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We use a matrix Boltzmann equation formalism to test the accuracy of Slonczewski’s theory of spin-transfer
torque in thin-film heterostructures where a nonmagnetic spacer layer separates two noncollinear ferromagnetic
layers connected to nonmagnetic leads. When applicable, the model predictions for the torque as a function of
the angle between the two ferromagnets agree extremely well with the torques computed from a Boltzmann
equation calculation. We focus on asymmetric structures(where the two ferromagnets and two leads are not
identical) where the agreement pertains to an analytic formula for the torque derived by us using Slonczewski’s
theory. In almost all cases, we can predict the correct value of the model parameters directly from the
geometric and transport properties of the multilayer. For some asymmetric geometries, we predict a mode of
stable precession that does not occur for the symmetric case studied by Slonczewski.
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In 1996, Slonczewski1 and Berger2 predicted that an elec-
tric current flowing through a magnetic multilayer can exert
a spin-transfer torque on the magnetic moments of the het-
erostructure. This torque can produce stable magnetic preces-
sion and/or magnetic reversal, both of which have been
widely studied experimentally3 and theoretically.4 Figure 1
illustrates a common geometry known as a “spin valve,”
where a nonmagnetic spacer layer separates a thick “pinned”
ferromagnetic layer from a thin “free” ferromagnetic layer.
Nonmagnetic leads connect the ferromagnets to electron res-
ervoirs.

Slonczewski5 developed a theory of spin-transfer torque
that combines a density-matrix description of the spacer
layer with a circuit theory6 description of the remainder of
the structure. He worked out the algebra for the case where
the spacer layer is thin and the spin valve is symmetric(iden-
tical ferromagnets and leads), and found the torqueLS to be
the same on the left and right spacer/ferromagnet interfaces.
As a function of the angle between the two ferromagnets,

LSsud =
qI

2e

PL2 sinu

sL2 + 1d + sL2 − 1dcosu
. s1d

In this formula,I is the total current that flows through the
structure,

P =
1
2sR↓ − R↑d
1
2sR↓ + R↑d

=
r

R
andL2 = GR. s2d

R↑ and R↓ are effectiveresistances experienced by spin-up
and spin-down electrons between the reservoir and the spacer
layer. The conductanceG=Se2kF

2 /4p2", where kF is the
Fermi wave vector andS is the cross-sectional area of the
device.7

In this paper, we solve Slonczewski’s equations for the
general asymmetric case and derive formulas for the torques
LLsud andLRsud on the leftsx=xLd and rightsx=xRd spacer/
ferromagnet interfaces in Fig. 1. We then compare these for-
mulas with numerical results for the torque obtained from a
matrix Boltzmann equation.8 From this comparison, we are

able to identify the physical origin and systematic behavior
of the effective resistancesR↑ and R↓ in the interplay be-
tween resistive scattering, spin-flip scattering, and interface
scattering. For some asymmetric geometries, a previously
unsuspected feature of the torque leads us to predict a mode
of stable precession that does not occur for the symmetric
case.

The electric current in the real, physical spin valve can be
written as the sum of spatially varying currents carried by up
and down9 spin electrons:I = I↑sxd+ I↓sxd. The corresponding
spin current10 is DIsxd= I↓sxd− I↑sxd. The up and down spin
voltage (chemical potential) drops along the spin valve are
V↑sxd and V↓sxd. Slonczewski5 contracted the functionI↑sxd
to the valuesI↑

L= I↑sxLd andI↑
R= I↑sxRd and similarly forI↓sxd.

He also writesDVR=V↑sxRd−V↓sxRd for the up-down differ-
ence in the voltage drop from the right reservoir to a point in
the spacer infinitesimally close to the interface between the
spacer and the right ferromagnet.DVL is defined similarly.
These quantities are directly proportional to the spin accu-
mulation atxR andxL, respectively.

With this model, Slonczewski wrote down(but did not
completely solve) all the equations needed for the asymmet-
ric geometry. In our notation, two of his linear equations
relate the voltage drop differences to the spin currents,

0 = DVLs1 + cos2 ud − G−1DIL sin2 u − 2DVR cosu,

FIG. 1. Schematic of a five-layer spin valve. A nonmagnetic
spacer layer separates two ferromagnetic layers whose magnetiza-
tions are inclined from one another by an angleu. A nonmagnetic
lead connects each ferromagnet to an electron reservoir.
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0 = DILs1 + cos2 ud − GDVL sin2 u − 2DIR cosu. s3d

Two additional equations parametrize the voltage drop dif-
ferences in terms of effective resistancesRL, RR, rL, andrR:

DVL = DILRL + Ir L,

DVR = − DIRRR − Ir R. s4d

Finally, Slonczewski derived expressions for the interfacial
torques. Atx=xR, the torque is

LR =
"

2e

DIR cosu − DIL

sinu
. s5d

The torqueLL at thex=xL interface is(5) with DIR andDIL
exchanged.

