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Helium atoms or hydrogen molecules are believed to be strongly bound within the interstitial channels
(between three carbon nanotubes) within a bundle of many nanotubes. The effects on adsorption of a nonuni-
form distribution of tubes are evaluated. The energy of a single-particle state is the sum of a discrete transverse
energyEt (that depends on the radii of neighboring tubes) and a quasicontinuous energyEz of relatively free
motion parallel to the axis of the tubes. At low temperature, the particles occupy the lowest-energy states, the
focus of this study. The transverse energy attains a global minimum valuesEt=Emind for radii nearRmin

=9.95 Å for H2 and 8.48 Å for4He. The density of statesNsEd near the lowest energy is found to vary linearly
above this threshold value, i.e.,NsEd is proportional tosE−Emind. As a result, there occurs a Bose-Einstein
condensation of the molecules into the channel with the lowest transverse energy. The transition is character-
ized approximately as that of a four-dimensional gas, neglecting the interactions between the adsorbed par-
ticles. The phenomenon is observable, in principle, from a singular heat capacity. The existence of this
transition depends on the sample having a relatively broad distribution of radii values that include some near
Rmin.
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I. INTRODUCTION

One of the most persistently interesting topics in con-
densed matter physics is Bose-Einstein condensation(BEC).
First postulated1 on the basis of an idealized model(nonin-
teracting particles), BEC was subsequently argued by Lon-
don to provide an explanation of superfluidity in4He, which
is a system consisting of relatively strongly interacting
atoms.2 The London hypothesis has been confirmed in both
detailed calculations and careful neutron scattering
experiments.3,4 More recently, BEC has been observed to
occur in ultracold gases consisting of alkali or H atoms and
in systems of excitons at low temperatureT.5–7

A logical candidate for the occurrence of BEC is para-H2,
which is the boson equilibrium form of hydrogen at lowT.
The apparent nonexistence of BEC for bulk H2 is attributed
to its crystallization below 14 K, which preempts BEC.
Some three decades ago, Ginzburg and Sobyanin proposed a
search for BEC and superfluidity of H2 in confining geom-
etries (for which crystallization occurs at a lower tempera-
ture, if at all).8 This suggestion stimulated a number of
searches involving both theory and experiments.9–16 There
has been at least one assertion of a successful observation of
BEC, involving the lack of damping of rotational motion of
an impurity surrounded by hydrogen fluid within a small
cluster.9,14

In this paper, we describe a different geometry that is
predicted to allow BEC to occur.17,18This host material is an
ensemble of carbon nanotube bundles. A crucial role is
played in this phenomenon by the presence of nonuniformity.
In particular, we assume that there exists a fairly broad dis-
tribution of nanotube radii present in the experimental

sample. We focus our calculations on the spectrum of par-
ticles (either H2 or 4He) confined within interstitial channels
(ICs) formed by groups of three nanotubes. It has been ar-
gued that both of these species, if allowed access to such
channels, are more strongly bound there than on the surface
of graphite, the most strongly physisorbing planar surface.19

There is ambiguous experimental evidence concerning the
relative binding energy of these species in the IC and in the
grooves on the outside surface of the bundle.20–24 We inter-
pret the very large isotope effect seen in isosteric heat data of
Wilson et al.22 to indicate particle localization within the ICs
for their sample. The specific behavior is evidently sample
dependent, just as our calculations are very sensitive to the
assumptions that we make.

Much recent research has been devoted to hydrogen
within nanotubes bundles, partly due to the exciting pros-
pects of technologies related to hydrogen storage and isotope
separation.25–29 The vast majority of the theoretical research
to date(including that of our group) has assumed a mono-
disperse distribution of tubes. The present study was stimu-
lated by recent results of Shi and Johnson,30 who showed
that the distribution of tube sizes present in actual samples
leads to predictions that are quite different from those based
on the monodisperse models, in better agreement with ex-
perimental data than the naive models’ predictions.

The outline of this paper is the following. Section II de-
scribes our calculations of the energy spectra of4He and H2
gases within ICs. Section III employs these results to com-
pute a set of predictions related to BEC that are testable in
principle. Section IV presents a further discussion of the
model and draws conclusions.
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II. ENERGY SPECTRA AND DENSITY OF STATES
OF ADSORBED GASES

We focus here on those states having the lowest energy
since they are the most important for the BEC phenomenon;
higher-energy behavior can be explored with the same ap-
proach but minor changes in the analysis are required. The
energy of a particle confined within an IC is evaluated with
the Schrödinger equation. Assuming that the particular IC is
perfectly straight, this equation is separable; then the total
energy is given by the relation

Enspd = En
trans+ Elongspd, s1d

Elongspd =
p2

2m
. s2d

Here, the first term is thenth eigenvalue of the Schrödinger
equation describing motion transverse to the axis of the IC
and the second term is the quasicontinuous kinetic energy of
motion parallel to the axis. We assume for simplicity that the
longitudinal kinetic energy is determined by the free-particle
mass; if the potential were corrugated the band mass should
be used instead ofm to characterize the low-energy
states.31,32 Such a substitution would lead to a straightfor-
ward change in the numerical and analytical results below.

