th_e atomjg, becMg £Xo 5 binary alloy is performed at the2 structure
forces are utilized for the structural optimizati&hDuring with the space groupm3m, where theM atom is located on

the optimization process, the partial occupation nUMberg,e comer andk atom is located on the body center of the
near the Fermi level are determined by the Fermi-Dirac disg pic |attice. The primitive brave lattice vectors asg

tribution function with kgT=3x 1072 hartree (1 hartree =(a,0,0), a,=(0,a,0), anda;=(0,0,a). In the calculation

=27.2116 eV and the free-energy functioﬁélis minimized ¢ the bCC Mg 76Xo 25 OF Mg 20075 binary alloys, theDO,
mstead of thg Kohn-Sham energy functional. The calculayiycture with space groupm3m is employed, where the
tions of elastic constants are also performed on the samgyit cell contains eight conventional bee unit cells and the
conditions as mentioned above. On the other hand, in calcysimitive brave lattice vectors am=(0,a,a), a,=(a,0,a),
lating the density of stateDOS), the Kohn-Sham energy nqa.=(a,a,0), wherea is the lattice constant of the con-

functional is minimized with the improved tetrahedron : : : I
- . ventional bcc unit cell. The atomic positions ara(@,0,
method* at the optimized structure. The numbersgfoints 111 P =(@,0,0

in the irreducible Brillouin zone used for tHe-space inte- Z't& fi)rll;/l .?tofm, tLb(ZX,Z’tZ) sﬂ; |1|‘or .X '\r;lltom (X1, and
gration are as follows: 195 points for bcc Nb, Ta, Mo, and Ti, C'H14,4hSI € d‘?r wox a ?n_;{s[ fj )Z] I)r(]b' 0-25X0-1|5 h
256 points for bcc V and W, 180 points for hcp Ti, 95 points € phase diagrams of ¥-and ZI- binary afloys have

- - o Iready been researcH@dand it is clear thai@) Ti-X (X
for hep Zr, 110 points for bce binary alloys with 1:1 compo- f X .
sition, and 72 points for bcc binary alloys with 1:3 or 3:1 =V, Nb, Ta, Mo, and Wbinary allo_y ha_s a hcp single phase
compositions. as a stable phase near the pure Ti regioh=ad K, (b) a bcc

The pseudowave functions are expanded by plane wav ase is stabiliz_ed with an increase of telement, andc)
with a cutoff energy equal to 15 hartrees. The cutoff energ inally the bcc single phase becomes stable when the amount

; o f X element is large enough. Although these alloys have
for the charge density and potential is set to be 120 hartree§,
9 y P other metastable phases to be transformed by a heat treat-

B. Calculation of the elastic constants ment such as aa’ or w phase, we assumed thz_it these binary

: alloys form one of the single phases as mentioned above.
Elastic constants in a cubic symmeti§,;, C15, andCyy)

and those in a hexagonal symmet;,, Ci, Cq3 Css and

C,4) are estimated by calculating the stress tensors on apply- ll. RESULTS

ing minute strains to an equilibrium structure. The amount of A. Pure metals

the applied strain in the calculation of the stress tensors is

about +1%. The linear interpolation scheme was employed

in the estimation of the elastic constants from the stresses

remove the residual stress.

Tables | and Il show the calculation result of the lattice
arameters and the elastic constants of bcc metaisb, Ta,

0, W) and hcp metalgTi, Zr), respectively. The calculated
lattice parameters show good agreement with experiment
within an error normally observed in the GG&;; andC,,
of Nb, Ta, Mo, and W are close to the experimental values.

The Young's modulus of an arbitrary direction can be cal-All the elastic constants are near the experimental values in

culated from elastic constants of a single crystal. HoweverTi and Zr.
actual materials industrially used are often polycrystals, AlthoughC,,’s of Ta, Mo, and W are within the expected
treated as isotropic materials. Therefore, to compare a calcaccuracy of +10% with the experimental valu€s,'s of V
lation result with experiment, it is necessary to calculate theand Nb show a little difference from the experimental values.

