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Using a generalized response theory we derive the electronic Raman response function for metals with
anisotropic relaxation rates. The calculations account for the long-range Coulomb interaction and treat the
collision operator within a charge conserving relaxation time approximation. We extend earlier treatments to
finite wave numberssuqu!kFd and incorporate inelastic electron-electron scattering besides elastic impurity
scattering. Moreover we generalize the Lindhard density response function to the Raman case. Numerical
results for the quasiparticle scattering rate and the Raman response function for cuprate superconductors are
presented.
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I. INTRODUCTION

After the discovery of high-Tc superconductors, some-
thing of a stir has been caused by the possibility of investi-
gating these systems by Raman scattering experiments.
Through its polarization dependence this spectroscopic
method allows for detecting anisotropies in quantities like
the superconducting gap and the scattering rates characteriz-
ing the transport properties. While the gap anisotropies in
high-Tc cuprates, as seen in Raman experiments, are theoreti-
cally well understood in terms ofdy2−y2 pairing,1 the impor-
tant quasiparticle collision effects are much less studied.
Early attempts included constant scattering rates,2 elastic
scattering processes3,4 or described inelastic scattering pro-
cesses within the Nearly Antiferromagnetic Fermi Liquid
(NAFL) model.5

In this paper we investigate the general situation of a nor-
mal metal by developing a theory of the electronic Raman
effect at finite wave numbersqÞ0 within the RPA response
theory and generalize it to include collision effects. A super-
position of elastic and inelastic scattering processes is con-
sidered with k-dependent relaxation rates and deviations
from Matthiessen’s rule are studied. Having in mind quasi-
2D-systems like high-Tc cuprate superconductors, we present
a numerical analysis of the inelastic scattering rates and the
Raman response functions employing the FLuctuation EX-
change (FLEX) approximation which treats the spin
fluctuation-limited transport and Cooper-pairing on the same
level.

II. TRANSPORT THEORY AND GENERALIZED RAMAN
RESPONSE: NORMAL STATE

We consider a normal metal in which the electronic states
are characterized by a momentum"k, an energy dispersion
ek =jk +m (we set the lattice constant to unity)

ek = tf− 2 cosskxd − 2 cosskyd + 4B cosskxdcosskydg, s1d

with m being the Fermi energy, the group velocityvk
=s1/"d¹kek, an inverse effective mass tensorMij

−1skd
=]2ek /"2]ki]kj, and an equilibrium Fermi distributionnk

with derivativewk =−]nk /]jk. Next we focus on an external
perturbation appropriate for a treatment of the electronic Ra-
man response within the effective mass approximation6–8

s2d

Here,êI and êS are the unit vectors of the incident and scat-
tered light, respectively, andA denotes the vector potential.
Then, the response of the electronic system to this perturba-
tion is described within the the quasiclassical limit of the
kinetic equation:

vdnk − q ·vkhk = i o
n=e,i

dIk
n , s3d

where we use the definition

hk = dnk + wkfUk
ext + Vsqddn1g s4d

andVsqd=4pe2/q2 is the Fourier transform of the long range
Coulomb interaction. Physical observables are the general-
ized response functions

dna = o
ps

apdnp, s5d

whereap is the vertex which describes the coupling ofdna to
the external perturbation potential. The collision integrals for
elastic sn=ed and inelasticsn=id scattering have the form
(conserving relaxation time approximation)

dIk
n = − Gk

nhk + o
ps

Ckp
n hp,

Ckp
n < wko

b

lb
n bkGk

nbpGp
n

o
ps

wpbp
2Gp

n
. s6d

The scattering parameterslb
n allow a classification of the

macroscopic momentsdnb [defined through Eq.(5)] into
conservedslb

n=1d and nonconservedslb
n,1d quantities. In

what follows we will, for the sake of simplicity, restrict our-
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selves to the case of charge conservation, i.e.,l1
n=1, lb

n

=0 ∀bÞ1. While the elastic scattering rateGk
i is constant,

the inelastic part of the scattering rateGk
i has a strong fre-

quency dependence that reflects characteristic lifetime ef-
fects, which we discuss below.

