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Boltzmann test of Slonczewski’s theory of spin-transfer torque
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We use a matrix Boltzmann equation formalism to test the accuracy of Slonczewski's theory of spin-transfer
torque in thin-film heterostructures where a nonmagnetic spacer layer separates two noncollinear ferromagnetic
layers connected to nonmagnetic leads. When applicable, the model predictions for the torque as a function of
the angle between the two ferromagnets agree extremely well with the torques computed from a Boltzmann
equation calculation. We focus on asymmetric structyvdsere the two ferromagnets and two leads are not
identica) where the agreement pertains to an analytic formula for the torque derived by us using Slonczewski’'s
theory. In almost all cases, we can predict the correct value of the model parameters directly from the
geometric and transport properties of the multilayer. For some asymmetric geometries, we predict a mode of
stable precession that does not occur for the symmetric case studied by Slonczewski.
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In 1996, Slonczewskiand Berget predicted that an elec- able to identify the physical origin and systematic behavior
tric current flowing through a magnetic multilayer can exertof the effective resistanceR,; and R, in the interplay be-
a spin-transfer torque on the magnetic moments of the hetween resistive scattering, spin-flip scattering, and interface
erostructure. This torque can produce stable magnetic preceseattering. For some asymmetric geometries, a previously
sion and/or magnetic reversal, both of which have beemnsuspected feature of the torque leads us to predict a mode
widely studied experimentaffyand theoretically. Figure 1  of stable precession that does not occur for the symmetric
illustrates a common geometry known as a “spin valve,’case.
where a nonmagnetic spacer layer separates a thick “pinned” The electric current in the real, physical spin valve can be
ferromagnetic layer from a thin “free” ferromagnetic layer. written as the sum of spatially varying currents carried by up
Nonmagnetic leads connect the ferromagnets to electron reand dows spin electronsl =1,(x)+1,(x). The corresponding
ervoirs. spin current is Al(x)=1,(x)=14(x). The up and down spin

Slonczewski developed a theory of spin-transfer torque voltage (chemical potentialdrops along the spin valve are
that combines a density-matrix description of the spacew,(x) and V| (x). Slonczewskd contracted the functioi (x)
layer with a circuit theor§ description of the remainder of tg the Va|U69'f:|1(XL) andHR:'T(XR) and similarly forl (x).
the structure. He Wo_rked out the _algebra _for the case wherge also writesAVg=V,(xz) =V, (xg) for the up-down differ-
the spacer layer is thin and the spin valve is symmeitien-  ence in the voltage drop from the right reservoir to a point in
tical ferromagnets and leadsand found the torques to be  the spacer infinitesimally close to the interface between the
the same on the left and right spacer/ferromagnet interfacegpacer and the right ferromagnety, is defined similarly.
As a function of the angle between the two ferromagnets, These quantities are directly proportional to the spin accu-

hl PAZ2sing mulation atxg andx,, respectively.
Ls(60) = 26(A2+ 1) + (A= 1)cos’ 1) With this model, Slonczewski wrote dowgbut did not

In this formula,| is the total current that flows through the cpmpletely solvgall the equations neede_d fc_)r the asymmet-
ric geometry. In our notation, two of his linear equations

structure, . relate the voltage drop differences to the spin currents,
P—M_L andAz—GR (2) -1 .
IR +R) R - 0=AV, (1 +cog 0) - G 1Al sir? - 2AVg cosé,

R, and R, are effectiveresistances experienced by spin-up & &

and spin-down electrons between the reservoir and the spact = = = 3|
layer. The conductanc€&=Se&kZ/4xh, where ke is the 9 | e M-, ™ lead §
Fermi wave vector an® is the cross-sectional area of the @ 1 g TS/ 2
device’! 2 = 2

In this paper, we solve Slonczewski's equations for the .X:?o e I

general asymmetric case and derive formulas for the torques

L (#) andLg(6) on the left(x=x_) and right(x=xg) spacer/ FIG. 1. Schematic of a five-layer spin valve. A nonmagnetic
ferromagnet interfaces in Fig. 1. We then compare these fowpacer layer separates two ferromagnetic layers whose magnetiza-
mulas with numerical results for the torque obtained from aions are inclined from one another by an angleA nonmagnetic
matrix Boltzmann equatiofFrom this comparison, we are lead connects each ferromagnet to an electron reservoir.
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0=Al_(1+cog 6) - GAV, sir? 8- 2Algcosh. (3) ' ' ' ' '
0.5 - Boltzmann L] 1
Two additional equations parametrize the voltage drop dif- 3 Slonczewski
ferences in terms of effective resistanégs Ry, r, andrg: £ 04} I, i
AV, = AR +1r, g e .
§ 03¢ " 1
AVg= - AlgRr— ITg. 4 & N
. . . . . . é 02 - interface scattering only » \
Finally, Slonczewski derived expressions for the interfacial £ . :
torques. Atx=xg, the torque is £ L’ B
q R q 2 o1l p \
fi Algcosé— Al ’
e — (5) A . . . .
2e siné 0
0 30 60 90 120 150 180
The torquel, at thex=x interface is(5) with Alg and Al 9

exchanged.
It is straightforward to solve the four equatiof® and(4)
for the four unknownsAl |, Alg, AV, andAVg. From these,

