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An assembly of independent oscillators is constructed with the reference length of each oscillator coupled to
the total volume of material. Because this coupling is not due to neighbor interactions, the material is referred
to as anonlocal Einstein crystal. Closed form thermodynamic functions are derived for bothNVT and NPT
ensembles. This crystal can be used as a reference system for thermodynamic integration under finite pressure
or tension. It can also be generalized to capture tensorial stress-strain behavior as well as thermal expansion.
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I. INTRODUCTION

The Einstein crystal is one of a handful of systems for
which thermodynamic functions can be derived in closed
form.1 In addition to serving as a simple model of solids, the
Einstein crystal is often used as a basis from which thermo-
dynamic integration can be carried out to more complex
physical systems.2,3 Since isobaric data is often sought,
though, it would be convenient to carry out such integrations
at constant pressure. This requires that the basis for integra-
tion be a material that has closed form thermodynamic func-
tions but also supports external loads. This paper identifies
two existing crystals which satisfy these requirements and
offers a new crystal formulation which can also be used.

If the oscillation frequency is made to be a function of
volume, then the Einstein crystal can support an external
load which allows it to be used as a basis for thermodynamic
integration at finite pressures. Within the classical approxi-
mation, the Helmholtz free energy of an Einstein crystal in
an NVT ensemble is given by4

F =
Nd

b
lns"bvd. s1d

Here b=1/skbTd with kb as Boltzmann’s constant,d is the
dimension,v is the oscillation frequency, and" is the angu-
lar form of Planck’s constant. The crystal can be endowed

with a prescribed pressure response,P̂sVd, by solving

U ]F

]V
U

N,T
= − P̂sVd

for the required dependence of oscillation frequency,v, on
volume,V:

v̂sVd = c1 expF− b

Nd
E dVP̂sVdG . s2d

Here c1 is an arbitrary constant of integration. As an ex-

ample, a pressure response ofP̂sVd=Ndg /bV calls for a fre-
quency function ofv̂sVd=c1V

−g, whereg is the Grüneisen
parameter.5,6 Setting the Grüneisen parameter equal to unity
gives the pressure response of an ideal gas, and a value of
zero removes the pressure dependence of the Einstein crystal
entirely.

In addition to the variable frequency Einstein crystal, a
harmonic crystal can also be used as a starting point for
thermodynamic integration at finite pressures. Theacoustic
crystal methoduses a harmonic crystal as a basis for integra-
tion at constant volume, but it could be adapted for thermo-
dynamic integration at finite pressures.7 Unlike the Einstein
crystal, though, the harmonic crystal may not be well-suited
to assemblies which do not exhibit a uniform lattice struc-
ture. For instance, it is not clear how the method would be
applied to systems with dislocations, phase interfaces, or
grain boundaries.8

As an alternative to the Einstein and harmonic crystals, a
new crystalline system has been developed which is suitable
as a basis for thermodynamic integration at finite pressures.
The independent oscillator of the Einstein crystal is replaced
by a harmonic sublattice with a size that is coupled to the
total volume. It is therefore the static contribution to the
potential that depends on volume in contrast to the more
standard generalization wherein the oscillation frequency has
such a dependence. Because the static coupling is not due to
neighbor interactions, the material will be referred to as a
nonlocal Einstein crystal. In addition to satisfying the re-
quirements for thermodynamic integration under finite pres-
sure and tension, this material offers a basis for considering
generalizations which exhibit tensorial stress-strain behavior
as well as thermal expansion.

The thermodynamics of this crystal are derived for the
NVTensemble and are then rederived for theNPTensemble.
The analysis focuses on the development of functions for the
Gibbs free energy and the equation of state under both con-
ditions. TheNVT and NPT Gibbs functions are shown to
differ, as expected, by terms of order lnsNd /N. The NPT
functions can then be used to verify isobaric, thermodynamic
integration algorithms for small systems.

