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The elastic constants of the Ti1−xXx (X=V, Nb, Ta, Mo, and W) and Zr1−xXx (X=Nb and Mo) binary alloys
were calculated forx=0.0, 0.25, 0.5, 0.75, and 1.0 by the ultrasoft pseudopotential method within the gener-
alized gradient approximation to density functional theory to clarify the mechanisms by which the low elastic
moduli of the Ti binary alloys are realized. The Young’s moduli of the polycrystals for these Ti or Zr binary
alloys were calculated from the calculated elastic constants of the single crystal by using the Voigt-Reuss-Hill
averaging scheme. The results show that the Young’s moduli of the Ti-X or Zr-X binary alloys have the
minimum values in the vicinity ofx=0.25. From the calculation results, we have found thatC11−C12 is
correlated with the valence electron number per atom and the value ofC11−C12 becomes nearly zero with the
valence electron number of around 4.20–4.24.C11−C12 also represents the stability of the bcc structure in
these alloys and we thus emphasize that controlling the valence electron number at around 4.20–4.24 is
important to realize a low-Young’s-modulus material in the Ti or Zr binary alloys having bcc structure.
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I. INTRODUCTION

The Ti alloys are well known as light and high-strength
materials and have been used in various engineering fields
including for the automobile and aerospace applications.1,2

Recently, Ti alloys have been paid attention as the biomate-
rials for artificial bones because of their biocompatibility.3

However, the Young’s modulus of a human bone is about
30 GPa, which is much lower than conventional Ti alloys.
The difference of Young’s moduli between a human bone
and an artificial bone causes elastic incompatibility and may
harmfully influence healthy bones in the vicinity of the arti-
ficial bone. Therefore, not only lightness and high strength
but also a low Young’s modulus as a human bone is required
to the Ti alloys for artificial bones.

It is well known that the addition of Va or VIa family
elements such as Nb or V to pure Ti realizes low elastic
characteristics(i.e., low Young’s modulus).4 However, the
mechanisms of the low elastic moduli have not been clear. If
the mechanisms are clarified, the effective materials design
for the low elastic characteristic will be available.

Addition of Va family element changes the phase stability
of Ti alloys. Although bcc and hcp phases are stable in the
Ti-X (X=V, Nb, Ta, Mo, and W) binary alloys, metastable
phases such asa8 or v phases should be considered in order
to evaluate the Young’s moduli of the alloys.4,5 Especially
thev phase is known to appear in Ti binary alloy containing
certain amounts of the Va family element. Thev phase is
quite important to discuss(basically it should be avoided) for
practical uses of Ti alloys because the existence of thev
phase increases the Young’s modulus of the alloy. It is obvi-
ous that thev phase must be avoided to realize low-elastic-
modulus alloys as a prerequisite. The amount of metastable
phases varies depending on heat treatment conditions and
phases without the metastable phases can be obtained by
certain heat treatments. Thus we focused on the investigation
of elastic moduli of Ti binary alloys having bcc or hcp struc-
tures in this research.

From elastic constantsCab of a single crystal, Young’s
modulus of an arbitrary direction in a single crystal can be

calculated. However, it is necessary to estimate Young’s
modulus of a polycrystal from the elastic constants of the
single crystal because materials actually used in many cases
are polycrystals. We employed the Voigt-Reuss-Hill(VRH)
method to evaluate a bulk modulus and a shear modulus of
the polycrystal from elastic constants of a single crystal.6–9

The elastic constants have been calculated by the first-
principles calculations, and it is known that the calculated
values agree with the experiments within an accuracy of
about ±10%.10,11 Although differences from the experiment
values exist, the elastic constants such as a bulk modulus are
reproduced well by these calculations, and it is expected as
an effective method to show how to develop a new material
whose Young’s modulus is controlled. Some examples of
calculating the Young’s modulus by the VRH method have
been reported so far.12,13 However, a systematic calculation
in Ti binary alloys has not been reported yet.

