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We develop a detailed theoretical investigation of the effect of Coulomb interaction on electron transport in
arrays of chaotic quantum dots and diffusive metallic wires. Employing the real time path integral technique
we formulate a new Langevin-type of approach which exploits a direct relation between shot noise and
interaction effects in mesoscopic conductors. With the aid of this approach we establish a general expression
for the Fano factor of 1D quantum dot arrays and derive a complete formula for the interaction correction to
the current which embraces all perturbative results previously obtained for various quasi-0D and quasi-1D
disordered conductors and extends these results to yet unexplored regimes.
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I. INTRODUCTION

Recently a profound relation was elucidated1–4 between
full counting statistics(FCS)5 and electron–electron interac-
tion effects in coherent mesoscopic conductors. In particular,
it was demonstrated1 that the leading interaction correction
to the current through such conductors is determined by the
second cumulant of the current operatorS2, i.e., by the
power spectrum of the shot noise.6 The interaction correction
to the shot noiseS2 was in turn found2 proportional to the
third cumulant of the current operatorS3. Even more gener-
ally, one can show3,4 that the lowest order interaction correc-
tion to thenth current cumulantSn is determined bySn+1 for
all values ofn. Since the current cumulants in the absence of
interactions can be conveniently analyzed within the FCS
formalism,5 the above observations provide a great deal of
information about the effect of electron–electron interactions
as well.

In order to investigate the influence of interactions on
higher current cumulants it is in general necessary to employ
a complete expression for the effective action of a coherent
scatterer.2–4 At the same time the results1 for the first cumu-
lant, i.e., the relation between the leading interaction correc-
tion to the current and the shot noise can be understood
already within a simple and transparent theoretical frame-
work of quasiclassical Langevin equations. In the case of a
single coherent scatterer shunted by some linear Ohmic re-
sistorRS these equations take a remarkably simple form
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HereC is the scatterer capacitance,ẇ /e=V is the fluctuating
voltage across the scatterer andVx is the total voltage applied
to the system “scatterer+shunt.” As usual, one describes the
scatterer by a set of conducting channels with transmissions
Tk. The scatterer conductance is then defined by means of the
standard Landauer formula:
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jstd is the noise of the scatterer, characterized by the cor-
relator

kjst1djst2dl =
1 − b + b cosfwst1d − wst2dg

R

3E dv

2p
v coth

v

2T
e−ivst1−t2d, s3d

where

b =
ok

Tks1 − Tkd

ok
Tk

s4d

is the Fano factor, andjSstd is the equilibrium noise of the
shunt with the correlator

kjSst1djSst2dl =
1
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The whole approach based on Eqs.(1)–(5) is applicable
either at sufficiently high energies or, more importantly, if at
least one of the two dimensionless conductances,g
=2p /e2R and/or gS=2p /e2RS, remains large. The above
Langevin equations make the relation between the interac-
tion correction to the current and the shot noise completely
transparent demonstrating that the former can be derived just
if one accounts for the noise contribution in the equation
describing the balance of currents across the scatterer.

The above simple approach may hold only for relatively
compact scatterers, in which case the description of interac-
tion effects with the aid of the uniform in space fluctuating
field w is sufficient. For spatially extended conductors the
coordinate dependence of this field cannot anymore be dis-
regarded and the whole analysis needs to be modified. This
modification is trivial if one considers an array of scatterers
connected between each other by relatively big metallic
grains. Assuming that the electron distribution function in
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each of these grains remains in equilibrium one can describe
the nth scatterer by its own fluctuating fieldwn which obeys
the same set of Langevin Eqs.(1)–(3). For arrays of tunnel
junctions this approach was employed in Ref. 7. The corre-
sponding generalization of the results7 to the case of arbitrary
scatterers just requires modification of the Fano factor in the
noise correlator(3).

The condition of local equilibrium inside metallic grains
implies that the corresponding electron dwell timetD be-
tween two adjacent scatterers should be much longer than the
inelastic relaxation timetin. If this condition is violated, the
electron distribution function is driven out of equilibrium
and the whole consideration becomes more complicated. In
the case of a quantum dot formed by two arbitrary scatterers
the latter situation was analyzed in details in Ref. 8 and also
in Refs. 4 and 9 for the case of chaotic dots. In all these
works it was demonstrated that in the limit of large conduc-
tances and in the voltage biased regime the interaction cor-
rection to the conductance tends to saturate at temperatures/
voltages below 1/tD. This implies that for finite values oftD
highly conducting quantum dots should show metallic be-
havior down to zero temperature.

It is important to emphasize that this observation holds
only provided the voltage source is attacheddirectly to the
quantum dot, i.e., the external impedance is equal to zero.
For nonzero external impedances voltage fluctuations lift the
conductance saturation, and the amplitude of the interaction
correction keeps increasing with decreasingT even at tem-
peratures well below 1/tD. In this regime the interaction
correction was found8 to scale linearly with the total Fano
factor of the quantum dot and to depend logarithmically on
temperature/voltage for sufficiently large external imped-
ances or if this impedance is purely Ohmic.

For similar reasons no saturation of the interaction correc-
tion at energies below 1/tD should be expected for chains
and arrays of quantum dots. Recently this situation was ana-
lyzed diagrammatically10 in the case of granular tunnel junc-
tion arrays. Indeed, it was found that the interaction correc-
tion increases with decreasing temperature both above and
below the inverse dwell time in individual grains. At
T,1/tD the authors10 recovered exactly the same expression
for the interaction correction as that known in the case of
diffusive conductors.11 This equivalence is by no means sur-
prising if one bears in mind the fundamental relation be-
tween the interaction correction and the shot noise on one
hand, and the results12,13 on the other hand, which demon-
strate that the shot noise of a sufficiently long array of tunnel
junctions is equivalent to that of a diffusive wire. Extending
these arguments to arbitrary scatterers, with the aid of the
results13 one can anticipate that at sufficiently low energies
s&1/tDd and large spatial scales the interaction correction
should be described universally for any array of quantum
dots and ultimately foranymesoscopic conductor in the me-
tallic regime. This universality will indeed be demonstrated
below.

The main goal of the present paper is to generalize the
simple Langevin equation approach7 to situations in which
relaxation of the electron distribution function occurs at
much longer time scales as compared to the electron dwell
time between two adjacent scattererstD!tin. Although the

distribution function may significantly deviate from the
Fermi function, it is possible to account for these deviations
within the (generalized) Langevin equation analysis and to
formulate a closed set of equations which fully determine the
interaction correction to theI –V curve of disordered conduc-
tors.

