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We consider a two-parameter one-dimensional Hamiltonian with uncorrelated diagonal disorder andnon-
random long-range intersite interactionJmn=J/ um−num. The model is critical at 1,m,3/2 and reveals the
localization-delocalization transition with respect to the disorder magnitude. To detect the transition we analyze
level and wave function statistics. It is demonstrated also that in the marginal casesm=3/2d all states are
localized.
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The localization-delocalization transition(LDT) in disor-
dered systems, predicted by Anderson for three dimensions
in 1958,1 (see also Ref. 2) still remains a fascinating problem
(see Refs. 3–5 for an overview). During the last two decades,
remarkable progress has been achieved in understanding the
LDT, especially in discovering the nature of wave functions
at transition. This progress became possible thanks to the
fruitful idea of the multifractality of wave functions at
criticality.6–10 This conjecture was analytically proven for an
ensemble of power-law random banded matrices(PRMB),
which revealed the LDTwith respect to the interaction
exponent11,12 (see Ref. 5 for an overview). Within the frame-
work of the latter model, it was demonstrated, in particular,
that (i) the distribution function of the inverse participation
ratio (IPR) is scale invariant at transition and(ii ) the relative
IPR fluctuation(the ratio of the standard deviation to the
mean) is of the order of unity at the critical point.13,14 This
finding confirmed the conjecture that was put forward for the
first time in Refs. 15 and 16 that distributions of relevant
physical magnitudes are universal at criticality(see also
Refs. 17–19). This invariance is a powerful tool to monitor
the critical point.

In the present paper, we consider a two-parameter tight-
binding Hamiltonian on a regular one-dimensional(1D) lat-
tice of sizeN with nonrandomlong-range intersite interac-
tion:

H = o
n=1

N

«nunlknu + o
m,n=1

N

Jmnumlknu, s1d

whereunl is the ket vector of a state with on-site energy«n.
These energies are stochastic variables, uncorrelated for dif-
ferent sites and distributed uniformly around zero within the
interval of width D. The hopping integrals areJmn=J/ um
−num, Jnn=0 with 1,mø3/2. For definiteness we setJ.0,
then the LDTwith respect to disorder magnitudeoccurs at
the upper band edge, provided 1,m,3/2.20,21 The transi-

tion is similar to that within the standard 3D Anderson
model. m=3/2 represents the marginal case in which all
states are expected to be weakly localized.21

To detect the transition we analyze level and wave func-
tion statistics. We perform a numerical analysis of size and
disorder scaling of the relative fluctuation of both the
nearest-level spacing(LS) and the participation number
(PN). The latter is defined as

Pn = Fo
n=1

N

ucnnu4G−1

, s2d

wherecnn denotes thenth component of thenth normalized
eigenstate of the Hamiltonian(1).

The relative fluctuation of the nearest-level spacing is an
invariant parameter at transition, as was conjectured in Ref.
17 for the 3D Anderson model and demonstrated later for a
variety of other disordered models(see, e.g., Refs. 5 and
references therein). The invariance can be used to detect the
critical point. We demonstrate that within the present model,
the ratio of the standard deviation of the PN(SDPN) to its
mean value(MPN) is also an invariant parameter at the criti-
cal disorder magnitudeDc. Therefore, the ratio SDPN/MPN
can also be used to detect the transition. To the best of our
knowledge, this quantity has never been used for this pur-
pose.

As the LDT occurs at the top of the band within the con-
sidered two-parameter model, we calculate disorder and size
scaling for uppermost states. Open chains are used in all
calculations. We take advantage of the Lanczos method to
calculate the scaling for large system sizes(up to about 6
3104 sites) and two particular values of the interaction ex-
ponent:m=4/3 (the LDT occurs) andm=3/2 (the marginal
case; no transition is expected21).

