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We present here a theoretical study of the effect of self-doping and the contribution of native defects to the
ionic conductivity ofa-quartz. A thorough first principles study of native defects in quartz, comprising silicon
and oxygen defects in several charge states, is presented. On the basis of this comprehensive study of defect
energetics, we can evaluate the equilibrium concentrations of defects at a given temperature, including the
effect of doping of the material coming from its native defects. Moreover, in open conditions, oxygen partial
pressure has an influence on the concentrations and self-doping of the material. Our results show that oxygen
interstitial is the native defect of highest concentration at equilibrium and that charge compensation occurs
between negative oxygen interstitials and holes in the valence band. Moreover, we find that in pure quartz
neutral defects are dominant at low temperature and relatively high partial oxygen pressures, but for low
enough oxygen pressures and sufficiently high temperatures, negative interstitials are expected to play a
significant role in diffusion. The concentrations of the latter are low enough that their contribution to ionic
conductivity is negligible, but their sensitivity to the Fermi level is high; thus, if for some reason(e.g.,
impurities) the Fermi level is raised, the intrinsic contribution to ionic conductivity will become important.
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I. INTRODUCTION

Quartz and silica are very important as prototypical crys-
talline and amorphous oxides; the comprehension of a vari-
ety of physical properties of these materials, electrical, me-
chanical, piezoelectric, optical, is important in several
domains, from a technological as well as a conceptual point
of view. Several properties of quartz and of oxides in general
depend crucially on point defects and their concentration.
Defect thermodynamics allows the prediction of the equilib-
rium concentration of defects on the basis of free enthalpies
of formation. However, in insulators charge compensation
effects need to be taken into account, which complicates the
picture, because concentrations of defects become mutually
dependent. In highly ionic insulators the assumption of for-
mal charges for cation and anion defects and their mutual
compensation has been almost traditional,1 but in binary ox-
ides it is certainly not justified.2 In this paper we devise, by
applying it to the major case of quartz, a general procedure
able to describe charge compensation and self-doping in an
insulator and thus to obtain equilibrium concentrations of
defects and their contributions to diffusion and ionic conduc-
tivity.

Quartz and silica are insulators with a large band gap
s9 eVd; the very low conductivity that one can measure is
considered to be ionic in character,3 as the activation energy
for electron/hole conductivity is expected to be higher. This
ionic conductivity has been generally attributed to Na impu-
rities 3–6 which are supposed to form complexes with Al(or
other trivalent impurities like B); the latter have low mobil-
ity, but the former are highly mobile, provided they become
unassociated with Al atoms by overcoming an energy barrier.

As far as we know, the native(or intrinsic) contribution to
ionic conductivity has been neglected.

The present study of native defects ina-quartz is aimed at
giving a solid basis to theories of ionic conductivity based on

the isolated point defects model; in particular we evaluate the
contribution due to native defects. In an insulator the con-
centration of defects in several charge states and the position
of the Fermi level are determined together by imposing the
neutrality of the system. This corresponds to minimizing the
canonical partition function which should contain, in prin-
ciple, all possible defects. In reality this rule has been fre-
quently applied, but seldom with a large database of defects:
we found two works that have given a true first-principles
estimation of self-doping of a solid, one7 for CuInSe2 and the
other8 for GaSb. In the case of quartz it has already been
pointed out that negative interstitials could be responsible for
p-doping conditions in quartz under irradiation,9 but no as-
sessment was made about normal quartz in equilibrium con-
ditions; and in any case, only oxygen defects were taken into
account. At variance with semiconductors, in a large band
gap material electron or hole concentrations can be too small
to compensate charge imbalance due to charged defects; so
that charge neutrality is in effect a constraint for the relative
concentrations of all carriers(both ionic and electronic).
Here we take into account oxygen and silicon defects in sev-
eral charge states and calculate defect concentrations and the
Fermi level as a function of temperature and oxygen partial
pressure.

The paper is organized as follows: in Sec. I we describe
the relation between concentrations and the Fermi level; in
Sec. II we give the technical details about density functional
theory (DFT) calculations, their accuracy, and the quality of
our model for quartz; in Sec. III the results of our defect
calculations(structures and energetics) are presented; finally,
in Sec. IV, we discuss the implications for ionic conductivity.