It is straightforward to solve the four equations(3) and(4)
for the four unknowns,DIL, DIR, DVL, andDVR. From these,
we find LR from (5) to be

LR =
"

2e
I sinuF q+

A + B cosu
+

q−

A − B cosu
G , s6d

where

q± =
1

2
FPLLL

2ÎLR
2 + 1

LL
2 + 1

± PRLR
2ÎLL

2 − 1

LR
2 − 1

G ,

A = ÎsLL
2 + 1dsLR

2 + 1d,

B = ÎsLL
2 − 1dsLR

2 − 1d. s7d

The parametersPL, PR, LL, andLR are defined in terms of
RL, RR, rL, andrR asP andL are defined in(2) in terms ofR
and r. For the symmetric case,LL=LR=L and PL=PR=P.
This makesq−=0 and(6) reduces to Slonczewski’s formula
(1) with LR=LL=LS. We will see later that the term propor-
tional to q− in (6) can affect the magnetization dynamics of
the spin valve in a qualitative way.

To test (6), we computed the torque on each spacer/
ferromaget interface using a Boltzmann equation formalism.8

The two ferromagnetic moments in Fig. 1 are not collinear,
so there is no natural spin quantization axis in the spacer
layer. Therefore, we expand the deviation of the semiclassi-
cal electron occupation function from its equilibrium value
in a basis of Pauli spin matrices,

gsk,r d = g0sk,r dS1 0

0 1
D + gxsk,r dS0 1

1 0
D + gysk,r dS0 − i

i 0
D

+ gzsk,r dS1 0

0 − 1
D . s8d

In the spacer layer, each ofg0, gx, gy, andgz satisfies a linear
Boltzmann equation that takes account of the driving current
and of resistive and spin-flip scattering in each material
layer. In each ferromagnet and in the adjacent lead, it is
sufficient to useg0 andgz referenced to the fixed direction of
magnetization in each. We assume a spherical Fermi surface
for each material. We adopt a one-dimensional approxima-
tion gsk ,r d=gsk ,xd and stitch together the solutions in each

layer with matching conditions that reflect the complex, spin-
and wave-vector-dependent reflection and transmission am-
plitudes of each interface. The latter are determined from a
previously published parametrization.11

Electrons that enter a nonmagnetic lead from the adjacent
reservoir are assumed to have an equilibrium occupation
function. For our numerical work, we have chosen material
and geometry parameters typical of experiments performed
on Cu/Co/Cu/Co/Cu spin valves. The specific numerical val-
ues used can be found in Ref. 8. With the final occupation
function in hand, it is straightforward to compute the spa-
tially varying voltage, spin accumulation, spin current, and
spin-transfer torque. Details will be published elsewhere.12

The filled circles in Fig. 2 show a typical Boltzmann re-
sult for the spin-transfer torque atx=xR as a function of the
angle u between the two ferromagnets for an asymmetric
geometry. The solid curve in Fig. 2 is the same quantity,
LRsud, computed from(6). The agreement is excellent, as it is
for essentially all other geometries we have studied with thin
spacer layers. For comparison, the dashed curve is the Slon-
czewski torque(6) with the bulk scattering removed. This
“interface-only” situation is manifestly symmetricsq−=0d.

For the solid curve plotted in Fig. 2, the relative impor-
tance of the two terms in(6) is q−/q+.0.27. We find that
this ratio does not exceed about 0.5 for physically sensible
geometries. We will address the qualitative consequences of
q−Þ0 at the end. First, we describe our method to determine
the torque parametersLR, LL, PR, andPL that produced the
solid curve in Fig. 2. We begin by writing an exact expres-
sion for the voltage drop differenceDVL in (4),

DVL =E
−`

xL

dxfI↓sxdr↓sxd − I↑sxdr↑sxdg. s9d

The average resistivity(used below) is r=sr↑+r↓d /2. We
will also need the resistivity differenceDr=sr↓−r↑d /2. Both
r and Dr contain delta functions at the four nonmagnet/
ferromagnet interfaces to take account of spin-dependent in-
terface scattering.

FIG. 2. Spin-transfer torque atx=xR for a spin valve with layer
thicknesses 5 nm/40 nm/1 nm/1 nm/180 nm. Solid circles are Bolt-
zimann equation results. The solid curve is Eq.(6) derived from
Slonczewski’s theory. The dashed curve is Eq.(6) with all bulk
scattering removed.
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To make progress, we use a drift-diffusion result13 to the
effect that close to the outerx=x0 interface(Fig. 1), I↑sxd and
I↓sxd approach the corresponding bulk values exponentially
in both directions. The decay length is the spin-flip length in
each material, whether ferromagnetsFd or nonmagnetsNd. In
that case, an approximate expression for(9) is

DVL = DI0rN dN
L + DI0rF dF

L + IDrF dF
L + DVI + DVC. s10d

In Eq. (10), DI0=DIsx0d, DVI and DVC are voltage drops at
the internal interfaces and at the reservoir contact, and

dF
L = lsf

Ff1 − exps− tF
L/lsf

Fdg,

dN
L = lsf

Nf1 − exps− tN
L /lsf

Ndg. s11d

The effective lengths(11) appear because, due to spin-flip
scattering, only electrons withindF or dN of the ferromag-
netic interfaces can accommodate the dissimilar spin-
currents characteristic of the ferromagnets and the nonmag-
nets in equilibrium.

