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We develop a detailed theoretical investigation of the effect of Coulomb interaction on electron transport in
arrays of chaotic quantum dots and diffusive metallic wires. Employing the real time path integral technique
we formulate a new Langevin-type of approach which exploits a direct relation between shot noise and
interaction effects in mesoscopic conductors. With the aid of this approach we establish a general expression
for the Fano factor of 1D quantum dot arrays and derive a complete formula for the interaction correction to
the current which embraces all perturbative results previously obtained for various quasi-OD and quasi-1D
disordered conductors and extends these results to yet unexplored regimes.
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I. INTRODUCTION 1 eZE
. . —=—2 T 2
Recently a profound relation was elucidatedoetween R @5 k @

full counting statisticFCS° and electron—electron interac- ) ) )

tion effects in coherent mesoscopic conductors. In particula(t) is the noise of the scatterer, characterized by the cor-
it was demonstratédthat the leading interaction correction relator

to the current through such conductors is determined by the _ _

second cumulant of the current operatSy, i.e., by the (&(ty) &(ty)) = 1-f+Bcodelty = ¢(ty)]

power spectrum of the shot noi&&he interaction correction R
to the shot noise&s, was in turn found proportional to the dw O oti-ty

third cumulant of the current operatSs. Even more gener- X f Py coth 18 vz, )
ally, one can show that the lowest order interaction correc-

tion to thenth current cumulans, is determined bys,,,, for ~ where

all values ofn. Since the current cumulants in the absence of

interactions can be conveniently analyzed within the FCS B 2ka(l_Tk) 4
formalism® the above observations provide a great deal of B= ST (4)
information about the effect of electron—electron interactions kK

as well.

, ) ) , . is the Fano factor, andg(t) is the equilibrium noise of the
In order to investigate the influence of interactions ONghunt with the correlator

higher current cumulants it is in general necessary to employ

a complete expression for the effective action of a coherent _1 [ do [
scattere? 4 At the same time the resuttfor the first cumu- (Est)és(to)) = Rs f oY COthEe e, )
lant, i.e., the relation between the leading interaction correc- ) )

tion to the current and the shot noise can be understood The whole approach based on E¢B(5) is applicable
already within a simple and transparent theoretical frame€ither at sufficiently high energies or, more importantly, if at
work of quasiclassical Langevin equations. In the case of &ast one of the two dimensionless conductancgs,
single coherent scatterer shunted by some linear Ohmic rg2m/€°R and/or gs=2m/€’Rs, remains large. The above

sistorRg these equations take a remarkably simple form ~ Langevin equations make the relation between the interac-
tion correction to the current and the shot noise completely

Cé + lo_ 1(t) + transparent demonstrating that the former can be derived just
= &), - : L :
e Re if one accounts for the noise contribution in the equation
describing the balance of currents across the scatterer.
1 o The above simple approach may hold only for relatively
Re Vi = o) I(t) + &5(1). (1) compact scatterers, in which case the description of interac-
tion effects with the aid of the uniform in space fluctuating
HereC is the scatterer capacitaneg,e=V is the fluctuating field ¢ is sufficient. For spatially extended conductors the
voltage across the scatterer ands the total voltage applied coordinate dependence of this field cannot anymore be dis-
to the system “scatterer+shunt.” As usual, one describes thegarded and the whole analysis needs to be modified. This
scatterer by a set of conducting channels with transmissionsiodification is trivial if one considers an array of scatterers
Ty The scatterer conductance is then defined by means of tinnected between each other by relatively big metallic
standard Landauer formula: grains. Assuming that the electron distribution function in
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each of these grains remains in equilibrium one can describe ¢ GG

the nth scatterer by its own fluctuating fielgl, which obeys W :

the same set of Langevin Eq4)—(3). For arrays of tunnel

junctions this approach was employed in Ref. 7. The corre- R.B, [R.B. [ RBs

sponding generalization of the restlts the case of arbitrary 16 G ¢

scatterers just requires modification of the Fano factor in the

noise correlator3). FIG. 1. 1D array of chaotic quantum dots. The array consists of

The condition of local equilibrium inside metallic grains N-1 dots andN barriers. Thenth dot is characterized by mean level
implies that the corresponding electron dwell time be-  spacings, and gate capacitane,,. Thenth barrier is described by
tween two adjacent scatterers should be much longer than thg Landauer conductance R4, capacitance,, and Fano factopg,.
inelastic relaxation timey,. If this condition is violated, the  The array is placed between two big metallic reservoirs which are
electron distribution function is driven out of equilibrium connected to the voltage source via Ohmic resiggr
and the whole consideration becomes more complicated. In
the case OT a quantum dot formeq by two qrbltrary SCattereraistribution function may significantly deviate from the
the latter situation was analyzed in details in Ref. 8 and als

in Refs. 4 and 9 for the case of chaotic dots. In all thesékermi function, it is possible to account for these deviations

works it was demonstrated that in the limit of large conduc—Within the (generalizedi Langevin equation analysis and to

tances and in the voltage biased regime the interaction coformulate a closed set of equations which fully determine the
rection to the conductance tends to saturate at temperaturdgferaction correction to thie-V curve of disordered conduc-
voltages below 1#y. This implies that for finite values of,  tOrS:

highly conducting quantum dots should show metallic be- The structure of the paper is as follows. _In Sec. Il we will
havior down to zero temperature. specify the model of a disordered metallic conductor and

It is important to emphasize that this observation holds’résent a phenomenological derivqtion of th'e basic Lgngevin
only provided the voltage source is attachdicectly to the equations for our_problem. This derivation will _be carried out
quantum dot, i.e., the external impedance is equal to zerdVith the aid of simple and transparent physical arguments
For nonzero external impedances voltage fluctuations lift thé/hich make the whole approach easy to understand without
conductance saturation, and the amplitude of the interactiofi®ing into technical details. A more advanced analysis em-
correction keeps increasing with decreasingven at tem- Ploying the effective action technique will be described in
peratures well below 1. In this regime the interaction Sec. lll. This analy5|s _proyldes rigorous jus_tlflcatlon for our
correction was fourfdto scale linearly with the total Fano phenomenologlcal derlvatl(_)n and allows to |IIL_Jstrate a useful
factor of the quantum dot and to depend logarithmically or]relatlon.between our technique and_the classical Boltzm_ann—
temperature/voltage for sufficiently large external imped-Langevin approac.ﬁrln Sec. IV we will probe our Langevin
ances or if this impedance is purely Ohmic. technique by explicitly deriving the shot noise spectrum and