The structure of the paper is as follows. In Sec. II we will
specify the model of a disordered metallic conductor and
present a phenomenological derivation of the basic Langevin
equations for our problem. This derivation will be carried out
with the aid of simple and transparent physical arguments
which make the whole approach easy to understand without
going into technical details. A more advanced analysis em-
ploying the effective action technique will be described in
Sec. III. This analysis provides rigorous justification for our
phenomenological derivation and allows to illustrate a useful
relation between our technique and the classical Boltzmann–
Langevin approach.6 In Sec. IV we will probe our Langevin
technique by explicitly deriving the shot noise spectrum and
the Fano factor for arrays of chaotic quantum dots in the
absence of interactions. The remainder of the paper will be
devoted to the analysis of the leading interaction correction
to the current in arrays of quantum dots and mesoscopic
diffusive wires. In Sec. V we will derive the general expres-
sion for this correction which then will be applied to homo-
geneous arrays of quantum dots in Sec. VI. In the latter case
we will establish a complete analytic form of the interaction
correction and present the corresponding simplified expres-
sions in a number of important limits. Our general formula,
Eq. (63), embraces all previous results1,4,7–11,14obtained in
various types of quasi-0D and quasi-1D disordered conduc-
tors, allows to establish a transparent relation between these
results and to extend them to yet unexplored regimes. A brief
analysis of an additional effect of external leads will be pre-
sented in Sec. VII. We will then discuss our results and con-
clude the paper in Sec. VIII.

II. THE MODEL AND PHENOMENOLOGICAL ANALYSIS

We shall consider a chain ofN−1 quantum dots as it is
shown in Fig. 1. Each dot can be viewed as an island be-
tween two scatterers/barriers which in turn connect adjacent
quantum dots. Electrons can enter the dot through one of the
barriers, spend some time there propagating between the bar-
riers, possibly being scattered at the barriers, outer walls or
otherwise, and finally leave the dot through another barrier.

FIG. 1. 1D array of chaotic quantum dots. The array consists of
N−1 dots andN barriers. Thenth dot is characterized by mean level
spacingdn and gate capacitanceCgn. Thenth barrier is described by
its Landauer conductance 1/Rn, capacitanceCn and Fano factorbn.
The array is placed between two big metallic reservoirs which are
connected to the voltage source via Ohmic resistorRS.
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In what follows we will adopt the model ofchaoticquantum
dots.

Each of theN barriers will be described by its Landauer
conductance 1/Rn=se2/pdokTk

snd, capacitanceCn and Fano
factor bn=okTk

snds1−Tk
sndd /okTk

snd, whereTk
snd is the transmis-

sion of thekth conducting mode in thenth barrier. We also
define dimensionless conductances of the scatterersgn
=2p /e2Rn. In what follows we will assume that each scat-
terer has many conducting channels and that its dimension-
less conductance is largegn@1. Thenth dot will be charac-
terized by the mean level spacingdn=1/N0Vn, whereVn is
the dot volume andN0 is the density of states at the Fermi
level. For the sake of generality we will also assume that
each dot has an additional capacitance to the groundCgn.
Finally, the first and the last scatterers are connected to two
big metallic reservoirs which in turn are connected to the
voltage source via external leads with an Ohmic resistance
RS.

An important assumption concerns the spatial dependence
of fluctuating voltages in our system. Similar to Ref. 8 we
will allow for voltage dropsVnstd only across the barriers,
while inside the dots voltages can depend arbitrarily on time
but not on the spatial coordinates. This assumption is usually
well satisfied for metallic dots considered here. In the leads
the voltage fields are assumed to vary slowly in space. In the
course of our derivation we will essentially neglect all
mechanisms of inelastic relaxation which are not related to
electron–electron interactions. We will also disregard weak
localization effects which can be easily suppressed, e.g., by
externally applied magnetic field.

We will now proceed with our phenomenological analysis
of the above model.

A. Noise correlator

As a first step we will specify the general expression for
the noise correlator needed for our derivation. Let us assume
that the electron distribution functionfnsEd in the nth dot
does not depend on time for alln but may deviate arbitrarily
from the Fermi function. Below we also assume that the
electron energies are measured with respect to the unique
reference energy for the whole array. In this case the noise of
the nth scattererSnst1,t2d=kjnst1djnst2dl takes the form6

Snst1,t2d =
1

2Rn
E dv

2p
E dEe−ivst1−t2dhbnffn−1sEdhnsE + vd

+ fnsE + vdhn−1sEd + fnsEdhn−1sE + vd

+ fn−1sE + vdhnsEdg + s1 − bndffn−1sEdhn−1sE + vd

+ fn−1sE + vdhn−1sEd + fnsEdhnsE + vd

+ fnsE + vdhnsEdgj, s6d

wherehnsEd=1−fnsEd. Let us define the function

Gnst1,t2d =E dE

2p
e−iEst1−t2df1 − 2fnsEdg. s7d

In stationary situations this function depends only on the
time difference t1− t2 and it also obeys the condition

Gnst2,t1d=Gn
*st1,t2d. In equilibrium the distribution function

equals to the Fermi function

fFsEd =
1

1 + expSE

T
D . s8d

Substituting this function into Eq.(7) one findsGnst1,t2d=
−iT Ref1/sinhpTst1− t2+ iedg, where e is an infinitesimal
positive constant. At t1→ t2 one gets Gnst1,t2d→
−i Ref1/pst1− t2+ iedg. This analytical property turns out to
be general, i.e., it equally applies both to equilibrium and
nonequilibrium situations. Expressing Eq.(6) via Gnst1,t2d,
we obtain

Snst1,t2d =
1

pRn

e2

fst1 − t2d2 + e2g2 −
pbn

2Rn
fGn−1st1,t2dGnst2,t1d

+ Gnst1,t2dGn−1st2,t1dg −
ps1 − bnd

2Rn
fuGn−1st1,t2du2

+ uGnst1,t2du2g. s9d

Although Eq.(9) has been derived under the assumption that
the distribution function does not depend on time, we will
show later that it remains valid also in nonstationary situa-
tions. In the latter case the functionGnst1,t2d can be under-
stood as the Keldysh component of the quasiclassical Usadel
Green function.

B. Kinetic equation

Our next step is to derive the kinetic equation for the
function Gnst1,t2d. For simplicity we again start from the
stationary situation, in which case fluctuations of voltages in
our system can be neglected. In what follows we will assume
that both fnsEd and Gnst1,t2d do not depend on coordinates
inside thenth dot. The total number of electrons with ener-
gies in the interval fE,E+dEg in the nth dot is
2N0VnfnsEddE, where the factor 2 accounts for spin degen-
eracy. This number may change in time only if electrons
leave and/or enter the dot through the leftsnthd and the right
sn+1thd barriers. One finds

2dE

dn

]fnst,Ed
]t

= Jn
in − Jn

out. s10d

The escape rate from thenth dot and the transition rate to
this dot, both through thenth scatterer, are, respectively,

Gn−1,n = gndn/4p, Gn,n−1 = gndn−1/4p. s11d

Then forJn
out one obtains

Jn
out = 2sGn+1,n + Gn−1,ndfnsEddE/dn,

and similarly for Jn
in. Combining the above simple expres-

sions we arrive at the kinetic equation

4p

dn

]fn

]t
= − sgn + gn+1dfn + gnfn−1 + gn+1fn+1, s12d

where 1ønøN−1. The boundary conditions to this kinetic
equation are set by the requirement that the distribution func-

TRANSPORT OF INTERACTING ELECTRONS IN… PHYSICAL REVIEW B 70, 165423(2004)

165423-3



tions in the left and the right reservoirs,f0 and fN, are equal
to the Fermi function, i.e.,

f0sEd = fFsEd, fNsEd = fFsE − eVd. s13d

Here and belowV is the total voltage applied to the array. We
note that the function 1−2fn also satisfies Eq.(12).