C. Estimation of polycrystalline Young’'s modulus
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TABLE I. Calculated equilibrium lattice constargsand elastic The lattice parameter changes monotonously as the con-

constants of bce V, Nb, Ta, Mo, and W. The valuesCgf-Cioare  tent of X increases and it does not show any sudden transi-
also shown. The experimental values are measured at roomions or local maximal or minimal values.

temperature. Figures 2 and 3 show the Young's modulus calculated
from the elastic constants in Table Ill. The Young’s moduli

a Cu Ci2 Cas Cu—Cypp lower in all the systems at the 25 at.% contents of a Va or
A) (GP3 (GPa (GPa  (GPa Vla family elementgX) and show the minimum values. The

V  Present 3.004 2697 1393 249 1304 ;oulng’s rrtloduli in%r]easgowittho/increasing the amounts of the
elements more than 50 at.%.
Expt? 3023 2287 1190 432 109.7 Figures 4 and 5 show the calculated DOS'’s of the
Nb  Present 3325 2470 1340  15.6 13.0 " 1i_Np and Ti-Mo binary alloys, respectively. The kind or
Expt® 3307 2465 1345 287 1120 amount of theX element does not seem to affect the shape of
Ta  Present 3318 2572 156.1  70.6 101.1 DOS but only moves Fermi level. The shift of the Fermi
Expt? 3.298 2609 1574 81.8 103.5 level in Ti-Mo binary system is larger than the one in
Mo Present 3.169 459.7 161.1 103.8 208.6 Ti-Nb binary system at the same contentélement, giv-

Expt?@ 3.147 463.0 161.0 109.0 302.0 Ing that the DOS of -E)|5Nb05 resembles that of -(I)—bdv'OOZEr
W Present 3.187 527.2 192.4 149.0 334.7
Expt? 3.165 532.6 205.0 163.1 327.6 IV. DISCUSSION

aReference 26. A. Materials trend of Young's moduli

As shown in Figs. 2 and 3, Young’s modulus shows the
However, the differences are only 15-20 GPa and the relaminimum values at 0.25 at. % & in Ti-X and ZrX binary
tive relation ofC,4's between these elements are reproducedlloys. Then, we investigated whether this phenomenon oc-
well by the calculations. curs in other binary systems. Table IV shows additionally
Figure 1 shows the Young’'s modulus of pure metal poly-calculated compositions and their elastic constants. The
crystals which were calculated by VRH method from theNb-V binary alloy consists of only the Va family elements
elastic constants in Tables | and Il. The Young's moduli areand the Nb-Mo binary alloy consists of both the Va and Via
almost corresponding to the experimental values within théamily elements. Because the Va and Vla family elements

expected accuracy range of £10%. have a bcc structure at 0 K, these alloys were calculated
The calculations of elastic constants of pure metals withassuming the model of bcc structure same aX ®nd Zr

the bcc structure were also performed by Soderktcal.  -X binary alloys.

with the full-potential linear muffin-tin orbital(LMTO) On the other handD0,4 structure with the space group

method within the local density approximatihTheir re-  P6;/mmcis assumed in cases of gFiZrg 5 and T 520 75
sults also showed an accuracy of about £10% to the experby consideration of the phase stability of Ti and Zr at 0 K. In
mental values. this structure, the primitive brave lattice vectors are ex-

It was clarified that the Young's moduli of the metallic pressed by, =2a(\3/2,1/2,0, a,=2a(-\3/2,1/2,0, and
elements by the present method reproduce the experimental=c(0,0,1) wherea and ¢ correspond to the lattice con-
values well, and thus we applied the same calculations t@tants of the conventional hcp unit cell. TWbatoms and six
their alloys. X atoms are located on thec(@,3,3) site and ®(x,2x,3)
site, respectively, in the hcllg X 75

In case of Tj<Zrgs, Wwe assumed the lamella structure
which has the same unit cell as the conventional hcp unit cell

The calculation of the Young’s modulus of Ki-binary  but the Ti and Zr atoms are located on the layer alongcthe
alloys (X=V, Nb, Ta, Mo, and W and the ZrX (X=Nb and  axis although this model has the possibility of showing the
Mo) binary alloys has been performed. Table Il shows theanisotropy and inaccuracy of the calculation for the elastic
calculated lattice parameters and elastic constants. constants. The reason for this assumption is to make the

B. Young’s modulus of the binary alloys

TABLE Il. Calculated equilibrium lattice constanésandc and elastic constants of hcp Ti and Zr. The
experimental values are measured at room temperature.