For similar reasons no saturation of the interaction correcth® Fano factor for arrays of chaotic quantum dots in the
tion at energies below X should be expected for chains absence of mteractlon_s. The remal_nde_r of the_paper W|Il_be
and arrays of quantum dots. Recently this situation was andlevoted to the _analy5|s of the leading interaction correction
lyzed diagrammaticall in the case of granular tunnel junc- © the current in arrays of quantum dots and mesoscopic
tion arrays. Indeed, it was found that the interaction correcdiffusive wires. In Sec. V we will derive the general expres-
tion increases with decreasing temperature both above ariion for this correction which then will be applied to homo-
below the inverse dwell time in individual grains. At 9€Neous arrays of quantum dots m_Sec. VI. In th«_e latter case
T< 1/, the author¥ recovered exactly the same expressionwe Wlll_establlsh a complete analytic fo_rm of_ the_l_nteractlon
for the interaction correction as that known in the case ofcOr"ection and present the corresponding simplified expres-
diffusive conductors! This equivalence is by no means sur- SIOnS in @ number of important limits. Cgulrl%fnergl formula,
prising if one bears in mind the fundamental relation be-Ed- (63), embraces all previous resulits”*!-*obtained in
tween the interaction correction and the shot noise on on¥arious types of quasi-OD and quasi-1D disordered conduc-
hand, and the resul&!3 on the other hand, which demon- ©rS: allows to establish a transparent relation between these
strate that the shot noise of a sufficiently long array of tunnel€Sults and to extend them to yet unexplored regimes. A brief
junctions is equivalent to that of a diffusive wire. Extending @nalysis of an additional effect of external leads will be pre-
these arguments to arbitrary scatterers, with the aid of th&&nted in Sec. VII. We will then discuss our results and con-
resultd3 one can anticipate that at sufficiently low energiesC!ude the paper in Sec. VIII.

(=1/7p) and large spatial scales the interaction correction

should be described universally for any array of quantum; e \opEL AND PHENOMENOLOGICAL ANALYSIS

dots and ultimately foany mesoscopic conductor in the me-

tallic regime. This universality will indeed be demonstrated We shall consider a chain ¢i—1 quantum dots as it is
below. shown in Fig. 1. Each dot can be viewed as an island be-

The main goal of the present paper is to generalize théween two scatterers/barriers which in turn connect adjacent
simple Langevin equation approdcto situations in which quantum dots. Electrons can enter the dot through one of the
relaxation of the electron distribution function occurs atbarriers, spend some time there propagating between the bar-
much longer time scales as compared to the electron dwellers, possibly being scattered at the barriers, outer walls or
time between two adjacent scatterefs< 7. Although the  otherwise, and finally leave the dot through another barrier.
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In what follows we will adopt the model afhaoticquantum G (t,,t;)=G(ty,t,). In equilibrium the distribution function

dots. equals to the Fermi function
Each of theN barriers will be described by its Landauer
conductance 1R,=(e?/m)=, T, capacitanceC, and Fano fF(E):;' (8)
factor ,8n=EkT(k”)(1—Tf<”))/2kT§‘), whereT\"” is the transmis- 1+ ex;<E>
sion of thekth conducting mode in thath barrier. We also T

define dimensionless conductances of the scatteggrs Substituting this function into Eq7) one findsGy(t,,t,)=

=27/€’R,. In what follows we will assume that each scat- ~. . . . S
terer has many conducting channels and that its dimension- - Re1/sinhaT(t,~t,+ie)], where ¢ is an infinitesimal

less conductance is largg> 1. Thenth dot will be charac- POS!tive  constant. Atl—t, one gets Gylty,t)—
terized by the mean level spacidy=1/NyV,, whereV, is | Re[l/w(tl—.t2+|'e)]. This analypcal property tu.r'ns'out to
the dot volume and\, is the density of states at the Fermi P& general, i.e., it equally applies both to equilibrium and
level. For the sake of generality we will also assume thaf’onequilibrium situations. Expressing E@) via Gy(ty,t),
each dot has an additional capacitance to the grabgd W€ obtain

Finally, the first and the last scatterers are connected to two 1 & B
big metallic rese_rvoirs which in turn are connepted to the S, (t,1)) :—an— Z_RH[Gn—l(tlth)Gn(thtl)
voltage source via external leads with an Ohmic resistance m 172 n
Rs (1 -y

An important assumption concerns the spatial dependence + Gn(ty, 1) Gna(taty) ] = TR, [IGn-1(ty, tp)[?
of fluctuating voltages in our system. Similar to Ref. 8 we ,
will allow for voltage dropsV,(t) only across the barriers, +[Gy(ty, )71 9

while inside the dots voltages can depend arbitrarily on time,

but not on the spatial coordinates. This assumption is usual%e distribution function does not depend on time, we will
well satisfied for metallic dots considered here. In the lead§y, )\ |ater that it remains valid also in nonstationz;ry situa-

the voltage fields are assumed to vary slowly in space. In thﬁons. In the latter case the functi@(t,,t,) can be under-

course .Of our Qerlvat!on we V.V'" essentlally neglect all stood as the Keldysh component of the quasiclassical Usadel
mechanisms of inelastic relaxation which are not related 1% reen function

electron—electron interactions. We will also disregard weak
localization effects which can be easily suppressed, e.g., by B. Kinetic equation
externally applied magnetic field.

We will now proceed with our phenomenological analysis
of the above model.

