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Thermal properties of the face-centered-cubic(fcc) aluminum (Al ) crystal including the linear thermal
expansion coefficient, specific heat at constant volume, Hugoniot in theP-V plane, thermodynamic Grüneisen
parameter and elastic constants at pressures up to 120 GPa and temperatures to 3300 K have been evaluated by
using the full-potential linear muffin-tin orbital(FPLMTO) total-energy method combining with a mean-field
model of the vibrational partition function. The mean-field is constructed from the sum of all the pair potentials
between the reference atom and the others of the system. The calculated properties are in good agreement with
available static and shock-wave experimental measurements.
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I. INTRODUCTION

First-principle electronic-structure methods are routinely
used to compute the zero-temperature internal energy, but
also can be used to calculate the Helmholtz free energy con-
tributions from the ions and the electrons. They result in a
complete equation of state from which the properties such as
the thermal expansion coefficients, bulk moduli, specify
heat, thermal Grüneisen parameter of the system can be de-
duced.

The smaller Helmholtz free energy contribution from the
electrons usually can be calculated using the finite tempera-
ture density functional approach of Mermin.1 However, the
Helmholtz free energy contribution from the ions is difficult
to calculate accurately because the volume and temperature
dependence of the phonon frequencies and the density of
state are complicated. Anab initio molecular dynamics simu-
lation, in principle, is the perfect method to deal with this
problem. Unfortunately, in spite of recent progress in this
field it remains computationally very intensive to deal with
this problem in metal. At present there are commonly three
other type of methods to handle this problem without using
empirical parameters. The first uses the Debye model and
may incorporate a volume dependence of the Debye tem-
perature calculated using the first-principle-based methods.2,3

Infrequently, it is used to calculate such properties as the
thermal expansion and thermoelasticity partly because the
precision is not high enough to reproduce the experiments
data.

The second is based on the quasiharmonic approximation
in which the phonon frequencies are functions of the tem-
perature only through their volume dependence. The volume
dependence of the phonon frequencies is incorporated either
approximately by a Taylor expansion on the volume at zero
temperature4 or directly by calculations of phonon dispersion
related to various volumes using a certain simplified total-
energy method.5 Although the quasiharmonic approximation
can handle thermal expansion and the Grülseren parameter at

a low temperature, it breaks down at sufficiently high tem-
peratures.

A certain mean-field approximation to the thermal contri-
bution to the Helmholtz free energy of crystalline phases is
the third type of method, including the-particle-in-a-cell
(PIC) model6,7 and the so-called classical mean-field poten-
tial approach.8,9 The latter is simplified too much to the field
and may not have a precision high enough to reproduce such
thermal properties as the linear thermal expansive coefficient
and elasticity at high pressures and temperatures. The PIC
model is essentially an anharmonic Einstein model, and the
3N-dimensional partition function is reduced to a simple
three-dimensional integral.10 Calculations using this model
usually are performed on supercells of several hundreds of
atoms for the different lattice with periodic boundary condi-
tions. The PIC model has been demonstrated to match suc-
cessfully the thermal properties of iron11 and the high-
pressure thermoelasticity of body-centered-cubic tantalum.10

Although in this model the anharmonic contributions from
the potential-energy of the system can included exactly, in
principle, without a perturbation expansion, in practice, the
computation of the integration over the Wigner-Seitz cell is
replaced by integration over the inscribed sphere of radius
equal to half the nearest neighbor separation.11 On the other
hand, the total energy of the supercells of several hundreds
of atoms can only be performed with such a highly efficient
computational method as the so-called tight-binding total-
energy method,12 rather than the full-potential-based total-
energy method.

Recently we have calculated the coefficient linear thermal
expansion and elastic constants of Na at high pressures and
temperatures successfully using a pair-potential-based
method.13 But it is not fit for the study of other extensive
thermal properties. In this work we present a pair-potential-
based mean-field approximation(PPBMFA) to the thermal
contribution to the Helmholtz free energy. Combining a
PPBMFA with the FPLMTO total-energy method, a wide
range of thermal properties of fcc Al has been studied.

