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Electronic Raman response in anisotropic metals
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Using a generalized response theory we derive the electronic Raman response function for metals with
anisotropic relaxation rates. The calculations account for the long-range Coulomb interaction and treat the
collision operator within a charge conserving relaxation time approximation. We extend earlier treatments to
finite wave numberg|q|<kg) and incorporate inelastic electron-electron scattering besides elastic impurity
scattering. Moreover we generalize the Lindhard density response function to the Raman case. Numerical
results for the quasiparticle scattering rate and the Raman response function for cuprate superconductors are
presented.
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[. INTRODUCTION with derivative ¢, =-dn,/ 9&,. Next we focus on an external
perturbation appropriate for a treatment of the electronic Ra-

After the discovery of highF, superconductors, some- o : )
thing of a stir has been caused by the possibility of investi- o €SPONse within the effective mass approximétion

gating these systems by Raman scattering experiments. oxt S a_l N e’ s

Through its polarization dependence this spectroscopic Uy =me -M (k)& ‘E|AHA|- (2)
method allows for detecting anisotropies in quantities like "

the superconducting gap and the scattering rates characteriz- us!

ere,& andéS are the unit vectors of the incident and scat-

ing the transport properties. While the gap anisotropies irt_(
i-

high-T, cuprates, as seen in Raman experiments, are theore ered light, respectively, and denotes the vector potential.

. 1 . )
cally well _unde_rstood n terms @22 pairing; the impor . Then, the response of the electronic system to this perturba-
tant quasiparticle collision effects are much less studied

Early attempts included constant scattering ratetastic f(i_on i_s descr!beg within the the quasiclassical limit of the
i ) . . . inetic equation:

scattering processesor described inelastic scattering pro-
cesses within the Nearly Antiferromagnetic Fermi Liquid o =g -Vihe =i >, 8L, (3)
(NAFL) model® =ei

In this paper we investigate the general situation of a nor- _
mal metal by developing a theory of the electronic Ramary/here we use the definition
effect at finite wave numbeig+ 0 within the RPA response he = ny + @ [UZ+ V(q) 6ny] (4)
theory and generalize it to include collision effects. A super-
position of elastic and inelastic scattering processes is cordndV(q)=4me?/q? is the Fourier transform of the long range
sidered with k-dependent relaxation rates and deviationsCoulomb interaction. Physical observables are the general-
from Matthiessen’s rule are studied. Having in mind quasiized response functions
2D-systems like highF. cuprate superconductors, we present o = 2 ,n 5)
a numerical analysis of the inelastic scattering rates and the a= 2 3oy,
Raman response functions employing the FLuctuation EX- b7
change (FLEX) approximation which treats the spin wherea, is the vertex which describes the couplingdof, to
fluctuation-limited transport and Cooper-pairing on the saméhe external perturbation potential. The collision integrals for
level. elastic (v=e) and inelastic(v=i) scattering have the form

(conserving relaxation time approximatjon

Il. TRANSPORT THEORY AND GENERALIZED RAMAN 51,’(’ == I‘Ehk + 2 lephp,
RESPONSE: NORMAL STATE po
We consider a normal metal in which the electronic states b b I
are characterized by a momentuik, an energy dispersion Cip ~ (pkz o k p2 . (6)
=&+ (we set the lattice constant to unjty b > epbyly
po

& = [~ 2 cosk,) - 2 cogky) + 4B cogk)cosk)], (1) The scattering parameteis, allow a classification of the
with u being the Fermi energy, the group velocity macroscopic momentgn,, [defined through Eq(5)] into
=(1/h)Vy e, an inverse effective mass tensdmal(k) conserved\;=1) and nonconserveth;<1) quantities. In
=Pec/1i%kiok;, and an equilibrium Fermi distributiom,  what follows we will, for the sake of simplicity, restrict our-
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FIG. 1. Calculated inelastic scattering rzitb versusw for the FIG. 2. Inelastic scattering raﬂé{( versusw for the overdoped

one-band Hubbard model usitg=4t at optimal doping(x=0.15 case(x=0.22 using the same notation as in Fig. 1.
for temperature3 =2T,, (solid lineg, T=1.05T, (dashed lines and

T=0.5T, (dashed—dotted lings on, LaL, LuLy, 1 @
E b= = L b . 7

selves to the case of charge conservation, A§51, Ay 7 e Ly, L, 1-IL;,

=0 Ob# 1. While the elastic scattering raig is constant, TRANSVERSAL  LONGITUDINAL

the inelastic part of the scattering rdfg¢ has a strong fre-

quency dependence that reflects characteristic lifetime ef-denotes the corresponding irreducible interaction in a sym-
fects. which we discuss below. bolic notation. Note that the decomposition into transverse

In Fig. 1 we show the inelastic scattering rzitkgz(w) for  and longitudinal parts is a general structural property of the
hole-doped highF, cuprates at optimal doping=0.15 for respose formalism. For the special case of Raman scattering
. .