Ithough Eq.(9) has been derived under the assumption that

Our next step is to derive the kinetic equation for the
function G|(t;,t,). For simplicity we again start from the
stationary situation, in which case fluctuations of voltages in
) our system can be neglected. In what follows we will assume

A. Noise correlator that bothf,(E) and G(t;,t,) do not depend on coordinates

As a first step we will specify the general expression forinside thenth dot. The total number of electrons with ener-
the noise correlator needed for our derivation. Let us assumgies in the interval [E,E+dE] in the nth dot is
that the electron distribution functiofy,(E) in the nth dot  2NyV,f,(E)dE, where the factor 2 accounts for spin degen-
does not depend on time for allbut may deviate arbitrarily eracy. This number may change in time only if electrons
from the Fermi function. Below we also assume that theleave and/or enter the dot through the letfth) and the right
electron energies are measured with respect to the unigue+ 1th) barriers. One finds
reference energy for the whole array. In this case the noise of

the nth scattereiS, (t;,t,) =(&,(t1) &,(t,)) takes the forrh ﬁzﬁfn(tf) = Jin _ jout (10)
5n (?t n n -
1 dw )
Snlty,ty) = R, f Py f dEe B [, (E)hy(E + w) The escape rate from theh dot and the transition rate to

this dot, both through thath scatterer, are, respectively,
+fo(E+ @)hy-1(E) + fo(E)hp1(E + w)

+ fn—l(E + w)hn(E)] + (1 _Bn)[fn—l(E)hn—l(E + w)
+ fr1(E+ 0)hy 4 (E) + f(E)hy(E+ 0)

Fn—l,n = gn5n/4771 1_‘n,n—l = gnén—1/477- (1)
Then for J3" one obtains
Jﬁut: 2(1_‘n+1,n + I‘n—l,n)fn(E)d E/5n:

+(E+ o) (B}, (6) - - a |
) ) and similarly forJ;. Combining the above simple expres-
dE ., _ A of
Gil(ty,tp) = f S_eEl tZ)[l ~ 2A4(B)]. () ——'=- (Gn+ G+ fn+ Onfros + Oneafnen, (12
2 o, dt

In stationary situations this function depends only on thewhere I=n<N-1. The boundary conditions to this kinetic
time difference t;—t, and it also obeys the condition equation are set by the requirement that the distribution func-
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tions in the left and the right reservoirg, and fy, are equal G =ln— e (19)

to the Fermi function, i.e., ) .
Finally, the sum of all fluctuating voltageg, should be

fo(E) = fe(E), f\(E) = fr(E-eV). (13)  equal to the total applied voltage,
Here and below is the total voltage applied to the array. We N
note that the function 12 also satisfies Eq.12). > V,=V. (20)
The kinetic equation for the functio,(t;,t,) can be ob- n=1

tained from Eq.(12) if we identify t=(t,+t;)/2, introduce Equations(9), (15), and(17)~(20) form a complete set of
s=t,~t, and make the Fourier transform of Eq2) by tak-  equations, which allow us to find the first order interaction

. . _'E .
ing the integralf dE/27e E%(...). Then we obtain correction to the |-V characteristics for an array of quantum
47 3G, (1,9) dots. These equations represent a straightforward generaliza-
— " = = (gh + Gns1)Gn(1,9) + 9,Gn1(t,9) tion of the Langevin approach employed in Ref. 7. In con-
o trast to the latter, however, our present analysis accounts for
+ 0ne1Gnea(1,9). (14) the electron dwell time in quantum dots and also nonpertur-

. i ) batively treats electron transport through the scatterers. In the
As we have already pointed out E(L4) applies only in  jimit of long dwell times Ty, ,<1/7, and small channel

stationary ;ituations. A proper generalizatio_n of this _equatiorlransmissionsﬁnal (i.e., for tunnel junction arraysour
for nonstationary cases can be achieved with the aid of gensquations are replaced by those of Ref. 7.

eral gauge invariance arguments which yield

A 0 aJ .- - D. Interaction correction and shot noise
?<_ + =+ (ty) - |¢n(t2))Gn(t1:t2) . . . . .
n \dty oty Finally, let us establish an important relation between in-
_ teraction correction to the current and the shot noise. Per-
== (9n * Yn+1)Gn(tn,to) + GnGn-a(ty, to) forming summation of Eqgs(18) with the weightsR,, we
+0n+1Gnaa(tyty), (15  obtain
where we definedI)n(t):Ejf‘zle\/j(t). This kinetic equation \V; N Ry(&)
holds for arbitrary time dependent voltages. As before, the I= R > R (21
boundary conditions to this equation read % n=L TR
1 This formula generalizes our previous results derived for a
Golty,ty) =—iTRe— — coherent scattereand a quantum ddto the case of quan-
sinh7rT(ty ~t; +ie) tum dot arrays and spatially extended disordered conductors.
Equation(21) demonstrates that the interaction correction to

1 the -V curve of an array of scatterers scales linearly with
, —. (16) .
sinhaT(t; —t, +i€) the current noise produced by these scatterers. In the absence
of noise the interaction correction is identically zero, and the
standard Ohm’s law is recovered. Equati@i) will be ex-

Gy(ty,ty) = —iTe Vi IRe

C. Balancing fluctuating charges and voltages tensively used in our subsequent calculation.
In order to complete our simple analysis we formulate the
standard circuit theory equations, which allow to include the lll. RIGOROUS DERIVATION

effect of charge accumulation in quantum dots. Let us define The phenomenological analysis presented in Sec. II
the fluctuating excess charge in theh dotq,. We assume  ¢jaayly jllustrates the relation between shot noise and inter-

that all quantum dots are well described by the capacitancgeion effects in electron transport. Now we will demonstrate

model, in which case one finds that Eqgs.(9), (15), and(19) can also be derived within the
n framework of a rigorous quantum mechanical procedure.
Qn:Cn+an+1_CnVn_an2 V. (17)  This derivation will also allow to determine the validity
j=1 range of our Langevin approach.

