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Construction and thermodynamic functions of an Einstein crystal with nonlocal interactions

Mark T. Lusks
Mechanical Engineering Program, Colorado School of Mines, Golden, Colorado 80401, USA
(Received 3 May 2004; revised manuscript received 5 August 2004; published 9 Novembgr 2004

An assembly of independent oscillators is constructed with the reference length of each oscillator coupled to
the total volume of material. Because this coupling is not due to neighbor interactions, the material is referred
to as anonlocal Einstein crystalClosed form thermodynamic functions are derived for bg¥AT and NPT
ensembles. This crystal can be used as a reference system for thermodynamic integration under finite pressure
or tension. It can also be generalized to capture tensorial stress-strain behavior as well as thermal expansion.
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I. INTRODUCTION In addition to the variable frequency Einstein crystal, a
The Einstein crystal is one of a handful of systems fc)rharmonlc crystal can also be used as a starting point for

which thermodynamic functions can be derived in Closed{hermodynamic integration at finite pressures. Heeustic
1 ody . ; . crystal methodises a harmonic crystal as a basis for integra-
form.* In addition to serving as a simple model of solids, the

Einstein crystal is often used as a basis from which thermot—ion at constant volume, but it could be adapted for thermo-
Y dynamic integration at finite pressureslnlike the Einstein

d%nzirggls Isntstgerri%gnsti:r?:e bitzocl;aarr:::ed de(\)tl;t It: (;rf]tc’)a rne chlrjnﬂfxcrystal, though, the harmonic crystal may not be well-suited
phy y ) gnt, to assemblies which do not exhibit a uniform lattice struc-

though, it would be conve_znient t_o carry out such_integr_ationﬁure For instance, it is not clear how the method would be
at constant pressure. This requires that the basis for mtegr%- ' '

tion be a material that has closed form thermodynamic func- F;lr;eg OL?] ds;?(teegms with dislocations, phase interfaces, or
tions but also supports external loads. This paper identified X

two existing crystals which satisfy these requirements an As an alternative to the Einstein and harmonic crystals, a
g cry ; . d (lilew crystalline system has been developed which is suitable
offers a new crystal formulation which can also be used.

If the oscillation frequency is made to be a function of &5 & basis for thermodynamic integration at finite pressures.
requency he independent oscillator of the Einstein crystal is replaced
volume, then the Einstein crystal can support an extern

load which allows it to be used as a basis for thermodynamic>. & harmonic sublattice with a size that is coupled to the
) . - o . y 'fotal volume. 1t is therefore the static contribution to the
integration at finite pressures. Within the classical approxi-

mation, the Helmholtz free energy of an Einstein crystal inpotential that depends on volume in contrast o the more
i e gy y standard generalization wherein the oscillation frequency has
anNVT ensemble is given By

such a dependence. Because the static coupling is not due to
N neighbor interactions, the material will be referred to as a
F=—In(ifw). (1) nonlocal Einstein crystalln addition to satisfying the re-
B quirements for thermodynamic integration under finite pres-
Here 8=1/(k,T) with k, as Boltzmann's constant] is the  sure and tension, this material offers a basis for considering
dimension,w is the oscillation frequency, arfdis the angu-  generalizations which exhibit tensorial stress-strain behavior
lar form of Planck’s constant. The crystal can be endoweds well as thermal expansion. .
with a prescribed pressure responéé\/), by solving The thermodynamics of this crystal are derived for the
NVTensemble and are then rederived for T ensemble.
N The analysis focuses on the development of functions for the
==P(V) Gibbs free energy and the equation of state under both con-
NT ditions. TheNVT and NPT Gibbs functions are shown to
for the required dependence of oscillation frequengyon  differ, as expected, by terms of order(?W)/N. The NPT
volume, V: functions can then be used to verify isobaric, thermodynamic
integration algorithms for small systems.
o) =¢ exp{_—'g f dVIAD(V)]. ) A one-dimensional, nonlocal Einstein crystal is illustrated
Nd in Figs. 1 and 2. For a general;dimensional system, each