The relationship betweenDI0 and DIL is nontrivial13 ex-
cept when the ferromagnet is very thinstF

L ! lsf
Fd. In that case,

DI0.DIL, and we can connect(10) to (4) and (6) to get

LL
2 = GsrN dN

L + rF tF
L + RI + RCd,

PL = GLL
−2 sDrF tF

L + DRId. s12d

These two formulas(and similar ones forLR and PR), to-
gether with(6) and(7) are the principal results of this paper.
We used(12) to compute the solid curve in Fig. 2. The in-

FIG. 3. Torque parameterL2 as a function oftN for large and
small values oflsf

N.

FIG. 4. Torque parameterL2 as a function oftN for different
values oflsf

F. In all cases,lsf
N=`. The curve forlsf

F @ tF corresponds to
L2~ tN.

FIG. 5. Left: Spin-transfer torque and damping torque for a 1
nm/40 nm/1 nm/1000 nm spin valvesq−/q+<0.36d. Middle: the
total torque as the current increases. Right: the angle between two
ferromagnetic moments as a function of currentI in arbitary units.
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terface resistanceGRI <0.97 and contact resistanceGRC
<1.1 were extracted from the Boltzmann solution.GRI dif-
fers from the experimental value by about 15%.14

The parametrization(6) is well suited to study the behav-
ior of Lsud when we vary the geometry of the magnetic het-
erostructure and the material parameters in our Boltzmann
calculations. Related calculations of the angular dependence
of the torque for asymmetric geometries have been per-
formed by Manschotet al.15 For simplicity, we focus on
symmetric geometries in what follows. Figure 3 confirms
that L2 is a linear function oftN when lsf

N@ tN but saturates
when tN, lsf

N. Interestingly, the saturated value ofL2 varies
linearly with lsf

N− lN (lN is the inelastic scattering length)
rather than withlsf

N as predicted by(11). For long leads, this
can be understood from the fact that conventional resistive
scattering is needed to build up nonequilibrium spin accumu-
lation in the nonmagnet while spin-flip scattering works to
return the nonmagnet to equilibrium.

Figure 4 shows the variation ofL2 with lead length for
different values of the spin-flip length in the ferromagnet.
This calculation putslsf

N→`, so we expect from(11) that
L2~ tN. This is indeed the case whenlsf

F @ tF. However, when
the lsf

F is comparable(or less than) the ferromagnetic layer
thickness, the torque parameter saturates. This is a signal that
our approximationDI0.DIL has broken down. In this limit,
fast spin-flipping in the ferromagnet reducesDI0 to a value
much less thanDIL. When that is the case, relatively little
spin-flip volume in the nonmagnet is needed to reduce the
spin current in the nonmagnet to zero(its equilibrium value).

A characteristic difference betweenLSsud in (1) for a sym-
metric geometry andLRsud in (6) for an asymmetric geom-

etry can be seen from the difference between the dashed
curve and the solid curve in Fig. 2. The former has a bump
(maximum) in the intervalp /2,u,p only. The latter has a
small additional bump in the interval 0,u,p /2 that comes
from theq− term.16 This small change is enough to produce
stable magnetization precession for some asymmetric geom-
etries.

Consider a spin valve in the presence of an external mag-
netic field aligned with the magnetization of the thick ferro-
magnet. If we ignore shape anisotropy and lattice anisotropy,
the total torque acting on the thin ferromagnetic film when
electrons flow from right to left in Fig. 1 is the sum of the
spin-transfer torqueLRsud and a Gilbert damping torque
gH sinu (left panel of Fig. 5). As the current increases, the
spin-transfer torque increases and eventually destablizes an
initial state with parallel moments. Stable precession occurs
at angles where the total torque changes from positive to
negative(middle panel of Fig. 5). When the total torque be-
comes everywhere positive, the system abruptly switches to
the anti-parallel configuration(right panel of Fig. 5). There is
no regime of stable precession if the zero-current state is
antiparallel.17

In summary, we have shown that Slonczewski’s theory of
spin-transfer torque in spin valves can reproduce the results
of Boltzmann equation calculations when the nonmagnetic
spacer layer is thin. When the ferromagnetic layers are also
thin, the parameters of the theory can be calculated from first
principles.
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