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Recently, an effective field method has been proposed, which provides a direct derivation of the Gilbert
damping term in the magnetization equation[Phys. Rev. Lett.92, 097601(2004)]. In this approach, the
radiation-spin interaction(RSI) was introduced into the spin Hamiltonian. In this paper, it is shown that the
damping term of the magnetization equation is also derived from the Lewis-Riesenfeld method when it is
combined with the RSI description. This result provides an evidence supporting the RSI description for the
magnetization relaxation.
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I. INTRODUCTION

Recently, studies of magnetization dynamics in small
magnetic elements have attracted much attention of physics
and related research communities. Such attention involves
industrial concerns as well as theoretical interests. This is
because it is anticipated that the future big progress in the
magnetic information technology requires a deep and funda-
mental understanding of the collective behavior of spins on a
short time scale, typically less than a nanosecond. At present,
micromagnetic studies using Landau-Lifshitz-Gilbert(LLG)
equation provide plausible descriptions to many experimen-
tal results, and, therefore, it is considered to be a reasonable
route to achieve necessary understanding.

The LLG equation describes the dynamics of the magne-
tization M given by

dM

dt
= − gM 3 Heff + aM 3

dM

dt
, s1d

whereg anda are the absolute value of gyromagnetic ratio
and the Gilbert damping parameter, respectively.1 M is the
magnitude of the magnetization vectorM and the effective
magnetic fieldHeff is defined by the energy variational with
magnetizationHeff=−dF /dM , whereF is the free energy of
the system. The physical description for the first term on the
right-hand side of Eq.(1) is given by the Zeeman effect, or,
in a classical language, magnetization precessional motion
with respect toHeff. It is the second term of Eq.(1), the
Gilbert damping term, which raises many interesting issues
in the study of the magnetization dynamics.

In general, the Gilbert damping term has not been ob-
tained via a direct method of derivation from first principles,
but has been introduced phenomenologically. One of the
main difficulties in deriving the damping term is that various
kinds of relaxation processes are melded together into a
single damping term. Even though many analytical micro-
scopic descriptions for the magnetization relaxation process
have been successfully verified, a full version of derivation
for the Gilbert damping term would be an indispensable el-

ement to achieving a thorough understanding of the magne-
tization dynamics.

Recently, we have proposed an effective field method to
provide a direct derivation for the Gilbert damping term.2

This proposal is a synthetic scheme in the sense that contri-
butions to the magnetization relaxation areeffectivelyrepre-
sented by the radiation-spin interaction(RSI). In other
words, rendering all the degrees of freedom coupled to the
magnetization into the effective fieldHeff without consider-
ing individual effect to the magnetization dynamics, we have
introduced a dynamical effect toeffectively represent the
nonmagnetic degrees of freedom contributing to the magne-
tization relaxation. In Ref. 2, the dynamical effect was de-
rived from the structural analogy of the radiation damping in
the classical electrodynamics, and according to this analogy,
the dynamical effect has been termed as the radiation-spin
interaction. This approach allows us to concentrate on the
phenomenological description of magnetization relaxation
processes. Similar concepts for representing the magnetiza-
tion relaxation can be found in Ref. 3.

Of course, the RSI description can be directly used for
studying the effect of thereal radiation-spin interaction in
the magnetization relaxation process.4,5 In that case, one has
to distinguish the damping parameter caused by the
radiation-spin interactionaRSI from that contributed by other
degrees of freedomaother. Then, the relation between the
damping parameter and the radiation parameterl used in
Ref. 2 must be changed byaRSI=l / s1−latotM

2d, where
atot;aRSI+aother and we redefinedlJl in Ref. 2 with l.

In this paper, we present another evidence supporting the
RSI description for the magnetization relaxation given in
Ref. 2. Our newly introducing mechanism is the dynamical
invariant method proposed by Lewis and Riesenfeld.6 We
will show that the Lewis-Riesenfeld(LR) method combined
with the RSI description produces the damping term of the
magnetization equation. In the research on the spin dynam-
ics, the LR dynamical invariant method has been used for the
nonadiabatic generalization of the Berry phase.7,8

This report is organized as following. In Sec. II, the LR
dynamical invariant theory and its application to a simple
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spin system is briefly reviewed. Based on this review, we
propose an ansatz for the dynamical invariant for the spin
system, which is represented by ordinary magnetic quanti-
ties, i.e., magnetization and magnetic moment operator. In
Sec. III, using the proposed ansatz and the LR method com-
bined with the RSI description, we obtain the magnetization
equation including the damping term from the Liouville–von
Neumann equation. Comments and discussions are presented
in Sec. IV.