various temperatures using the FLEX approximafidd The (@,b=n} one has to consider the Lindhard respense and

upper curves correspond fo-directions near(w,0) (“hot (1-1L19) is the dielectric functiore. Then, the full Raman

spots), the lower ones refer t& near the diagonafcold ~ esPonse is of the form

spots’). For w— 0 we find that the inelastic scattering rate at 2

the hot spot is almost three times larger than at the cold spot | (q,0) = M =M - Mﬁ(l _1> = 4 =n
{ yyvi =

*

(solid line). Physically speaking, the scattering rai§scan u‘;Xt(q,w) 7 My, € BN
be understood in terms of scattering of quasiparticles on spin — 1
fluctuations(paramagnonswhich are enhanced near the hot + Eubyy + o<q2,_>, (8)
spots. In the normal state we also find at small frequencies € €

that the scattering rates decrease with decreasing tempera- . o ) i

ture. ForT<T, a rearrangement of spectral weight occursHere,Mg, is the generalization of the Lindhard function due
reflecting the w-dependence of the superconducting© the inclusion of collision effects:

dy2_2-wave gapA(w) Whjch is galculated self-consistentf. (TO 4 2T T

As expected, the maximum is seen @t=3A/%. In the v = 3 Tab * GapTia ab )4 9
high-frequency limit, I', varies linearly with o for all ab iw—q-D(lll)* -q '

k-directions. This is in accordance with both the Marginal

(MFL) (Ref. 14 and NestedNFL) (Ref. 15 Fermi liquid T;’g)* are generalizations of the electronic conductivity to

picture. general vertices, b:
Let us turn to the overdoped ca$e=0.22 where we
focus on the normal state. Thus, we show in Fid Zor the T =3 (- g\ Vpibpvp (T, \F 20
same temperatures and directions as in Fig. 1. Most impor- ab 08, P—iw+T \w+il>)
tantly, the scattering rates become less anisotropic at small e P P P
frequencies. This is in agreement with Raman scattering ex-
periments where the static scattering rate is extracted for dif- (w+ i]“;;)2 [ =res
. . . . = * , = + .
ferent highT, cuprates for different polarizations as a func- PT (w+ in)z— (q -vp)2 pPTip T tp

tion of the doping concentratiofi:'” Generally speaking, the

anisotropy of the scattering rate reflects the anisotropy of th%he quantitiesD(")* are generalized diffusion tensors
spin fluctuations. Those become less pronounced and more ab

isotropic in the overdoped regime. We still find a reduction (u+D)* an i

of T, with decreasing temperature and the linear high- DW* = —ab N, = >, <__E>_P_ b..
. . ab * ] ab R *ap b

frequency behavior remains. ab pe \ 0§/ w+ ir,

Next, we turn to the generalized theory of Raman scatter-
ing. The full response functiof,;, for general verticeaand =, are the collision-limited Raman response functions
b reads within the RPAsee Eq(2)] which have a finiteg— 0 limit:
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IIl. NUMERICAL CALCULATION OF THE RAMAN
RESPONSE

Using normal and anomalous Green'’s functicdBgndF,
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FIG. 3. Full Raman response functidh,,(q— 0,®) versuse at

optimal doping(x=0.19 for B4 polarization for the same tempera-

tures as in Fig. 1.

. an ir
=* - __P P
—ab pz ( agp>fpw + ir;apb" (D

and the objectg,, describe the mixing of elastic and inelas-

we calculate the full Raman response function via

o

ImL,,(q=0,0)= 7TJ do'[f(0") = (o' + w)]

—00

X % YK, 0, 0)[NK,o" +0)NKk,o")

-Ak,0" + w)AK,o")]yk), (13

whereN=G" and A=F" are the spectral functiong.e., the
k-resolved density of statgsf the corresponding quasipar-
ticles calculated within the FLEX approximation for the one-
band Hubbard modél*® The quantityy(k,’,») denotes
the renormalized Raman vertex that will be specified below.
The bare Raman vertices for the different polarization sym-
metries considered her8,y, B,y read within the effective
mass approximation:

Yoy, = t{cogk,) - cogk,)], Vg~ 4B sin(ky)sin(k,).

tic scattering processes and hence deviations from Matthies- . . - . _ .
sen’s rule within the conserving relaxation time approxima-i'ere’t Is the nearest _ne|ghbor am(_i: Bt (with B=0.49 IS
the next-nearest neighbor hopping energy of the tight-

tion:
== =e =i
§* _ ~al~1b W =11711
ab™ —*2 % =*2
=T w+ly®™ =2

ze i
w =3 _ =a

ze i

=11 =11

—e =i
ot r?l) +0(g?), (12
211 Fn

= e
oo _Eu (L), 05T
L=TN=T 36 P+l
=11711 po p P
an iry
Bl = -—Llf —L_ab: v=ei.
ab %( a§p> pw+i1"pa'p p

Finally, e= e(q,w)zl—V(q)le(q,w) is the dielectric func-

binding band introduced in E@l). Thus Raman scattering in
By symmetry mainly probes the “hot regions” whilBy,
symmetry probes the “cold regions” of the Brillouin zone.