A one-dimensional, nonlocal Einstein crystal is illustrated
in Figs. 1 and 2. For a general,d-dimensional system, each
mass is bonded to 2d sublattice points, and each subsystem
represents a single location within the global lattice. The
bond stiffnessis denoted byk/2d, and thesublattice dimen-
sion is 2b. The distance between the centroids of neighboring
sets of the sublattice points is theglobal lattice spacingbe-
tween oscillators and is denoted bya. The direction of each
bond, in the unstrained state, is described by a unit vector,n̂j,
with j P f1,2dg. The vectors point from the centroid of each
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sublattice to the sublattice points. The equilibrium position
of each mass isr ref while r gives the instantaneous position.
Let the potential energy of one sublattice site be given by

wsr ;r ref,ed =
k

4d
o
j=1

2d Ur − s1 + ed1/dr ref −
ben̂j

s1 + ed1/2U2

=
k

2
Sur − s1 + ed1/dr refu2 +

e2b2

1 + e
D , s3d

where theglobal volume strain, e, is defined as

e = S V

V0
D − 1 =Sr0

r
D − 1. s4d

The global lattice spacing between centroids,as1+ed1/d, im-
plies that the global lattice dilates uniformly in all directions.
The size of the sublattice is chosen so that it does not change
linearly with the size of the global lattice; the appearance of
1+e in the denominator of the last term in the pair potential
precludes the possibility of crystal collapse at high pressures.
The bond stiffness,k/2d, is taken to be a constant so that the
oscillation frequency,v=Îk/m, is constant as well; the de-
pendence of the potential on volume is entirely through the

equilibrium length of the oscillator assembly. Note that this
potential energy function is harmonic with respect to position
but not strain. A pair of bonds is associated with each dimen-
sion. Figure 3 portrays a two-dimensional crystal wherein the
atoms exhibit cubic symmetry. No symmetry of any sort is
required for such crystals though.

II. NVT ASSEMBLIES

A. Thermodynamic relations

For systems governed by a potentialwsr ; r ref,ed, the con-
figurational part of the Hamiltonian is given by

HconfigsrI ;r ref,ed = o
i=1

N

wsr i ;r ref,i,ed, s5d

with rIªhr 1,r 2, . . . ,r Nj. Let ZNVT andQN be theNVT parti-
tion functionandNVT configurational partition function, re-
spectively. ThenQ is defined as

QNsed =
1

N!
E drI e−bHconfigsrI;r ref,ed. s6d

Denote Planck’s constant byh and the mass of each oscilla-
tor by m. As usual,L=Îbh2/ s2pmd is the thermal de Bro-
glie wavelength andF is the Helmholtz free energy of the
assembly. The following relationships hold:

ZNVT= L−dNQN, F =
− 1

b
lnsZNVTd. s7d

A length scale ofs has been adopted in order to render
dimensionless the configurational component of the free en-
ergy. For instance, if the nonlocal Einstein crystal is to be
used as the reference system for thermodynamic integration
in hard sphere assemblies,s is typically taken to be the
diameter of one hard sphere.8 Define thereduced configura-
tional free energyof the assembly as

f =
bF

N
− d lnSL

s
D =

− 1

N
lnS QN

sdND . s8d

The pressure is given byP= u−s]F /]VduN,T, the Gibbs free

FIG. 1. Schematic of a one-dimensional, nonlocal Einstein
crystal.

FIG. 2. Dilation of the one-dimensional, nonlocal Einstein
crystal.

FIG. 3. A two-dimensionalNLE crystal.
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energy isG=F+PV, and thereduced configurational Gibbs
free energy, g, is defined as

g = f + bPV/N. s9d

Also, with the reduced configurational entropy defined as
s= u−s]f /]TduN,V, thereduced configurational internal energy
u is given by

u = f + Ts. s10d

Finally, the chemical potential and isothermal bulk modulus
are, respectively,m= u]F /]NuV,T andK=−Vus]P]VduN,T.

B. Thermodynamic functions

The nonlocal Einstein crystal has a configurational parti-
tion function, from Eq.(6), of

QN = S2p

bk
DdN/2

expF−
bNkb2e2

2s1 + ed G . s11d

The factor of 1/N! has been dropped because the oscillators
are distinguishable since each is anchored to a set of sublat-
tice points. Note that this reduces to the classic Einstein crys-
tal for the case of no dilationse=0d. Equation(8) then gives
the reduced configurational free energy as

f =
d

2
lnSbks2

2p
D +

bkb2e2

2s1 + ed
= fEin +

bkb2e2

2s1 + ed
. s12d

Here fEin is the reduced configurational free energy of the
classic Einstein crystal. In a manner analogous to that used
for comparisons with an ideal gas, define the excess free
energy as

fex = f − fEin =
bkb2e2

2s1 + ed
. s13d

This function is plotted in Fig. 4. The equation of pressure
for this crystal can be immediately derived from the Helm-
holtz function:

P = −
Nkb2es2 + ed
2V0s1 + ed2 =

Nkb2

2V0
Pnorm, s14d

where thenormalized pressure Pnorm is a function of the
strain

Pnorm=
− es2 + ed
s1 + ed2 = SV0

V
D2

− 1. s15d

This pressure relation is plotted in Fig. 5.
The reduced configurational internal energy, the reduced

configurational Gibbs function, and both the chemical poten-
tial and isothermal bulk modulus are

uNVT=
d

2
+

bkb2e2

2s1 + ed
, s16d

gNVT=
d

2
lnSbks2

2p
D −

bkb2e

1 + e
,

mNVT=
d

2b
lnSbkL2

2p
D +

kb2e2

2s1 + ed
,

KNVT=
Nkb2

V0s1 + ed2 .

The entropy and specific heat are identical to that of the
Einstein crystal, and all quantities given above reduce to
their Einstein crystal counterparts for the special case of zero
volume strain.

III. NPT ASSEMBLIES

A. Thermodynamic relations

Let ZNPT andYN be theNPT partition functionandNPT
configurational partition function, respectively. ThenYN is
defined as

FIG. 4. The excess Helmholtz free energy with respect to the
Einstein crystal plotted as a function of volume strain. This result is
independent of the system dimension,d. The excess free energy is
measured with respect to the classic Einstein crystal.

FIG. 5. The equation of pressure for anNVT assembly.Pnorm is
defined in Eq.(15) andr0 is the number density at zero strain. The
relationship betweenr ande is given in Eq.(4). The plotted results
are independent of the system dimension,d.
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YN = ZNPTL
dN =

1

Vchar
E drI dVe−bsHconfig+PVd. s17d

The characteristic volumeVchar is discussed elsewhere and is
typically taken to be equal to 1/sbPd.3,9–13For the purposes
of this investigation, this characteristic volume is left as an
undetermined function of pressure, temperature, and number
of masses,VcharsN,P,Td. Denote Planck’s constant byh. The
Gibbs free energy is

GNPT=
− 1

b
lnsZNPTd =

− 1

b
lnS YN

sdND +
dN

b
lnSL

s
D .

The reduced configurational Gibbs free energyfor the NPT
assembly is

gNPT=
bGNPT

N
− d lnSL

s
D =

− 1

N
lnS YN

sdND . s18d

The volume is given byVNPT= u]GNPT/]PuN,T, the Helmholtz
free energy isFNPT=GNPT−PVNPT and thereduced configu-
rational Helmholtz free energy fNPT is defined as

fNPT= gNPT− bPV/N. s19d

Also, with the reduced configurational entropy defined as
sNPT=kbb2us]gNPT/]bduN,P, the reduced configurational inter-
nal energy, uNPT, is given by

uNPT= gNPT−
bPVNPT

N
+ TsNPT. s20d

Finally, the chemical potential and isothermal bulk modulus
are, respectively,mNPT= u]GNPT/]NuP,T andKNPT=

−VNPT

u]VNPT/]PuP,T
.

B. Thermodynamic functions

The new crystal has a configurational partition function,
from Eq. (17), of

YN = S2p

bk
DdN/22Nkb2bV0e

bNkb2
K1sFd

VcharF
. s21d

Here KnsFd is the modified Bessel function of the second
kind and

F = bbssbNkd2 + 2PV0Nkd1/2. s22d

The reduced configurational Gibbs function is then

gNPT=
1

N
lnSVchar

V0
D +

d

2
lnSbks2

2p
D +

1

2N
lnS1

4
+

PV0

2kNb2D
− bkb2 −

1

N
ln K1sFd. s23d

Because theNLE crystal typically has a very large spring
stiffness, a small strain assumption is applied in order to
simplify theNPT thermodynamic functions and to more eas-
ily compare them with theirNVTcounterparts. Provided that
e!1, Eq. (14) implies that

PV0

Nkb2 = Pnorm! 1, s24d

so that

F = bkb2N + bPV0 + OS PV0

Nkb2D2

< Flim , s25d

Flim = bkb2N + bPV0 @ 1.