FIG. 2. Spin-transfer torque atxg for a spin valve with layer
thicknesses 5 nm/40 nm/1 nm/1 nm/180 nm. Solid circles are Bolt-
zimann equation results. The solid curve is Eg). derived from

we find Lg from (5) to be Slonczewski's theory. The dashed curve is E8). with all bulk
2 ) scattering removed.
LR:%' sin 0[A+Ig+cos¢9+A—lgcose]’ ©
layer with matching conditions that reflect the complex, spin-
where and wave-vector-dependent reflection and transmission am-
plitudes of each interface. The latter are determined from a
1 AR+1 AZ-1 i i izati
Q.= =| P A2 RT >, P A2 L previously published parametrizatidh.
S R Af +1° TR Aé— 1| Electrons that enter a nonmagnetic lead from the adjacent

reservoir are assumed to have an equilibrium occupation

A= \"/(AE+ D(AZ+1), function. For our numerical wc_>rk, we have_ chosen material
and geometry parameters typical of experiments performed

e e on Cu/Co/Cu/Co/Cu spin valves. The specific numerical val-
B=V(AL-D(AR- D). ) ues used can be found in Ref. 8. With the final occupation

The parameter®,, Pg, A,, and A are defined in terms of fpnction ir_1 hand, it is straightforward.to compute the spa-
R, Rg, I\, andrg asP andA are defined in2) in terms ofR  tially varying voltage, spin accumulation, spin current, and
andr. For the symmetric casey, =Ag=A and P_=Pg=P. spln-transfer torque. De.talls will be publl_shed elsewHhére.
This makesy_=0 and(6) reduces to Slonczewski's formula The filled c_|rcles in Fig. 2 show a typical Bol_tzmann re-
(1) with Lg=L, =Ls. We will see later that the term propor- sult for the spin-transfer torque &txg as a function of the _
tional to g in (6) can affect the magnetization dynamics of angle 6 between the two ferromagnets for an asymmetric
the spin valve in a qualitative way. geometry. The solid curve in Fig. 2 is _the same quantity,
To test (6), we computed the torque on each spacer/'—R(e), computed fron(6). The agreement is excellent, as it is
ferromaget interface using a Boltzmann equation formaﬁsm_for essentially all other geometries we have studied with thin
The two ferromagnetic moments in Fig. 1 are not collinearspacer layers. For comparison, the dashed curve is the Slon-
so there is no natural spin quantization axis in the space§zewski torque(6) with the bulk scattering removed. This
layer. Therefore, we expand the deviation of the semiclassiinterface-only” situation is manifestly symmetrig_=0).
cal electron occupation function from its equilibrium value  For the solid curve plotted in Fig. 2, the relative impor-
in a basis of Pauli spin matrices, tance of the two terms i6) is g_/q,=0.27. We find that
10 01 0 —i this ratio does not exceed about 0.5 for physically sensible
_ - geometries. We will address the qualitative consequences of
gtk = go(k,r)<0 1) " gX(k’r)(l 0) ¥ gy(k,r)(i 0 ) g- # 0 at the end. First, we describe our method to determine
1 0 the torque parametersg, A, Pg, andP, that produced the
+gz(k,r)( ) (8) solid curve in Fig. 2. We begin by writing an exact expres-
0 -1 sion for the voltage drop differenc&V, in (4),

In the spacer layer, each gf, g,, 9,, andg, satisfies a linear X,
Boltzmann equation that takes account of the driving current AV, = f dX1 (x)p (%) = 1;(X)p;(X)]. 9

and of resistive and spin-flip scattering in each material -%

layer. In each ferromagnet and in the adjacent lead, it ighe average resistivityused below is p=(p;+p|)/2. We
sufficient to usey, andg, referenced to the fixed direction of Wwill also need the resistivity differenakp=(p, —p;)/2. Both
magnetization in each. We assume a spherical Fermi surfage and Ap contain delta functions at the four nonmagnet/
for each material. We adopt a one-dimensional approximaferromagnet interfaces to take account of spin-dependent in-
tion g(k,r)=g(k,x) and stitch together the solutions in each terface scattering.
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To make progress, we use a drift-diffusion reSuto the
effect that close to the outerx, interface(Fig. 1), I,(x) and
I,(x) approach the corresponding bulk values exponentiall
in both directions. The decay length is the spin-flip length in
each material, whether ferromagiriE} or nonmagnetN). In
that case, an approximate expression(8ris

