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Recently, an effective field method has been proposed, which provides a direct derivation of the Gilbert
damping term in the magnetization equatifithys. Rev. Lett.92, 097601(2004]. In this approach, the
radiation-spin interactioiRSI) was introduced into the spin Hamiltonian. In this paper, it is shown that the
damping term of the magnetization equation is also derived from the Lewis-Riesenfeld method when it is
combined with the RSI description. This result provides an evidence supporting the RSI description for the
magnetization relaxation.
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[. INTRODUCTION ement to achieving a thorough understanding of the magne-
tization dynamics.

Recently, studies of magnetization dynamics in small  Recently, we have proposed an effective field method to
magnetic elements have attracted much attention of physiggoyide a direct derivation for the Gilbert damping tefm.

and related research communities. Such attention involveshis proposal is a synthetic scheme in the sense that contri-
industrial concerns as well as theoretical interests. This igytions to the magnetization relaxation @féectivelyrepre-
because |t iS anticipated that the future b|g progreSS in thgented by the radiation_spin interactic(RSD. In Other
magnetic information technology requires a deep and fundaords, rendering all the degrees of freedom coupled to the
mental understanding of the collective behavior of spins on #nagnetization into the effective field ¢ without consider-
short time scale, typically less than a nanosecond. At presenhg individual effect to the magnetization dynamics, we have
micromagnetic studies using Landau-Lifshitz-Gilb@rtG)  jntroduced a dynamical effect teffectively represent the
equation provide plausible descriptions to many experimennonmagnetic degrees of freedom contributing to the magne-
tal results, and, therefore, it is considered to be a reasonabjgation relaxation. In Ref. 2, the dynamical effect was de-

route to achieve necessary understanding. rived from the structural analogy of the radiation damping in
The LLG equation describes the dynamics of the magnethe classical electrodynamics, and according to this analogy,
tizationM given by the dynamical effect has been termed as the radiation-spin
interaction. This approach allows us to concentrate on the

am dm 1) phenomenological description of magnetization relaxation

T M X Hog+ aM X 2
a7 off T & at

processes. Similar concepts for representing the magnetiza-
tion relaxation can be found in Ref. 3.
wherey and a are the absolute value of gyromagnetic ratio  Of course, the RSI description can be directly used for
and the Gilbert damping parameter, respectively.is the  studying the effect of theeal radiation-spin interaction in
magnitude of the magnetization vectidr and the effective the magnetization relaxation procéssin that case, one has
magnetic fieldH is defined by the energy variational with to distinguish the damping parameter caused by the
magnetizatiorH +=—6F/ M, whereF is the free energy of radiation-spin interactioagg, from that contributed by other
the system. The physical description for the first term on thalegrees of freedonawyye. Then, the relation between the
right-hand side of Eqcl) is given by the Zeeman effect, or, damping parameter and the radiation paramatersed in
in a classical language, magnetization precessional motioRef. 2 must be changed bygs=\/(1-\a;,M?), where
with respect toH. It is the second term of Eql), the  aoi= arsi* aomer and we redefinedJ, in Ref. 2 with \.
Gilbert damping term, which raises many interesting issues In this paper, we present another evidence supporting the
in the study of the magnetization dynamics. RSI description for the magnetization relaxation given in
In general, the Gilbert damping term has not been obRef. 2. Our newly introducing mechanism is the dynamical
tained via a direct method of derivation from first principles, invariant method proposed by Lewis and Riesenfeltle
but has been introduced phenomenologically. One of thevill show that the Lewis-RiesenfeldLR) method combined
main difficulties in deriving the damping term is that various with the RSI description produces the damping term of the
kinds of relaxation processes are melded together into enagnetization equation. In the research on the spin dynam-
single damping term. Even though many analytical micro-ics, the LR dynamical invariant method has been used for the
scopic descriptions for the magnetization relaxation processonadiabatic generalization of the Berry phé8e.
have been successfully verified, a full version of derivation This report is organized as following. In Sec. II, the LR
for the Gilbert damping term would be an indispensable el-dynamical invariant theory and its application to a simple
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spin system is briefly reviewed. Based on this review, we dR(t)
propose an ansatz for the dynamical invariant for the spin ot YR() X Hegr, (6)
system, which is represented by ordinary magnetic quanti-
ties, i.e., magnetization and magnetic moment operator. Iwhere we have useg¢t=gug and the commutation relation
Sec. lll, using the proposed ansatz and the LR method con[S?,S}’]:iheabcé,ij. The equation for the parameter vector
bined with the RSI description, we obtain the magnetizatiorgiven by Eq.(6) explicitly describes the vector precessing
equation including the damping term from the Liouville—von with respect to the fieldH . with the Larmor frequencyo
Neumann equation. Comments and discussions are presentegiH.s. Thus, without loss of generality, we can identify the
in Sec. IV. parameter vectoR with the magnetization vectiv  (up to