First, we calculate the critical point by means of the level
statistics analysis. In Fig. 1 we plotted the disorder scaling of
the ratio of the standard deviation of the nearest-level spac-
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ing (SDLS) distribution to its mean(MLS) at the top of the
band form=4/3. Thefigure demonstrates that all disorder-
scaling curves plotted for different system sizes intersect
within a narrow range ofD, between 10.7J and 11.5J.

Calculations of the scaling of the relative PN fluctuation
confirm the conjecture that the ratio SDPN/MPN is also a
size invariant parameter at transition: Figure 2 shows that all
SDPN/MPN curves plotted versus disorder for different sys-
tem sizes intersect in a narrow range ofD, from 10.0J to
10.6J. One can deduce from Fig. 2 that both the MPN and
the SDPN are of the same order of magnitude at the inter-
section for any system size, as was shown for other models
in Refs. 11, 13, 14, 18, and 19.

The regular size dependence of intersection points in Figs.
1 and 2 is a finite size effect; accounting for the latter by
means of the finite size scaling analysis allows for obtaining
the value of the critical disorder. Both figures demonstrate
that finite size effects are unusually strong, which, within the
present model, results from the long-range nature of the in-
tersite interaction. Contrary to the standard Anderson model,
the contribution of the long-range coupling terms to the spec-
trum of the Hamiltonian(1) converges very slowly as the
system size increases. The latter results in a corresponding
increase of the bandwidth(mostly, the upper band edge,

where the LDT takes place). For an open chain, the upper
band edgeEsNd scales in size as follows:

EsNd = E`smd −
Csmd
Nm−1 + OsN−md. s3d

For m=4/3, E`s4/3d<7.20J and Cs4/3d<8.45J. The in-
crease of the bandwidth with the system size leads to the fact
that disorder of the same magnitude is effectively weaker for
larger systems. The latter effect introduces regular size de-
pendence of the critical disorder that is obtained by numeri-
cal analyses of finite systems. The contribution of other finite
size effects,22,23 such as influence of boundary regions, are
expected to be weaker for large systems because of very
slow convergence of the upper band edges~N1−md. Our cal-
culations confirm this conjecture.

The intersection point,DsN1,N2d, of two disorder scaling
curves plotted for different system sizesN1 andN2 depends
on the sizes. To account for such dependencies we proceed as
follows. First, set by definition:

DcsNd = DsN − 1,N + 1d, Nr → `, s4d

whereDcsNd is the critical disorder that can be obtained by
analyses of a finite system of sizeN (Nr is the number of
disorder realizations over which the averaging is performed).
Second, use the following ansatz for the intersection point:

DsN1,N2d = wsN1dDcsN1d + wsN2dDcsN2d, s5d

where the weight functionwsNd is to be determined. Bearing
in mind the slow convergence of the band edges~N1−md, we
use the following ansatz forDcsNd:

DcsNd < Dcs`d + bN1−m + cN−g, N @ 1 s6d

where theb, c, andg.m−1 are fitting parameters. Using the
ansatz(6) together with Eqs.(4) and (5) and expanding
DsN−1,N+1d in series aboutN (at N@1), we find the
weight function: wsNd=1/2+Os1/Nm+1d. Further, for any
given pairN1,N2 sN1,N2@1d there exists the sizeN, such
that DcsNd=DsN1,N2d. Making use of the latter equation to-
gether with Eq.(6) and keeping the leading(nonzero) power
of system size in all expansions, we find the soughtN:

N =
21/pN1N2

sN1
p + N2

pd1/p, p = m − 1. s7d

Thus, the intersection point of disorder-scaling curves plotted
for two different system sizesN1,N2 sN1,N2@1d yields the
critical disorder for an intermediate system sizeN as defined
by Eq. (7).

