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We consider a two-parameter one-dimensional Hamiltonian with uncorrelated diagonal disoraemand
randomlong-range intersite interactiod,,=J/|m—n|*. The model is critical at £ ©<3/2 and reveals the
localization-delocalization transition with respect to the disorder magnitude. To detect the transition we analyze
level and wave function statistics. It is demonstrated also that in the marginal £as392) all states are
localized.
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The localization-delocalization transitiqghDT) in disor-  tion is similar to that within the standard 3D Anderson
dered systems, predicted by Anderson for three dimensionsodel. ©=3/2 represents the marginal case in which all
in 1958} (see also Ref.2still remains a fascinating problem states are expected to be weakly localized.

(see Refs. 3-5 for an overvigwDuring the last two decades, To detect the transition we analyze level and wave func-
remarkable progress has been achieved in understanding ttien statistics. We perform a numerical analysis of size and
LDT, especially in discovering the nature of wave functionsdisorder scaling of the relative fluctuation of both the
at transition. This progress became possible thanks to theearest-level spacingLS) and the participation number
fruitful idea of the multifractality of wave functions at (PN). The latter is defined as
criticality.5-19This conjecture was analytically proven for an N i
ensemble of power-law random banded matri@RMB), p = [E P |4] @)
which revealed the LDTwith respect to the interaction N i :

exponerit1?(see Ref. 5 for an overviewWithin the frame-

work of the latter model, it was demonstrated, in particularwhere ,,, denotes theith component of theth normalized
that (i) the distribution function of the inverse participation eigenstate of the Hamiltonigi).

ratio (IPR) is scale invariant at transition argid) the relative The relative fluctuation of the nearest-level spacing is an
IPR fluctuation(the ratio of the standard deviation to the invariant parameter at transition, as was conjectured in Ref.
mean) is of the order of unity at the critical poif#:'* This 17 for the 3D Anderson model and demonstrated later for a
finding confirmed the conjecture that was put forward for thevariety of other disordered mode(see, e.g., Refs. 5 and
first time in Refs. 15 and 16 that distributions of relevantreferences therejnThe invariance can be used to detect the
physical magnitudes are universal at criticalityee also critical point. We demonstrate that within the present model,
Refs. 17-19 This invariance is a powerful tool to monitor the ratio of the standard deviation of the REDPN) to its

the critical point. mean valugMPN) is also an invariant parameter at the criti-

In the present paper, we consider a two-parameter tighteal disorder magnitudd.. Therefore, the ratio SDPN/MPN
binding Hamiltonian on a regular one-dimensiofHD) lat-  can also be used to detect the transition. To the best of our
tice of sizeN with nonrandomlong-range intersite interac- knowledge, this quantity has never been used for this pur-
tion: pose.

N N _ As the LDT occurs at the top of the band v_vithin the con-
H=Ss In)(n] + S 3 Imyol ) S|de_red two-parameter model, we calculat.e disorder anq size
= g ' scaling for uppermost states. Open chains are used in all
' calculations. We take advantage of the Lanczos method to
where|n) is the ket vector of a state with on-site eneggy  calculate the scaling for large system sizap to about 6
These energies are stochastic variables, uncorrelated for dik 10* siteg and two particular values of the interaction ex-
ferent sites and distributed uniformly around zero within theponent:u=4/3 (the LDT occur$ and x=3/2 (the marginal
interval of width A. The hopping integrals aré,,=J/|m  case; no transition is expectég
-n|#, Jon=0 with 1< u<3/2. For definiteness we sét>0, First, we calculate the critical point by means of the level
then the LDTwith respect to disorder magnitudmcurs at  statistics analysis. In Fig. 1 we plotted the disorder scaling of
the upper band edge, provided<lu<3/22921 The transi- the ratio of the standard deviation of the nearest-level spac-
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] where the LDT takes plageFor an open chain, the upper
band edgeéE(N) scales in size as follows:

w2
S E(N) =E. (1) ~ 2+ O(N'#). 3
w2
é For u=4/3, E.(4/3)=7.2Q) and C(4/3)~8.45). The in-
....... Nogsioz | crease of the bandwidth with the system size leads to the fact
TTTT N=d06 that disorder of the same magnitude is effectively weaker for
— larger systems. The latter effect introduces regular size de-

pendence of the critical disorder that is obtained by numeri-

cal analyses of finite systems. The contribution of other finite
FIG. 1. Disorder scaling of the relative fluctuation of the Size effect€?23 such as influence of boundary regions, are

nearest-level spacinghe ratio SDLS/MLS for x=4/3 in the vi-  expected to be weaker for large systems because of very

cinity of the joint intersection poinfthat is atA=(10.7—11.5J]. slow convergence of the upper band edgél*™). Our cal-