The kinetic equation for the functionGnst1,t2d can be ob-
tained from Eq.(12) if we identify t=st1+ t2d /2, introduce
s= t1− t2 and make the Fourier transform of Eq.(12) by tak-
ing the integraledE/2pe−iEss. . .d. Then we obtain

4p

dn

]Gnst,sd
]t

= − sgn + gn+1dGnst,sd + gnGn−1st,sd

+ gn+1Gn+1st,sd. s14d

As we have already pointed out Eq.(14) applies only in
stationary situations. A proper generalization of this equation
for nonstationary cases can be achieved with the aid of gen-
eral gauge invariance arguments which yield

4p

dn
S ]

]t1
+

]

]t2
+ iḞnst1d − iḞnst2dDGnst1,t2d

= − sgn + gn+1dGnst1,t2d + gnGn−1st1,t2d

+ gn+1Gn+1st1,t2d, s15d

where we definedḞnstd=o j=1
n eVjstd. This kinetic equation

holds for arbitrary time dependent voltages. As before, the
boundary conditions to this equation read

G0st1,t2d = − iTRe
1

sinhpTst1 − t2 + ied
,

GNst1,t2d = − iTe−ieVst1−t2dRe
1

sinhpTst1 − t2 + ied
. s16d

C. Balancing fluctuating charges and voltages

In order to complete our simple analysis we formulate the
standard circuit theory equations, which allow to include the
effect of charge accumulation in quantum dots. Let us define
the fluctuating excess charge in then-th dot qn. We assume
that all quantum dots are well described by the capacitance
model, in which case one finds

qn = Cn+1Vn+1 − CnVn − Cgno
j=1

n

Vj . s17d

HereCn is the capacitance of thenth barrier andCgn is the
capacitance of thenth dot to the ground. The currentIn is
formed by the sum of three different terms, namely the stan-
dard Ohmic term Vn/Rn, the “kinetic” term Gn,n−1qn−1
−Gn−1,nqn and the noise termjn:

In =
Vn

Rn
+ Gn,n−1qn−1 − Gn−1,nqn + jn. s18d

The variation of the chargeqn is in turn determined by the
currents flowing through thenth andn+1th barriers. We get

q̇n = In − In+1. s19d

Finally, the sum of all fluctuating voltagesVn should be
equal to the total applied voltage,

o
n=1

N

Vn = V. s20d

Equations(9), (15), and(17)–(20) form a complete set of
equations, which allow us to find the first order interaction
correction to the I–V characteristics for an array of quantum
dots. These equations represent a straightforward generaliza-
tion of the Langevin approach employed in Ref. 7. In con-
trast to the latter, however, our present analysis accounts for
the electron dwell time in quantum dots and also nonpertur-
batively treats electron transport through the scatterers. In the
limit of long dwell times Gn±1,n!1/tin and small channel
transmissionsbn→1 (i.e., for tunnel junction arrays) our
equations are replaced by those of Ref. 7.

D. Interaction correction and shot noise

Finally, let us establish an important relation between in-
teraction correction to the current and the shot noise. Per-
forming summation of Eqs.(18) with the weightsRn, we
obtain

I =
V

RS

+ o
n=1

N
Rnkjnl

RS

. s21d

This formula generalizes our previous results derived for a
coherent scatterer1 and a quantum dot8 to the case of quan-
tum dot arrays and spatially extended disordered conductors.
Equation(21) demonstrates that the interaction correction to
the I–V curve of an array of scatterers scales linearly with
the current noise produced by these scatterers. In the absence
of noise the interaction correction is identically zero, and the
standard Ohm’s law is recovered. Equation(21) will be ex-
tensively used in our subsequent calculation.

III. RIGOROUS DERIVATION

The phenomenological analysis presented in Sec. II
clearly illustrates the relation between shot noise and inter-
action effects in electron transport. Now we will demonstrate
that Eqs.(9), (15), and (19) can also be derived within the
framework of a rigorous quantum mechanical procedure.
This derivation will also allow to determine the validity
range of our Langevin approach.

We first note that for a particular case of two scatterers the
above equations follow from the effective action analysis8

after averaging of the action over mesoscopic fluctuations.
Below we will see that for the caseN=2 these equations
yield exactly the same results as those derived in Ref. 8 for
chaotic quantum dots. Direct generalization of the method8

to the case of quantum dot arrays, though technically pos-
sible, turns out to be rather involved since one should first
establish the full quantum mechanical action for the whole
array and then perform its averaging over mesoscopic fluc-
tuations. In this case it appears more convenient to average
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the action already at the first stage of the calculation. In order
to accomplish this goal we will employ the nonlinear
s-model-type of approach combined with the Keldysh tech-
nique. This method was proposed in Ref. 15 and recently
applied to chaotic quantum dots in Ref. 4. Below we will
extend this technique to arrays of quantum dots.

A. Effective action

In the presence of electron–electron interactions general
quantum mechanical description of both compact
scatterers1–4,16 and extended disordered conductors15,17 can
be formulated in terms of the effective action which depends
on the fluctuating Hubbard–Stratonovich fieldsV1 and V2
defined on the two branches of the Keldysh contour. In the
situation considered here the action also depends on the fluc-

tuating Green functionQ̌n which is 232 matrix in Keldysh
space satisfying the normalization condition

Q̌2st1,t2d =E dt3Q̌st1,t3dQ̌st3,t2d = dst1 − t2d1̌, s22d

and on the fluctuating phases of the dots

Fn = Fn1̌ +
F−

2
šz, s23d

where we defined

Fn = o
j=1

n E
t0

t

dt8efVj ,1st8d + Vj ,2st8dg/2, s24d

Fn
− = o

j=1

n E
t0

t

dt8efVj ,1st8d − Vj ,2st8dg. s25d

Here and belowšx,y,z are the Pauli matrices in Keldysh
space.

The complete expression for the effective action of the
array reads

iS= io
n=1

N E
0

t

dt8
Cnẇnẇn

−

e2 + i o
n=1

N−1E
0

t

dt8SCgn

e2 +
2

dn
DḞnḞn

−

+ o
n=1

N
1

2
Tr lnF1 +

Tk
snd

4
shQ̌n−1,Q̌nj − 2dG

− o
n=1

N−1
2pi

dn
TrFSi

]

]t
− Ḟn −

Ḟn
−

2
šzDQ̌nG . s26d

Here the trace includes the summation over the channel in-
dex k while the superscriptn indicates the scatterer number.

