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Thermal properties of Al at high pressures and temperatures
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Thermal properties of the face-centered-cuidim) aluminum (Al) crystal including the linear thermal
expansion coefficient, specific heat at constant volume, Hugoniot iR-¥elane, thermodynamic Gruneisen
parameter and elastic constants at pressures up to 120 GPa and temperatures to 3300 K have been evaluated by
using the full-potential linear muffin-tin orbitaFPLMTO) total-energy method combining with a mean-field
model of the vibrational partition function. The mean-field is constructed from the sum of all the pair potentials
between the reference atom and the others of the system. The calculated properties are in good agreement with
available static and shock-wave experimental measurements.
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I. INTRODUCTION a low temperature, it breaks down at sufficiently high tem-
peratures.

First-principle electronic-structure methods are routinely A certain mean-field approximation to the thermal contri-
used to compute the zero-temperature internal energy, blution to the Helmholtz free energy of crystalline phases is
also can be used to calculate the Helmholtz free energy conhe third type of method, including the-particle-in-a-cell
tributions from the ions and the electrons. They result in aPIC) modef’ and the so-called classical mean-field poten-
complete equation of state from which the properties such agal approacl:° The latter is simplified too much to the field
the thermal expansion coefficients, bulk moduli, specifyand may not have a precision high enough to reproduce such
heat, thermal Griineisen parameter of the system can be ddrermal properties as the linear thermal expansive coefficient
duced. and elasticity at high pressures and temperatures. The PIC

The smaller Helmholtz free energy contribution from the model is essentially an anharmonic Einstein model, and the
electrons usually can be calculated using the finite tempera&N-dimensional partition function is reduced to a simple
ture density functional approach of MernfirHowever, the three-dimensional integré?. Calculations using this model
Helmholtz free energy contribution from the ions is difficult usually are performed on supercells of several hundreds of
to calculate accurately because the volume and temperatusgoms for the different lattice with periodic boundary condi-
dependence of the phonon frequencies and the density ¢ibns. The PIC model has been demonstrated to match suc-
state are complicated. Aab initio molecular dynamics simu- cessfully the thermal properties of irBnand the high-
lation, in principle, is the perfect method to deal with this pressure thermoelasticity of body-centered-cubic tantafum.
problem. Unfortunately, in spite of recent progress in thisAlthough in this model the anharmonic contributions from
field it remains computationally very intensive to deal with the potential-energy of the system can included exactly, in
this problem in metal. At present there are commonly threerinciple, without a perturbation expansion, in practice, the
other type of methods to handle this problem without usingcomputation of the integration over the Wigner-Seitz cell is
empirical parameters. The first uses the Debye model angplaced by integration over the inscribed sphere of radius
may incorporate a volume dependence of the Debye temequal to half the nearest neighbor separatfodn the other
perature calculated using the first-principle-based methéds. hand, the total energy of the supercells of several hundreds
Infrequently, it is used to calculate such properties as thef atoms can only be performed with such a highly efficient
thermal expansion and thermoelasticity partly because theomputational method as the so-called tight-binding total-
precision is not high enough to reproduce the experimentenergy method? rather than the full-potential-based total-
data. energy method.

The second is based on the quasiharmonic approximation Recently we have calculated the coefficient linear thermal
in which the phonon frequencies are functions of the tem-expansion and elastic constants of Na at high pressures and
perature only through their volume dependence. The volum&mperatures successfully using a pair-potential-based
dependence of the phonon frequencies is incorporated eithetethod!® But it is not fit for the study of other extensive
approximately by a Taylor expansion on the volume at zerahermal properties. In this work we present a pair-potential-
temperaturéor directly by calculations of phonon dispersion based mean-field approximatigRPBMFA) to the thermal
related to various volumes using a certain simplified total-contribution to the Helmholtz free energy. Combining a
energy method.Although the quasiharmonic approximation PPBMFA with the FPLMTO total-energy method, a wide
can handle thermal expansion and the Grilseren parameterrainge of thermal properties of fcc Al has been studied.
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Il. COMPUTATIONAL METHODS a tight-binding total-energy meth&4* for which the param-
eters were determined by a certain full-potential-based total-
energy method. ActuallyJ(r) can be directly constructed in
For a system with a given averaged atomic volwhend  some more physically transparent way rather than from some
temperatureT, The Helmholtz free energf#(V,T) per ion  empirical method, according to the symmetry of lattice,
can be written as from the pair potentiad;; of two ionsi andj. Using this pair

otential the change of potential energy of the system in Eq.
F(V,T) = Eo(V) + Fe(V,T) + Fion(V. ), @w P ge otp 9 y .