The curves are calculated for different system siemd averaged culations confirm this conjecture.

over more than % 10°x (65536N) disorder realizations. The intersection pointA(N,,N,), of two disorder scaling

curves plotted for different system sizhlg andN, depends

ing (SDLS) distribution to its mearfMLS) at the top of the on the sizes. To account for such dependencies we proceed as

band foru=4/3. Thefigure demonstrates that all disorder- follows. First, set by definition:

scaling curves plotted for different system sizes intersect _

within a narrow range o\, between 10.7and 11.9. AcN)=AN=-LN+1), Ny -, (4)
Calculations of the scaling of the relative PN fluctuationwhere A/(N) is the critical disorder that can be obtained by

confirm the conjecture that the ratio SDPN/MPN is also aanalyses of a finite system of siaé (N, is the number of

size invariant parameter at transition: Figure 2 shows that allisorder realizations over which the averaging is perfonmed

SDPN/MPN curves plotted versus disorder for different sys-Second, use the following ansatz for the intersection point:

tem sizes intersect in a narrow range &f from 10.QJ to

10.6). One can deduce from Fig. 2 that both the MPN and A(N,Np) =W(NpA(N) + W(N2)A(Ny), (5)

the SDPN are of the same order of magnitude at the intefghere the weight functiow(N) is to be determined. Bearing
section for any system size, as was shown for other models, mind the slow convergence of the band edgdl ), we

in Refs. 11, 13, .14’ 18, and 19. . . ... use the following ansatz fak.(N):
The regular size dependence of intersection points in Figs.

1 and 2 is a finite size effect; accounting for the latter by A(N) = A () +bNI™# +cN™?, N> 1 (6)

means of the finite size scaling analysis allows for obtainin - .
g y g/vhere theb, ¢, andy> u—1 are fitting parameters. Using the

the value of the critical disorder. Both figures demonstrat . -
that finite size effects are unusually strong, which, within theansatz(6) together with Egs(4) and (5) and expanding

present model, results from the long-range nature of the iné(N_l’N+1). in series aboutN (at+l1\l>1), we find the
tersite interaction. Contrary to the standard Anderson modelVight function: w(N)=1/2+O(1/N*"). Further, for any
the contribution of the long-range coupling terms to the specdiven PaIrN; <N, (N3,N;>1) there exists the siz, such
trum of the Hamiltonian(1) converges very slowly as the thatAd(N)=A(Ni,N,). Making use of the latter equation to-
system size increases. The latter results in a correspondirggther with Eq(6) and keeping the leadingonzerg power

increase of the bandwidttmostly, the upper band edge, ©f system size in all expansions, we find the sought
_2UPNN,
(NP + NP’

Al

p=pn-1. (7)

Thus, the intersection point of disorder-scaling curves plotted
for two different system sized; <N, (N;,N,>1) yields the
critical disorder for an intermediate system skt@s defined
by Eq. (7).
We further use EQq(7) and intersection points of the
Tl Ncaes T curves in Fig. 1(LS datg and Fig. 2(PN data to obtain
T A.(N). Figure 3 showd(N) together with best nonlinear fits
9 10 11 12 of EqQ. (6) to the whole data set&dashed linesand the
AT best linear fit of E(N) given by Eq.(3) to the three last
FIG. 2. Disorder scaling of the relative fluctuation of the PN PN-data pointssolid line). The nonlinear fits giveA(c)
(the ratio SDPN/MPfor x=4/3 in thevicinity of the joint inter- = (10.97£0.09J  for the LS data, and A,(«)
section poin{that is atA=(10.0—10.8J]. The curves are calculated =(11.19%0.10J for the whole PN data set, while the linear
for different system sizebl and averaged over more tharka0®  fit of E(N) to the tail PN points gives A ()
X (65536 N) disorder realizations. =(10.91+0.17J. The obtained values ok (») agree well