In Fig. 1 we show the inelastic scattering rateGk
i svd for

hole-doped high-Tc cuprates at optimal dopingsx=0.15d for
various temperatures using the FLEX approximation.9–12The
upper curves correspond tok-directions nearsp ,0d (“hot
spots”), the lower ones refer tok near the diagonal(“cold
spots”). For v→0 we find that the inelastic scattering rate at
the hot spot is almost three times larger than at the cold spot
(solid line). Physically speaking, the scattering ratesGk

i can
be understood in terms of scattering of quasiparticles on spin
fluctuations(paramagnons) which are enhanced near the hot
spots. In the normal state we also find at small frequencies
that the scattering rates decrease with decreasing tempera-
ture. ForT,Tc a rearrangement of spectral weight occurs
reflecting the v-dependence of the superconducting
dx2−y2-wave gapDsvd which is calculated self-consistently.13

As expected, the maximum is seen atv.3D0/". In the
high-frequency limit, Gk

i varies linearly with v for all
k-directions. This is in accordance with both the Marginal
(MFL) (Ref. 14) and Nested(NFL) (Ref. 15) Fermi liquid
picture.

Let us turn to the overdoped casesx=0.22d where we
focus on the normal state. Thus, we show in Fig. 2Gk

i for the
same temperatures and directions as in Fig. 1. Most impor-
tantly, the scattering rates become less anisotropic at small
frequencies. This is in agreement with Raman scattering ex-
periments where the static scattering rate is extracted for dif-
ferent high-Tc cuprates for different polarizations as a func-
tion of the doping concentration.16,17Generally speaking, the
anisotropy of the scattering rate reflects the anisotropy of the
spin fluctuations. Those become less pronounced and more
isotropic in the overdoped regime. We still find a reduction
of Gk

i with decreasing temperature and the linear high-
frequency behavior remains.

Next, we turn to the generalized theory of Raman scatter-
ing. The full response functionLab for general verticesa and
b reads within the RPA[see Eq.(2)]

s7d

I denotes the corresponding irreducible interaction in a sym-
bolic notation. Note that the decomposition into transverse
and longitudinal parts is a general structural property of the
respose formalism. For the special case of Raman scattering
sa,b=gkd one has to consider the Lindhard response and
s1−IL11d is the dielectric functione. Then, the full Raman
response is of the form

Lggsq,vd =
dngsq,vd
ug

extsq,vd
= Mgg

* −
Mg1

*2

M11
* S1 −

1

e
D − Jgg

* +
Jg1

*2

J11
*

+
J11

* zgg
*

«
+ OSq2,

1

e
D . s8d

Here,Mab
* is the generalization of the Lindhard function due

to the inclusion of collision effects:

Mab
* =

q · sTab
s0d* + zab

* T11
s1d* − Tab

s1d*d ·q

iv − q ·D11
s1d* ·q

. s9d

Tab
smd* are generalizations of the electronic conductivity to

general verticesa, b:

Tab
smd* = o

ps
S−

]np

]jp
D fp

apvp:bpvp

− iv + Gp
* S iGp

*

v + iGp
* Dm

, s10d

fp =
sv + iGp

* d2

sv + iGp
* d2 − sq ·vpd2, Gp

* = Gp
e + Gp

i .

The quantitiesDab
smd* are generalized diffusion tensors

Dab
smd* =

Tab
sm+1d*

Nab
* , Nab

* = o
ps

S−
]np

]jp
D iGp

*

v + iGp
* apbp.

Jab
* are the collision-limited Raman response functions

which have a finiteq→0 limit:

FIG. 1. Calculated inelastic scattering rateGk
i versusv for the

one-band Hubbard model usingU=4t at optimal dopingsx=0.15d
for temperaturesT=2Tc (solid lines), T=1.05Tc (dashed lines), and
T=0.5Tc (dashed–dotted lines).

FIG. 2. Inelastic scattering rateGk
i versusv for the overdoped

casesx=0.22d using the same notation as in Fig. 1.
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Jab
* = o

ps
S−

]np

]jp
D fp

iGp
*

v + iGp
* apbp s11d

and the objectszab
* describe the mixing of elastic and inelas-

tic scattering processes and hence deviations from Matthies-
sen’s rule within the conserving relaxation time approxima-
tion:

zab
* =

Ja1
* J1b

*

J11
*2 +

v

v + ig*

J11
e J11

i

J11
*2

3 SJa1
e

J11
e −

Ja1
i

J11
i DSJb1

e

J11
e −

Jb1
i

J11
i D + Osq2d, s12d

g * =
J11

*

J11
e J11

i o
ps

S−
]np

]jp
D fp

iGp
eGp

i

v + iGp
* ,

Jab
n = o

ps
S−

]np

]jp
D fp

iGp
n

v + iGp
* apbp; n = e,i .