We further use Eq.(7) and intersection points of the
curves in Fig. 1(LS data) and Fig. 2(PN data) to obtain
DcsNd. Figure 3 showsDcsNd together with best nonlinear fits
of Eq. (6) to the whole data sets(dashed lines) and the
best linear fit ofEsNd given by Eq. (3) to the three last
PN-data points(solid line). The nonlinear fits giveDcs`d
=s10.97±0.09dJ for the LS data, and Dcs`d
=s11.19±0.10dJ for the whole PN data set, while the linear
fit of EsNd to the tail PN points gives Dcs`d
=s10.91±0.17dJ. The obtained values ofDcs`d agree well

FIG. 1. Disorder scaling of the relative fluctuation of the
nearest-level spacing(the ratio SDLS/MLS) for m=4/3 in the vi-
cinity of the joint intersection point[that is atD=s10.7–11.5dJ].
The curves are calculated for different system sizesN and averaged
over more than 531033 s65536/Nd disorder realizations.

FIG. 2. Disorder scaling of the relative fluctuation of the PN
(the ratio SDPN/MPN) for m=4/3 in thevicinity of the joint inter-
section point[that is atD=s10.0–10.6dJ]. The curves are calculated
for different system sizesN and averaged over more than 53103

3 s65536/Nd disorder realizations.
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with each other. This confirms our conjecture that for large
system sizes the band edge size dependence provides the
dominant contribution to the finite size effects. Finally, the
critical disorder is determined asDcs`d=s11.09±0.21dJ for
m=4/3.

It should be noticed that, despite that both methods to
detect the LDT are in good agreement, finite size effects are
more pronounced in the case of analysis of the level statis-
tics. For these reasons, the proposed method which is based
on the studies of the wave function statistics appears to be
advantageous, at least for the considered model.

We applied the same technique to analyze the localization
properties in the marginal case,m=3/2, where the states are
expected to be localized weakly.21 Figure 4 shows the SDPN/
MPN scaling curves in the vicinity of the only joint intersec-
tion point that appears to be trivial:Dc=0. Size scaling of the
ratio MPN/N (see Fig. 5) reveals no transition too; all
MPN/N size-scaling curves for nonzero magnitude of disor-
der decrease with system size, as they do for a localized(or
critical) state. Thus, no signatures of the LDT can be ob-
served in the marginal case, indicating that all states are lo-
calized.

In summary, we studied numerically the critical properties
of the 1D two-parameter tight-binding model with diagonal
disorder andnonrandomlong-range interaction,Jmn=J/ um
−num, J.0 and 1,mø3/2. The transition point was de-
tected by means of the level and wave function statistics. We
used the conjecture on the scale invariance of the distribution
function of the nearest-level spacing and the participation
number at criticality. We find, in particular, that the critical
point for m=4/3 isDc=s11.09±0.21dJ. In the marginal case
sm=3/2d, that is analogous to the standard 2D Anderson
model,21 the only joint intersection point isDc=0, indicating
that all states are localized for a finite disorder.

We demonstrated that finite size effects are very pro-
nounced within the considered model. Level statistics ap-
pears to be more affected by these effects as compared to the
participation number statistics. The dominant contribution to
finite size effects is determined by the size dependence of the
bandwidth. To obtain the critial disorder, we use a reformu-
lated finite size scaling procedure that is corrected for irrel-
evant size dependencies.

To conclude, we stress that the scale invariance of the
relative fluctuation of the participation number at transition
is a consequence of critical wave function fluctuations. We
conjecture, therefore, that the analysis of the relative fluctua-
tion of the participation number provides a general tool to
monitor the LDT. The proposed method proves to work well
for the standard 3D Anderson model too.24 We believe also
that this property holds at the mobility edge, allowing there-
fore to monitor the latter.

The authors thank A. Rodríguez, M. A. Martín-Delgado,
and G. Sierra for discussions. This work was supported by
DGI-MCyT (MAT2003-01533) and MECyD (SB2001-
0146).