a dimensional constant facjor

Il. LR DYNAMICAL INVARIANT On the other hand, the magnetization is defined by

Many physically interesting quantum systems exhibit 1 R
nonequilibrium characteristics, and their Hamiltonians are Mo= —Tr{pMyg}, (7)
explicitly time dependent. For solving quantum mechanical v
problems of time-dependent quantum systems, various metiyherep is the density operato¥ is the volume of the sys-

ods for nonequilibrium dynamics have been proposed, suc VIR : )
as the Schwinger-Keldysh closed-time path methdtiere Hem, andMj is the magnetic moment operatdMO) de

is another relatively simple but powerful canonical methodflned by

suggested by Lewis and Riesenfél@hey constructed ex- ~ SH,

plicitly time-dependent dynamical invariants whose eigen- Mo= SH_ (8)
ext

states are used for evaluating the exact quantum states that
are solutions of the Schrodinger equation. The dynamicalvhere H,,; is the external field. It is to be noted that the
invariant Z(t) is required to satisfy the Liouville—von Neu- density operator is not given by exgB3H,} but is given by

mann(LvN) equation exp{—BZy}-1° From Egs.(3) and(8), we obtain
ait) * %[I(tw(t)] =0, 2) Mo= gus 2 5 ©

where (1) is the time-dependent Hamiltonian. From this =~ Then, according to the above argument, the ansatz of the
LvN equation, the classical equation governing the dynamicdynamical invariant given by Eq4) can be written as

of the spin system is obtained. Especially, the LR method is ~

applied for the nonadiabatic generalization of the Berry Zo=cMo - Mo, (10
phase. In Ref. 8, it has been shown that the LR method cafherec is a dimensional constant. Note that this expression
be used even for noncyclic evolutions. In this article, we argor the dynamical invariant consists of the magnetization and
interested in the classical equation obtained with LvNthe MMO, i.e., magnetic quantities. In the next section, we

method, not the geometrical phase. show that the new form of the dynamical invariant given by
Consider the spin Hamiltonian given by Eq. (10) leads to a reasonable generalization containing the
- RSI effect.
Ho=0gue2 Si - He, 3)
|

IIl. DYNAMICAL INVARIANT, RSI, AND DAMPING

wheregis the Landgg factor,u? 's the absolute value (_Jf the The effective Hamiltonian including the RSI effect is
Bohr magneton, and; is the spin operator. The subscript “0” given by
indicates that the corresponding term does not include the
RSI effect. The effective field includes the exchange H=gus> S[(L-AaMIH g+ AM X Hegl, (1)
field, the anisotropy field, and the demagnetizing field, as i
well as the external field.

Following Ref. 7, we take the ansatz of the dynamical
invariant given by

where the dynamical parametey which was termed as the
radiation parameter, carries the RSI effédtere, in the
Hamiltonian, only the dissipative part of the radiation field
To= 2 R(1) - S, (4)  has been included, and the remaining part, i.e., nondissipa-
i tive part, has been assumed to be parallel to the magnetiza-
. ) tion vectorM. Then, the nondissipative part does vanish in
whereR is a parameter vector. Then, the LvN equation be-y,q procedure obtaining the magnetization equation. Thus,
comes we omit the nondissipative part in the Hamiltonian. The

~ [dR(t) MMO modified by the dynamical effect is given by
28| 75 *9meR(0) X Hey) =0 (5 . o
i M=gus2 [(1-NaMIS+AS X M] (12
and we obtain a classical equation for the parameter vector '
given by and the magnetization vector becomes
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~ ~ IV. DISCUSSIONS
M = %E Tr{p[(1 -NaM?)S; +\S; X MT}. (13
' It has been shown that the LR dynamical invariant