II. CHARGED DEFECTS, CONCENTRATIONS,
AND SELF-DOPING

Defects, in insulators, are present in several charged
states. Equilibrium concentrations of isolated defects are ex-
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ponentials of formation free energies, which depend on the
chemical potentials of the system under study, as discussed
in Ref. 10. Consider a solid in equilibrium with gaseous
oxygen, the chemical potentialmO is one-half of the free
energy of an oxygen moleculeFO2

. Each defect(i.e., each set
of nuclear positions) can appear in several charge states,
which means that a number of electrons has been transferred
to/from a reservoir of chemical potentialme, that is, the
Fermi level. In fact, formation energies for charged defects
depend onme; let us write the formation free energy for a
defect obtained by adding/removingnO oxygen atoms and
nSi silicon atoms, and having excess chargeQ:

Ff
nO,nSi,Q = Fquartz+nO+nSi+Q

* − Fquartz− nOmO − nSimSi + Qme,

s1d

wherenO andnSi can be positive(interstitial case) or nega-
tive (vacancy case); the last term has the similar meaning of
adding/removing electrons, except for the sign: in fact, due
to the usual sign convention for the charge, adding charges
means subtracting electrons. As we consider equilibrium
with gaseous oxygen, the silicon chemical potential is bound
to be mSi=mSiO2

−2mO, where mSiO2
is the free energy per

formula unit of quartz in our calculations. In the calculations
presented in this paper, we have neglected the vibrational
contributions to free energies, which, even if not completely
negligible,10 are not essential for the conclusions of the
present paper. Furthermore, an estimation of the specific ef-
fect due to vibrational entropies of all the defects would be
well beyond the scope of the present paper.

The electron chemical potential is nothing else than the
Fermi level of the crystal itself, which acts as an electron/
hole reservoir. Since the system and the reservoir are the
same, the Fermi level is influenced by the concentration of
defects which alters the density of states, especially by local-
ized levels located in the gap.

We neglect here the defect formed by an oxygen molecule
sitting in interstitial voids inside the network of SiO2; this is
justified by the fact that we consider oxygen partial pressures
low enough for these species to be penalized by their forma-
tion entropy, with respect to single interstitial atoms. We also
neglect the exchange of charges with the oxygen gas, as the
interface reference potential between the solid and the gas
turns out to be very close to the solid bulk potential.

We can now write the equation imposing the conservation
of the number of electrons in our closed system:

pvsT,med + o
j

QjcjsT,med − ncsT,med = 0, s2d

wherenc and pv are the number of electrons in the conduc-
tion band and the number of holes in the valence band, re-
spectively;cj is the concentration of the defect labeled byj ,
carrying a chargeQj; j runs, in principle, over all possible
defects.

In the following we present the results obtained for the
cj’s andme by solving Eq.(2) at a given temperatureT and
oxygen partial pressurePO2

. The temperature enters the
equation through entropy terms and Boltzmann factors; total
energies are all computed at 0 K. In the present calculation

we take into account the translational entropy of the oxygen
molecule—giving thePO2

dependence—which is the domi-
nating contribution of the entropy of the gas and cannot be
neglected, as we discussed in Ref. 10. The concentrations of
conduction electrons and valence holes, respectively, are cal-
culated using the experimental gap by the means of a stan-
dard textbook expression based on the effective mass
approximation.

III. COMPUTATIONAL DETAILS

We have performed pseudopotential DFT local density
approximation(LDA ) calculations using thePWSCF code;11

most details of the calculation, pseudopotentials, plane wave
cutoffs, thresholds on forces and stresses, are the same as in
Ref. 10; here all results are obtained with supercells of size
23232 thea-quartz unitary cell(i.e., containing 72±1 at-
oms) andG for Brillouin-zone sampling; we relaxed atomic
positions and cell parameters, allowing also cell deformation.
The relaxations led to forces/atom smaller than 10−4 a.u. and
stresses smaller than 2 kbar; at this level of pressure we have
a good approximation of formation enthalpies. For the relax-
ations we used either a conjugate gradient algorithm or
variable-cell damped dynamics.12 Departures from the hex-
agonal symmetry of quartz are not always negligibles. We
can estimate them by comparing the volume of the distorted
cell with that of an ideally hexagonal cell having the samea0
andc0. These differences range from the small departures of
the negative oxygen interstitials(0.2% and 0.7%) to much
larger ones for positive oxygen vacancies in the puckered
configuration(as large as 5.6% forQ= +2). Calculation for
charged defects were performed by imposing a compensating
charge background, as implicitly included byPWSCF when
the number of electrons does not match the nuclear pseudo-
charge. Furthermore, in order to compare the calculated en-
ergy for variously charged defects, corrections for periodic
image interactions have to be considered. We have calculated
the shift of the average potential with respect to the one of

pure quartz,DV̄. The energy correction for a defect of charge

Q is QDV̄. The shift of the average potential for a defect
calculation has been obtained by maximizing the overlap be-
tween the density of states of the defected crystal and that of
quartz; this procedure allows to determine an optimal shift
with an accuracy of 10−2 eV.