In this research, in order to examine the Young’s moduli
of Ti binary alloys systematically, we executed the first-
principles calculations of the Ti-X (X=V, Nb, Ta, Mo, and
W) binary alloys and calculated their elastic constants.
Zr-X (X=Nb and Mo) binary alloys were also calculated to
find tendencies compared with that in the Ti binary alloys.
The Young’s modulus was estimated from the calculated
elastic constants by the method introduced by Voigt, Reuss,
and Hill. From the calculated results, we discuss a guideline
to realize low-Young’s-modulus materials.

This paper is organized as follows. In Sec. II calculation
methods are reviewed. Calculation results to pure metals(V,
Nb, Ta, Mo, W, Ti, and Zr) and then to the binary alloys are
described in Sec. III. A critical parameter to realize a low-
Young’s-modulus material is discussed in Sec. IV. Section V
concludes this study.

II. METHODS OF CALCULATION

A. Calculation methods of electronic states

The present calculations are performed by the ultrasoft
pseudopotential method14 within generalized gradient ap-
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proximation (GGA) to the density functional theory.15 We
adopt the expression proposed by Perdew, Burke, and
Ernzerhof16 for the exchange-correlation energy.

All pseudopotentials are constructed from the results of
scalar-relativistic all-electron calculations.17 The pseudo-
wave functions and the pseudoaugmentation charge func-
tions are optimized by the method similar to that proposed
by Rappeet al.18

In constructing the pseudopotentials, 3s, 3p, 3d, 4s, and
4p states are chosen as the reference states for Ti and V
atoms. For Zr, Nb, and Mo atoms, 4s, 4p, 4d, 5s, and 5p
states and for Ta and W atoms, 5s, 5p, 5d, 6s, and 6p states
are chosen as the reference states, respectively. We use
double-projector functions for all angular momentum com-
ponents of all the atoms. The partial core correction19 is
adopted for all pseudopotentials to enhance their transferabil-
ity.

In the solid-state calculations, the Kohn-Sham equation is
solved by the iterative diagonalization scheme20 and the
Broyden charge mixing method21 is adopted to accelerate the
convergence. The macroscopic stress tensor and the atomic
forces are utilized for the structural optimization.22 During
the optimization process, the partial occupation numbers
near the Fermi level are determined by the Fermi-Dirac dis-
tribution function with kBT=3310−3 hartree s1 hartree
=27.2116 eVd and the free-energy functional23 is minimized
instead of the Kohn-Sham energy functional. The calcula-
tions of elastic constants are also performed on the same
conditions as mentioned above. On the other hand, in calcu-
lating the density of states(DOS), the Kohn-Sham energy
functional is minimized with the improved tetrahedron
method24 at the optimized structure. The numbers ofk points
in the irreducible Brillouin zone used for thek-space inte-
gration are as follows: 195 points for bcc Nb, Ta, Mo, and Ti,
256 points for bcc V and W, 180 points for hcp Ti, 95 points
for hcp Zr, 110 points for bcc binary alloys with 1:1 compo-
sition, and 72 points for bcc binary alloys with 1:3 or 3:1
compositions.

The pseudowave functions are expanded by plane waves
with a cutoff energy equal to 15 hartrees. The cutoff energy
for the charge density and potential is set to be 120 hartrees.

B. Calculation of the elastic constants

Elastic constants in a cubic symmetry(C11, C12, andC44)
and those in a hexagonal symmetry(C11, C12, C13, C33, and
C44) are estimated by calculating the stress tensors on apply-
ing minute strains to an equilibrium structure. The amount of
the applied strain in the calculation of the stress tensors is
about ±1%. The linear interpolation scheme was employed
in the estimation of the elastic constants from the stresses to
remove the residual stress.

C. Estimation of polycrystalline Young’s modulus

The Young’s modulus of an arbitrary direction can be cal-
culated from elastic constants of a single crystal. However,
actual materials industrially used are often polycrystals,
treated as isotropic materials. Therefore, to compare a calcu-
lation result with experiment, it is necessary to calculate the

value corresponding to the Young’s modulus of the polycrys-
tal from the elastic constants of the single crystal. To this
end, we utilize the Voigt-Reuss-Hill approximation proposed
by Voigt,6 Reuss,7 and Hill8 for averaging the elastic con-
stants of the single crystal.