We first note that for a particular case of two scatterers the
above equations follow from the effective action anafysis
after averaging of the action over mesoscopic fluctuations.
Below we will see that for the casi=2 these equations
yield exactly the same results as those derived in Ref. 8 for
chaotic quantum dots. Direct generalization of the method

Vv, to the case of quantum dot arrays, though technically pos-

In=5" +Inno10n-1 = PaeanOn + - (18)  sible, turns out to be rather involved since one should first

Ry establish the full quantum mechanical action for the whole

The variation of the chargg, is in turn determined by the array and then perform its averaging over mesoscopic fluc-
currents flowing through theth andn+1th barriers. We get tuations. In this case it appears more convenient to average

Here C,, is the capacitance of theth barrier andCy, is the
capacitance of thath dot to the ground. The curreihy is
formed by the sum of three different terms, namely the stan
dard Ohmic termV,/R,, the *“kinetic’ term I'y, 10,1
—-I'-100, and the noise terng,:
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the action already at the first stage of the calculation. In order . —iTeeMt (g + i)
to accomplish this goal we will employ the nonlinear Qn(ty,tp) = sinh 7 T(t, - t,)
o-model-type of approach combined with the Keldysh tech- TR
nique. This method was proposed in Ref. 15 and recentlyhysical observables can be evaluated by means of the fol-
applied to chaotic quantum dots in Ref. 4. Below we will lowing equation:

extend this technique to arrays of quantum dots.

=8ty ~t)oy. (27)

- - é

A= VDanDdﬂD(I) A(— —)e‘s (28)

A. Effective action QL ob" ob
In the presence of electron—electron interactions generah the FCS-type of approagf the matrix(vgn has the form

quantum mechanical description of both compact . A .

scatterers*16 and extended disordered conduct®f€ can Qn = &7 Gy(a, +i0y) - G, Je " xn"72, (29

be formulated in terms of the effective action which depend

on the fluctuating Hubbard—Stratonovich fields and V, for the nth quantum dot. In our problerg, has to be replaced

defined on the two branches of the Keldysh contour. In th%y an arbitrary fluctuating Hermitian operator. This observa-

situation considered here the action also depends on the ﬂuﬁon suggests the following parametrization of the operator
tuating Green l‘unctlorQn which is 2X 2 matrix in Keldysh  ~

space satisfying the normalization condition Qni

%Nherexn is the time and space independent “counting field”

Q ean Z[G (o, + |0'y) oy e _IWnUZa (30)

‘s ~ . . ~ . . A
Qtytp) = J dt:Q(t1, 1) Qta o) =t — 1)1, (22) where G,, and Wn are Hermitian operatof$S. Here G, ac-
counts for fluctuations of the electron distribution function in

and on the fluctuating phases of the dots the nth quantum dot or, more generally, for fluctuations of
the Keldysh—Usadel Green function. The operatdy de-
. D ; p ” ; - . .
=D 1+ —, (23) scribes “quantum fluctuatlo.ns of the f|egan. It |.s p_ossmle
2 to demonstrate that an arbitrary opera@y satisfying the

normalization condition Eq22) and being sufficiently close
to the “classical” oner)(&ZH&y)—&x, can be written in
A the form (30). We further note that the parametrization Eq.
o = dv e[V 4(t') + V; o(t)]/2, 24 (30) is no'g identical to that proposed |n.R.ef. 15.
. 2 eV}t +Vt))] (24 Assuming quantum effects to be sufficiently srialiét us
expand the action E@26) to the second order in the opera-

tors\7V . Then we obtain

where we defined

Nt
Dr=2 | dtelV(t) -V, ot)]. (25) - t
_ : : Pnén Caqn, 2 -
=17t iS=i dt’ S +i dt’(—g— —)d) @
’ E e? nEl e 5
Here and belowsy,, are the Pauli matrices in Keldysh 12 g . .
space. +2 Tr[mb G, - ( —CI)n,Gn>Wn}
The complete expression for the effective action of the on ot
array reads N o A A
_ + E gnTr|:_ i(Gn - Gn—l)VAVn + BnGn—l\?VnGn\iVn
, Co@n&n C o (Can. 2\ oo n=1
iS= |E dt 2 +|E dt 2t O, D, 15
n=1J0 n n((G an)2+(Gan) ) W2:|,
N
kK (1 ~ ~ ~
* nzl S In{l * =, {Qn-1.Qul - 2)} wherew,=W,-W,_;. The quadratic in¥, terms can be de-
_ coupled with the aid of the Hubbard—-Stratonovich transfor-
27 F N I mation. One finds
- E lTr[(i——QDn——”aZ)Qn} (26)
=1 O a 2 N R R R
exp 2 gnTr<:8nGn—anGan + n—an)2
Here the trace includes the summation over the channel in- n=1
dexk while the superscriph indicates the scatterer number. R N
The boundary conditions for the operat@sare* +(G)?] —Wzn) = (el | (31
Qo(tl, ,) = M 8ty — 1) &y, where we introduced the Gaussian stochastic operé;tor
sinh7T(t; - ty) X with the pair correlator
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(Lt 1) En(ta,ts)) = 29,8(t3 — 1) Sty — t,) Boltzmann—-Langevin approatto arrays of quantum dots.
Within the framework of the adiabatic approximation the lat-
~ OnBnl Gn-1(ta, t2) Gn(t2, 1) ter approach follows directly from our rigorous analysis.
+ Gy(t3,t) G (ty, )]
= 0n(1 = BGy(t3,15)Gp(ty, ta) C. Excess charges
+ Gpq(ts, 1) Gpoq(ty, 1) ] (32) Let us now integrate out the field,. Being performed

with the action Eq.(26) this integral gives the functional
delta-function equivalent to the equatiais/ 6»,=0. This
equation yields

We are now in a position to derive the equation of motion

B. Kinetic equation and Boltzmann—Langevin approach

ixG ic limitg,> 1 it is suffici 288\, o . 2med
for the _matrlen. In the metallic I|m|tgn.>1 it is _sgfﬂugnt _ (an+ _)E Vi = CoVn+ CoutVies - i—Gn(t,t) -0.
to restrict our analysis to the least action conditigsi oW, on /=1 oy dt
=0 which yields (37)
4—77[i+i<b (t) G } The last term in Eq(37) can be expressed via the excess
h e chargeq, in the nth dot. In the stationary case this charge