The boundary conditions for the operatorsQ̌ are4

Q̌0st1,t2d =
− iTsšz + išyd

sinhpTst1 − t2d
− dst1 − t2dšx,

Q̌Nst1,t2d =
− iTe−ieVst1−t2dsšz + išyd

sinhpTst1 − t2d
− dst1 − t2dšx. s27d

Physical observables can be evaluated by means of the fol-
lowing equation:

kÂl =E
Q̌n

2=1̌
DQ̌nE DFDF−AS d

dF
,

d

dF−DeiS. s28d

In the FCS-type of approach3,4 the matrixQ̌n has the form

Q̌n = eixnšz/2fĜnsšz + išyd − šxge−ixnšz/2, s29d

wherexn is the time and space independent “counting field”
for thenth quantum dot. In our problemxn has to be replaced
by an arbitrary fluctuating Hermitian operator. This observa-
tion suggests the following parametrization of the operator

Q̌n:

Q̌n = eiŴnšzfĜnsšz + išyd − šxge−iŴnšz, s30d

where Ĝn and Ŵn are Hermitian operators.18 Here Ĝn ac-
counts for fluctuations of the electron distribution function in
the nth quantum dot or, more generally, for fluctuations of

the Keldysh–Usadel Green function. The operatorŴn de-

scribes “quantum” fluctuations of the fieldQ̌n. It is possible

to demonstrate that an arbitrary operatorQ̌n satisfying the
normalization condition Eq.(22) and being sufficiently close

to the “classical” one,Ĝn
s0dsšz+ išyd−šx, can be written in

the form (30). We further note that the parametrization Eq.
(30) is not identical to that proposed in Ref. 15.

Assuming quantum effects to be sufficiently small19 let us
expand the action Eq.(26) to the second order in the opera-

tors Ŵn. Then we obtain

iS= io
n=1

N E
0

t

dt8
Cnẇnẇn

−

e2 + i o
n=1

N−1E
0

t

dt8SCgn

e2 +
2

dn
DḞnḞn

−

+ on=1

N−1 2p

dn
TrFiḞn

−Ĝn − 2Si
]

]t
− Ḟn,ĜnDŴnG

+ o
n=1

N

gnTrF− isĜn − Ĝn−1dŵn + bnĜn−1ŵnĜnŵn

+
1 − bn

2
ssĜn−1ŵnd2 + sĜnŵnd2d − ŵn

2G ,

whereŵn=Ŵn−Ŵn−1. The quadratic inŵn terms can be de-
coupled with the aid of the Hubbard–Stratonovich transfor-
mation. One finds

expHo
n=1

N

gnTrSbnĜn−1ŵnĜnŵn +
1 − bn

2
fsĜn−1ŵnd2

+ sĜnŵnd2g − ŵn
2DJ = ke−ion=1

N Trsẑnŵndlẑn
, s31d

where we introduced the Gaussian stochastic operatorẑn
with the pair correlator
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kznst1,t2dznst3,t4dl = 2gndst3 − t2ddst1 − t4d

− gnbnfGn−1st3,t2dGnst1,t4d

+ Gnst3,t2dGn−1st1,t4dg

− gns1 − bndfGnst3,t2dGnst1,t4d

+ Gn−1st3,t2dGn−1st1,t4dg. s32d

B. Kinetic equation and Boltzmann–Langevin approach

We are now in a position to derive the equation of motion

for the matrixĜn. In the metallic limitgn@1 it is sufficient

to restrict our analysis to the least action conditiondS/dŴn
=0 which yields

4p

dn
F ]

]t
+ iḞnstd,ĜnG

= gnĜn−1 + gn+1Ĝn+1 − sgn + gn+1dĜn + ẑn − ẑn+1.

s33d

Dropping the operator notations one can rewrite the same
equation in the form

4p

dn
S ]

]t1
+

]

]t2
+ iḞnst1d − iḞnst2dDGn

= gnGn−1 + gn+1Gn+1 − sgn + gn+1dGn + zn − zn+1.

s34d

Under the conditiongn@1 one can also neglect the noise
terms zn in Eq. (34) which can only contribute in higher
orders in 1/gn. Dropping these terms one observes the
equivalence of the Eqs.(15) and (34).

It is also useful to illustrate a simple relation between our
Eq. (34) and the standard Boltzmann–Langevin approach,6

which is frequently used, e.g., for the analysis of the shot
noise in disordered conductors. Let us again definet=st1
+ t2d /2 ands= t1− t2. We will assume thatGn varies slowly

with t and Ḟn is a slow function of time. ReplacingiḞnst1d
− iḞnst2d→ iF̈nstds and performing the Fourier transforma-
tion of Eq. (34) with respect tos, one arrives at the equation
for the distribution function

4p

dn
S ]fn

]t
+ F̈n

]fn

]E
D

= gnfn−1 + gn+1fn+1 − sgn + gn+1dfn − hn + hn+1,

s35d

where 2hn=edseiEsznst+s/2 ,t−s/2d and

khnst,Edhmst8,E8dl = 2pgndmndst − t8ddsE − E8d

3hbnffnst,Edhn−1st,Ed

+ fn−1st,Edhnst,Edgs1 − bnd

3ffnst,Edhnst,Ed

+ fn−1st,Edhn−1st,Edgj. s36d

Equations (35) and (36) represent an extension of the

Boltzmann–Langevin approach6 to arrays of quantum dots.
Within the framework of the adiabatic approximation the lat-
ter approach follows directly from our rigorous analysis.

C. Excess charges

Let us now integrate out the fieldFn
−. Being performed

with the action Eq.(26) this integral gives the functional
delta-function equivalent to the equationdS/dFn

−=0. This
equation yields

− SCgn +
2e2

dn
Do

j=1

n

V̇j − CnV̇n + Cn+1V̇n+1 −
2pe

dn

d

dt
Gnst,td = 0.

s37d

The last term in Eq.(37) can be expressed via the excess
chargeqn in the nth dot. In the stationary case this charge
variable is defined as follows

qn = −
2e

dn
E dEffnsE + Ḟnd − fFsEdg

=
2pe

dn
lim
s→0

FGnSt +
s

2
,t −

s

2
D +

i

ps
G +

2eḞn

dn
. s38d

This definition can be applied to nonstationary situations as
well then Eq.(37) is replaced by Eq.(17).

Finally, let us consider the limitt1→ t2 in Eq. (34). Setting
t=st1+ t2d /2, we arrive at Eqs.(18) and(19) where the noise
termsjn are identified asjnstd=ezst ,td /2. With the aid of Eq.
(32) one can check that the noise correlatorkjnst1djnst2dl is
given by Eq.(9). This observation completes our derivation.