Finally, e=esq ,vd=1−VsqdM11
* sq ,vd is the dielectric func-

tion of the electronic system mentioned earlier. It has thus
been shown that the mixing terms~zab

* in Eq. (8) of the two
separate scattering mechanisms occur in the Lindhard func-
tion Mab

* sq ,vd=Osq2d and in terms which are screened
~e−1 by the long range Coulomb interaction. For practical
applications of the result shown in Eq.(8) to the cuprate
systems, say, whereq→0 ande<104 may be assumed, one
may use theq→0,e→` limit of Lgg and the contributions
from mixing~zab

* are hence irrelevant. Therefore, the scat-
tering mechanisms can be linearly combined, leading to the
exclusive occurrence ofGp

* =Gp
e+Gp

i in the Raman response
function. Note that the Raman response function ImLgg in
the limit q→0 reduces to Eq.(12) of Ref. 3 wherestL

* d−1

corresponds to an average ofGp
* . Hence, this scattering rate

can be interpreted as the width of the line shape of Fig. 3 in
Ref. 3. Next we focus on the numerical analysis of ImLgg

for a spin-fluctuation based model particularly for the inelas-
tic scattering rateGk

i .

III. NUMERICAL CALCULATION OF THE RAMAN
RESPONSE

Using normal and anomalous Green’s functions,G andF,
we calculate the full Raman response function via

Im Lggsq = 0,vd = pE
−`

`

dv8ffsv8d − fsv8 + vdg

3 o
k

g̃sk,v8,vdfNsk,v8 + vdNsk,v8d

− Ask,v8 + vdAsk,v8dggskd, s13d

whereN=G9 and A=F9 are the spectral functions(i.e., the
k-resolved density of states) of the corresponding quasipar-
ticles calculated within the FLEX approximation for the one-
band Hubbard model.9,18 The quantityg̃sk ,v8 ,vd denotes
the renormalized Raman vertex that will be specified below.
The bare Raman vertices for the different polarization sym-
metries considered here,B1g, B2g, read within the effective
mass approximation:

gB1g
= tfcosskxd − cosskydg, gB2g

= 4tB sinskxdsinskyd.

Here,t is the nearest neighbor andt8=−Bt (with B=0.45) is
the next-nearest neighbor hopping energy of the tight-
binding band introduced in Eq.(1). Thus Raman scattering in
B1g symmetry mainly probes the ‘‘hot regions’’ whileB2g
symmetry probes the “cold regions” of the Brillouin zone.

It has been shown earlier that the FLEX approximation
yields a phase diagramTsxd for cuprates which is in fair
agreement with experiment. One finds adx2−y2-wave super-
conducting order parameter and all characteristic temperature
scales.19 Recently it has also been demonstrated that the
resonance peak belowTc in neutron scattering data and
angle-resolved photoemission(ARPES) experiments which
measure the spectral density entering in Eq.(13) can be well
described.20,13

While no vertex corrections are considered using the ki-
netic equation approach, they become important if the FLEX
approximation is employed. The main consequence is that
the Raman vertex becomes frequency dependent reflecting
the retardation effects related to the Cooper-pairing mecha-
nism. In order to calculate the vertex functiongn we employ
the Nambu notationsm ,n=0,1,2,3d,21

Pmnsqd = − o
k

1

2
TrfgmGsk + qdg̃nGskdg s14d

with q;q , inm; k;k , ivn; ok=Toivn
ok, and satisfy the

Ward identityomqmg̃msk+q,kd=t3G
−1skd−G−1sk+qdt3. The

ladder approximation for the vertex function yields

g̃msk + q,kd = gmsk + q,kd + o
k8

ft0Gsk8 + qd

3g̃msk8 + q,k8dGsk8dt0Pssk − k8d + t3Gsk8 + qd

3g̃msk8 + q,k8dGsk8dt3Pcsk − k8dg. s15d

Ps andPc refer to the spectral function of the spin and charge
susceptibility within RPA, respectively, that are defined in

FIG. 3. Full Raman response functionLggsq→0,vd versusv at
optimal dopingsx=0.15d for B1g polarization for the same tempera-
tures as in Fig. 1.
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Ref. 9. Finally, the full Raman vertexg̃ satisfies the follow-
ing integral equation:

g̃sk + Q,kd = gskd + o
q

fPssqd + Pcsqdg 1
2 Trft3Gsk + q + Qd

3t3Gsk + qdgg̃sk + q + Q,k + qd s16d

and can be derived from Eq.(14) by replacingg0 and g̃0 by
gt3 and g̃t3.