A “ A A A variable is defined as follows
= gnGn—l + gn+1Gn+l - (gn + gn+l)Gn + gn - §n+1-

2e :
(33) == f dE[f,(E + @y) - fr(B)]
Dropping the operator notations one can rewrite the same " )
equation in the form 2me s, s i 2ed,
= im|Gy(t+-t——|+— |+ . (38

Al 9 J . ) h s—0 2 2 TS on

—| =+ — +iD(t) —iD,(y) |G, _ _ _ . o

Oy \dty  dty This definition can be applied to nonstationary situations as

well then Eq.(37) is replaced by Eq(17).
Finally, let us consider the limit —t, in Eq.(34). Setting
(34 t=(t,+t,)/2, we arrive at Eq(18) and(19) where the noise
Under the conditiong,>1 one can also neglect the noise {€rMsé, are identified ag,(t)=e{(t,t)/2. With the aid of Eq.
terms £, in Eq. (34) which can only contribute in higher (32) one can check that the noise correlatgy(ty)éq(tp)) is
orders in 18, Dropping these terms one observes thegiven by Eq.(9). This observation completes our derivation.
equivalence of the Eq¢15) and(34).

It is also useful to illustrate a simple relation between our
Eg. (34) and the standard Boltzmann—-Langevin apprdach,
which is frequently used, e.g., for the analysis of the shot The first and immediate application of our formalism con-
noise in disordered conductors. Let us again defmé; cerns the analysis of the shot noise in arrays of scatterers
+1,)/2 ands=t;-t,. We will assume thaG, varies slowly and/or quantum dots in the absence of interactions. We will
with t and®,, is a slow function of time. Replacingb,(t;)  €MPloy Egs(6), (12), and(18) and evaluate the noise spec-
trum of quantum dot arrays in the zero frequency limit. Our
procedure is similar to that applied in Ref. 13 to arrays of
identical chaotic cavities.

= gnGn—l + gn+1Gn+1 - (gn + gn+1)Gn +4n— §n+1-

IV. SHOT NOISE

—id)n(tz)—>i<i5n(t)s and performing the Fourier transforma-
tion of Eq.(34) with respect tcs, one arrives at the equation

for the distribution function From Egs.(12) and(13) we obtain
‘;_’T(% R cple) W)= 1-a)B +afE-eV), (39
" where we have defineﬂ]:ETZle/Rz. Substituting the result
= Onfro1 * Oneafres = (G0 + Oned) Fro = 0+ 7net, Eq.(39) into Eq.(6) we derive the noise spectrum for thth
(35)  junction. In the zero frequency limit one finds
where 27,=[dse®,(t+s/2,t-s/2) and Sn=2|&220 =[1 - an(1 - ay) —ay-1(1 -2y

(7(t,E) p(t',E")) = 279 Snndt — ') S(E - E’)

4T
= Bnla, - an—l)z]_ +[ag-1(1—a,-p) +ay(1-ay,)
X{Bal Fn(t,E)Np-a(t,E) Rn

+ fn_]_(t, E)hn(ta E)](l - Bn) + IBn(an - an—l)z] 2ev COth i/ (40)
X[t E)n(t,E) R 2T
+ 14t E)h L (LE)T. (36) Finally, we note that at sufficiently low frequencies the term

with chargesq, in the right-hand side of Eq18) can be
Equations (35) and (36) represent an extension of the neglected. In this limit the current fluctuatior® in the
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whole array are related to the current and voltage fluctuationsequirement one has,(7<0)=0. Making use of the above
across thenth scatterer as relation in the lowest nonvanishing order one can express the
average value of, in the form

Vn
o=—"+&, (41) N
- (€= [ 2500 s
where fluctuating voltages are subject to the constraint m=1 ! Som(t) !

SN 8V,=0. We obtaindl = (1/RE)En R.&, and

_ 1 2 dtldtszk(tl—t2)< sl &t 2)>

S= 2 RASIRS. Cmk=1 m(ty)
n=1 (46)
Then with the aid of Eq(40) we get Here the derivatived¢,(t)/ Se,(t;) accounts for the feedback
~2eV eV of the phase fluctuations on the shot noise. Formally this
S=(1- ,3)—E + B_z coth—., (42)  effect is encoded in the Green functi@(t;,t,) which sat-

isfies Eq.(15) and determines the noise correlat®y. In the
whereg is the Fano factor for 1D arrays of chaotic quantumlowest nonvanishing order ig}, it is sufficient to employ Eq.

dots, which is obtained in the form (15) instead of Eq(34). From the causality requirement one
N finds 6&,(t)/ o (t1)=0 for t;>t. Utilizing this property to-
~ 1 D Rﬁ 1 gether with a similar one for the functidf,(t) and making
B= 37" = % Pn= 3/ (43 Use of the fact that the noise variables for different scatterers
- are uncorrelated one can rewrite E46) in the form
For arrays of diffusive scatterers wi)=1/3 oneobviously N
getsB=1/3 for all valuesR,. For homogeneous arrays with __ 1 L Xén(D)én(ty)
Rn:R and Bn:ﬁ Eq (43) y|e|dS <§n> 2 dtldtZKmn(tl t2) §(Pm(t]_) . (47)
,3— 11 (/3‘ }) (44) In order to evaluate the functional derivative in E4j7) it
3 N2 3/ is necessary to resolve Ed.5). Proceeding perturbatively in
. . . S, and expressing the Green functi@p(t;,t,) in the form
This result demonstrates that in the lift—«~ an array of ém P g Gt )
arbitrary—not necessarily diffusive—scatterers should be- Gty ty) = €O HPIY (¢, t,), (48)