PHYSICAL REVIEW B 70, 174102(2004)

1098-0121/2004/70(17)/174102(6)/$22.50 ©2004 The American Physical Society70 174102-1



II. COMPUTATIONAL METHODS

A. Helmholtz free energy

For a system with a given averaged atomic volumeV and
temperatureT, The Helmholtz free energyFsV,Td per ion
can be written as

FsV,Td = E0sVd + FelsV,Td + FionsV,Td, s1d

whereE0sVd is the static zero temperature energy,FelsV,Td is
the electronic contribution, andFionsV,Td is the vibrational
contributions to the free energy. The first two terms on the
right-hand side can be calculated using the density functional
theory (DFT) generalized to finite temperatures by the Mer-
min theorem.1 The charge density is temperature dependent
through occupation numbers according to the Fermi-Dirac
distribution, giving the electronic entropy from

Sel = o f i ln f i + s1 − f idlns1 − f id, s2d

where f i the Fermi occupation at a certain temperatureT for
each statei.

B. Vibrational contributions

As an approximate way to evaluate the vibrational contri-
bution NFion of the system ofN ions to the Helmholz free
energy, the idea of the the mean-field approximation is that
the vibrational contribution to the partition functionZWS can
be calculated by having one wanderer particle move in the
potential field of an otherwise ideal, static lattice:6,7

Zion = FSmkBT

2p"2D3/2

fsV,TdGN

, s3d

where

fsV,Td = E
WS

dr expf− „Usrd − U0…/skBTdg, s4d

" andkB are Planck’s constant and Boltzman’s constant, re-
spectively,m is the mass of each ion,U0 is the potential
energy of the system with all ions on ideal lattice sites and
Usrd is the potential energy of the system with the wanderer
ion displaced by the radius vectorr from its equilibrium
position. The integration is over the Wigner-Seitz cell WS,
centered on the equilibrium position of the wanderer ion.

For each ion the vibrational contributionFion, according
to the relationNFion=−kBT ln Zion and the partition function
in Eq. (3), reads as

Fion = − kBT lnFSmkBT

2p"2D3/2

fsV,TdG . s5d

One can see from Eq.(4) and Eq.(5) that the key problem is
to determine the change of potential energy of the system of
N ions due to the displacement of the wander ion and to
calculate the integration over the Wigner-Seitz cell.

In the conventional PIC model the potential energyUsrd
are calculated on supercells of several hundreds of atoms for
the different lattice with periodic boundary conditions using

a tight-binding total-energy method10,11for which the param-
eters were determined by a certain full-potential-based total-
energy method. ActuallyUsrd can be directly constructed in
some more physically transparent way rather than from some
empirical method,9 according to the symmetry of lattice,
from the pair potentialfi j of two ionsi and j . Using this pair
potential the change of potential energy of the system in Eq.
(4) can be written as

Usrd − U0 =
1

2o
R

fsiR− rid −
1

2o
R

fsiRid, s6d

whereR denotes all the lattice vectors of ion in the system
except the wander ion, with the site of wander ion as the zero
point of the lattice vector. The sums in Eq.(6) denote the
superposition of the pair potential between the reference ion
and remaining ions of the system. Using Eq.(6) the integra-
tion in Eq.(4) can be expressed as a form of pair potential. If
one assumes the pair potential is of the form as

fsiRid = − xiRim + yiRin, s7d

wherex andy are positive constants andm andn are nega-
tive constants, then these parameters in the pair potential can
be evaluated by fitting the total energyEsad of the unit cell
with a lattice parametera to the equation

Esad =
1

2o
R

fsiRid. s8d

Here Esad can be calculated using a full-potential-based
total-energy method.