II. LR DYNAMICAL INVARIANT

Many physically interesting quantum systems exhibit
nonequilibrium characteristics, and their Hamiltonians are
explicitly time dependent. For solving quantum mechanical
problems of time-dependent quantum systems, various meth-
ods for nonequilibrium dynamics have been proposed, such
as the Schwinger-Keldysh closed-time path method.9 There
is another relatively simple but powerful canonical method
suggested by Lewis and Riesenfeld.6 They constructed ex-
plicitly time-dependent dynamical invariants whose eigen-
states are used for evaluating the exact quantum states that
are solutions of the Schrödinger equation. The dynamical
invariant Istd is required to satisfy the Liouville–von Neu-
mann(LvN) equation

] Istd
] t

+
1

i"
fIstd,Hstdg = 0, s2d

where Hstd is the time-dependent Hamiltonian. From this
LvN equation, the classical equation governing the dynamics
of the spin system is obtained. Especially, the LR method is
applied for the nonadiabatic generalization of the Berry
phase. In Ref. 8, it has been shown that the LR method can
be used even for noncyclic evolutions. In this article, we are
interested in the classical equation obtained with LvN
method, not the geometrical phase.

Consider the spin Hamiltonian given by

H0 = gmBo
i

Ŝi ·Heff, s3d

whereg is the Landég factor,mB is the absolute value of the

Bohr magneton, andŜi is the spin operator. The subscript “0”
indicates that the corresponding term does not include the
RSI effect. The effective fieldHeff includes the exchange
field, the anisotropy field, and the demagnetizing field, as
well as the external field.

Following Ref. 7, we take the ansatz of the dynamical
invariant given by

I0 = o
i

Rstd · Ŝi , s4d

whereR is a parameter vector. Then, the LvN equation be-
comes

o
i

Ŝi ·SdRstd
dt

+ gmBRstd 3 HeffD = 0 s5d

and we obtain a classical equation for the parameter vector
given by

dRstd
dt

= − gRstd 3 Heff, s6d

where we have usedg;gmB and the commutation relation
fSi

a,S j
bg= i"eabcdi jSi

c. The equation for the parameter vector
given by Eq.(6) explicitly describes the vector precessing
with respect to the fieldHeff with the Larmor frequencyv
=gHeff. Thus, without loss of generality, we can identify the
parameter vectorR with the magnetization vectorM 0 (up to
a dimensional constant factor).

On the other hand, the magnetization is defined by

M 0 ;
1

V
Tr hrM̂0j, s7d

wherer is the density operator,V is the volume of the sys-

tem, andM̂0 is the magnetic moment operator(MMO) de-
fined by

M̂0 ;
dH0

dHext
, s8d

where Hext is the external field. It is to be noted that the
density operator is not given by exph−bH0j but is given by
exph−bI0j.10 From Eqs.(3) and (8), we obtain

M̂0 = gmBo
i

Ŝi . s9d

Then, according to the above argument, the ansatz of the
dynamical invariant given by Eq.(4) can be written as

I0 = cM 0 ·M̂0, s10d

wherec is a dimensional constant. Note that this expression
for the dynamical invariant consists of the magnetization and
the MMO, i.e., magnetic quantities. In the next section, we
show that the new form of the dynamical invariant given by
Eq. (10) leads to a reasonable generalization containing the
RSI effect.

III. DYNAMICAL INVARIANT, RSI, AND DAMPING

The effective Hamiltonian including the RSI effect is
given by

H = gmBo
i

Ŝifs1 − laM2dHeff + lM 3 Heffg, s11d

where the dynamical parameterl, which was termed as the
radiation parameter, carries the RSI effect.2 Here, in the
Hamiltonian, only the dissipative part of the radiation field
has been included, and the remaining part, i.e., nondissipa-
tive part, has been assumed to be parallel to the magnetiza-
tion vectorM . Then, the nondissipative part does vanish in
the procedure obtaining the magnetization equation. Thus,
we omit the nondissipative part in the Hamiltonian. The
MMO modified by the dynamical effect is given by

M̂ = gmBo
i

fs1 − laM2dŜi + lŜi 3 M g s12d

and the magnetization vector becomes
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M =
gmB

V
o

i

Trhrfs1 − laM2dŜi + lŜi 3 M gj. s13d

After some algebraic calculations, we find thatM is parallel
to M 0, and the second term of Eq.(13) vanishes. Thus, the
magnitude of magnetization vector satisfies the relation
given by

M = s1 − laM2dM0. s14d

The LLG Eq.(1), then, can be obtained by differentiating
Eq. (13) with respect to time

dM

dt
= +

gmB

i"V
o

i

Trhrfs1 − laM2dŜi + lŜi 3 M ,Hgj

+
l

1 − laM2M 3
dM

dt
= − gM 3 Heff + aM 3

dM

dt
,

s15d

where we use Eq.(14) and the relation

a =
l

1 − laM2 . s16d

Note that the time derivative in Eq.(15) has to be performed
before the trace operation.