have as a diffusive conductor with— 1/3. In the case of
identical transmissions for all conducting channels @)  We arrive at the equation for the functidiy(t;,t,)
reduces to that derived in Ref. 13.
A7 J _
5, (a’[l + E)Un(tlvtz) == (gn + gn+1)Un(t11t2)
V. GENERAL EXPRESSION FOR THE CURRENT ) )
+gpe e TenDU L (t, 1)
Let us now turn to the calculation of the current—voltage _ _
characteristics in the presence of electron—electron interac- + Gper€ et WY (1, t).
tions. According to Eq(21), in order to accomplish this goal (49
it is necessary to evaluate the average value for the noise
terms &, This average would vanish identicallyg,)=0,  With the aid of this equation we obtain
should there be no dependence between the fluctuating volt-
ageV, and noise&,. However, since such a dependence in U ()= o "7 Ie"b (t)=iPn(t) 2
general exists, the averagég,) differ from zero and the ni2
interaction correction remains finite. 0
In this paper we will restrict ourselves to the perturbation X {3 Dmts = 7) = Dplto = DG4 (1 — 1)

theory and provide a general expression for the interaction =8 [Dpmalty = 7 = Dyt = D]
correction to thé—V curve. In what follows we will consider
noise as a small perturbation, in which case in the leading X Gty ~ 1))} (50
approximation fluctuations of the phase wth junction and ©) . . )
the noiset,, are related to each other by means of a simpldiere G, (ti—ty) is the solution of Eq.(15 obtained for
formula 6®,=0. It reads

d7gmdem(7)

N
_ 1 _ Oy 1T eV
Seq(t) = emEﬂ d7K it = D) En(7). (45) GV =S Ts(l a,+a,eY9, (52)

An explicit expression for the functiol,,(7) will be speci- where the coefficienta, are defined after Eq:39) and the
fied later. Now we only point out that due to the causality“diffuson” D,(t) satisfies the equation
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dDpm
at

5
ﬁ[gnDn—l,m + gn+1Dn+1,m - (gn + gn+1)Dn,m]
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VI. HOMOGENEOUS 1D ARRAY

Consider an array formed by the scatterers and quantum
dots with identical parameters. In what follows we €&t

+ Symolt 52
nmA(t) (52) =C, Cgn=Cqg Gn=0, Bn=8, R,=R, and 6,=4. In this case it
with the boundary conditions is straightforward to derive the exact expressions for the
functionsK,,{(t) andD,,, These expressions read
Dom=Dnm=Dno=Dnn=0. (53 2ezN 1 it
Kmnn(t) = _2

As before, due to causality one hBsg,(t)=0 for t<O0.
With the aid of the above expressions we get

271' iw+0

X cos(w—qn - 7T—q>cos<ﬂn— W—q> (58)
N 2N N 2N

oG, (1,t .
%(tj) =-iGP(t- [ dt—ty) - st~ ty]é(n—m+0)
Pmit where we defined the impedanzg,
g
+ 4_m{5m[Dnm(t - tl) - Dnm(t2 - tl)] 1
7T wq = 1
XGg‘rri)zl(t - t2) - 5m—1[Dn,m—1(t - tl) 1- Cosw—q C+ ;Q—
N =
Dn,m—l(tz - tl)]GE‘r?)(t - tz)} (54) - |(,L) + 2(1 - COS%\?) R
D
This equation in combination with Eq&) and(47) enables
one to evaluate the derivativi£,(t)&,(t,))/ Sem(t;) and de- (59
rive the final expression for the current. With the aid of Eq. ;4
(21) we obtain
25 [ do mgn_; mam
\% Dym= ——€7'D,,q Sin——sin——
l=—+4l, (55) nm N2 2 N N
Rs
wheredl is the interaction correction which can be split into D = 1 (60)
two partssl =8l + 8l ,: “d o 1-cogmg/N)
e Y
T
N g, T2 sineVt , °
= > A2eR dtdt SN 2Tt Kmr(t—t") Here and belowr,=2m7/gé stands for the electron dwell
nm=1 = Nt time in a single quantum dot and the coefficiemiseduce to
X[ Sm(@m-1= 8n-1)Dp-1 m(t") a,=n/N. Making use of the propert§,,(t)=K,«t) and
, , D) =D,,(t) we obtain
- m—l(am_ an—l)Dn—l,m—l(t ) + 5m(am—1 - an)Dn,m(t )
= Om-1(8m = @)Dy m-a(t)], (56) N-11+ cos—
sli=-e Z,aD%)B(w,V,T
N ' =1 27RNE J ZoiD Bl V. T)
BaRa , mT?sineVs th )
- > dtdt o oTe Kt =t) q
= meR sink? 7Tt 11+ cosd
N dw 3
/\_ Om , , +ed, —oIm | 2-Z,4DiB(0, V. T)
X 5nm5(t )_ ZT[&m—an—l,m—l(t )_ 5mDn—1,m(t )] g=1 7-DR 2m
1- —1)qU (w | e—
g , , —V—IwT 2 -lwm), 61
- Zr:_[ngnm(t ) - 5m—1Dn,m—1(t )]) . (57) - 1)qUN((1)) D( D) ( )
and
Equations55)—<57) represent our general result for theV
curve of a H array of metallic quantum dots in the presence _
of interactions. One can verify that in the particular case of A= 2N2R2 Im(Z DugB(w,V.T),  (62)

two scatterers or, equivalently, for a single chaotic quantum

dot, Egs.(55)—(57) reduce to the expressions derived in Ref.where B(w,V,T)=2.(eVtw)cothwteV/2T and u(w)=1