As shown in Refs. 6–9, once a bulk modulusKVRH and a
shear modulusGVRH are obtained by the VRH method, one
can calculate the averaged Young’s modulus fromKVRH and
GVRH by the expression

EVRH=
9KVRH

1 + s3KVRH/GVRHd
. s1d

D. Structure models used in the present calculations

In the calculations of the pure metals, the structures with
space groupIm3m and P63/mmc are assumed for bcc and
hcp structures, respectively.

For binary alloysM-X, we selected the chemical compo-
sitionsM0.75X0.25, M0.5X0.5, andM0.25X0.75. The calculation of
the bccM0.5X0.5 binary alloy is performed at theB2 structure
with the space groupPm3m, where theM atom is located on
the corner andX atom is located on the body center of the
cubic lattice. The primitive brave lattice vectors area1
=sa,0 ,0d, a2=s0,a,0d, and a3=s0,0,ad. In the calculation
of the bcc M0.75X0.25 or M0.25X0.75 binary alloys, theD03
structure with space groupFm3m is employed, where the
unit cell contains eight conventional bcc unit cells and the
primitive brave lattice vectors area1=s0,a,ad, a2=sa,0 ,ad,
anda3=sa,a,0d, wherea is the lattice constant of the con-
ventional bcc unit cell. The atomic positions are 4as0,0,0d
site for M atom, 4bs 1

2 , 1
2 , 1

2
d site for X atom [X(I)], and

8cs 1
4 , 1

4 , 1
4

d site for twoX atoms[X(II )] in M0.25X0.75.
The phase diagrams of Ti-X and Zr-X binary alloys have

already been researched25 and it is clear that(a) Ti-X (X
=V, Nb, Ta, Mo, and W) binary alloy has a hcp single phase
as a stable phase near the pure Ti region atT=0 K, (b) a bcc
phase is stabilized with an increase of theX element, and(c)
finally the bcc single phase becomes stable when the amount
of X element is large enough. Although these alloys have
other metastable phases to be transformed by a heat treat-
ment such as ana8 or v phase, we assumed that these binary
alloys form one of the single phases as mentioned above.

III. RESULTS

A. Pure metals

Tables I and II show the calculation result of the lattice
parameters and the elastic constants of bcc metals(V, Nb, Ta,
Mo, W) and hcp metals(Ti, Zr), respectively. The calculated
lattice parameters show good agreement with experiment
within an error normally observed in the GGA.C11 andC12
of Nb, Ta, Mo, and W are close to the experimental values.
All the elastic constants are near the experimental values in
Ti and Zr.

AlthoughC44’s of Ta, Mo, and W are within the expected
accuracy of ±10% with the experimental values,C44’s of V
and Nb show a little difference from the experimental values.
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However, the differences are only 15–20 GPa and the rela-
tive relation ofC44’s between these elements are reproduced
well by the calculations.

Figure 1 shows the Young’s modulus of pure metal poly-
crystals which were calculated by VRH method from the
elastic constants in Tables I and II. The Young’s moduli are
almost corresponding to the experimental values within the
expected accuracy range of ±10%.

The calculations of elastic constants of pure metals with
the bcc structure were also performed by Soderlindet al.
with the full-potential linear muffin-tin orbital(LMTO)
method within the local density approximation.27 Their re-
sults also showed an accuracy of about ±10% to the experi-
mental values.

It was clarified that the Young’s moduli of the metallic
elements by the present method reproduce the experimental
values well, and thus we applied the same calculations to
their alloys.

B. Young’s modulus of the binary alloys

The calculation of the Young’s modulus of Ti-X binary
alloys (X=V, Nb, Ta, Mo, and W) and the Zr-X (X=Nb and
Mo) binary alloys has been performed. Table III shows the
calculated lattice parameters and elastic constants.

The lattice parameter changes monotonously as the con-
tent of X increases and it does not show any sudden transi-
tions or local maximal or minimal values.