a c Cu Ci2 Ci3 Cas Caa
A) A) (GPa (GPa (GPa (GPa (GPa
Ti Present 2.946 4.666 171.6 86.6 72.6 190.6 41.1
Expt? 2.951 4.684 162.4 92.0 69.0 180.7 46.7
Zr Present 3.232 5.182 139.4 71.3 66.3 162.7 25.5
Expt? 3.231 5.148 143.4 65.3 65.3 164.8 32.0

3Reference 26.
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450 T CaL (present) ' ; modulus monotonically increases or decreases with the con-
w400 s tent of X.
% 350 Exp. The result of Tj§ sZry 5 which does not show an extreme
E 300 § ______ change o_f neither the Iat_ti(_:e parameter nor the Young’s
D 950 b . modulus indicates the validity of the model used for this
g § \ composition. When the content of Nb is 50 at. % or more in
g 200 = § """ Ti-Nb binary system having hcp structure, tBg, becomes
< 150 § negative. It means addition of 50 at. % or more Nb makes
g 100 |- . hcp structure unstable in Ti-Nb binary system. These results
S 50 agree with the experimental phase diagram of Ti-Nb binary

system, where the hcp phase becomes unstable, gNbj 5

0

(Ref. 25. On the other hand, in JNby »5 though the value
of C,y is very small, the condition<C;;>|C;4|, C33(Cyy
FIG. 1. Young's moduli of hcp metaldi and Zp and bce met- +C,,) >zci3, C11C33> C§3, and C,,>0, which represent
als (V, Nb, Ta, Mo, and W estimated from the calculated elastic g|gstic stability of the hcp structure, are satisfied.
constants of the single crystal by the Voigt-Reuss-Hill method. Ex-  Moreover, in paying attention to J}Nby,s Young's
perimental Young's moduli are measured values for polycrystallinemodulus is 31 GPa for the bcc structure, which is lower than
metals at room temperatu(®ef. 26. 62 GPa for the hcp structure. This result suggests that the bcc
is more preferred structure for lowering Young’s modulus.
calculation time reduced. Moreover, the Ti-Nb binary alloy It turns out that the change in the Young's moduli shown
was calculated with the hcp structures to compare with thén Figs. 2 and 3 is observed only when the binary alloy
result of the bcc structure. consists of both the IVa family element and the Va or Via
The obtained lattice parameters and elastic constants afamily element. It is obvious from their phase diagrams that
shown in Tables IV and V for the bcc N¥(X=V and Mo  the phase transition between hcp and bcc structure is in-
binary alloys and the hcp T (X=Zr and Nb binary alloy, volved in the binary systents.
respectively, and the results of the Young's moduli calculated N
by Eq.(1) are shown in Fig. 6. In any case, the rapid transi- B. Phase stability of the bcc structure
tion of the Young's modulus with the minimum value such as  Although pure Ti and Zr have the hcp structyrephase
shown in Figs. 2 and 3 was not observed and the Young'st room temperature, they transform into the bcc struat@re

TABLE Ill. Calculated equilibrium lattice constanta, elastic constant«C;;, Cq,, and C,4, and
C11—Cyy of bee Ti-X (X=V, Nb, Ta, Mo, and W Zr-Nb, and Zr-Mo binary alloys.

Composition a Ci1 Cio Cua C11-Cy»
Mo Xy Structure A (GPa (GPa (GPa (GPa
Tig7eV 025 D03 3.273 123.9 116.9 36.3 7.0
TipsVos B2 3.280 169.6 122.3 33.6 47.3
Tig.0eV 075 D03 3.306 213.0 132.2 29.6 80.8
Tig.7eNbg 25 D03 3.273 128.5 1155 14.9 13.0
TigsNbg 5 B2 3.280 155.4 124.7 12.8 30.7
Tig.9Nbg 75 D03 3.306 203.5 126.8 21.3 76.8
Tig.78T @0 25 D03 3.271 129.9 121.6 38.6 8.2
TigsTags B2 3.278 163.4 132.8 39.0 30.6
Tig.0sT a9 75 D03 3.302 207.0 145.3 55.6 61.7
Tig7gM0g o5 D03 3.273 160.5 125.6 34.1 34.8
Tig.gMog 5 B2 3.280 224.0 146.6 10.4 77.5
Tig.2gM0g 75 D03 3.306 363.6 151.5 62.0 212.2
Tig.7sWg 25 DOy 3.217 169.2 134.2 324 35.0
TigsWo s B2 3.184 239.9 165.9 50.9 73.9
Tig2Wg 75 DOy 3.179 374.8 184.2 81.7 190.6
Zrg 7\Nbg o5 D03 3.508 112.8 98.3 19.8 145
ZrgsNbg 5 B2 3.447 144.4 108.3 18.3 36.1
Zrg 2N\bg 75 DOy 3.382 196.2 118.5 17.9 77.7
Zrp7eM0g 25 DO, 3.451 138.4 104.2 16.6 34.2
ZrgsMog 5 B2 3.349 208.5 124.3 29.2 84.2
Zrg 29VM0g 75 D03 3.244 342.4 1345 49.7 207.9
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o FIG. 4. Calculated total density of statd30S) of bcc Ti-Nb