8 by means of a different approach. Let us also note that theiw—/(1-iw7p)?>—1. We observe that the second contribu-
expression for the functiok,(t) is determined by the solu- tion to the interaction correctiodl, scales with the Fano
tion of Egs.(17)—«(19) under the constraint Eq20). Below  factor 8 of individual scatterers and, hence, vanishesgor
we will explicitly find this solution for the specific case of —0. At the same time the first contributiofl; does not
homogeneous arrays of quantum dots. depend ong, i.e., it is universalfor any type of scatterers.
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We also note that the ter#l , differs from zero for allN>2 The frequency integrals in Eq&1) and(62) can be per-
but vanishes identically in the case of two scatteiérs?. formed exactly with the result
|
7q . »T( . »T(Q . ,TQ
- cos— 2sirf— sinf— sSirF—
2Te'ws N 2N 2N eV 2N eV
or=- N22 A T W T ¥ I +271'T - 7T +27TT
Ll e 7TTR<4C SiP 4 cg> P P
2N 2N
- 1- (- )P asit girz TP
4Te'sy [ == DS simy
N+ 2 3 R
Pa=1 (COSW—q - coslp) {ZsirFW—p + —(4C siP 2P 4 Cg> (cos7T—q - cos7T—p)J
N N 2N 27 2N N N
2 sir? 2P st siPd
2N 2N eV 2N ieV
X | W, + + - +—1 . (63
. L,TP mlrp 27T 7wl 27T
7TR 4CSIn2ﬁ +Cy

Here we defined the functiobV(x)=Im[x¥(1+x)], where

. T
W¥(x) is the digamma function. Equatioi®3) is the exact N-1 23"‘22_,3
expression for the leadin@n 1/g) interaction correction to oG =- —22 BL
the current valid both in linear and nonlinear in voltage re- N g1 77TR<4C Sinzw_q +C )
gimes and for any number of scatteréfsn the system. 2N ?

Let us consider a physically important limit of relatively

; / : 1-(-19 ,mq o 7
large metallic quantum dots witRC, RGy< 7p. Making use 1- — cotzﬁ sir? N
of this inequality one can significantly simplify the general - -
\ B L ,
result Eq.(63) and find e T
1- cosﬁ
. ,7(q
- 2 sirf—
27e' "ToN iev (65)
N =1 e 27T )
mTR 4C Slnzﬁ +Cy where we have defineld(x) =W (1+x)+xW¥'(1+Xx).
Let us now briefly analyze the above results in various
1 2A-CDY o7 limits. The caseN=2 was already considered in details in
N2 2N Ref. 8, here we will concentrate on the behavior of quantum
- B- q dot arrays containing many scatter&s- 1. In this case the
1-cos— expression for the interaction correction E65) can be fur-
N ther simplified. In the high temperature lImERG,>1
'nzwq (whereC,=min[C,Cy]) we obtain
sinF—
2N eV

X

(64)

+ .
Ll soo_ B (1_ / _cq_) 66
6NTRC C,+4C)

In the linear in voltage regime the above expression yields

the result for the zero bias conductance of the arfGy At intermediate temperatures RC,1/RG;>T>1/1,, EQ.
=1/NR+ 8G. The interaction correctioaG takes the form (65) yields

165423-9



D. S. GOLUBEV AND A. D. ZAIKIN

B 1
8G~-——|In———+1]|,
7N 27 TRC*

where C*= (\s’Eg+ VCy+4C)?/4. In the interval 7%/ 2N,
<T<1/m we find

&8, 2 & 3@

(67)

5G ~ -

7N RC* 7N 4\*’7TTTD
3 1 Y\ =
+—|1+|\B-—||1-Z|VaTmp+ ,
7N 4 2 3NTm
(68)

wherey=0.577 is the Euler constant. Finally, in the limit of
very low temperaturesT < 72/ 2N?7p, the correction to the
conductance saturates, and we get

€8, 2m (0.368 —%)e—z.

n
7N RC*

Consider now the nonlinear regingg/|> T in which case
the -V curve is determined by Eq63) or (64). We will
again consider the limiN>1 and make use of E¢64). At
very small voltages and temperature/| < 72/ 2Nz, one
finds dI/dV=1/NR+ G, where 6G is again defined by Eq.
(69). At higher voltagesz?/2N?m, <e€|V| < 1/7, we obtain

oG~ - (69)

d_1 &g 2p & 1 (70)
dv. NR @N  RC* aN\2e\V|r,

At even higher voltage, ¥ <e€|V|<1/RC*, the differential
conductance takes the form
d_1 & 1

—= n———. 71
dVv NR «N  €V|RCr 7D

The linear conductanc& as a function of temperature
and the differential conductanc/dV at T— 0 as a function

PHYSICAL REVIEW B 70, 165423(2004)
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FIG. 2. The linear conductandeg (solid lineg as a function of
temperatureT together with the differential conductanak/dV
(dashed linesas a function of the applied voltagéat T=0. The
results are obtained from E@63) for g=1000, 8=1/3, rp/RC
=10, Cy/C=2.5, and for three different numbers of barrieks:
=2, 10, and 50. We identify four different regim@be boundaries
between them are shown by dotted lipg$) saturation regimeV,
T=<#?/2N?15, Eq. (69); (1) diffusive regimem?/2N?>mp<eV, T

of the applied voltage are depicted in Fig. 2 for different=<1/m, Egs.(68) and(70); (lll) logarithmic regime of almost in-
number of scatteremd in the system. One observes that bothdependent barriers t<eV, T<1/RC, Egs.(67) and (71); and

quantities(as functions of corresponding variableemon-

(IV) high temperaturéclassical regimeeV, T<1/RC, Eq. (66).

strate a very similar behavior. In both cases four different
regimes can be distinguished, as it was already specifiedquation(72) is solved together with Eqg9), (14), (17),
above. Further discussion of these results is postponed {as8), and(21) in exactly the same way as it was done above

Sec. VIII.