I
N

. . ) . mass is bonded tod2sublattice pointsand each subsystem
Here c, is an arbitrary constant of integration. As an ex-renresents a single location within the global lattice. The
ample, a pressure responseR§V)=Ndy/ BV calls for a fre-  pond stiffnesss denoted byk/2d, and thesublattice dimen-
quency function ofw(V)=c,V™?, wherey is the Griineisen sionis 2b. The distance between the centroids of neighboring
paramete:® Setting the Griineisen parameter equal to unitysets of the sublattice points is tigéobal lattice spacingoe-
gives the pressure response of an ideal gas, and a value twfeen oscillators and is denoted by The direction of each
zero removes the pressure dependence of the Einstein crystaind, in the unstrained state, is described by a unit vetor,
entirely. with j e[1,2d]. The vectors point from the centroid of each
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FIG. 1. Schematic of a one-dimensional, nonlocal Einstein
crystal. Al

FIG. 3. A two-dimensionaNLE crystal.

sublattice to the sublattice points. The equilibrium position
of each mass is¢; While r gives the instantaneous position.

Let the potential energy of one sublattice site be given by equilibrium length of the oscillator assembly. Note that this

potential energy function is harmonic with respect to position

K beh. |2 but not strain. A pair of bonds is associated with each dimen-
oI iMen€) =—2, [T = (1L+e) Y - 7 sion. Figure 3 portrays a two-dimensional crystal wherein the

4dj=1 (1+e atoms exhibit cubic symmetry. No symmetry of any sort is

K 12 required for such crystals though.

=5 |r —(1+ 6)1/drref|2 + ) €)
2 l+e
Il. NVT ASSEMBLIES
where theglobal volume straine, is defined as A. Thermodynamic relations
\% Po For systems governed by a potentidl ;r ., €), the con-
€= V_o -1= ; -1 ) figurational part of the Hamiltonian is given by

N

Hconfig([ e €) = 2 o(r ;rref,iyf)v (5
i=1

The global lattice spacing between centroiad, + €)'/, im-

plies that the global lattice dilates uniformly in all directions.
The size of the sublattice is chosen so that it does not change
linearly with the size of the global lattice; the appearance ofvith r:={ry,r,, ... ,ry}. Let Zyyr and Qy be theNVT parti-
1+e€ in the denominator of the last term in the pair potentialtion functionandNVT configurational partition functigrre-
precludes the possibility of crystal collapse at high pressurespectively. TherQ is defined as

The bond stiffnessk/2d, is taken to be a constant so that the

oscillation frequencyw=\k/m, is constant as well; the de- Qu(e = 1 f dr e BHconfigll rene) (6)
pendence of the potential on volume is entirely through the N! B
Denote Planck’s constant byand the mass of each oscilla-
- Reference State = tor by m. As usual,A =/8h?/(27m) is the thermal de Bro-
@ glie wavelength and- is the Helmholtz free energy of the
e - assembly. The following relationships hold:
- Zywr=A""Qn, F= ? IN(Zyy)- (7)
Vo .
A length scale ofo has been adopted in order to render
Dilation with No Oscillation dimensionless the configurational component of the free en-
b[l+e(l+e)1?]  b[l+e(l+e)yi?] ergy. For instance, if the nonlocal Einstein crystal is to be
m”m’m’mmmm used as the reference system for thermodynamic integration
e = in hard sphere assemblies, is typically taken to be the
= diameter of one hard sphéet®efine thereduced configura-
‘_m_’ tional free energyof th bl
e o gyof the assembly as
a(l+e)
< 5 F A\ -1
) M > f:B——dm(—):—ln(QTNN). (8)
_ . . . . N o N a
FIG. 2. Dilation of the one-dimensional, nonlocal Einstein
crystal. The pressure is given b= —(dF/3V)|y, the Gibbs free
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FIG. 4. The excess Helmholtz free energy with respect to the
Einstein crystal plotted as a function of volume strain. This result is 3
independent of the system dimensioh,The excess free energy is 2
measured with respect to the classic Einstein crystal. E /
a 1 /
energy isG=F+PV, and thereduced configurational Gibbs A~
free energyg, is defined as ¢
1 | "
g="f+BPVIN. 9 = . =5 5
Also, with the reduced configurational entropy defined as p/p0
s= —(af/dT)|y., thereduced configurational internal energy
u is given by FIG. 5. The equation of pressure for BIVT assemblyP, 1, is
_ defined in Eq(15) and pg is the number density at zero strain. The
u=f+Ts. (10) relationship betweep ande is given in Eq.(4). The plotted results

Finally, the chemical potential and isothermal bulk modulus?'€ independent of the system dimensidn,

are, respectivelyu= dF/dN|y 1+ andK==V (dPV)|y 1.