(4) can be written as
whereEy(V) is the static zero temperature energy(V,T) is
the electronic contribution, anB,,,(V,T) is the vibrational
contributions to the free energy. The first two terms on the
right-hand side can be calculated using the density functional
theory (DFT) generalized to finite temperatures by the Mer-yhereR denotes all the lattice vectors of ion in the system
min theorent. The charge density is temperature dependengxcept the wander ion, with the site of wander ion as the zero
through occupation numbers according to the Fermi-Diragyoint of the lattice vector. The sums in E() denote the

A. Helmholtz free energy

U -Uo=353 allR-1 -5 allR),  (©
R R

distribution, giving the electronic entropy from superposition of the pair potential between the reference ion
a and remaining ions of the system. Using E§). the integra-
Sui= ) filnfi+ (1 -f)in(1-1), 2 tion in EqQ.(4) can be expressed as a form of pair potential. If
wheref; the Fermi occupation at a certain temperaftifer ~ "€ aSSUMES the pair potential is of the form as
each state.
HIRD == x|R™+y[R", (7)
B. Vibrational contributions wherex andy are positive constants amd andn are nega-

_tive constants, then these parameters in the pair potential can

As an approximate way to evaluate the vibrational contri-hg eyajyated by fitting the total energya) of the unit cell
bution NF,,, of the system ol ions to the Helmholz free with a lattice parametest to the equation

energy, the idea of the the mean-field approximation is that
the vibrational contribution to the partition functi@,s can 1
be calculated by having one wanderer particle move in the E(@) ==, ¢(|R)). (8)
potential field of an otherwise ideal, static lattfeé: 2°R

Zion =

[(kaT>3/2f(V T)}N (3 Here E(a) can be calculated using a full-potential-based
27h? ’ ' total-energy method.
Once the the pair potentials are obtained from ).
using only single atom fcc-unit cell calculations with differ-
ent values ofg, the potential energy of the wander iaHr)
f(v,7) = f drexp - (U(r) = Ug)/(kgT)], (4 andU, in Eq. (4) can be constructed according to the sym-
WS metry of the lattice. With the potential energy difference
U(r)-U, of the form in Eq.(6) the integration in Eq4) and
h anqu are Planck’s constant and 'Boltzr'nan’s constant, repgnce the free enerdy,(V,T) in Eq. (5) can be calculated.
spectively, m is the mass of e_ach 'OMO IS the_ pote_nt|al n order to simply the calculation, the integration over the
energy of the system with all ions on ideal lattice sites anc{Nigner-Seitz cell can be approximately replaced by integra-
U(r) is the potential energy of the system with the wanderet;, oyer the inscribed sphere of radius equal to half the
ion displaced by the radius vectorfrom its equilibrium oqceqt neighbor separation. Since pair potential is a scalar
position. The integration is over the Wigner-Seitz cell WS, ¢ ,nction depending only on the distance between two atoms,

centered on the equilibrium position of the wanderer ion. e jntegration over the cell is reduced to a two-dimensional
For each ion the vibrational contrlbutldﬁon,. accordmg (2-D) integration, that is 22/ sin(6)g(6,r)dadr, if per-
to the relationNF;,,=—kgT In Z;,, and the partition function formed in spherical coordinates

in Eq. (3), reads as In theory, to calculate the pair potential and construct the
ke T\ 32 mean field from them, the number Bfshould be of an order
Fion=—kgT In[< 277h2> f(V,T)} : (5  of magnitude up to 13. After a cutoff radius test, we found
that it is accurate enough to use the nearest 256 ions from the
One can see from E@4) and Eq.(5) that the key problem is wanderer ion to evaluate thé(|R|) and f(V,T) of fcc Al.
to determine the change of potential energy of the system dflere the total energf(a), if calculated using the finite tem-
N ions due to the displacement of the wander ion and tgerature DFT, can include the zero temperature energy and
calculate the integration over the Wigner-Seitz cell. electron effects of temperature, and hence the couple effect
In the conventional PIC model the potential enekdjy) between the electron and the phonon can be partly consid-
are calculated on supercells of several hundreds of atoms fared through the temperature- and volume-dependent pair
the different lattice with periodic boundary conditions usingpotential. Since the mean-field model treats vibrations clas-