300 + i binary alloys:(a) Tig 2g\bg 75 (b) TiggNbg.s and(c) Tig 7gNbg 25 A
i vertical dotted line denotes the Fermi energy.

200 | ,
100 . . | phaseé at about 1155 K and 1136 K, respectively. Then elas-

0 - ‘ ’ tic properties of-Ti and B-Zr were calculated although
400 | (& TiEW . =0 K is assumed in the calculations. The elastic constants

are shown in Table VI, which show good agreement with the

300 S result by Ahujaet al28
200 ¢ ] Young’s modulus in th€001) direction,Eqg;, is expressed
100 froe g™ . by

0 ' ' ' E (C11+2C19)(Cq1 - Cyp) @)

001~ .
0 25 50 75 100 Cu+Cuy

Content of X (atomic%) ] ]
The calculatedeyy,'s for B-Ti and B-Zr are the negative

FIG. 2. Young's moduli estimated from the calculated elasticvalues —38 GPa and -11 GPa, respectively. This result
constants of the single crystals by the Voigt-Reuss-Hill methodmeans that Ti and Zr of the bcc structure cannot exist stably
Solid circles are calculated values for bce Xibinary alloys(X  at absolute zero. This is in good agreement with actual phase
=V, Nb, Ta, Mo, and VY. Open circles are the calculated Young's stability. It is clear thatEyy, becomes negative only when
modulus of hcp Ti. Dotted lines denote the curve fitted by third-C,,~C,, becomes negative from E@2). The C;;—C, is
order polynomial function which is shown as a guide to the eye. negative only for3-Ti and B-Zr as shown in Table VI and

positive for the Va and Vla family elements and the binary

200 - : : systems with the bcc structure from Tables I, 11, and IV. The
(a) Zr-Nb
__ 150 ¢}
@ 100 } 4
s Jp— bt 3 (2) Tig, 75M°o 25
3 o ,
g 400 | (b) Zr-Mo S o
-.m m
o 300 | 1 i, 3
100 - &%
T g™ 8 0
0 : : : 3
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Content of X (atomic%) 1
FIG. 3. Young’s moduli estimated from the calculated elastic 010 8 -6 4 2 0 2 4 6 8 10
constants of the single crystals by the Voigt-Reuss-Hill method. Energy(eV)

Solid circles are calculated values for bcc Xrbinary alloys (X

=Nb and M9. Open circles are the calculated Young’s modulus of FIG. 5. Calculated total density of statd30S) of bcc Ti-Mo
hcp Zr. Dotted lines denote the curve fitted by a third-order poly-binary alloys:(a) Tig29VI0g 75 (b) TiggM0g s and(c) Tig79M0g 25
nomial function which is shown as a guide to the eye. A vertical dotted line denotes the Fermi energy.
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TABLE V. Calculated equilibrium lattice constants, elastic constantsC,;, C;5, and C4, and
C11—Cy, of bcec Nb-V and Nb-Mo binary alloys.