P —ﬂ—(ﬁ)z_l (15)
B. Thermodynamic functions oM (1 +€)? \Y; '
_ The nqnlocal Einstein crystal has a configurational parti-tpis pressure relation is plotted in Fig. 5.
tion function, from Eq.(6), of The reduced configurational internal energy, the reduced
o\ AN2 BNKIRe? configurational Gibbs function, and both the chemical poten-
Qn= (—) - —} (11)  tial and isothermal bulk modulus are
Bk 2(1+¢€)
The factor of 1N! has been dropped because the oscillators U= d + prtre (16)
NVT 2

are distinguishable since each is anchored to a set of sublat- 21+e’

tice points. Note that this reduces to the classic Einstein crys-

tal for the case of no dilatiofe=0). Equation(8) then gives d [ pBke?\ pBkbe
the reduced configurational free energy as OnvT= > In(;) T l+e!
_d ,8k02> BkbPE Bk
f"z'”( 27 +2(1+e)"fE”‘+2(1+e)' (12 _d (BKA%\ kb€
MNVT= 28 In o + 20+9

Here fg;, is the reduced configurational free energy of the
classic Einstein crystal. In a manner analogous to that used
for comparisons with an ideal gas, define the excess free Koo = Nkb?
energy as "WTT V(1 + )2

fomfofo = BKb?e (13) The entropy and specific heat are identical to that of the

ex BT 21 +¢° Einstein crystal, and all quantities given above reduce to

) o o _ their Einstein crystal counterparts for the special case of zero
This function is plotted in Fig. 4. The equation of pressureyglume strain.

for this crystal can be immediately derived from the Helm-
holtz function:
1. NPT ASSEMBLIES
= Nke(2 + ) _ NKE? (14) A. Thermodynamic relations

2 = norm:
Vol +e7  2Vo Let Zypr and Yy be theNPT partition functionand NPT
where thenormalized pressure B, is a function of the configurational partition functionrespectively. Ther is
strain defined as
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PVo
NKkE

YN ZNPTA fd_rdVe‘B(HconfifPV)_ (17) = I:’norm< 1, (24)

char

The characteristic volum¥,,,, is discussed elsewhere and is so that

typically taken to be equal to 18P).3%13For the purposes )

of this investigation, this characteristic volume is left as an ® = BKEPN + APV, + (9( PV, ) ~ D (25)
undetermined function of pressure, temperature, and number 0 kb’ fim

of massesy.ha(N,P,T). Denote Planck’s constant loy The

Gibbs free energy is Py = BKPN + BPV, > 1.
-1 -1 (Y dN (A i s ; Lo .
Grpr= — IN(Zypy) = — |n<TNN> = In(—). Since®> 1, the following approximation also holds:
B B B \o . L
The reduced configurational Gibbs free enerfyy the NPT INKy(P)=-D+ ~ In(zq:) (’)(5) (26)
assembly is
Then
,BGNPT A - 1 YN
Oner="—n - mdin{ )= M) (18 -1 BPV,
— INKy(®) =~ + BKbZ + —2
The volume is given byypr= dGnpr/ 9P|y 1, the Helmholtz N N
free energy iFyp1=Gnpr— PVnpt @nd thereduced configu- 1 T
rational Helmholtz free energyyfr is defined as "N In 2BKEPN+ 28PV, ) (27)
fner= Onpr— BPVIN. (19) Substitution into the expression for the free energy gives
Also, with the reduced configurational entropy defined as 1 (v d ko2 3p
snpT=ko/B2 (Ignpr! 9B)|n e, thereduced configurational inter- ONPT= | ( Char) = In(ﬂ—> + BPug bzvo
nal energy uypt, IS given by bVo 2 2m 2kb'N
,8P2 ( Bkb2N>
PV + | 28
UnpT= ONPT™ b NNPT + Tsepr- (20) 2kb? 2mo® (28