IV. SHOT NOISE

The first and immediate application of our formalism con-
cerns the analysis of the shot noise in arrays of scatterers
and/or quantum dots in the absence of interactions. We will
employ Eqs.(6), (12), and(18) and evaluate the noise spec-
trum of quantum dot arrays in the zero frequency limit. Our
procedure is similar to that applied in Ref. 13 to arrays of
identical chaotic cavities.

From Eqs.(12) and (13) we obtain

fnsEd = s1 − andfFsEd + anfFsE − eVd, s39d

where we have definedan=o j=1
n Rj /RS. Substituting the result

Eq. (39) into Eq.(6) we derive the noise spectrum for thenth
junction. In the zero frequency limit one finds

Sn = 2kujnuv=0
2 l = f1 − ans1 − and − an−1s1 − an−1d

− bnsan − an−1d2g
4T

Rn
+ fan−1s1 − an−1d + ans1 − and

+ bnsan − an−1d2g
2eV

Rn
coth

eV

2T
. s40d

Finally, we note that at sufficiently low frequencies the term
with chargesqn in the right-hand side of Eq.(18) can be
neglected. In this limit the current fluctuationsdI in the
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whole array are related to the current and voltage fluctuations
across thenth scatterer as

dI =
dVn

Rn
+ jn, s41d

where fluctuating voltages are subject to the constraint
on=1

N dVn=0. We obtaindI =s1/RSdon=1
N Rnjn and

S = o
n=1

N

Rn
2Sn/RS

2 .

Then with the aid of Eq.(40) we get

S = s1 − b̃d
4T

RS

+ b̃
2eV

RS

coth
eV

2T
, s42d

whereb̃ is the Fano factor for 1D arrays of chaotic quantum
dots, which is obtained in the form

b̃ =
1

3
+ o

n=1

N
Rn

3

RS
3 Sbn −

1

3
D . s43d

For arrays of diffusive scatterers withbn=1/3 oneobviously

getsb̃=1/3 for all valuesRn. For homogeneous arrays with
Rn=R andbn=b Eq. (43) yields

b̃ =
1

3
+

1

N2Sb −
1

3
D . s44d

This result demonstrates that in the limitN→` an array of
arbitrary—not necessarily diffusive—scatterers should be-

have as a diffusive conductor withb̃→1/3. In the case of
identical transmissions for all conducting channels Eq.(44)
reduces to that derived in Ref. 13.

V. GENERAL EXPRESSION FOR THE CURRENT

Let us now turn to the calculation of the current–voltage
characteristics in the presence of electron–electron interac-
tions. According to Eq.(21), in order to accomplish this goal
it is necessary to evaluate the average value for the noise
terms jn. This average would vanish identically,kjnl=0,
should there be no dependence between the fluctuating volt-
ageVn and noisejn. However, since such a dependence in
general exists, the averageskjnl differ from zero and the
interaction correction remains finite.

In this paper we will restrict ourselves to the perturbation
theory and provide a general expression for the interaction
correction to theI –V curve. In what follows we will consider
noise as a small perturbation, in which case in the leading
approximation fluctuations of the phase onnth junction and
the noisejm are related to each other by means of a simple
formula

dwnstd = −
1

e
o
m=1

N E dtKnmst − tdjmstd. s45d

An explicit expression for the functionKnmstd will be speci-
fied later. Now we only point out that due to the causality

requirement one hasKnmst,0d=0. Making use of the above
relation in the lowest nonvanishing order one can express the
average value ofjn in the form

kjnstdl = o
m=1

N KE dt1
djnstd

dwmst1d
dwmst1dL

= −
1

e
o

m,k=1

N E dt1dt2Kmkst1 − t2dK djnstd
dwmst1d

jkst2dL .

s46d

Here the derivativedjnstd /dwmst1d accounts for the feedback
of the phase fluctuations on the shot noise. Formally this
effect is encoded in the Green functionGnst1,t2d which sat-
isfies Eq.(15) and determines the noise correlator(9). In the
lowest nonvanishing order injn it is sufficient to employ Eq.
(15) instead of Eq.(34). From the causality requirement one
finds djnstd /dwmst1d=0 for t1. t. Utilizing this property to-
gether with a similar one for the functionKmkstd and making
use of the fact that the noise variables for different scatterers
are uncorrelated one can rewrite Eq.(46) in the form

kjnl = −
1

e
o
m=1

N E dt1dt2Kmnst1 − t2d
dkjnstdjnst2dl

dwmst1d
. s47d

In order to evaluate the functional derivative in Eq.(47) it
is necessary to resolve Eq.(15). Proceeding perturbatively in
dwm and expressing the Green functionGnst1,t2d in the form

Gnst1,t2d = e−iFnst1d+iFnst2dUnst1,t2d, s48d

we arrive at the equation for the functionUnst1,t2d

4p

dn
S ]

]t1
+

]

]t2
DUnst1,t2d = − sgn + gn+1dUnst1,t2d

+ gne
iwnst1d−iwnst2dUn−1st1,t2d

+ gn+1e
−iwn+1st1d+iwn+1st2dUn+1st1,t2d.

s49d

With the aid of this equation we obtain

dUnst1,t2d =
ieiFnst1d−iFnst2d

4p
o
m=1

N E dtgmdwmstd

3 hdmfDnmst1 − td − Dnmst2 − tdgGm−1
s0d st1 − t2d

− dm−1fDn,m−1st1 − td − Dn,m−1st2 − tdg

3 Gm
s0dst1 − t2dj. s50d

Here Gn
s0dst1− t2d is the solution of Eq.(15) obtained for

dḞn=0. It reads

Gn
s0dssd =

− iT

sinhpTs
s1 − an + ane

−ieVsd, s51d

where the coefficientsan are defined after Eq.(39) and the
“diffuson” Dnmstd satisfies the equation
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]Dn,m

]t
=

dn

4p
fgnDn−1,m + gn+1Dn+1,m − sgn + gn+1dDn,mg

+ dnmdstd s52d

with the boundary conditions

D0,m = DN,m = Dn,0 = Dn,N = 0. s53d

As before, due to causality one hasDnmstd=0 for t,0.
With the aid of the above expressions we get

dGnst,t2d
dwmst1d

= − iGn
s0dst − t2dfdst − t1d − dst2 − t1dgusn − m+ 0d

+
igm

4p
hdmfDnmst − t1d − Dnmst2 − t1dg

3Gm−1
s0d st − t2d − dm−1fDn,m−1st − t1d

− Dn,m−1st2 − t1dgGm
s0dst − t2dj. s54d

This equation in combination with Eqs.(9) and(47) enables
one to evaluate the derivativedkjnstdjnst2dl /dwmst1d and de-
rive the final expression for the current. With the aid of Eq.
(21) we obtain