It has been shown earlier that the FLEX approximation
yields a phase diagraii(x) for cuprates which is in fair
agreement with experiment. One findsla ,>-wave super-
conducting order parameter and all characteristic temperature
scales”® Recently it has also been demonstrated that the
resonance peak below, in neutron scattering data and
angle-resolved photoemissigARPES experiments which
measure the spectral density entering in @3) can be well
described®13

While no vertex corrections are considered using the ki-
netic equation approach, they become important if the FLEX
approximation is employed. The main consequence is that
the Raman vertex becomes frequency dependent reflecting

tion of the electronic system mentioned earlier. It has thughe retardation effects related to the Cooper-pairing mecha-

been shown that the mixing termg“;b in Eq. (8) of the two

nism. In order to calculate the vertex functighwe employ

separate scattering mechanisms occur in the Lindhard fun¢he Nambu notatiorix,»=0,1,2,3,%

tion M;b(q,w):O(qZ) and in terms which are screened
« €1 by the long range Coulomb interaction. For practical
applications of the result shown in E(B) to the cuprate

systems, say, wheig— 0 ande~ 10* may be assumed, one
may use theq—;O,e—mc limit of L.,
from mixing= ¢, are hence irrelevant. Therefore, the scat

and the contributions

Pu@=-3 Ty, Gk+q3,60] (14
k

with q=q,iv,, k=k,iw,; Ek:TEiwnEk, and satisfy the
_Ward identity = ,q,7,(k+q,k) =G4k -G} (k+0q) 3. The

tering mechanisms can be linearly combined, leading to théadder approximation for the vertex function yields

exclusive occurrence d]’*:I‘e+1“'p in the Raman response
function. Note that the Raman response functionJyy in
the limit g— 0 reduces to Eq(12) of Ref. 3 where(q-z)‘l
corresponds to an average g{ Hence, this scattering rate
can be interpreted as the width of the line shape of Fig. 3 in
Ref. 3. Next we focus on the numerical analysis of4r),

Fulk+0,K) = y,(k+ 0,k + X [G(K +0)
k/

XYk +0,k")G(K') oPg(k — k') + 75G (K’ +q)
XYu(K +0,K)G(K') 73Pc(k = K')]. (15

for a spin-fluctuation based model particularly for the inelas-P; and P, refer to the spectral function of the spin and charge

tic scattering ratd’}.

susceptibility within RPA, respectively, that are defined in
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Ref. 9. Finally, the full Raman verté¥ satisfies the follow- 0.05
ing integral equation:
—~ 004 1
Hk+Q.k) = y(k) + 2 [Py(a) + P(q)]3 Tr{ G(k+q + Q) 3 e
q ? 003t S/ T TTTmme—ee
/
Y /
XG(k+a)[yk+q+Qk+q) (16) S ool / x=015
and can be derived from E¢L4) by replacingy, and¥, by = J n-state
v13 andyrs. = ool , 1
/ t’/t = -0.45
IV. RESULTS FOR L, AND DISCUSSION 0.00 - L - ’ . L
0 20 40 60 80 100 120

In Fig. 3 we show our results for the full Raman response Raman shift ® (meV)
function Eq.(8), £,,, for the B4 polarization, which is pro-
portional to the measured Raman intensity, at optimal dop- FIG. 4. Full Raman response functidh,(q— 0,w) versusw at
ing. Both a linear increase and a continuum are found in theptimal doping(x=0.15 for B,y polarization for the same tempera-
limit of low and high frequencies, respectively. This is atures as in Fig. 1.
direct consequence of the inelastic scattering rate discussed

in Fig. 1. In particular, we find an increasing initial slope k-dependent scattering rates leads to a deviation from Mat-
with decreasing temperature. Beloly we obtain the usual  thjessen’s rule for the corresponding Raman response func-
pair-breaking feature accompanied by a suppression of spefipns. These deviations, however, are found to be eliminated
tral weight for w<2Ao/#. For low frequencies we also find py the presence of the long-range Coulomb interaction. We
a power law £, (w/2A0)® that is characteristic for a have furthermore studied in detail, the anisotropy of the in-

dye-y2-wave gap in the clean limit. Note that the pair breakingelastic scattering ratE}, at optimal doping, and its decrease

peak is finite and renormalized by inelastic quasiparticleat higher doping levels towards the overdoped case. The re-

scattering processes.
Figure 4 shows the Raman intensity 85, polarization

sultant electronic Raman response functions that include the
effects of inelastic scattering involving spin fluctuations re-

in the normal state. We again find the high-frequency conproduce the behavior of the normal state characteristic of the
tinuum and an increasing slope of the Raman response funghenomenological MFL picture that has been studied in ear-
tion with decreasing temperature. This agrees with the NAFLier publications® In the superconducting state the inelastic

picture if vertex corrections are considefed.

V. SUMMARY

In summary, we have reconsidered the electronic Raman

scattering rate becomes gapped due to a frequency dependent
de_y2-wave gap, calculated self-consistently, yielding the
characteristic shape of the Raman respdnse.
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