where
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sically, it is expected to be a good approximation for tem- Cp
peratures greater than the Debye temperature of the solid but Bs= C—BT, (15
lower than the melting temperature. v
. where « is the thermal expansion coefficient adg is the
C. Thermal properties heat capacity at constant pressure. Since in a pure shear the
From the Helmholtz free enerdy(V, T) the thermal prop-  “isothermal” and “adiabatic” moduli are equal, there is no
erties of the system can be deduced. The isothermal bulReed to adjust the shear moduli.
modulusB(V, T) and pressur@(V,T) can be obtained by a It should be men';ioned here that the crystal_ anisotrqpy
least-squares fit to the Helmholtz free energy of unit cell from the atom vibration vanishes because, if pair potentials
are used in the integratiditV, T), the Helmholtz free energy
_ Br 2. . contribution from the ion&,,, will not change with the shear
FV+AV) =F(V) + PAV + 2V(AV) * ' ©) strain! But it is still a good approximation for single crystal
. and especially for polycrystalline aggregates, because the
whereAV is the small volume change from the balance vol-gjnge crystal anisotropy from atom vibration is small and the
umeV at the pressur® and temperaturg. By definition one - omperature effect to elastic constants is mainly from the

can easily obtain the linear thermal expansion coefficient,q,me expansiof® which can be accurately calculated in
a =(1/3V)(V/dT)p, specify heat at constant volum@,  ihis method. '

=-T(¢°F/dT?), and at constant pressu@»=C,+9a°BVT,

and thermodynamics Grlneisen parametexr,(V,T)
=34, B,V/Cy. Ill. CALCULATION DETAILS AND RESULTS

The elasticity of fcc aluminum can be completely de- |, this work to calculate the total energy of the unit cell at
scribed by three elastic constarlg,, C1p andCyy To c@l-  jitfarent temperatures we used the accurate full-potential lin-
culate the the shear constaly,-C,, one can use the o5 myffin-tin orbital methodFPLMTO).22 The generalized
volume-conserving orthorhombic strain tenkbr, gradient approximatioiGGA)? is used for the exchange-

x 0 0 correlation potential. The calculations were all-electron, non-
relativistic, and employed no shape approximation for the
e=|0 -x 0 ' (10 charge density or potential. The basis set is comprised of
0 0 X¥(1-x3) augmented linear muffin-tin orbitals wity p, d momenta.
Integration over the Brillouin Zone was done using the linear
tetrahedron method. In the irreducible wedge of the fcc Bril-
louin Zone, 256k points were used for no strain crystal. The
F(X) = F(0) + (Cy;— C1p) V2 + O(x%), (11)  number ofk points was recalculated for the symmetry of the
. . ) distorted crystal.
whereV is the volume of the unit cell anB(0) is the total The pair potential fcc Al was obtained by fitting unit cell
energy of the unstrained lattice at the volurie For the  (ota) energies, calculated using zero temperature DFT, for
elastic constantC44 one can use the volume-conserving re|ative volumev/V, from 1 to 0.65 in 0.01 increments to its
orthorhombic strain tensdf, relationship with the pair potential expressed with the nearest
0 x 0 neighbor 256 ions. The integratidf\V, T) was performed by
a dense sampling of two-dimensional grids in ther plane.
e=|x 0 0 ' (12) The calculated linear expansion coefficients as a function
0 0 X/(1-x%) of temperature at various pressures are compared to the
available experimental ddfain Fig. 1, which shows good
agreement at zero pressure, in particular for temperatures
F(X) = F(0) + 2C,,V>2 + O(x%). (13 greater than the Debye temperature but lower than the melt-
_ ) . . ing temperature. The calculated thermal expansion coeffi-

For isotropic polycrystalline aggregates of cubic crystal-cients decreases sharply with pressure and increases with
lites, the calculatedC;; can also be used to determined thetemperature, which are well known feathers of metals.
bulk modulus exactly by The calculated specific he@tlectronic and ionigat con-

1 stant volumeV(T=293K,P=P) and per atom as a function
B= §(C11+ 2Cyy), (14)  of temperature is shown in Fig. 2. The constant-volume spe-
cific heat at zero pressure, deduced from the experimental
but only place rather strict bounds on the average isotropidata of Forsblonet al,'8 is reproduced by our calculation.
shear modulus. It is a conventional treatment to use the avFhe temperature contribution to anharmonic effects shown
erage of the Shtrikman bound and Hashin bdfras the by the deviation of constant-volume specific heat due to the
shear modulus. Using the elastic consta®yts-C;,, C4yand  lattice atom from its classical harmonic valul3liminishes
Eq. (14) the elastic constar®,; can be determined. with pressure.