Figures 2 and 3 show the Young’s modulus calculated
from the elastic constants in Table III. The Young’s moduli
lower in all the systems at the 25 at.% contents of a Va or
VIa family elementssXd and show the minimum values. The
Young’s moduli increase with increasing the amounts of the
X elements more than 50 at.%.

Figures 4 and 5 show the calculated DOS’s of the
Ti-Nb and Ti-Mo binary alloys, respectively. The kind or
amount of theX element does not seem to affect the shape of
DOS but only moves Fermi level. The shift of the Fermi
level in Ti-Mo binary system is larger than the one in
Ti-Nb binary system at the same content ofX element, giv-
ing that the DOS of Ti0.5Nb0.5 resembles that of Ti0.75Mo0.25.

IV. DISCUSSION

A. Materials trend of Young’s moduli

As shown in Figs. 2 and 3, Young’s modulus shows the
minimum values at 0.25 at. % ofX in Ti-X and Zr-X binary
alloys. Then, we investigated whether this phenomenon oc-
curs in other binary systems. Table IV shows additionally
calculated compositions and their elastic constants. The
Nb-V binary alloy consists of only the Va family elements
and the Nb-Mo binary alloy consists of both the Va and VIa
family elements. Because the Va and VIa family elements
have a bcc structure at 0 K, these alloys were calculated
assuming the model of bcc structure same as Ti-X and Zr
-X binary alloys.

On the other hand,D019 structure with the space group
P63/mmc is assumed in cases of Ti0.75Zr0.25 and Ti0.25Zr0.75
by consideration of the phase stability of Ti and Zr at 0 K. In
this structure, the primitive brave lattice vectors are ex-
pressed bya1=2asÎ3/2,1/2,0d, a2=2as−Î3/2,1/2,0d, and
a3=cs0,0,1d where a and c correspond to the lattice con-
stants of the conventional hcp unit cell. TwoM atoms and six
X atoms are located on the 2cs 1

3 , 2
3 , 1

4
d site and 6hsx,2x, 1

4
d

site, respectively, in the hcpM0.25X0.75.
In case of Ti0.5Zr0.5, we assumed the lamella structure

which has the same unit cell as the conventional hcp unit cell
but the Ti and Zr atoms are located on the layer along thec
axis although this model has the possibility of showing the
anisotropy and inaccuracy of the calculation for the elastic
constants. The reason for this assumption is to make the

TABLE I. Calculated equilibrium lattice constantsa and elastic
constants of bcc V, Nb, Ta, Mo, and W. The values ofC11−C12 are
also shown. The experimental values are measured at room
temperature.

a
(Å)

C11

(GPa)
C12

(GPa)
C44

(GPa)
C11−C12

(GPa)

V Present 3.004 269.7 139.3 24.9 130.4

Expt.a 3.023 228.7 119.0 43.2 109.7

Nb Present 3.325 247.0 134.0 15.6 113.0

Expt.a 3.307 246.5 134.5 28.7 112.0

Ta Present 3.318 257.2 156.1 70.6 101.1

Expt.a 3.298 260.9 157.4 81.8 103.5

Mo Present 3.169 459.7 161.1 103.8 298.6

Expt.a 3.147 463.0 161.0 109.0 302.0

W Present 3.187 527.2 192.4 149.0 334.7

Expt.a 3.165 532.6 205.0 163.1 327.6

aReference 26.

TABLE II. Calculated equilibrium lattice constantsa andc and elastic constants of hcp Ti and Zr. The
experimental values are measured at room temperature.

a
(Å)

c
(Å)

C11

(GPa)
C12

(GPa)
C13

(GPa)
C33

(GPa)
C44

(GPa)

Ti Present 2.946 4.666 171.6 86.6 72.6 190.6 41.1

Expt.a 2.951 4.684 162.4 92.0 69.0 180.7 46.7

Zr Present 3.232 5.182 139.4 71.3 66.3 162.7 25.5

Expt.a 3.231 5.148 143.4 65.3 65.3 164.8 32.0

aReference 26.
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calculation time reduced. Moreover, the Ti-Nb binary alloy
was calculated with the hcp structures to compare with the
result of the bcc structure.