VII. EFFECT OF ENVIRONMENT

in the absence of the shunt. As a result, the effedRofs
accounted for by means of a simple replacement

In order to complete our analysis let us also include the Kim(®) — Knr(D) + K(0), (73)
effect of external leads into consideration. For simplicity we ) ] )
will follow the standard procedure and assume the leads imvhereK,(t) is defined in Eq(58) and
pedance to be purely Ohmic. This procedure amounts to re-
placing Eqg.(20) by a more general one, € ( do giot
K = f P . (79
N NJ 27 . . N
2V, +IRs=V,, (72) (_'w+0)<_'w+E+R_S>

=1

whereV, is the voltage applied to the whole system “array Note that the functiorK«(t) does not depend on and m.
+leads,”Rg is the resistance of the leads, aCV,,+1,is  After such a replacement the new expression Kg,(t)
the current flowing through the leads. Due to current consershould be substituted into Eq&6) and(57) and we arrive at
vation the scatterer numbarcan be chosen arbitrarily here. the result
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Eq. (63), which contains all the results derived previously for
|=R—+5‘ +dls, (75 various quasi-OD and quasi-1D disordered conductors and
= extends these results to yet unexplored regimes. At suffi-
WhereV=EJN:1(VJ-) is the average voltage across the array and:!ently high energiesexceeding the inverse dwell time pf a
Sl is defined in Eq.(63). The general expression for the Single quantum dot 1) the scatterers behave as effectively
additional termdls is rather cumbersome and will not be independent ones, and one can identify two different regimes
presented here. Below we will only address the effect off€dimes lll and IV in Fig. 2 described by Eqs66), (67),

external leads on the linear conductance in the low temper£2nd (71). At such energies the interaction correction scales
ture limit T<72/2N?7p. It turns out that for nonzerdrg with the Fano factop of individual scatterers and in a wide

similar to the case of single quantum ddtke conductance interval of energies depends logarithmically on temperature

sauraon s led and the result E99) becomes ncom- 7L 10105, £ 2, PEC e o ine DBl o
plete. Taking into account the shunt contribution to the cur )

51 find Timit of ballistic contacts with3— 0 (or, equivalently, diffu-
rent ols, one finds sive wires with point-like impuritiesthe interaction correc-

1 €8, 2 ( 1)e2 tion turns out to be negligibly small in this regime.
~—-—In—-10.368-—|— At energies below 14, (regime ll) scatterers located suf-
NRaN — RC N/ ficiently close to each other become effectively correlated.
e2,~8 R 2 The number of such scatterdxs in one _“correlated” seg-
- S = (76) ment of the array grows with decreasing temperatume
m™ Rs+NR  2N°T7p voltag® asNgs~ 1/VT7p (Or Ngg~ 1/\/eVrp). In this regime
where the system can be viewed as a chain~dfl/ Ny segments,

each of them now playing the role of a “new” independent
scatterer with an effective conductancges~ 9/ Nes

N-1[1 = (= 1)9]co@d

~ B 1 2N ~g\Trp (Or ~gveVrp). Then the resulfst4 can be applied
B=C "\ (77 again, in the corresponding expression for the interaction
o=t Sin4rr_q correction one should only substitudg; instead ofg. In this
2N case the logarithmic dependence of the interaction correction

The sum in Eq(77) is evaluated exactly and just yields the ON temperature/voltage drops &uand, e.g., for the linear
Fano factor of the array E@44). Thus, in the presence of an conductance one find8G/ G~ =B/ Gerr, Where B is the
external shunt the conductance keeps decreasing logarithnfi@n0 factor of a segment witN.; scatterers. According to
cally with T even at very low temperatures. As before, thisEd: (44), for sufficiently largeN>1 the factor Ber ap-
logarithmic contribution scales linearly with the total Fano Proaches the universal value 1/3, and we obw@ByG~

~ . -1/gVTm in agreement with the well known restlitand
factor o_f t_he arrays Wh'ch tends to the universal value 1./3 also with our rigorous formul&68) which, in addition, con-
in the limit of largeN. This result is in the agreement with

our previous findings® and once again emphasizes a directtains a temperature-independent contributiog coming
reIatFi)on between shot noise and i?lteractiorrz effects in disor]irorn high energy modes. Finally, 3y approaches\ the
ystem conductance either saturgfes Rs— O, regime ) or

dered conductors. Finally, we would like to emphasize that’ Lo 4
Eq. (76) is applicable as long as the last logarithmic termCrosses over to the low energy logarithmic regime &)

remains much smaller than MR caused by additional voltage fI.uctuations across the array due
to nonzero external shunt resistariRg
VIII. DISCUSSION It is also straightfor_ward to establish a direct_ relatiqn be-
tween the results derived here and those obtained diagram-
In this paper we have proposed a general model whicimatically in the linear in voltage regin&!! By settingN
embraces virtually any type of disordered conductors and-« and8—1 from Eg.(65) we reproduce the resultsfor
allows to account for Coulomb interaction effects in electronthe interaction correction in tunnel junction arrays, while in
transport through such conductors. Exploiting an intimate rethe limit 3— 0 the latter equation yields the standard rédult
lation between shot noise and interaction effects, in Secs. for diffusive wires?? The same equivalence can be observed
and Il we derived a closed set of Langevin-type of equationst the level of general expressions E(l) and(62) consid-
which allow to conveniently study electron transport in theered in the limiteV<T, N—o and for 7,>RC,RG,. For
presence of electron—electron interactiéh$he key idea of B=1 the resuf® follows from the sum of two terms Egs.
our approach is to account for modifications of the shot nois€61) and (62), while for =0 the second contribution Eq.
due to nonequilibrium effects and to self-consistently de{62) vanishes identically and the reddlis obtained only
scribe these effects and their impact on fluctuating chargeom the first term in Eq(61). These observations demon-
and voltages inside the conductor. For the sake of definitestrate that the reduction of our model to one for diffusive
ness here we focused our attention on quasi-1D conductorgjres with point-like impurities is achieved by setting
however one can extend the whole analysis to 2D and 3D~ 0. In the latter cas®l coincides with the total number of
conductors as well. This generalization will be carried outimpurities in the wire.
elsewhere. At last, we briefly summarize the applicability conditions
The technique developed in this paper allows to obtain dor our results. As was already discussed, our Langevin ap-
general formula for the interaction correction to the currentproach is justified in the metallic limig,>1. Under this
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condition our technique should account for all essential proadditionally restricted by electron heating effects which we
cesses except for subtle instanton effects which may show ugo not address in this work.

only at exponentially low energies. An obvious necessary

(though possibly not sufficieptzalidity condition of our re-
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