I =
V

RS

+ dI , s55d

wheredI is the interaction correction which can be split into
two partsdI =dI1+dI2:

dI1 = o
n,m=1

N
gm

4p2eRS
E dtdt8

p2T2 sineVt

sinh2 pTt
Kmnst − t8d

3fdmsam−1 − an−1dDn−1,mst8d

− dm−1sam − an−1dDn−1,m−1st8d + dmsam−1 − andDn,mst8d

− dm−1sam − andDn,m−1st8dg, s56d

dI2 = − o
n,m=1

N
bnRn

peRS
2 E dtdt8

p2T2 sineVt

sinh2 pTt
Kmnst − t8d

3 Sdnmdst8d −
gm

4p
fdm−1Dn−1,m−1st8d − dmDn−1,mst8dg

−
gm

4p
fdmDnmst8d − dm−1Dn,m−1st8dgD . s57d

Equations(55)–(57) represent our general result for theI –V
curve of a 1d array of metallic quantum dots in the presence
of interactions. One can verify that in the particular case of
two scatterers or, equivalently, for a single chaotic quantum
dot, Eqs.(55)–(57) reduce to the expressions derived in Ref.
8 by means of a different approach. Let us also note that the
expression for the functionKmnstd is determined by the solu-
tion of Eqs.(17)–(19) under the constraint Eq.(20). Below
we will explicitly find this solution for the specific case of
homogeneous arrays of quantum dots.

VI. HOMOGENEOUS 1D ARRAY

Consider an array formed by the scatterers and quantum
dots with identical parameters. In what follows we setCn
=C, Cgn=Cg, gn=g, bn=b, Rn=R, anddn=d. In this case it
is straightforward to derive the exact expressions for the
functionsKmnstd andDnm. These expressions read

Kmnstd =
2e2

N
o
q=1

N−1 E dv

2p

e−ivt

− iv + 0
Zvq

3 cosSpqn

N
−

pq

2N
DcosSpqm

N
−

pq

2N
D , s58d

where we defined the impedanceZvq

Zvq =
1

1− iv +

1 − cos
pq

N

tD
21C +

Cg

2S1 − cos
pq

N
D2 +

1

R

,

s59d

and

Dnm=
2

N
o
q=1

N−1 E dv

2p
e−ivtDvq sin

pqn

N
sin

pqm

N
,

Dvq =
1

− iv +
1 − cosspq/Nd

tD

. s60d

Here and belowtD=2p /gd stands for the electron dwell
time in a single quantum dot and the coefficientsan reduce to
an=n/N. Making use of the propertyKmnstd=Knmstd and
Dmnstd=Dnmstd we obtain

dI1 = − eo
q=1

N−1 1 + cos
pq

N

2tDRN2 E dv

2p
ImsZvqDvq

2 dBsv,V,Td

+ eo
q=1

N−1 1 + cos
pq

N

tD
2 RN3 ImE dv

2p
ZvqDvq

3 Bsv,V,Td

3
1 − s− 1dquNsvd
1 + s− 1dquNsvd

Î− ivtDs2 − ivtDd, s61d

and

dI2 = −
eb

2N2R
o
q=1

N−1 E dv

2p
ImsZvqDvqdBsv,V,Td, s62d

where Bsv ,V,Td=o±seV±vdcothv±eV/2T and usvd=1
− iv−Îs1−ivtDd2−1. We observe that the second contribu-
tion to the interaction correctiondI2 scales with the Fano
factor b of individual scatterers and, hence, vanishes forb
→0. At the same time the first contributiondI1 does not
depend onb, i.e., it is universal for any type of scatterers.
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We also note that the termdI1 differs from zero for allN.2
but vanishes identically in the case of two scatterersN=2.

The frequency integrals in Eqs.(61) and(62) can be per-
formed exactly with the result

dI = −
2Te

N2 o
q=1

N−13b +

cos
pq

N

4sin2pq

2N
43W1 2sin2pq

2N

pTRS4C sin2pq

2N
+ CgD +

sin2pq

2N

pTtD
+

ieV

2pT2 − W1sin2pq

2N

pTtD
+

ieV

2pT
24

−
4Te

N4 o
p,q=1

N−1 f1 − s− 1dp+qgsin2pq

N
sin2pp

N

Scos
pq

N
− cos

pp

N
D3F2sin2pp

2N
+

R

2tD
S4C sin2pp

2N
+ CgDScos

pq

N
− cos

pp

N
DG

3 3W1 2 sin2pp

2N

pTRS4Csin2pp

2N
+ CgD +

sin2pp

2N

pTtD
+

ieV

2pT2 − W1sin2pq

2N

pTtD
+

ieV

2pT
24 . s63d

Here we defined the functionWsxd=ImfxCs1+xdg, where
Csxd is the digamma function. Equation(63) is the exact
expression for the leading(in 1/g) interaction correction to
the current valid both in linear and nonlinear in voltage re-
gimes and for any number of scatterersN in the system.

Let us consider a physically important limit of relatively
large metallic quantum dots withRC,RCg!tD. Making use
of this inequality one can significantly simplify the general
result Eq.(63) and find

dI = −
2Te

N2 o
q=1

N−15bW1 2 sin2pq

2N

pTRS4C sin2pq

2N
+ CgD +

ieV

2pT2
− 3b −

1 −
2s1 − s− 1dqd

N2 cot2
pq

2N

1 − cos
pq

N
4

3W1sin2pq

2N

pTtD
+

ieV

2pT
26 . s64d

In the linear in voltage regime the above expression yields
the result for the zero bias conductance of the arrayG
=1/NR+dG. The interaction correctiondG takes the form

dG = −
e2

pN2 o
q=1

N−13bL1 2 sin2pq

2N

pTRS4C sin2pq

2N
+ CgD2

−1b −

1 −
2f1 − s− 1dqg

N2 cot2
pq

2N

1 − cos
pq

N
2L1sin2 pq

2N

pTtD
24 ,

s65d

where we have definedLsxd=Cs1+xd+xC8s1+xd.
Let us now briefly analyze the above results in various

limits. The caseN=2 was already considered in details in
Ref. 8, here we will concentrate on the behavior of quantum
dot arrays containing many scatterersN@1. In this case the
expression for the interaction correction Eq.(65) can be fur-
ther simplified. In the high temperature limitTRCm@1
(whereCm=minfC,Cgg) we obtain

dG = −
e2b

6NTRC
S1 −Î Cg

Cg + 4C
D . s66d

At intermediate temperatures 1/RC,1 /RCg@T@1/tD, Eq.
(65) yields
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dG < −
e2b

pN
Fln

1

2pTRC*
+ 1G , s67d

where C* = sÎCg+ÎCg+4Cd2/4. In the intervalp2/2N2tD

!T!1/tD we find

dG < −
e2b

pN
ln

2tD

RC*
−

e2

pN

3zs3/2d
4ÎpTtD

+
e2

pN
F1 +Sb −

1

4
DS1 −

g

2
DÎpTtD +

p

3NTtD
G ,

s68d

whereg.0.577 is the Euler constant. Finally, in the limit of
very low temperatures,T!p2/2N2tD, the correction to the
conductance saturates, and we get