FIG. 3. Critical disorder sizes scaling obtained from the PN data
(j) and level statistics data(m). Dashed lines are best fits of
Eq. (6) to the LS data(b=−26.44,c=824.16,g=0.70) and the PN
data(b=−21.61,c=12.73,g=2.82). The solid line is the best linear
fit of Eq. (3) to the last three PN data points:DcsNd
=s1.52±0.02d3EsNd.

FIG. 4. (a) Disorder scaling of the relative PN fluctuation(the
ratio SDPN/MPN) for m=3/2 in thevicinity of the joint intersec-
tion point at Dc=0. The curves are calculated for two different
system sizes(65536 and 8192) and averaged over more than 5
3103 and 105 disorder realizations, respectively.(b) An enlarge-
ment of the crossing at the origin.

FIG. 5. Size scaling of the ratio MPN/N calculated form=3/2
and different disorder magnitudes. Thin horizontal dotted line is a
guide for the eye.

BRIEF REPORTS PHYSICAL REVIEW B70, 172202(2004)

172202-3



*On leave from Ioffe Physiko-Technical Institute, 26 Politech-
nicheskaya str., 194021 Saint-Petersburg, Russia.

†On leave from “S.I. Vavilov State Optical Institute,” 199034 Saint-
Petersburg, Russia.

1P. W. Anderson, Phys. Rev.109, 1492(1958).
2E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ra-

makrishnan, Phys. Rev. Lett.42, 673 (1979).
3P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys.57, 287

(1985).
4B. Kramer and A. MacKinnon, Rep. Prog. Phys.56, 1469(1993).
5A. D. Mirlin, Phys. Rep.326, 259 (2000).
6F. Wegner, Z. Phys. B36, 209 (1980); Nucl. Phys. B 316, 663

(1989).
7H. Aoki, J. Phys. C16, L205 (1983); Phys. Rev. B33, 7310

(1986).
8C. Castellani and L. Peliti, J. Phys. A19, L429 (1986).
9M. Schreiber and H. Grussbach, Phys. Rev. Lett.67, 607(1991);

Mod. Phys. Lett. B6, 851 (1992).
10M. Janssen, Int. J. Mod. Phys. B8, 943 (1994).
11A. D. Mirlin, Y. V. Fyodorov, F.-M. Dittes, J. Quezada, and T. H.

Seligman, Phys. Rev. E54, 3221(1996).
12L. S. Levitov, Europhys. Lett.9, 83 (1989); Ann. Phys.(Leipzig)

8, 507 (1999).
13F. Evers and A. D. Mirlin, Phys. Rev. Lett.84, 3690(2000).
14A. D. Mirlin and F. Evers, Phys. Rev. B62, 7920(2000).
15B. Shapiro, Phys. Rev. B34, 4394 (1986); Philos. Mag. B 56,

1031 (1987).
16A. Cohen, Y. Roth, and B. Shapiro, Phys. Rev. B38, 12 125

(1988).
17B. I. Shklovskii, B. Shapiro, B. R. Sears, P. Lambrianides, and H.

B. Shore, Phys. Rev. B47, 11 487(1993).
18Y. V. Fyodorov and A. D. Mirlin, Phys. Rev. B51, 13 403

(1995).
19V. N. Prigodin and B. L. Altshuler, Phys. Rev. Lett.80, 1944

(1998).
20A. Rodríguez, V. A. Malyshev, and F. Domínguez-Adame, J.

Phys. A 33, L161 (2000).
21A. Rodríguez, V. A. Malyshev, G. Sierra, M. A. Martín-Delgado,

J. Rodríguez-Laguna, and F. Domínguez-Adame, Phys. Rev.
Lett. 90, 027404(2003).

22A. MacKinnon, J. Phys.: Condens. Matter6, 2511(1994)
23K. Slevin and T. Ohtsuki, Phys. Rev. Lett.82, 382 (1999)
24G. Schubert, A. Weisse, and H. Fehske, cond-mat/0309015(un-

published), private communication.

BRIEF REPORTS PHYSICAL REVIEW B70, 172202(2004)

172202-4