IV. RESULTS FOR Lgg AND DISCUSSION

In Fig. 3 we show our results for the full Raman response
function Eq.(8), Lgg, for theB1g polarization, which is pro-
portional to the measured Raman intensity, at optimal dop-
ing. Both a linear increase and a continuum are found in the
limit of low and high frequencies, respectively. This is a
direct consequence of the inelastic scattering rate discussed
in Fig. 1. In particular, we find an increasing initial slope
with decreasing temperature. BelowTc we obtain the usual
pair-breaking feature accompanied by a suppression of spec-
tral weight forvø2D0/". For low frequencies we also find
a power law Lgg~ sv /2D0d3 that is characteristic for a
dx2−y2-wave gap in the clean limit. Note that the pair breaking
peak is finite and renormalized by inelastic quasiparticle
scattering processes.

Figure 4 shows the Raman intensity forB2g polarization
in the normal state. We again find the high-frequency con-
tinuum and an increasing slope of the Raman response func-
tion with decreasing temperature. This agrees with the NAFL
picture if vertex corrections are considered.5

V. SUMMARY

In summary, we have reconsidered the electronic Raman
response with special emphasis on the role of quasiparticle
scattering processes. In the normal state a superposition of
elastic and inelastic scattering events described by

k-dependent scattering rates leads to a deviation from Mat-
thiessen’s rule for the corresponding Raman response func-
tions. These deviations, however, are found to be eliminated
by the presence of the long-range Coulomb interaction. We
have furthermore studied in detail, the anisotropy of the in-
elastic scattering rateGk

i at optimal doping, and its decrease
at higher doping levels towards the overdoped case. The re-
sultant electronic Raman response functions that include the
effects of inelastic scattering involving spin fluctuations re-
produce the behavior of the normal state characteristic of the
phenomenological MFL picture that has been studied in ear-
lier publications.22 In the superconducting state the inelastic
scattering rate becomes gapped due to a frequency dependent
dx2−y2-wave gap, calculated self-consistently, yielding the
characteristic shape of the Raman response.1

ACKNOWLEDGMENTS

D.M. thanks the Walther-Meissner-Institute for hospitality
and INTAS (Project No. 01-0654) for financial support.

1T. P. Devereaux and D. Einzel, Phys. Rev. B51, 16 336(1995);
Phys. Rev. B54, 15 547(1996).

2L. A. Falkovsky and S. Klama, Physica C172, 242 (1990).
3A. Zawadowski and M. Cardona, Phys. Rev. B42, 10 732

(1990).
4D. Einzel and C. Schuster, Czech. J. Phys.46, 993 (1996).
5T. P. Devereaux and A. P. Kampf, Phys. Rev. B61, 1490(2000);

59, 6411(1999).
6P. A. Wolff, Phys. Rev.171, 436 (1968).
7M. C. Krantz and M. Cardona, J. Low Temp. Phys.99, 205

(1995); T. Strohm and M. Cardona, Phys. Rev. B55, 12 725
(1997).

8D. Manskeet al., Phys. Rev. B56, R2940(1997).
9See, for example, D. Manskeet al., Phys. Rev. B67, 134520

(2003).
10N. E. Bickerset al., Phys. Rev. Lett.62, 961(1989); N. E. Bick-

ers and D. J. Scalapino, Ann. Phys.(N.Y.) 193, 206 (1989).
11T. Dahm and L. Tewordt, Phys. Rev. Lett.74, 793 (1995).
12M. Langeret al., Phys. Rev. Lett.75, 4508(1995).
13D. Manskeet al., Phys. Rev. Lett.87, 177005(2001).
14C. M. Varmaet al., Phys. Rev. Lett.63, 1996(1989).
15J. Ruvaldset al., Phys. Rev. B51, 3797(1995).
16For a systematic study, see M. Opelet al., Phys. Rev. B61, 9752

(2000).
17F. Venturiniet al., Phys. Rev. Lett.89, 107003(2002).
18Note that the NAFL approach of Ref. 5 is restricted to the normal

state and thus no spectral functionA occurs.
19D. Manskeet al., Phys. Rev. B62, 13 922(2000); D. Manske

et al., ibid. 64, 144520(2001).
20D. Manskeet al., Phys. Rev. B63, 054517(2001).
21Y. Nambu, Phys. Rev.117, 648 (1960).
22T. Stauferet al., Solid State Commun.75, 975 (1990).

FIG. 4. Full Raman response functionLggsq→0,vd versusv at
optimal dopingsx=0.15d for B2g polarization for the same tempera-
tures as in Fig. 1.
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