AV, = Algpy di + Algpe d=+ 1App dE+ AV, +AVe.  (10)

In Eq. (10), Alg=Al(xg), AV, and AV, are voltage drops at
the internal interfaces and at the reservoir contact, and

dr =11 - exp- /151,

<

spin transfer torque + damping torque
S

.
o
n

0
==Y
T

z
a2}

180
dy =181 — exp— ty/15)]. (11) -—
The effective lengthg11) appear because, due to spin-flip 150 1
scattering, only electrons withidgz or dy of the ferromag-
. . . . . . "}
netic interfaces can accommodate the dissimilar spin-g 120
currents characteristic of the ferromagnets and the nonmag

nets in equilibrium. z N7 1
The relationship betweeal, and Al, is nontrivial® ex- =
cept when the ferromagnet is very thi <I%). In that case, & 60| 1
s 30 ¢ 1
—_—
] 0 |

N
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FIG. 5. Left: Spin-transfer torque and damping torque for a 1
nm/40 nm/1 nm/1000 nm spin valv@_./g,=0.36. Middle: the
total torque as the current increases. Right: the angle between two
ferromagnetic moments as a function of currkint arbitary units.

40

Alg=Al_, and we can conne¢i0) to (4) and(6) to get
A?=G(py dy +pr tr+ R+ Ro),

t, (nm) PL=GA? (Apg tE+AR). (12

FIG. 4. Torque parametek? as a function ofty for different ~ These two formulagand similar ones forAg and Pg), to-
values ofi5,. In all cases|§=2=. The curve fon5>t corresponds to ~ gether with(6) and(7) are the principal results of this paper.
Aoty We used(12) to compute the solid curve in Fig. 2. The in-
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terface resistanc&R =~0.97 and contact resistand@R:  etry can be seen from the difference between the dashed
~1.1 were extracted from the Boltzmann soluti@R, dif- curve and the solid curve in Fig. 2. The former has a bump
fers from the experimental value by about 15%. (maximun) in the interval@/2 <6< only. The latter has a

The parametrizatior®) is well suited to study the behav- small additional bump in the interval00< /2 that comes
ior of L(#) when we vary the geometry of the magnetic het-from theq. term2® This small change is enough to produce
erostructure and the material parameters in our Boltzmanstable magnetization precession for some asymmetric geom-
calculations. Related calculations of the angular dependencgries.
of the torque for asymmetric geometries have been per- Consider a spin valve in the presence of an external mag-
formed by Manschoet al** For simplicity, we focus on petjc field aligned with the magnetization of the thick ferro-
symmgz'grlc geometries in what f0||0W§- Figure 3 confirmsmagnet. If we ignore shape anisotropy and lattice anisotropy,
that A% is a linear function ofty whenlg>ty but saturates  the total torque acting on the thin ferromagnetic film when
when ty ~Ig. Iﬂtergstmg!y, the saturated value &f varies  gjectrons flow from right to left in Fig. 1 is the sum of the
linearly with Isf—NI (IN is the inelastic scattering length spin-transfer torqueLy(6) and a Gilbert damping torque

H sin @ (left panel of Fig. 5. As the current increases, the

rather than with & as predicted by11). For long leads, this
pin-transfer torque increases and eventually destablizes an

can be understood from the fact that conventional resistiv
scattering is needed to build up nonequilibrium spin accumug,isia) state with parallel moments. Stable precession occurs
at angles where the total torque changes from positive to

lation in the nonmagnet while spin-flip scattering works to
return the nonmagnet to equilibrium. negative(middle panel of Fig.  When the total torque be-
comes everywhere positive, the system abruptly switches to

Figure 4 shows the variation of? with lead length for
different values of the spin-flip length in the ferromagnet.the anti-parallel configuratiofright panel of Fig. 5. There is
no regime of stable precession if the zero-current state is

This calculation putsls’f'fﬂoo, so we expect from(11) that
antiparallelt’

A?octy. This is indeed the case whél>t™. However, when

the lgf is comparable(or less than the ferromagnetic layer In summary, we have shown that Slonczewski's theory of

thickness, t'he torque parameter saturates. This is a SiQ”?' th;aﬁin—transfer torque in spin valves can reproduce the results
our approximatiomlo=Al,_has broken down. In this limit, ¢t goj;mann equation calculations when the nonmagnetic
fast spin-flipping in the ferromagnet reduckt, to a value  gnacer jayer is thin, When the ferromagnetic layers are also

much less thanll,. When that is the case, relatively little hin the parameters of the theory can be calculated from first
spin-flip volume in the nonmagnet is needed to reduce th'forinciples.

spin current in the nonmagnet to z€its equilibrium valug.
A characteristic difference betweég(6) in (1) for a sym- One of us(J.X.) acknowledges support from the National
metric geometry and.g(6) in (6) for an asymmetric geom- Science Foundation under Grant No. DMR-9820230.
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