IV. DEFECT STRUCTURES AND ENERGETICS

In principle it is not possible to predict which defects, in
which charge state, will be relevant to our study, in spite of
several works on a few well known oxygen defects.9,10,13–15

In fact, except for a preliminary paper,16 to our knowledge,
no study has been performed on quartz having an overall
look over native oxygen and silicon defects, as has been
done for other materials.7,8

Here we have taken into account oxygen and silicon va-
cancies and interstitials, and for every single defect we have
relaxed the structures for neutral and a few charged states.
Details of their structure and their formation enthalpyHf at
standard temperature and pressure are shown in Tables I and
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II. The structures shown in the table are obtained by select-
ing atoms which have coordination anomalies(i.e., Si which
are not four-coordinated with oxygens and O which are not
dicoordinated with silicons) and their bonds, shown as sticks.
Let us take an example, in order to clarify the meaning of the
structures: the oxygen interstitial withQ=−2 in Table I. Here
two oxygen atoms “share” the Si-O-Si bond of the silica
network structure. The two silicon atoms are shown, because
they became five-coordinated; the two oxygen atoms are not
shown(since they have the right Si-O-Si coordination), but
their position is clear, being at the ends of two bonds coming
from the silicon atoms and connecting to each other. The
criterion for bonding is distance; the upper thresholds are
1.6 Å for O-O bonds, 2.0 Å for Si-O bonds, and 2.5 Å for
Si-Si bonds. Some of these structures, like the dimer or
puckered configuration of oxygen vacancies, are well known,

but others—for example, those of silicon defects—are not.
Let us make a couple of remarks. The first is that a few

local bonding configurations, say oxygen dumbbells or
Si-Si bonds, arise in various defects, more or less stretched
according to the charges locally available. The second re-
mark is that silicon vacancies, which have not been investi-
gated up to now from first principles, as far as we know, have
formation enthalpies which are not very high, and are lower
than those of the oxygen vacancies. This is not so surprising,
because forming a silicon vacancy in equilibrium with O2, as
it turns out, corresponds from the point of view of local
bonding to substituting a molecular O-O bond with two per-
oxy bridges(like two neutral oxygen interstitials), together
with a change in the topology of the SiO2 network. The
entropic part favors Si vacancies with respect to O vacancies
at high oxygen pressures. For example, at ambient tempera-

TABLE I. Structure of native oxygen defects in quartz and their formation enthalpies at ambient tem-
perature and pressure.V=vacancy,I=interstitial; some relevant bond lengths are shown. Oxygen atoms are
black, silicons are light gray. See the text for further details.
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ture, the partial pressure above which silicon vacancies are
more abundant than oxygen ones is around 10−4 atm. The
situation of course is different if quartz is in equilibrium with
bulk silicon: in that case the formation enthalpy for a neutral
Si vacancy is much higher: 13.74 eV.

Our first remark suggests that some of the bonding con-
figurations shown here could be interpreted in terms of tight
binding energy parameters, analogous to those used in the
past for valence alternation pair concepts.17 For instance the
silicon interstitial with Q= +1 is stabilized by forming a
three-coordinated oxygen, which allows it to gain, in the
language of Ref. 17, the correlation energy of one on-site
oxygen lone pair. A similar case occurs in the positively
charged silicon vacancies, where the configuration contain-
ing an ozonyl group is lower in energy than the one with two
dumbbells(the neutral one); the ozonyl configuration is sta-
bilized by a three-coordinated oxygen atom and, in the +1
charge state, by a five-coordinated silicon atom. A thorough
interpretation of our results in these terms would require a
quantitative tight binding model for defected SiO2, which is
clearly beyond the scope of this article.

By solving Eq.(2) at T=300 K andPO2
=1 atm, we find

that the electron chemical potential isme=2.25 eV. The for-
mation enthalpies in Tables I and II are calculated using this
value ofme.

An important remark is suggested by the values ofme and
the formation energy of negative oxygen interstitials, which
are close to each other: charge compensation in quartz, at
standard temperature and pressure, takes place between holes
in the valence band and negative oxygen interstitials. In Fig.
1 we show the electron chemical potential as a function of
temperature for three values ofPO2

.