Composition a Ci1 Cio Cua C11—-Cy»
Nby Xy Structure R) (GP3 (GP3 (GPa (GP3
Nbg 78V 0 25 D05 3.256 244.6 135.9 16.5 108.7
Nbg sV 5 B, 3.177 250.3 136.1 12.3 114.3
Nbg 25V 75 DO, 3.094 252.2 137.2 17.0 115.0
Nbq 7gM0g 55 DO, 3.279 286.8 143.5 23.8 143.3
Nbg sM0g 5 B, 3.238 368.4 140.7 63.3 227.7
Nbq 2gM0g 75 DO, 3.202 425.5 144.8 85.4 280.7

value of C{;,—C,, is the parameter by which the elastic sta- The bcc structures thus cannot exist stably in the area of a
bility of a bcc structure can be evaluatédnd it is necessary valence electron number less than 4.20, wheye-C,, be-

to become positive for the bcc structure stabilization. comes negative. In other words, the bcc structure of the va-
lence electron number around 4.20-4.24 realizes a small
C. Relationship between the elastic constant€y; and Cy, C,;—-Cy, and thereby a low Young’'s modulus is expected if
and the number of valence electrons bece structure can be maintained.

The change in the Young’s modulus does not depend so On the other hand, as the stability of the hcp structure
much on the kind of IVa, Va, and Vla family elements asncreases with decreasing the valence electron number from

seen in Figs. 2 and 3. Moreover, the shapes of the DOS .24, it tends to be difficult to stabilize the bcc single-phase

not depend on the kind of the elements but the crystal strucsiructure even i€, —Cy,is sill positive. In this case the hcp
tures as discussed by Soderlietial2” This tendency of the Structure or metastable phases such asdifighase can be
formed and it is obvious that the existence of these phases

DOS is seen not only for pure metals but also for binarycauses an increase of Young’s modulderefore, it is nec-

alloys. The DOS resemble each other very weI_I when the ssary to choose a proper composition and process to stabi-
have the same crystal structure as shown in Figs. 4 and e the bee structure

Thus the rigid band model can be applied, where the position

of Fermi level corresponding to the valence electron number D. Relationship betweenC,, and the number
per atom is a parameter to describe the elastic characteristics of valence electrons
of the alloys. Figure 9 shows the relationship between the valence elec-

It is evident that in the cubic symmetry the Young's tron number andC,, of the Ti-X binary alloys and the pure
modulus is lowered by making;;—C;, and C,, smaller?  metals. The plots are scattered and the relation with the va-
Figure 7 shows the relationship between the valence electrdence electron number is not clear. It seems Bafs are
number per atom for Tk and ZrX binary alloys and elastic determined not only the valence electron number per atom
constantsC;; and Cy, in the bcc structures. It is clear that but also the other parameters.
both C;; andC,, increase monotonically with increasing the It is obvious thatC,,'s of the binary alloys whos&X ele-
valence electron number per ato@,,—C,, also shows the ment has smallC,, were kept small—e.g., Ti-Nb from
same tendency as shown in Fig. 8. Moreover, by plotting th&ables I-IV. It is assumed that addition of the element hav-
calculation values of3-Ti and -Zr to Fig. 8, it is obvious ing smallC,, is better for loweringC,, of the alloys.
that C;;—C,, shows an almost linear dependence with the N ) o
valence electron number from 4 to 6. Figure 8 shows that E. Conditions for low elastic modulus and applications
C,,—C,, takes a value close to zero around the valence elec- From the discussions mentioned above, using the binary
tron number of 4.20-4.24. alloy which consists of a IVa family element and a Va or Via

TABLE V. Calculated equilibrium lattice constargsandc and elastic constant8;;, C;5, Cy3, Cs3 and
Cy4 Of hep Ti-Zr and Ti-Nb binary alloys. In the hexagonal symmeﬁ?yﬁ;:%(CH—ClZ).

Composition a c Ci1 Css Cio Cis Cua
Tig—Xy Structure A) A) (GPa (GPa (GPa (GPa (GPa
Tig 76Zr0.25 DO0sg 3.036 4,772 140.4 172.8 87.5 72.4 35.3
TipZro 5 Lamella 3.114 4.918 137.7 164.0 75.3 67.8 30.0
Tig.2Zro 75 D049 3.172 5.049 136.1 159.0 77.1 69.8 29.9
Tig 7Nbg 25 DO, 2.930 4,783 207.1 187.4 58.1 96.6 1.9
Tio.sNbg s Lamella 2.915  4.859 266.8 257.2 45.0 107.0 -7.1
Tig.0gNbg 75 D039 2.875 5.162 232.8 215.1 111.4 108.7 -33.9
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FIG. 7. Calculated elastic constarig C,; and(b) C,, of the Ti

FIG. 6. Young's moduli estimated from the calculated elasticand Zr binary alloys and pure metals. The values at valence electron

constants of the single crystals by the Voigt-Reuss-Hill method fomumber of 4.0 are of bce Ti and Zr.