SDPN / MPN

0.25

172202-2



BRIEF REPORTS PHYSICAL REVIEW EO, 172202(2004)

o ] : . .
- ] L @ ;
=F 3 al .
—_ F ] = 7
z I s
< 2F 3 i n=372
= a IE’& . 1%3?1?2 3 ° L é N =65536
C ] A N=8192
L oy -
(; ‘ I 4 ' I 4 I : 4 ' I 4 4 2 | |
1x10 2x10 N 3x10 4x10 5x10 E OO 1 5 3
9} g i T T T ]
FIG. 3. Critical disorder sizes scaling obtained from the PN data <
(M) and level statistics datéA). Dashed lines are best fits of (b) ol
Eq. (6) to the LS datgb=-26.44,c=824.16,y=0.70 and the PN - e
data(b=-21.61,c=12.73,y=2.82. The solid line is the best linear N u=372 7
fit of Eq. (3) to the last three PN data pointsA.(N) Sk /x" .
=(1.52+0.02 X E(N). S
// N =65536
with each other. This confirms our conjecture that for large I A~ T N=8192
system sizes the band edge size dependence provides the
dominant contribution to the finite size effects. Finally, the 2 . 0'03 . 066 - 509
critical disorder is determined a%.()=(11.09+0.2}J for ‘ ‘ ‘
w=4/3. Al

It should be noticed that, despite that both methods to
g]eotre:t trrl)iél?rl::(;eiAntﬁgocdaggrgfgqnear?t,sﬁmt? tshlzel effelctf ?r?_atio SDPN/MPN for x=3/2 in thevicinity of the joint intersec-
. P ysis of the Tevel staliss point at A;=0. The curves are calculated for two different
tics. For these reasons, the proposed method which is basg%stem sizeg65536 and 8192and averaged over more than 5
on the studies of the wave function statistics appears to b>< 10° and 16 disorder realizations, respectivelp) An enlarge-
advantageous, at least for the considered model. '

We applied the same technique to analyze the Iocalizatiorrwnent of the crossing at the origin.

properties in the marginal case=3/2, where the states are 14 conclude, we stress that the scale invariance of the
expected to be localized weaklyFigure 4 shows the SDPN/  ygative fluctuation of the participation number at transition
MPN scaling curves in the vicinity of the only joint intersec- iq 5 consequence of critical wave function fluctuations. We

tion point that appears to be triviak;=0. Size scaling of the - . e tire, therefore, that the analysis of the relative fluctua-

ratio MPN/N (see Fig. % reveals no transition too; all . L :
MPN/N size-scaling curves for nonzero magnitude of disor-tlon of the participation number provides a general tool to

der decrease with system size, as they do for a localiaed ;nor;;}tor tthe (Ij‘D-g ;Sip:joposed m%thlod%aprov%s lt'o WorI|< well
critical) state. Thus, no signatures of the LDT can be ob-0r the standar nderson mode € believe also

served in the marginal case, indicating that all states are Ighat this property holds at the mobility edge, allowing there-
calized. fore to monitor the latter.

In summary, we studied numerically the critical properties

OT the 1D two-parameter tlght—blndmg modgl W|th_d|agonal and G. Sierra for discussions. This work was supported by
disorder andnonrandomlong-range interactionJ,,,=J/|m

-n|#, J>0 and 1<u<3/2. The transition point was de- DGI-MCyT  (MAT2003-01533 and MECyD (SB2001-

tected by means of the level and wave function statistics. WQ 148.
used the conjecture on the scale invariance of the distribution

FIG. 4. (a) Disorder scaling of the relative PN fluctuatigtine
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function of the nearest-level spacing and the participation |

number at criticality. We find, in particular, that the critical ——— TR TR T P,

point for u=4/3 isA.=(11.09£0.2]J. In the marginal case | BB 7

(u=3/2), that is analogous to the standard 2D Anderson £ 0 TTTTTmE -

model?! the only joint intersection point i4.=0, indicating £ u=3/2 —o04=0

that all states are localized for a finite disorder. =S, ety
We demonstrated that finite size effects are very pro- e TR

nounced within the considered model. Level statistics ap- RSN

pears to be more affected by these effects as compared to the Sl )

participation number statistics. The dominant contribution to 110 N 110 P10

finite size effects is determined by the size dependence of the

bandwidth. To obtain the critial disorder, we use a reformu- FIG. 5. Size scaling of the ratio MPN/N calculated for3/2
lated finite size scaling procedure that is corrected for irreland different disorder magnitudes. Thin horizontal dotted line is a
evant size dependencies. guide for the eye.
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