The obtained lattice parameters and elastic constants are
shown in Tables IV and V for the bcc Nb-X (X=V and Mo)
binary alloys and the hcp Ti-X (X=Zr and Nb) binary alloy,
respectively, and the results of the Young’s moduli calculated
by Eq. (1) are shown in Fig. 6. In any case, the rapid transi-
tion of the Young’s modulus with the minimum value such as
shown in Figs. 2 and 3 was not observed and the Young’s

modulus monotonically increases or decreases with the con-
tent of X.

The result of Ti0.5Zr0.5 which does not show an extreme
change of neither the lattice parameter nor the Young’s
modulus indicates the validity of the model used for this
composition. When the content of Nb is 50 at. % or more in
Ti-Nb binary system having hcp structure, theC44 becomes
negative. It means addition of 50 at. % or more Nb makes
hcp structure unstable in Ti-Nb binary system. These results
agree with the experimental phase diagram of Ti-Nb binary
system, where the hcp phase becomes unstable in Ti0.5Nb0.5
(Ref. 25). On the other hand, in Ti0.75Nb0.25, though the value
of C44 is very small, the conditionsC11. uC12u, C33sC11
+C12d.2C13

2 , C11C33.C13
2 , and C44.0, which represent

elastic stability of the hcp structure, are satisfied.
Moreover, in paying attention to Ti0.75Nb0.25, Young’s

modulus is 31 GPa for the bcc structure, which is lower than
62 GPa for the hcp structure. This result suggests that the bcc
is more preferred structure for lowering Young’s modulus.

It turns out that the change in the Young’s moduli shown
in Figs. 2 and 3 is observed only when the binary alloy
consists of both the IVa family element and the Va or VIa
family element. It is obvious from their phase diagrams that
the phase transition between hcp and bcc structure is in-
volved in the binary systems.25

B. Phase stability of the bcc structure

Although pure Ti and Zr have the hcp structure(a phase)
at room temperature, they transform into the bcc structure(b

TABLE III. Calculated equilibrium lattice constantsa, elastic constantsC11, C12, and C44, and
C11−C12 of bcc Ti-X (X=V, Nb, Ta, Mo, and W) Zr-Nb, and Zr-Mo binary alloys.

Composition
M1−xXx Structure

a
(Å)

C11

(GPa)
C12

(GPa)
C44

(GPa)
C11−C12

(GPa)