(a8 bce Nb-V, (b) bcc Nb-Mo, and(c) hcp Ti-Zr. Dotted lines

plenote the curve fitted by a third-order polynomial function whichsijtions belong to IVa—Vla family. The composition of the

is shown as a guide to the eye. recently developed material named “GUM METAL,” which
realized an extreme low Young’s modulus and high strength

family element, a low Young's modulus can be achieved byat the same time, is Ti-12Ta-9Nb-3V-6Zr-O and Ti-23Nb-

meeting the following requirements at the same tiigBy  0.7Ta-2Zr-O(mol %), for example’®31 Both are bcc single-

adding the Va or Vla element which stabilizes the bcc strucphase Ti alloys designed so that each valence electron num-

ture to the 1Va element which has stable hcp structurg at ber becomes about 4.22—4 241 Because a lot of Nb which

=0 K, the valence electron number is controlled to be arounds added to this alloy is the element with lo@,, these

4.20-4.24 to make the value €f;;,—C;, nearly zero, and alloys prove the above conditions of a low-Young’s-modulus

simultaneously it should maintain the bcc structy®.C,,  alloy.

of the binary alloy is small.

For instance, in case of the Ti-Nb binary alloy, the va-

lence electron number per atom becomes 4.24 by adding V. CONCLUSIONS

24 at.% Nb, and the®,;—C;, becomes almost zero. More- . o _

over, it is expected tha€,, of the composition becomes We perform_ed th_e first-principles calculations of the

lower because Nb has a 108y, value. Although Tj,Nbg s Young's moduli of Ti_X, (X=V, Nb, Mo, and W and

is usually expected to be the hcp structure at absolute zero, {1 (X=Nb and Mg binary alloys forx=0.0, 0.25, 0.5,

is possible to obtain bce single-phase structure by an apprd:-72, and 1.0 by means of the Voigt-Reuss-Hill averaging

priate heat treatment. On the other hand, ipgiby, the scheme. The calculated Yoqng’s moduli have minimum val-

valence electron number becomes 4.20 where the lowdt€S at some content of additionélatoms. _

C,,—Cys is expected, but the bece structure tends to be unsta- BY analyzing the calculated results, we have confirmed

bilized more and not only the hcp structure but also the metathat the electronic structure of these bcc alloys are mainly

stable phases are expected to appear. Therefore realizing tAgtermined by their crystal structure—that is, the so-called

bee single phase at absolute zero becomes more difficult fd#9id band model is able to be applicable and the influence of

the composition. the individual elements is not so dominant. In fact, the cal-
Because the relationship betwe€&n,;—C,, and the va-
lence electron number per atom does not depend on the kind 350 -
of the additional element, a similar situation can be expected = ggg 0‘
in alloy systems with three or more elements if the compo- 5 200 s
S5 150 s
TABLE VI. Calculated equilibrium lattice constants and elastic 100 gé
constants of3-Ti and - Zr. 1) 58 e
-50
a Cll C12 C44 Cll_c12 4.0 45 5.0 55 6.0
R (GPa (GPa (GPa (GPa No. of valence electrons
B-Ti 3.264 87.8 112.2 39.8 -24.4 FIG. 8. Calculated values df,,—Cy, of the Ti and Zr binary
B-Zr 3.580 84.2 91.4 32.3 -7.2 alloys and pure metals. The values at valence electron number of

4.0 are of bce Ti and Zr.
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tors: (1) The valence electron number per atom of Ti binary
alloy can be controlled by the amount of Va or Vla family
element such as Nb and Ta, resulting @;—C;, being
nearly zero(2) The bcc structure is maintained. On the other
hand, it is not clear from the present study that there are any
factors which can describe the behavior@f;.

It is confirmed that the recently developed super-low-
elastic Ti alloy named “GUM METAL” satisfied the condi-
tion that the valance electron number per atom is around 4.24
andC;;—-C,,is expected to be nearly zero. The compositions
of GUM METAL are optimized according to the prescription

and pure metals. The values at valence electron number of 4.0 aghtained from the present calculation.

of bce Ti and Zr.

culatedC;; and C;, has good correlation with the valence
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