Once the the pair potentials are obtained from Eq.(8)
using only single atom fcc-unit cell calculations with differ-
ent values ofa, the potential energy of the wander ionUsrd
andU0 in Eq. (4) can be constructed according to the sym-
metry of the lattice. With the potential energy difference
Usrd−U0 of the form in Eq.(6) the integration in Eq.(4) and
hence the free energyFionsV,Td in Eq. (5) can be calculated.
In order to simply the calculation, the integration over the
Wigner-Seitz cell can be approximately replaced by integra-
tion over the inscribed sphere of radius equal to half the
nearest neighbor separation. Since pair potential is a scalar
function depending only on the distance between two atoms,
the integration over the cell is reduced to a two-dimensional
(2-D) integration, that is 2pe0

pe0
r sinsudgsu ,rddu dr, if per-

formed in spherical coordinates.
In theory, to calculate the pair potential and construct the

mean field from them, the number ofR should be of an order
of magnitude up to 1023. After a cutoff radius test, we found
that it is accurate enough to use the nearest 256 ions from the
wanderer ion to evaluate thefsiRid and fsV,Td of fcc Al.
Here the total energyEsad, if calculated using the finite tem-
perature DFT, can include the zero temperature energy and
electron effects of temperature, and hence the couple effect
between the electron and the phonon can be partly consid-
ered through the temperature- and volume-dependent pair
potential. Since the mean-field model treats vibrations clas-
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sically, it is expected to be a good approximation for tem-
peratures greater than the Debye temperature of the solid but
lower than the melting temperature.

C. Thermal properties

From the Helmholtz free energyFsV,Td the thermal prop-
erties of the system can be deduced. The isothermal bulk
modulusBTsV,Td and pressurePsV,Td can be obtained by a
least-squares fit to the Helmholtz free energy of unit cell

FsV + DVd = FsVd + PDV +
BT

2V
sDVd2 + ¯ , s9d

whereDV is the small volume change from the balance vol-
umeV at the pressureP and temperatureT. By definition one
can easily obtain the linear thermal expansion coefficient
aL=s1/3Vds]V/]TdP, specify heat at constant volumeCV

=−Ts]2F /]T2dV and at constant pressureCP=CV+9a2BTVT,
and thermodynamics Grüneisen parametergthsV,Td
=3aLBTV/CV.

The elasticity of fcc aluminum can be completely de-
scribed by three elastic constantsC11, C12, andC44. To cal-
culate the the shear constantC11−C12 one can use the
volume-conserving orthorhombic strain tensor,14

« = 1x 0 0

0 − x 0

0 0 x2/s1 − x2d
2 , s10d

where x is the magnitude of the strain. Then the the total
energy of the strain system can be written as

Fsxd = Fs0d + sC11 − C12dVx2 + Osx4d, s11d

whereV is the volume of the unit cell andEs0d is the total
energy of the unstrained lattice at the volumeV. For the
elastic constantC44 one can use the volume-conserving
orthorhombic strain tensor,14

« = 10 x 0

x 0 0

0 0 x2/s1 − x2d
2 , s12d

with the corresponding strain energy

Fsxd = Fs0d + 2C44Vx2 + Osx4d. s13d

For isotropic polycrystalline aggregates of cubic crystal-
lites, the calculatedCij can also be used to determined the
bulk modulus exactly by

B =
1

3
sC11 + 2C12d, s14d

but only place rather strict bounds on the average isotropic
shear modulus. It is a conventional treatment to use the av-
erage of the Shtrikman bound and Hashin bound15 as the
shear modulus. Using the elastic constantsC11−C12, C44 and
Eq. (14) the elastic constantC11 can be determined.

The isothermal bulk moduliBT computed by the method
mention above can converted to adiabatic moduliBS accord-
ing to16

BS=
CP

CV
BT, s15d

wherea is the thermal expansion coefficient andCP is the
heat capacity at constant pressure. Since in a pure shear the
“isothermal” and “adiabatic” moduli are equal, there is no
need to adjust the shear moduli.