Ti0.75V0.25 D03 3.273 123.9 116.9 36.3 7.0

Ti0.5V0.5 B2 3.280 169.6 122.3 33.6 47.3

Ti0.25V0.75 D03 3.306 213.0 132.2 29.6 80.8

Ti0.75Nb0.25 D03 3.273 128.5 115.5 14.9 13.0

Ti0.5Nb0.5 B2 3.280 155.4 124.7 12.8 30.7

Ti0.25Nb0.75 D03 3.306 203.5 126.8 21.3 76.8

Ti0.75Ta0.25 D03 3.271 129.9 121.6 38.6 8.2

Ti0.5Ta0.5 B2 3.278 163.4 132.8 39.0 30.6

Ti0.25Ta0.75 D03 3.302 207.0 145.3 55.6 61.7

Ti0.75Mo0.25 D03 3.273 160.5 125.6 34.1 34.8

Ti0.5Mo0.5 B2 3.280 224.0 146.6 10.4 77.5

Ti0.25Mo0.75 D03 3.306 363.6 151.5 62.0 212.2

Ti0.75W0.25 D03 3.217 169.2 134.2 32.4 35.0

Ti0.5W0.5 B2 3.184 239.9 165.9 50.9 73.9

Ti0.25W0.75 D03 3.179 374.8 184.2 81.7 190.6

Zr0.75Nb0.25 D03 3.508 112.8 98.3 19.8 14.5

Zr0.5Nb0.5 B2 3.447 144.4 108.3 18.3 36.1

Zr0.25Nb0.75 D03 3.382 196.2 118.5 17.9 77.7

Zr0.75Mo0.25 D03 3.451 138.4 104.2 16.6 34.2

Zr0.5Mo0.5 B2 3.349 208.5 124.3 29.2 84.2

Zr0.25Mo0.75 D03 3.244 342.4 134.5 49.7 207.9

FIG. 1. Young’s moduli of hcp metals(Ti and Zr) and bcc met-
als (V, Nb, Ta, Mo, and W) estimated from the calculated elastic
constants of the single crystal by the Voigt-Reuss-Hill method. Ex-
perimental Young’s moduli are measured values for polycrystalline
metals at room temperature(Ref. 26).
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phase) at about 1155 K and 1136 K, respectively. Then elas-
tic properties ofb-Ti and b-Zr were calculated althoughT
=0 K is assumed in the calculations. The elastic constants
are shown in Table VI, which show good agreement with the
result by Ahujaet al.28

Young’s modulus in thek001l direction,E001, is expressed
by

E001=
sC11 + 2C12dsC11 − C12d

C11 + C12
. s2d

The calculatedE001’s for b-Ti and b-Zr are the negative
values −38 GPa and −11 GPa, respectively. This result
means that Ti and Zr of the bcc structure cannot exist stably
at absolute zero. This is in good agreement with actual phase
stability. It is clear thatE001 becomes negative only when
C11−C12 becomes negative from Eq.(2). The C11−C12 is
negative only forb-Ti and b-Zr as shown in Table VI and
positive for the Va and VIa family elements and the binary
systems with the bcc structure from Tables I, III, and IV. The

FIG. 2. Young’s moduli estimated from the calculated elastic
constants of the single crystals by the Voigt-Reuss-Hill method.
Solid circles are calculated values for bcc Ti-X binary alloys (X
=V, Nb, Ta, Mo, and W). Open circles are the calculated Young’s
modulus of hcp Ti. Dotted lines denote the curve fitted by third-
order polynomial function which is shown as a guide to the eye.

FIG. 3. Young’s moduli estimated from the calculated elastic
constants of the single crystals by the Voigt-Reuss-Hill method.
Solid circles are calculated values for bcc Zr-X binary alloys (X
=Nb and Mo). Open circles are the calculated Young’s modulus of
hcp Zr. Dotted lines denote the curve fitted by a third-order poly-
nomial function which is shown as a guide to the eye.

FIG. 4. Calculated total density of states(DOS) of bcc Ti-Nb
binary alloys:(a) Ti0.25Nb0.75, (b) Ti0.5Nb0.5, and(c) Ti0.75Nb0.25. A
vertical dotted line denotes the Fermi energy.

FIG. 5. Calculated total density of states(DOS) of bcc Ti-Mo
binary alloys:(a) Ti0.25Mo0.75, (b) Ti0.5Mo0.5, and (c) Ti0.75Mo0.25.
A vertical dotted line denotes the Fermi energy.
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value ofC11−C12 is the parameter by which the elastic sta-
bility of a bcc structure can be evaluated29 and it is necessary
to become positive for the bcc structure stabilization.

C. Relationship between the elastic constantsC11 and C12

and the number of valence electrons

The change in the Young’s modulus does not depend so
much on the kind of IVa, Va, and VIa family elements as
seen in Figs. 2 and 3. Moreover, the shapes of the DOS do
not depend on the kind of the elements but the crystal struc-
tures as discussed by Söderlindet al.27 This tendency of the
DOS is seen not only for pure metals but also for binary
alloys. The DOS resemble each other very well when they
have the same crystal structure as shown in Figs. 4 and 5.
Thus the rigid band model can be applied, where the position
of Fermi level corresponding to the valence electron number
per atom is a parameter to describe the elastic characteristics
of the alloys.

It is evident that in the cubic symmetry the Young’s
modulus is lowered by makingC11−C12 and C44 smaller.9

Figure 7 shows the relationship between the valence electron
number per atom for Ti-X and Zr-X binary alloys and elastic
constantsC11 and C12 in the bcc structures. It is clear that
bothC11 andC12 increase monotonically with increasing the
valence electron number per atom.C11−C12 also shows the
same tendency as shown in Fig. 8. Moreover, by plotting the
calculation values ofb-Ti and b-Zr to Fig. 8, it is obvious
that C11−C12 shows an almost linear dependence with the
valence electron number from 4 to 6. Figure 8 shows that
C11−C12 takes a value close to zero around the valence elec-
tron number of 4.20–4.24.