. . . . This NPT Gibbs function can be compared to tR&'T Gibbs
Finally, the chemical potential and isothermal bu_l\l§ mOdUIusfunctlon of Eq.(16) with the latter written as a function of
are, respectivelyunpr= dGpr/ N|p T andKyer= 5 —75—.  pressure using Eq14). The difference between these two

function is of order IGN)/N.
B. Thermodynamic functions The isobaric equation of state can be derived directly
from Eqg. (23). Of particular interest is the isobaric equation

The new crystal has a configurational partition function, pressure:

from Eq.(17), of
Ndgner _ Vo Ko(b’kNBY1 + Prorm)

217\ IN2ONKEP BV efNKPK (b Vapr= = :
Yn= <_> 5 @ e B P N1+PoomKy(0kNBVL +Propy)
,Bk Vchalqj
2V0 1 avchar
Here K,(®) is the modified Bessel function of the second (29

kind and bZkNIBPnorm(1+Pnorn1) BVehar P

B ) 12 Here Pnom is defined in Eq.(14). In the interest of direct
@ = Bb((bNK~ + 2PVyNk) <. (22) comparison with the physical volume, the term involving the
characteristic volumeyV,,, IS assumed to be negligibly

The reduced configurational Gibbs function is then small, Under the approximations of Eq@5) and (26). the

1 In(vchar> I (Bk02> . 1 I (l . PV, ) ratio of Bessel functions have the same value so that
=NV, /2™ 20 )TN ™2 T 2k Vo
1 VnpT= Tap V. (30)
- ,Bkb2 - N In Ky(P). (23) v norm

This is illustrated in Fig. 6.
Because the\LE crystal typically has a very large spring ~ Under the approximations of Eq&25) and (26), the re-
stiffness, a small strain assumption is applied in order tgnaining thermodynamic functions are found to be
simplify the NPT thermodynamic functions and to more eas-
ily compare them with theiNVT counterparts. Provided that U d BP vs_ Pug 31
e<1, Eq.(14) implies that NPT 5 ok NKE
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FIG. 6. Ratio of volumes undeXVT and NPT conditions as a
function of @=NkI?B. Each curve shown in for a differeormal-
ized) pressurePyom given by Eq.(15).

d 3k02) BP3 Py, 1 (Bkb2N>
fypr=~ = | —
NPT 2 n( 2m ) k2 T 2NKE T 2N T\ 2702
1 1
_N_Nln(NUO)’
~i|n(,6’kA2>+ 1 3Py
MNPT= 58"\ 2 )T 2NB T 2NBKD?
Nk
KNPTQZP*’ V .

0

The reference volume per sublattice sibg=V,y/N, is used

to more clearly identify the dependence of the thermody
namic functions on the number of particles. In deriving thes

expressions, terms involving the characteristic volu¥hg,,
were assumed to be negligibly small. Thé$BT functions
can be compared to thenNVT counterparts of Eqg12) and
(16) by using Eqs(4) and (14) to rewrite theNVT expres-
sions in terms of pressur®, instead of straine. Within the
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and is zero for the bulk modulii; the difference between pairs
is otherwise of ordeN™ . The entropy and specific heat are
identical to that of the Einstein crystal, and all quantities
given above reduce to their Einstein crystal counterparts for
the special case of zero strain.

IV. CONCLUSIONS

A new crystal has been constructed that has closed form
thermodynamic functions and is capable of supporting an
external tensile and compressive loads. The independent os-
cillator of an Einstein crystal is replaced by a harmonic sub-
lattice with a size that is coupled to the total volume. It is
therefore the static contribution to the potential that depends
on volume in contrast to the more standard generalization
wherein the oscillation frequency has such a dependence.
Because the static coupling is not due to neighbor interac-
tions, the material is referred to asan-local Einstein crys-
tal. The equation of state was derived for this material under
both NVT and NPT ensembles. Within the small strain ap-
proximation, the difference between analogous functions is
of order INN)/N for the Helmholtz and Gibbs free energies.
The bulk modulus is the same in both ensembles, and the
difflerence between all other pairs of functions is of order
N~

The nonlocal Einstein crystal can be used as a starting
point for thermodynamic integration under constant load. A
generalization of the potential would result in a structure that
supports shear loads, and using dissimilar bonds within each
bonding pair will cause the material to exhibit thermal ex-

pansion.
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