The isothermal bulk moduB; computed by the method To compare our results of the equation of state of Al at
mention above can converted to adiabatic moBglaccord-  high compression and high temperatures with those derived
ing to'® from the shock data, we calculated the pressu?gsand

where x is the magnitude of the strain. Then the the total
energy of the strain system can be written as

with the corresponding strain energy
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FIG. 1. Calculated linear thermal expansion coefficiemtsof
fcc Al. The available experimental resu(Ref. 17 at zero pressure
are shown by circles. The curves corresp@nam bottom to top to

decreasing pressur&=115, 60, 30, and 0 GPa.

FIG. 3. Hugoniot for the fcc Al in thé>-V plane. The solid line
is the calculated Hungoniot and the pluses are experimental values
(Ref. 19.

agrees with the conventional assumptigp/V=const, such
temperature§; on the Hugoniot for a set of relative vol- as in the semi-empirical equation of state ofAln range of
umes ranging from 1 to 0.6 by solving the Rankin-Hugoniothigh shock compression the conventional assumption dose
equatior?* not hold.
The isothermal elastic constants of fcc Al as functions of
Py(Vo=V) = 2(Ey - Ep), (16)  temperature at various pressures are presented in Fig. 5. The
o ] elastic constants of fcc Al elevates with the increasing pres-
whereE,, is internal energy along the Hugoniot, aBgand  gyre value and declines with the increasing temperature
Vp are, respectively, zero-pressure and room-temperature eQz|ye.
ergy and volume of the FPLMTO results. For a given volume | grder to compare the theoretical results with the experi-
V, the temperature on the Hugoniot is varied until Ef) i mental ones, we also calculated, at room temperature and
satisfied. The agreement of the calculated Hungoniot withgrq pressure, the adiabatic elastic const&is Cy, and
experimental dafd is _better than that from the Debye- C,, 0f a single crystal, the bulk modui and shear modufs
model-based methédFig. 3. _ of polycrystalline aggregates of fcc ATable I), and along
The calculated thermodynamics Gruneisen paramgter ihe Hungoniot the modulB (Fig. 6 and G (Fig. 7). The
(Fig. 4) in the range of low shock compression qualitatively xperimental moduli on the Hungoniot are determined by the
sound dat& according to Navier's equation as follows:
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FIG. 2. The calculated specify heat at constant voluvii& Reletive volume VIV,
=293K,P=P) and per atom. The curves correspaffdm bottom
to top) to increasing initial volume at pressures 115, 60, 30, and FIG. 4. Thermodynamic Grineisen paramegeilhe solid line
0 GPa. The circles are deduced from experimental data on the edenotes our calculations and the dashed line shows data from the
thalpy by Forsblonet al. (Ref. 18. semi-empirical EOSRef. 20.
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B+ 4G/3\Y? Table | shows that the calculated volume of the primitive
v = () ' (17) unit cell, the adiabatic modulC,4, C5, C44, B, andG under
P ambient conditions for fcc Al are well reproduced. From Fig.
and 6 and Fig. 7 one can see that the bulk moduli and shear
B\1/2 moduli obtained by our method fall well in the experimental
Up= () , (18) uncertainties at the pressures below 100 Gpa on Hugoniot
p

(the temperature ranges from 300 to 3600 K the pres-

whereu, anduy, are the longitudinal and bulk sound velocity Sure increases up to 120 GPa, that means the temperature

of the polycrystalline aggregates of Al, respectively. approaches the melting point and shear modulus should de-
crease rapidly at the pressure, our method does not work

TABLE I. The calculated and experimental volurtie A% of  very well anymore. This shows in one way that our method
the primitive unit cell, the adiabatic modully;, C;2, Ca4, B, andG s not fit for a melting study because we have not consider
(in GPg under ambient conditions for fcc Al. the contribution of fault to Helmholtz free energy which is
important at high temperature near the melting point.

Vo Cu Ci2 Cus B G
Calcul.atlons 16.75 114.8 63.0 316 803 29.2 V. SUMMARY
Experiments 16.61 106.9 60.8 282 755 26.I
%From Reference 25. In this work a pair-potential-based mean-field approxima-
bFrom Reference 26. tion (PPBMFA) to the thermal contribution to the Helmholtz
°From Reference 27. free energy is presented. Combining PPBMFA with the
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FIG. 6. Bulk moduli VS pressure of Hungoniot. The solid line  FIG. 7. Shear modulus VS pressure of Hungoniot. The solid line
denotes theory result and the circles are deduced from the expefienotes theory result and the circles are deduced from the experi-
mental data on the bulk sound velocitref. 21). mental data on the compressional and bulk sound velgRigy. 21).

FPLMTO total-energy method the thermal properties of fccsuppose this method may be used to calculate the thermal
Al as a prototype were studied. The linear thermal expansioproperties of the solid state of another metal.

coefficient, specific heat at a constant volume, Hugoniot in
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