V. THEORY OF IONIC CONDUCTIVITY IN QUARTZ

Point defects contribute in an essential way to diffusion in
materials, in a way that depends on their concentration and
their mobility. In a previous work we considered the role of
neutral oxygen defects in self-diffusion,10 and neglected the
role of charged defects which, as it turns out from the present
results, are lower in concentration at standard temperature
and pressure. But on lowering the oxygen pressure, the frac-
tion of negative to neutral interstitials raises.21 These defects
have been shown to have very high mobilities,14 and can
give an important contribution to diffusion. And what is even
more relevant, being charged, they contribute to ionic con-
ductivity.

We can estimate the contribution to ionic conductivity due
to native defects(labeled by j) with chargeQj, concentra-
tions cj, and mobilitiesm j:

TABLE II. Structure of native silicon defects in quartz and their formation enthalpies at ambient tem-
perature and pressure.V=vacancy,I=interstitial; some relevant, bond lengths are shown. Oxygen atoms are
black, silicons are light gray. See the text for further details.
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ssTd = o
j

cjQem j = o
j

cjQ
2e2dj

2n0
j e−Ej

m/kBT. s3d

Here the mobilities are expressed in terms of attempt fre-
quenciesn0, jump lengthsdj, and jump probabilities ex-
pressed as a thermal exponential of the migration energyEj

m

for each defect. As mentioned before, Jin and Chang14 found
very small migration energies for singly and doubly charged
oxygen interstitials, respectively 0.27 and 0.11 eV; these fig-
ures, added to our results for formation energies, allow us to
give an estimate of the contribution of intrinsic defects to
ionic conductivity. This contribution, at standard temperature
and pressure, is indeed negligible with respect to the mea-
sured values3,4 in quartz as can be seen in Fig. 2, where we
show the main contribution(in decimal log scale), the one
due to doubly negative oxygen interstitials. The contribution
of other native defects has to be excluded on the basis of
their energies both of formation and migration. The latter
will be the object of a forthcoming publication.

It has to be noticed that the concentration of negative
oxygen interstitials is of the order 10−8 cm−3 at 1000 K,
which is far lower than impurity concentrations in real
samples(of the order of ppm). In fact the presence of Al and
Na impurities in the samples that were used for the experi-
ments certainly influences the position of the Fermi level. We
expect that, depending on relative concentrations of Na and
Al, the Fermi energy is displaced up or down with respect to
our calculated equilibrium values. It is reasonable to expect
that sodium abundance would raise the Fermi level, by pro-
viding weakly bound electrons. An evaluation of the effect of
Al and Na concentrations on the Fermi level in quartz is
certainly to be included in the future perspectives of the

present work, bearing in mind that Al impurities present spe-
cial problems that require one to go beyond the LDA in order
to account for the observed localization of a hole in the elec-
tronic structure.18–20 Nevertheless, it is desirable to give al-
ready an estimate of the contribution to ionic conductivity
from native defects in the hypothesis of Fermi levels higher
than the equilibrium one; in Fig. 2 we show this contribution
for a displacement of the Fermi level of 0.6 eV, which is
modest with respect to the energy gap. With such a displace-
ment the native contribution to ionic conductivity is compa-
rable to the measured values.

In summary, we have calculated the structure and forma-
tion enthalpy of several native defects in quartz and we have
used this database to give a self-consistent theoretical esti-
mate of the equilibrium value of the Fermi level in pure
quartz, as a function of temperature and oxygen partial pres-
sure. This allows us to conclude that(1) oxygen interstitials
are the dominant native defect for a large range of tempera-
tures and pressures and(2) charge compensation takes place
between negatively charged oxygen interstitials and valence
band holes.

We have then given an estimation of the contribution of
oxygen interstitials to ionic conductivity; these contributions,
in a hypothetical pure crystal, are negligible with respect to
measured values; but in real samples the unavoidable pres-
ence of impurities, mainly alkali-metal ions and hydrogen,
could have an indirect effect on ionic conductivity by en-
hancing the native contribution enough for it to became non-
negligible.

FIG. 1. Femi energy as a function of temperature in quartz for
three oxygen partial pressures; the zero of energy is at the valence
band top.

FIG. 2. Decimal logarithm of ionic conductivity times tempera-
ture in quartz: continuous and dashed lines are experimental results
by Refs. 3 and 6, respectively; circles are our estimated contribution
from oxygen interstitialssI2−d, at PO2

=10−8 atm, triangles show the
contribution expected forme 0.6 eV higher than the solution of Eq.
(2).
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