dG < −
e2b

pN
ln

2tD

RC*
− S0.368 −

1

N
De2

p
. s69d

Consider now the nonlinear regimeeuVu@T in which case
the I –V curve is determined by Eq.(63) or (64). We will
again consider the limitN@1 and make use of Eq.(64). At
very small voltages and temperatures,euVu!p2/2N2tD, one
finds dI /dV=1/NR+dG, wheredG is again defined by Eq.
(69). At higher voltages,p2/2N2tD!euVu!1/tD we obtain

dI

dV
=

1

NR
−

e2b

pN
ln

2tD

RC*
−

e2

pN

1
Î2euVutD

. s70d

At even higher voltage, 1/tD!euVu!1/RC*, the differential
conductance takes the form

dI

dV
=

1

NR
−

e2b

pN
ln

1

euVuRC*
. s71d

The linear conductanceG as a function of temperature
and the differential conductancedI /dV at T→0 as a function
of the applied voltage are depicted in Fig. 2 for different
number of scatterersN in the system. One observes that both
quantities(as functions of corresponding variables) demon-
strate a very similar behavior. In both cases four different
regimes can be distinguished, as it was already specified
above. Further discussion of these results is postponed to
Sec. VIII.

VII. EFFECT OF ENVIRONMENT

In order to complete our analysis let us also include the
effect of external leads into consideration. For simplicity we
will follow the standard procedure and assume the leads im-
pedance to be purely Ohmic. This procedure amounts to re-
placing Eq.(20) by a more general one,

o
j=1

N

Vj + IRS= Vx, s72d

whereVx is the voltage applied to the whole system “array

+leads,”RS is the resistance of the leads, andI =CV̇n+ In is
the current flowing through the leads. Due to current conser-
vation the scatterer numbern can be chosen arbitrarily here.

Equation (72) is solved together with Eqs.(9), (14), (17),
(18), and(21) in exactly the same way as it was done above
in the absence of the shunt. As a result, the effect ofRS is
accounted for by means of a simple replacement

Knmstd → Knmstd + KSstd, s73d

whereKnmstd is defined in Eq.(58) and

KSstd =
e2

N
E dv

2p

e−ivt

s− iv + 0dS− iv +
1

R
+

N

RS
D . s74d

Note that the functionKSstd does not depend onn and m.
After such a replacement the new expression forKnmstd
should be substituted into Eqs.(56) and(57) and we arrive at
the result

FIG. 2. The linear conductanceG (solid lines) as a function of
temperatureT together with the differential conductancedI /dV
(dashed lines) as a function of the applied voltageV at T=0. The
results are obtained from Eq.(63) for g=1000, b=1/3, tD /RC
=104, Cg/C=2.5, and for three different numbers of barriers:N
=2, 10, and 50. We identify four different regimes(the boundaries
between them are shown by dotted lines): (I) saturation regimeeV,
T&p2/2N2tD, Eq. (69); (II ) diffusive regimep2/2N2tD&eV, T
&1/tD, Eqs.(68) and (70); (III ) logarithmic regime of almost in-
dependent barriers 1/tD&eV, T&1/RC, Eqs. (67) and (71); and
(IV ) high temperature(classical) regimeeV, T&1/RC, Eq. (66).
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I =
V

RS

+ dI + dIS, s75d

whereV=o j=1
N kVjl is the average voltage across the array and

dI is defined in Eq.(63). The general expression for the
additional termdIS is rather cumbersome and will not be
presented here. Below we will only address the effect of
external leads on the linear conductance in the low tempera-
ture limit T,p2/2N2tD. It turns out that for nonzeroRS
similar to the case of single quantum dots,8 the conductance
saturation is lifted and the result Eq.(69) becomes incom-
plete. Taking into account the shunt contribution to the cur-
rent dIS, one finds

G <
1

NR
−

e2b

pN
ln

2tD

RC*
− S0.368 −

1

N
De2

p

−
e2b̃

p

RS

RS+ NR
ln

p2

2N2TtD
, s76d

where

b̃ =
b

N2 +
1

N4 o
q=1

N−1 f1 − s− 1dqgcos2
pq

2N

sin4pq

2N

. s77d

The sum in Eq.(77) is evaluated exactly and just yields the
Fano factor of the array Eq.(44). Thus, in the presence of an
external shunt the conductance keeps decreasing logarithmi-
cally with T even at very low temperatures. As before, this
logarithmic contribution scales linearly with the total Fano

factor of the arrayb̃ which tends to the universal value 1/3
in the limit of largeN. This result is in the agreement with
our previous findings1,8 and once again emphasizes a direct
relation between shot noise and interaction effects in disor-
dered conductors. Finally, we would like to emphasize that
Eq. (76) is applicable as long as the last logarithmic term
remains much smaller than 1/NR.

VIII. DISCUSSION

In this paper we have proposed a general model which
embraces virtually any type of disordered conductors and
allows to account for Coulomb interaction effects in electron
transport through such conductors. Exploiting an intimate re-
lation between shot noise and interaction effects, in Secs. II
and III we derived a closed set of Langevin-type of equations
which allow to conveniently study electron transport in the
presence of electron–electron interactions.20 The key idea of
our approach is to account for modifications of the shot noise
due to nonequilibrium effects and to self-consistently de-
scribe these effects and their impact on fluctuating charges
and voltages inside the conductor. For the sake of definite-
ness here we focused our attention on quasi-1D conductors,
however one can extend the whole analysis to 2D and 3D
conductors as well. This generalization will be carried out
elsewhere.

The technique developed in this paper allows to obtain a
general formula for the interaction correction to the current,

Eq. (63), which contains all the results derived previously for
various quasi-0D and quasi-1D disordered conductors and
extends these results to yet unexplored regimes. At suffi-
ciently high energies(exceeding the inverse dwell time of a
single quantum dot 1/tD) the scatterers behave as effectively
independent ones, and one can identify two different regimes
(regimes III and IV in Fig. 2) described by Eqs.(66), (67),
and (71). At such energies the interaction correction scales
with the Fano factorb of individual scatterers and in a wide
interval of energies depends logarithmically on temperature
or voltage. For a special case of tunnel barriersb→1 our
results reduce to those derived in Refs. 7 and 14 while in the
limit of ballistic contacts withb→0 (or, equivalently, diffu-
sive wires with point-like impurities) the interaction correc-
tion turns out to be negligibly small in this regime.