It should be mentioned here that the crystal anisotropy
from the atom vibration vanishes because, if pair potentials
are used in the integrationfsV,Td, the Helmholtz free energy
contribution from the ionsFion will not change with the shear
strain! But it is still a good approximation for single crystal
and especially for polycrystalline aggregates, because the
single crystal anisotropy from atom vibration is small and the
temperature effect to elastic constants is mainly from the
volume expansion,10 which can be accurately calculated in
this method.

III. CALCULATION DETAILS AND RESULTS

In this work to calculate the total energy of the unit cell at
different temperatures we used the accurate full-potential lin-
ear muffin-tin orbital method(FPLMTO).22 The generalized
gradient approximation(GGA)23 is used for the exchange-
correlation potential. The calculations were all-electron, non-
relativistic, and employed no shape approximation for the
charge density or potential. The basis set is comprised of
augmented linear muffin-tin orbitals withs, p, d momenta.
Integration over the Brillouin Zone was done using the linear
tetrahedron method. In the irreducible wedge of the fcc Bril-
louin Zone, 256k points were used for no strain crystal. The
number ofk points was recalculated for the symmetry of the
distorted crystal.

The pair potential fcc Al was obtained by fitting unit cell
total energies, calculated using zero temperature DFT, for
relative volumeV/V0 from 1 to 0.65 in 0.01 increments to its
relationship with the pair potential expressed with the nearest
neighbor 256 ions. The integrationfsV,Td was performed by
a dense sampling of two-dimensional grids in theu−r plane.

The calculated linear expansion coefficients as a function
of temperature at various pressures are compared to the
available experimental data17 in Fig. 1, which shows good
agreement at zero pressure, in particular for temperatures
greater than the Debye temperature but lower than the melt-
ing temperature. The calculated thermal expansion coeffi-
cients decreases sharply with pressure and increases with
temperature, which are well known feathers of metals.

The calculated specific heat(electronic and ionic) at con-
stant volumeVsT=293K ,P=Pd and per atom as a function
of temperature is shown in Fig. 2. The constant-volume spe-
cific heat at zero pressure, deduced from the experimental
data of Forsblomet al.,18 is reproduced by our calculation.
The temperature contribution to anharmonic effects shown
by the deviation of constant-volume specific heat due to the
lattice atom from its classical harmonic value 3kB diminishes
with pressure.

To compare our results of the equation of state of Al at
high compression and high temperatures with those derived
from the shock data, we calculated the pressuresPH and
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temperaturesTH on the Hugoniot for a set of relative vol-
umes ranging from 1 to 0.6 by solving the Rankin-Hugoniot
equation:24

PHsV0 − Vd = 2sEH − E0d, s16d

whereEH is internal energy along the Hugoniot, andE0 and
V0 are, respectively, zero-pressure and room-temperature en-
ergy and volume of the FPLMTO results. For a given volume
V, the temperature on the Hugoniot is varied until Eq.(16) is
satisfied. The agreement of the calculated Hungoniot with
experimental data19 is better than that from the Debye-
model-based method3 (Fig. 3).

The calculated thermodynamics Grüneisen parametergth
(Fig. 4) in the range of low shock compression qualitatively

agrees with the conventional assumptiongth/V=const, such
as in the semi-empirical equation of state of Al.20 In range of
high shock compression the conventional assumption dose
not hold.

The isothermal elastic constants of fcc Al as functions of
temperature at various pressures are presented in Fig. 5. The
elastic constants of fcc Al elevates with the increasing pres-
sure value and declines with the increasing temperature
value.