The bcc structures thus cannot exist stably in the area of a
valence electron number less than 4.20, whereC11−C12 be-
comes negative. In other words, the bcc structure of the va-
lence electron number around 4.20–4.24 realizes a small
C11−C12 and thereby a low Young’s modulus is expected if
bcc structure can be maintained.

On the other hand, as the stability of the hcp structure
increases with decreasing the valence electron number from
4.24, it tends to be difficult to stabilize the bcc single-phase
structure even ifC11−C12 is still positive. In this case the hcp
structure or metastable phases such as thev phase can be
formed and it is obvious that the existence of these phases
causes an increase of Young’s modulus.4 Therefore, it is nec-
essary to choose a proper composition and process to stabi-
lize the bcc structure.

D. Relationship betweenC44 and the number
of valence electrons

Figure 9 shows the relationship between the valence elec-
tron number andC44 of the Ti-X binary alloys and the pure
metals. The plots are scattered and the relation with the va-
lence electron number is not clear. It seems thatC44’s are
determined not only the valence electron number per atom
but also the other parameters.

It is obvious thatC44’s of the binary alloys whoseX ele-
ment has smallC44 were kept small—e.g., Ti-Nb from
Tables I–IV. It is assumed that addition of the element hav-
ing smallC44 is better for loweringC44 of the alloys.

E. Conditions for low elastic modulus and applications

From the discussions mentioned above, using the binary
alloy which consists of a IVa family element and a Va or VIa

TABLE IV. Calculated equilibrium lattice constantsa, elastic constantsC11, C12, and C44, and
C11−C12 of bcc Nb-V and Nb-Mo binary alloys.

Composition
Nb1−xXx Structure

a
(Å)

C11

(GPa)
C12

(GPa)
C44

(GPa)
C11−C12

(GPa)

Nb0.75V0.25 D03 3.256 244.6 135.9 16.5 108.7

Nb0.5V0.5 B2 3.177 250.3 136.1 12.3 114.3

Nb0.25V0.75 D03 3.094 252.2 137.2 17.0 115.0

Nb0.75Mo0.25 D03 3.279 286.8 143.5 23.8 143.3

Nb0.5Mo0.5 B2 3.238 368.4 140.7 63.3 227.7

Nb0.25Mo0.75 D03 3.202 425.5 144.8 85.4 280.7

TABLE V. Calculated equilibrium lattice constantsa andc and elastic constantsC11, C12, C13, C33, and
C44 of hcp Ti-Zr and Ti-Nb binary alloys. In the hexagonal symmetry,C66= 1

2sC11−C12d.

Composition
Ti1−xXx Structure

a
(Å)

c
(Å)

C11

(GPa)
C33

(GPa)
C12

(GPa)
C13

(GPa)
C44

(GPa)

Ti0.75Zr0.25 D019 3.036 4.772 140.4 172.8 87.5 72.4 35.3

Ti0.5Zr0.5 Lamella 3.114 4.918 137.7 164.0 75.3 67.8 30.0

Ti0.25Zr0.75 D019 3.172 5.049 136.1 159.0 77.1 69.8 29.9

Ti0.75Nb0.25 D03 2.930 4.783 207.1 187.4 58.1 96.6 1.9

Ti0.5Nb0.5 Lamella 2.915 4.859 266.8 257.2 45.0 107.0 −7.1

Ti0.25Nb0.75 D019 2.875 5.162 232.8 215.1 111.4 108.7 −33.9
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family element, a low Young’s modulus can be achieved by
meeting the following requirements at the same time:(1) By
adding the Va or VIa element which stabilizes the bcc struc-
ture to the IVa element which has stable hcp structure atT
=0 K, the valence electron number is controlled to be around
4.20–4.24 to make the value ofC11−C12 nearly zero, and
simultaneously it should maintain the bcc structure.(2) C44
of the binary alloy is small.