After some algebraic calculations, we find tivatis parallel  method including the RSI effect produces the damping term
to M, and the second term of E¢L3) vanishes. Thus, the in the magnetization equation. This observation supports the
magnitude of magnetization vector satisfies the relatiorRSI proposal for describing the magnetization relaxation. Es-

given by pecially, since the LR method was originally designed for the
B ) nonequilibrium evolution of time-dependent quantum sys-
M= (1 -XaM)Mo. (14) tems, and the RSI description introduces nonlinearity into the
The LLG Eq.(1), then, can be obtained by differentiating Spin Hamiltonian, their combination seems to be appropriate.
Eg. (13) with respect to time The relation of M.dM/dt=0, or equivalently
i . M L dM /dt, which is obtained from Eq.1) or (19), has the
aM _ o Sds _ 2% 1\ o same range of validity that is given by the approximation
dt " ﬁV2 THel(1 ~AaM9S; +AS; X M. H]} that the magnitude of magnetization vector is a constant and

does not vary in time. This is just an alternative argument
+ %M am =—yM X Heg+ aM X d_M about the fact that Eqg1l) and (19) describe the coherent

1-NaM dt dt magnetization dynamics, and we need to generalize the mag-

(15) netization equations for the incoherent magnetization dy-

_ namics. In fact, the ansatz given by E7) is prepared for

where we use Eq14) and the relation the coherent magnetization dynamics. It appears that a gen-

N eralized expression for the dynamical invariant of the spin
=—. (16) system would be required to describe the incoherent magne-

1-AeM tization dynamics.

Note that the time derivative in E¢L5) has to be performed The RSI description proposed in Ref. 2 is not designed for
before the trace operation. a fundamental quantum analysis of the magnetization relax-

Now, we address an alternative method to obtain the magation process, but for providing an effective picture of the
netization equation including the damping term. First of all, magnetization relaxation. So, in order to get a fundamental

we take the ansatz of the dynamical invariant given by Equnderstanding of the physical parameters of the magnetiza-
(10 tion dynamics, one has to return to the microscopic studies of

R R that. However, for the purpose of phenomenological descrip-
Z(t)=cM - M =cgug(l -AaMdM - >, S;.  (17) tion of the magnetization dynamics, the RSI description pro-
i vides a compact tool eliminating complicated elements in the
The dynamical invarianfl7) receives the RSI effect as the magnetization Qynamics S0 th'at one can concentrate on the
factor of (L1-AaM?)? [see Eq.(14)]. According to the LR phenomenological magn.etlza'tlon d'ynamlcs. Such an advan-
method, then, we require that the dynamical invariant satist9¢e O_f the RSI description lies V_V'th the fa_ct that the RSI
fies the LN equation effect is not |_ncluded at the equation of motion Igvel, but at
the Hamiltonian level, would lead to an economical way to
-~ (dM study generalization of the LLG equation for highly nonlin-
; Si (E +9ugM X [(1-AaM?)Heg+AM X Heff]) =0.  ear magnetization dynamics.
As mentioned in the Introduction, the RSI description can
(18 be also used for theeal radiation-spin interaction after slight
modification from the original proposition given in Ref. 2.
However, in generalpgg, is too small to make a reasonable
detection in the experiment. As an example, in the case of a
dm y v ferromagnetic film with thickness af=4x 10""cm, it is of
a1 +a2|\/|2'vI 7 Hetr ~ 1 +a2|v|2M X (M X Her). the order of 1085 It is well known that the magnetization
(19) damping can be remarkably enhanced by applying a spin-
polarized current to a spin valve systéhSo, it would be
It is well known that Eq.(1) is obtained from Eq(19), or  interesting to study the radiation-spin interaction effect to the
vice versa, using/l -dM /dt=0. Note that the second term of magnetization dynamics in the situation. Moreover, in that
MMO Eq. (12), which played the central role in the deriva- case, the task to calculate the damping constagtfrom the
tion of the Gilbert damping term in E@L5), simply vanishes microscopic study*? would be also desirable.
in the expression for the dynamical invariant given by Eq. Related to the above issue, an important observation has
(17). Instead, the damping term in EEL9) is derived from  been reported in Ref. 5; in order to obtain the Gilbert form of
the RSI terms of the spin Hamiltonian as shown in B8@®). the magnetization damping, a nonzero conduction current
The factor(1-AaM?) also plays a critical role in the deriva- J(t)=0E(t) is essential, where is the conductivity andE(t)
tion. is the electric field. This argument also makes sense even in

o

Then, using the relatiol6), we obtain the magnetization
equation given by
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the case that the RSI is used as an effective description faponding to the Ohm’s law in the real radiation-spin interac-
the magnetization relaxation discussed in Ref. 2. This is betion procedure in the magnetization dynamics.

cause the effective description follows the structural analogy

of the radlat'lorj damplng in the cla}ssmal electrodynamics, ACKNOWLEDGMENTS
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