At energies below 1/tD (regime II) scatterers located suf-
ficiently close to each other become effectively correlated.
The number of such scatterersNeff in one “correlated” seg-
ment of the array grows with decreasing temperature(or
voltage) asNeff,1/ÎTtD (or Neff,1/ÎeVtD). In this regime
the system can be viewed as a chain of,N/Neff segments,
each of them now playing the role of a “new” independent
scatterer with an effective conductancegeff,g/Neff
,gÎTtD (or ,gÎeVtD). Then the results7,14 can be applied
again, in the corresponding expression for the interaction
correction one should only substitutegeff instead ofg. In this
case the logarithmic dependence of the interaction correction
on temperature/voltage drops out21 and, e.g., for the linear
conductance one findsdG/G,−beff /geff, wherebeff is the
Fano factor of a segment withNeff scatterers. According to
Eq. (44), for sufficiently largeNeff@1 the factorbeff ap-
proaches the universal value 1/3, and we obtaindG/G,
−1/gÎTtD in agreement with the well known result11 and
also with our rigorous formula(68) which, in addition, con-
tains a temperature-independent contribution~b coming
from high energy modes. Finally, asNeff approachesN the
system conductance either saturates(for RS→0, regime I) or
crosses over to the low energy logarithmic regime Eq.(76)
caused by additional voltage fluctuations across the array due
to nonzero external shunt resistanceRS.

It is also straightforward to establish a direct relation be-
tween the results derived here and those obtained diagram-
matically in the linear in voltage regime.10,11 By settingN
→` andb→1 from Eq.(65) we reproduce the results10 for
the interaction correction in tunnel junction arrays, while in
the limit b→0 the latter equation yields the standard result11

for diffusive wires.22 The same equivalence can be observed
at the level of general expressions Eqs.(61) and(62) consid-
ered in the limiteV!T, N→` and for tD@RC,RCg. For
b=1 the result10 follows from the sum of two terms Eqs.
(61) and (62), while for b=0 the second contribution Eq.
(62) vanishes identically and the result11 is obtained only
from the first term in Eq.(61). These observations demon-
strate that the reduction of our model to one for diffusive
wires with point-like impurities is achieved by settingb
→0. In the latter caseN coincides with the total number of
impurities in the wire.

At last, we briefly summarize the applicability conditions
for our results. As was already discussed, our Langevin ap-
proach is justified in the metallic limitgn@1. Under this
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condition our technique should account for all essential pro-
cesses except for subtle instanton effects which may show up
only at exponentially low energies. An obvious necessary
(though possibly not sufficient) validity condition of our re-
sults derived in the linear in voltage regime isdG/G!1.
While at high enough temperatures this inequality is auto-
matically fulfilled in the metallic limitgn@1, at the lowest
energies/temperatures a much more stringent conditiongS

=2p /e2RS@1 has to be satisfied. The latter condition is in-
evitably violated for a large number of scatterersN in which
case a nonperturbative analysis becomes necessary in the low
energy limit. This analysis is beyond the frames of the
present paper. In the nonlinear regime and at sufficiently
high voltages the applicability range of our results can be

additionally restricted by electron heating effects which we
do not address in this work.

ACKNOWLEDGMENTS

The authors are grateful to D.A. Bagrets and S.V. Sharov
for stimulating discussions. This work has been supported by
the European Community’s Framework Programme NMP4-
CT-2003-505457 ULTRA-1D “Experimental and Theoretical
Investigation of Electron Transport in Ultranarrow One-
Dimensional Nanostructures” and by the Kompetenznetz
“Funktionelle Nanostructuren” of the Landestiftung Baden-
Württemberg gGmbH.

1D. S. Golubev and A. D. Zaikin, Phys. Rev. Lett.86, 4887
(2001).

2A. V. Galaktionov, D. S. Golubev, and A. D. Zaikin, Phys. Rev. B
68, 085317(2003); 68, 235333(2003).

3M. Kindermann and Yu. V. Nazarov, Phys. Rev. Lett.91, 136802
(2003).

4D. A. Bagrets and Yu. V. Nazarov, cond-mat/0304339(unpub-
lished).

5L. S. Levitov, H. Lee, and G. B. Lesovik, J. Math. Phys.37, 4845
(1996).

6Ya. M. Blanter and M. Büttiker, Phys. Rep.336, 1 (2000).
7D. S. Golubev and A. D. Zaikin, Phys. Lett. A169, 475 (1992);

Sh. Farhangfar, R. S. Poikolainen, J. P. Pekola, D. S. Golubev,
and A. D. Zaikin, Phys. Rev. B63, 075309(2001).

8D. S. Golubev and A. D. Zaikin, Phys. Rev. B69, 075318(2004).
9P. Schwab and R. Raimondi, Eur. Phys. J. B30, 5 (2002).

10I. S. Beloborodov, K. B. Efetov, A. V. Lopatin, and V. M. Vi-
nokur, Phys. Rev. Lett.91, 246801(2003).

11B. L. Altshuler and A. G. Aronov, inElectron-Electron Interac-
tion in Disordered Systems, edited by A. L. Efros and M. Pollak
(North-Holland, Amsterdam, 1985).

12M. J. M. de Jong and C. W. J. Beenakker, Phys. Rev. B51,
16 867(1995).

13S. Oberholzer, E. V. Sukhorukov, C. Strunk, and C. Schönen-
berger, Phys. Rev. B66, 233304(2002).

14G. Göppert and H. Grabert, Eur. Phys. J. B16, 687 (2000).
15A. Kamenev and A. Andreev, Phys. Rev. B60, 2218(1999).

16G. Schön and A. D. Zaikin, Phys. Rep.198, 237 (1990).
17D. S. Golubev and A. D. Zaikin, Phys. Rev. B59, 9195(1999).
18Note, that the parametrization(30) is not identical to that pro-

posed, e.g., in Ref. 15. It is straightforward to demonstrate that
the final result does not depend on the choice of the parametri-
zation of theQ field. The form(30) is convenient as it allows to
easily identify the noise terms within our Langevin equation
analysis.

19The necessary(though not always sufficient) condition for this
approximation readsgn@1. On the other hand, it is easy to
check that the condition 2p /e2RS@1 is always sufficient. How-
ever, the latter condition is actually too stringent at not too low
temperatures and voltages.

20In order to avoid misunderstandings we would like to emphasize
again that our present approach accounts for the interaction cor-
rection to theI –V curve and isnot meant to describe weak
localization effects and interaction-induced dephasing(Refs. 11
and 17) which we do not address in this work.

21In this case the combinationTtD
eff occurs under the logarithm,

wheretD
eff is the total dwell time forNeff scatterers. This combi-

nation reduces to a temperature independent constant of order
unity sincetD

eff,1/T.
22In order to observe the equivalence between our Eq.(65) in the

limit b→0 and the results(Ref. 11) for the interaction correc-
tion in quasi-1D diffusive wires it suffices to introduce the dif-
fusion coefficientD=a2/2tD, where a is the size of a single
quantum dot.

D. S. GOLUBEV AND A. D. ZAIKIN PHYSICAL REVIEW B 70, 165423(2004)

165423-12