For instance, in case of the Ti-Nb binary alloy, the va-
lence electron number per atom becomes 4.24 by adding
24 at.% Nb, and thenC11−C12 becomes almost zero. More-
over, it is expected thatC44 of the composition becomes
lower because Nb has a lowC44 value. Although Ti0.76Nb0.24
is usually expected to be the hcp structure at absolute zero, it
is possible to obtain bcc single-phase structure by an appro-
priate heat treatment. On the other hand, in Ti0.8Nb0.2, the
valence electron number becomes 4.20 where the lower
C11−C12 is expected, but the bcc structure tends to be unsta-
bilized more and not only the hcp structure but also the meta-
stable phases are expected to appear. Therefore realizing the
bcc single phase at absolute zero becomes more difficult for
the composition.

Because the relationship betweenC11−C12 and the va-
lence electron number per atom does not depend on the kind
of the additional element, a similar situation can be expected
in alloy systems with three or more elements if the compo-

sitions belong to IVa–VIa family. The composition of the
recently developed material named “GUM METAL,” which
realized an extreme low Young’s modulus and high strength
at the same time, is Ti-12Ta-9Nb-3V-6Zr-O and Ti-23Nb-
0.7Ta-2Zr-O(mol %), for example.30,31 Both are bcc single-
phase Ti alloys designed so that each valence electron num-
ber becomes about 4.22–4.24.30,31Because a lot of Nb which
is added to this alloy is the element with lowC44, these
alloys prove the above conditions of a low-Young’s-modulus
alloy.

V. CONCLUSIONS

We performed the first-principles calculations of the
Young’s moduli of Ti1−xXx (X=V, Nb, Mo, and W) and
Zr1−xXx (X=Nb and Mo) binary alloys forx=0.0, 0.25, 0.5,
0.75, and 1.0 by means of the Voigt-Reuss-Hill averaging
scheme. The calculated Young’s moduli have minimum val-
ues at some content of additionalX atoms.

By analyzing the calculated results, we have confirmed
that the electronic structure of these bcc alloys are mainly
determined by their crystal structure—that is, the so-called
rigid band model is able to be applicable and the influence of
the individual elements is not so dominant. In fact, the cal-

TABLE VI. Calculated equilibrium lattice constants and elastic
constants ofb-Ti and b -Zr.

a
(Å)

C11

(GPa)
C12

(GPa)
C44

(GPa)
C11−C12

(GPa)

b -Ti 3.264 87.8 112.2 39.8 −24.4

b -Zr 3.580 84.2 91.4 32.3 −7.2

FIG. 6. Young’s moduli estimated from the calculated elastic
constants of the single crystals by the Voigt-Reuss-Hill method for
(a) bcc Nb-V, (b) bcc Nb-Mo, and(c) hcp Ti-Zr. Dotted lines
denote the curve fitted by a third-order polynomial function which
is shown as a guide to the eye.

FIG. 7. Calculated elastic constants(a) C11 and(b) C12 of the Ti
and Zr binary alloys and pure metals. The values at valence electron
number of 4.0 are of bcc Ti and Zr.

FIG. 8. Calculated values ofC11−C12 of the Ti and Zr binary
alloys and pure metals. The values at valence electron number of
4.0 are of bcc Ti and Zr.
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culatedC11 and C12 has good correlation with the valence
electron number per atom as expected from the rigid band
model. It was also confirmed thatC11−C12 is nearly zero at
the valence electron number per atom of around 4.20–4.24.

From the calculated results, we consider that the low elas-
tic moduli in the b-Ti alloys are established by two fac-

tors: (1) The valence electron number per atom of Ti binary
alloy can be controlled by the amount of Va or VIa family
element such as Nb and Ta, resulting inC11−C12 being
nearly zero.(2) The bcc structure is maintained. On the other
hand, it is not clear from the present study that there are any
factors which can describe the behavior ofC44.

It is confirmed that the recently developed super-low-
elastic Ti alloy named “GUM METAL” satisfied the condi-
tion that the valance electron number per atom is around 4.24
andC11−C12 is expected to be nearly zero. The compositions
of GUM METAL are optimized according to the prescription
obtained from the present calculation.
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