SinceF@1, the following approximation also holds:

ln K1sFd = − F +
1

2
lnS p

2F
D + OS 1

F
D . s26d

Then

− 1

N
ln K1sFd < + bkb2 +

bPV0

N

−
1

2N
lnS p

2bkb2N + 2bPV0
D . s27d

Substitution into the expression for the free energy gives

gNPT<
1

N
lnSVchar

bV0
D +

d

2
lnSbks2

2p
D + bPv0 +

3Pv0

2kb2N

−
bP2v0

2

2kb2 +
1

2N
lnSbkb2N

2ps2 D . s28d

This NPTGibbs function can be compared to theNVTGibbs
function of Eq.(16) with the latter written as a function of
pressure using Eq.(14). The difference between these two
function is of order lnsNd /N.

The isobaric equation of state can be derived directly
from Eq. (23). Of particular interest is the isobaric equation
of pressure:

VNPT=
N

b

]gNPT

]P
=

V0

Î1 + Pnorm

K0sb2kNbÎ1 + Pnormd

K1sb2kNbÎ1 + Pnormd

−
2V0

b2kNbPnorms1 + Pnormd
+

1

bVchar

]Vchar

]P
. s29d

Here Pnorm is defined in Eq.(14). In the interest of direct
comparison with the physical volume, the term involving the
characteristic volume,Vchar, is assumed to be negligibly
small. Under the approximations of Eqs.(25) and (26), the
ratio of Bessel functions have the same value so that

VNPT<
V0

Î1 + Pnorm

= V. s30d

This is illustrated in Fig. 6.
Under the approximations of Eqs.(25) and (26), the re-

maining thermodynamic functions are found to be

uNPT<
d

2
+

bP2v0
2

2kb2 −
Pv0

Nkb2 , s31d
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fNPT<
d

2
lnSbks2

2p
D +

bP2v0
2

2kb2 +
Pv0

2Nkb2 +
1

2N
lnSbkb2N

2ps2 D
−

1

N
−

1

N
lnsNv0d,

mNPT<
d

2b
lnSbkL2

2p
D +

1

2Nb
−

3Pv0

2Nbkb2 ,

KNPT< 2P +
Nkb2

V0
.

The reference volume per sublattice site,v0=V0/N, is used
to more clearly identify the dependence of the thermody-
namic functions on the number of particles. In deriving these
expressions, terms involving the characteristic volume,Vchar,
were assumed to be negligibly small. TheseNPT functions
can be compared to theirNVT counterparts of Eqs.(12) and
(16) by using Eqs.(4) and (14) to rewrite theNVT expres-
sions in terms of pressure,P, instead of strain,e. Within the
small strain approximation, the difference between pairs of
functions is of order lnsNd /N for the Helmholtz free energy

and is zero for the bulk modulii; the difference between pairs
is otherwise of orderN−1. The entropy and specific heat are
identical to that of the Einstein crystal, and all quantities
given above reduce to their Einstein crystal counterparts for
the special case of zero strain.

IV. CONCLUSIONS

A new crystal has been constructed that has closed form
thermodynamic functions and is capable of supporting an
external tensile and compressive loads. The independent os-
cillator of an Einstein crystal is replaced by a harmonic sub-
lattice with a size that is coupled to the total volume. It is
therefore the static contribution to the potential that depends
on volume in contrast to the more standard generalization
wherein the oscillation frequency has such a dependence.
Because the static coupling is not due to neighbor interac-
tions, the material is referred to as anon-local Einstein crys-
tal. The equation of state was derived for this material under
both NVT and NPT ensembles. Within the small strain ap-
proximation, the difference between analogous functions is
of order lnsNd /N for the Helmholtz and Gibbs free energies.
The bulk modulus is the same in both ensembles, and the
difference between all other pairs of functions is of order
N−1.

The nonlocal Einstein crystal can be used as a starting
point for thermodynamic integration under constant load. A
generalization of the potential would result in a structure that
supports shear loads, and using dissimilar bonds within each
bonding pair will cause the material to exhibit thermal ex-
pansion.
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FIG. 6. Ratio of volumes underNVT and NPT conditions as a
function ofa=Nkb2b. Each curve shown in for a different(normal-
ized) pressurePNorm given by Eq.(15).
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