Now, we address an alternative method to obtain the mag-
netization equation including the damping term. First of all,
we take the ansatz of the dynamical invariant given by Eq.
(10)

Istd = cM ·M̂ = cgmBs1 − laM2dM ·o
i

Ŝi . s17d

The dynamical invariant(17) receives the RSI effect as the
factor of s1−laM2d2 [see Eq.(14)]. According to the LR
method, then, we require that the dynamical invariant satis-
fies the LvN equation

o
i

Ŝi ·SdM

dt
+ gmBM 3 fs1 − laM2dHeff + lM 3 HeffgD = 0.

s18d

Then, using the relation(16), we obtain the magnetization
equation given by

dM

dt
= −

g

1 + a2M2M 3 Heff −
ga

1 + a2M2M 3 sM 3 Heffd.

s19d

It is well known that Eq.(1) is obtained from Eq.(19), or
vice versa, usingM ·dM /dt=0. Note that the second term of
MMO Eq. (12), which played the central role in the deriva-
tion of the Gilbert damping term in Eq.(15), simply vanishes
in the expression for the dynamical invariant given by Eq.
(17). Instead, the damping term in Eq.(19) is derived from
the RSI terms of the spin Hamiltonian as shown in Eq.(18).
The factors1−laM2d also plays a critical role in the deriva-
tion.

IV. DISCUSSIONS

It has been shown that the LR dynamical invariant
method including the RSI effect produces the damping term
in the magnetization equation. This observation supports the
RSI proposal for describing the magnetization relaxation. Es-
pecially, since the LR method was originally designed for the
nonequilibrium evolution of time-dependent quantum sys-
tems, and the RSI description introduces nonlinearity into the
spin Hamiltonian, their combination seems to be appropriate.

The relation of M ·dM /dt=0, or equivalently
M 'dM /dt, which is obtained from Eq.(1) or (19), has the
same range of validity that is given by the approximation
that the magnitude of magnetization vector is a constant and
does not vary in time. This is just an alternative argument
about the fact that Eqs.(1) and (19) describe the coherent
magnetization dynamics, and we need to generalize the mag-
netization equations for the incoherent magnetization dy-
namics. In fact, the ansatz given by Eq.(17) is prepared for
the coherent magnetization dynamics. It appears that a gen-
eralized expression for the dynamical invariant of the spin
system would be required to describe the incoherent magne-
tization dynamics.

The RSI description proposed in Ref. 2 is not designed for
a fundamental quantum analysis of the magnetization relax-
ation process, but for providing an effective picture of the
magnetization relaxation. So, in order to get a fundamental
understanding of the physical parameters of the magnetiza-
tion dynamics, one has to return to the microscopic studies of
that. However, for the purpose of phenomenological descrip-
tion of the magnetization dynamics, the RSI description pro-
vides a compact tool eliminating complicated elements in the
magnetization dynamics so that one can concentrate on the
phenomenological magnetization dynamics. Such an advan-
tage of the RSI description lies with the fact that the RSI
effect is not included at the equation of motion level, but at
the Hamiltonian level, would lead to an economical way to
study generalization of the LLG equation for highly nonlin-
ear magnetization dynamics.

As mentioned in the Introduction, the RSI description can
be also used for thereal radiation-spin interaction after slight
modification from the original proposition given in Ref. 2.
However, in general,aRSI is too small to make a reasonable
detection in the experiment. As an example, in the case of a
ferromagnetic film with thickness ofd=4310−7cm, it is of
the order of 10−6.5 It is well known that the magnetization
damping can be remarkably enhanced by applying a spin-
polarized current to a spin valve system.11 So, it would be
interesting to study the radiation-spin interaction effect to the
magnetization dynamics in the situation. Moreover, in that
case, the task to calculate the damping constantaRSI from the
microscopic study4,12 would be also desirable.

Related to the above issue, an important observation has
been reported in Ref. 5; in order to obtain the Gilbert form of
the magnetization damping, a nonzero conduction current
Jstd=sEstd is essential, wheres is the conductivity andEstd
is the electric field. This argument also makes sense even in
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the case that the RSI is used as an effective description for
the magnetization relaxation discussed in Ref. 2. This is be-
cause the effective description follows the structural analogy
of the radiation damping in the classical electrodynamics,
and the radiation field can be derived from the Maxwell
equation as shown in Ref. 5. Thus, it seems to be quite in-
teresting to study the phenomenological prescription corre-

sponding to the Ohm’s law in the real radiation-spin interac-
tion procedure in the magnetization dynamics.
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