In order to compare the theoretical results with the experi-
mental ones, we also calculated, at room temperature and
zero pressure, the adiabatic elastic constantsC11, C12, and
C44 of a single crystal, the bulk moduliB and shear moduliG
of polycrystalline aggregates of fcc Al(Table I), and along
the Hungoniot the moduliB (Fig. 6) and G (Fig. 7). The
experimental moduli on the Hungoniot are determined by the
sound data21 according to Navier’s equation as follows:16

FIG. 1. Calculated linear thermal expansion coefficientsaL of
fcc Al. The available experimental results(Ref. 17) at zero pressure
are shown by circles. The curves correspond(from bottom to top) to
decreasing pressuresP=115, 60, 30, and 0 GPa.

FIG. 2. The calculated specify heat at constant volumeVsT
=293K ,P=Pd and per atom. The curves correspond(from bottom
to top) to increasing initial volume at pressuresP=115, 60, 30, and
0 GPa. The circles are deduced from experimental data on the en-
thalpy by Forsblomet al. (Ref. 18).

FIG. 3. Hugoniot for the fcc Al in theP-V plane. The solid line
is the calculated Hungoniot and the pluses are experimental values
(Ref. 19).

FIG. 4. Thermodynamic Grüneisen parameterg. The solid line
denotes our calculations and the dashed line shows data from the
semi-empirical EOS(Ref. 20).
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vl = SB + 4G/3

r
D1/2

, s17d

and

vb = SB

r
D1/2

, s18d

wherevl andvb are the longitudinal and bulk sound velocity
of the polycrystalline aggregates of Al, respectively.

Table I shows that the calculated volume of the primitive
unit cell, the adiabatic moduliC11, C12, C44, B, andG under
ambient conditions for fcc Al are well reproduced. From Fig.
6 and Fig. 7 one can see that the bulk moduli and shear
moduli obtained by our method fall well in the experimental
uncertainties at the pressures below 100 Gpa on Hugoniot
(the temperature ranges from 300 to 3600 K). If the pres-
sure increases up to 120 GPa, that means the temperature
approaches the melting point and shear modulus should de-
crease rapidly at the pressure, our method does not work
very well anymore. This shows in one way that our method
is not fit for a melting study because we have not consider
the contribution of fault to Helmholtz free energy which is
important at high temperature near the melting point.

IV. SUMMARY

In this work a pair-potential-based mean-field approxima-
tion (PPBMFA) to the thermal contribution to the Helmholtz
free energy is presented. Combining PPBMFA with the

TABLE I. The calculated and experimental volume(in Å3) of
the primitive unit cell, the adiabatic moduliC11, C12, C44, B, andG
(in GPa) under ambient conditions for fcc Al.

V0 C11 C12 C44 B G

Calculations 16.75 114.8 63.0 31.6 80.3 29.2

Experiments 16.61a 106.9b 60.8b 28.2b 75.5c 26.1c

aFrom Reference 25.
bFrom Reference 26.
cFrom Reference 27.

FIG. 5. The calculated isother-
mal elastic constants of fcc Al as a
function of temperature. The pres-
sure for (a), (b), (c), and (d) are
10, 30, 60, and 115 GPa,
respectively.
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FPLMTO total-energy method the thermal properties of fcc
Al as a prototype were studied. The linear thermal expansion
coefficient, specific heat at a constant volume, Hugoniot in
the P-V plane, thermodynamic Grüneisen parameter, and
elastic constants that we calculated at pressures up to
120 GPa and temperature to 3300 K for the fcc Al are in a
good agreement with available static and shock-wave experi-
mental measurements. The results also show that our method
is not fit for thermal properties near the melting point. We

suppose this method may be used to calculate the thermal
properties of the solid state of another metal.
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FIG. 6. Bulk moduli VS pressure of Hungoniot. The solid line
denotes theory result and the circles are deduced from the experi-
mental data on the bulk sound velocity(Ref. 21).

FIG. 7. Shear modulus VS pressure of Hungoniot. The solid line
denotes theory result and the circles are deduced from the experi-
mental data on the compressional and bulk sound velocity(Ref. 21).
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