In the present circumstance, the transverse eigenvalues
are separated by energies(of order 100 K) that are much
larger than relevant temperature scales.33 Hence, we need
consider only the lowest eigenvalueE1

trans of transverse mo-
tion. We denote this quantityEtsRd, where the vectorR
=sR1,R2,R3d has components equal to the radii of the tubes
surrounding the IC. We refer to the domain of possible ICs as
R space; a given IC is represented by one point in this space
while a sample with many ICs is described by a cloud of
points in this space. The single-particle spectrum is now
specified by the relation

EsR,pd = EtsRd +
p2

2m
. s3d

Here,EtsRd is computed following the procedure of Stan and
Cole.34 To get a sufficiently accurate dependence ofEt on R,
one must include anisotropic and anharmonic contributions
to the potential in the IC. We note that alternative parametri-
zations of the potential have been proposed. Table I presents
one such alternative result forEt. The qualitative behavior
presented in the remainder of this paper is the same for the
case of that alternative potential.

Of considerable interest is the density of stateshsE,Rd for
a single IC. For a specific set of adjacent tubessRd, this
function is given by a sum over all momenta, which may be
replaced by an integral:

hsE,Rd = o
p

d„E − EsR,pd…

=
L

p"
Sm

2
D1/2 1

fE − EtsRdg1/2Q„E − EtsRd…. s4d

HereL is the length of the channel and the usual procedure
for quantizing the one-dimensional(1D) motion has been

followed. The inverse square root dependence on the energy
above threshold is characteristic of 1D motion. The last fac-
tor involves the Heaviside step functionQsxd, which is unity
here forE.EtsRd and zero otherwise.

Now let us consider an ensemble of nanotubes. The
lowest-energy states(those dominating the low-temperature
behavior) are concentrated near the minimum of the function
EtsRd. As might be expected, the global minimum ofEtsRd is
found for the symmetric case,hRij=Rmin. We define the vec-
tor specifying this IC asRmin=Rmins1,1,1d and Emin as the
corresponding energy. The numerical results for these quan-
tities appear in Table I.

The behavior of the functionEtsRd near this minimum is
remarkable. If one considers only symmetric ICs(bounded
by tubes of identical radii), the energy varies rapidly as a
function of the differenceuR−Rminu. However, the spectrum
of the very-lowest-energy states is dominated byasymmetric
ICs for which one of the radii equalsRmin and the two others
differ from Rmin by equal, but opposite amounts, e.g.,R
=Rmins1,1+x,1−xd, where x!1. The energy varies ex-
tremely slowly withx in such a case. This is depicted for H2
in Fig. 1, which shows the energy variation in a plane within
R space that contains both this variablex line and the diag-
onal (1,1,1) line. (Analogous behavior occurs for the case of
4He). One observes in the figure a very narrow valley of
low-lying states of variablex, along thes0,1,−1d direction,
where the origin is shifted toRmin. Similar small gradient
behavior ofEtsRd is found along equivalent permutations of
this direction. Note that the higher-energy contours are ex-
tended, nearly straight lines perpendicular to the diagonal.
These latter contours imply an energy dependence of the
density of states that is qualitatively different from that based
on contours of lower energy(near the valleys).

We next evaluate the transverse density of states for a
given experimental sample of tubes. We denote bynsRd the
density distribution of ICs, defined so thatnsRddR is the
number of ICs present in the sample within a volumedR in
R space. In this paper, we focus on low-energy behavior
corresponding to such close proximity toRmin that we may
replacensRd by nsRmind; future studies will address more
general situations for which that approximation is not ad-
equate. In the following discussion, we assume thatnsRd is a
sufficiently broad distribution that ICs near this minimum
exist in sufficient numbers to treat adsorption statistically.
Moreover, we assume that the set of tube sizes forms a con-

TABLE I. Numerical values ofEmin andRmin, defined in the text.
The parameters of the potential used in each case are from Refs. 56,
57, and 34.

s (Å) e (K) Rmin (Å) Emin (K)

H2
a 2.97 42.8 8.75 −1159.2

H2
b 3.23 32.19 9.95 −1052.4

4Hec 2.74 16.2 7.19 −353.6
4Heb 2.98 16.9 8.48 −456.9

aReference 56.
bReference 57.
cReference 34.
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tinuum. The former assumption is well justified in experi-
mental samples produced to date involving large numbers of
tubes, which typically have a dispersion in radius values of
order 20%.35,36The latter(continuum) assumption is justified

by the following argument. Near radius 1 nm, there are many
values of the chiral indices that yield quite similar radii; the
mean spacing between successive values of the radius is
quite small, 0.002 nm. In addition, the ICs experience small
perturbations due to their environment; in particular, the ICs
at the center of a bundle are expected to be compressed rela-
tive to those near the perimeter. A model calculation(unpub-
lished) yields an expression for the differenced between the
tube-tube separation in an infinite rope and thatsR1d of an
isolated nanotube pair; apart from a constant of order one,
the result isd=fCl2g / fkR1

6g, whereC is the van der Waals–
London intercarbon interaction coefficientsC,20 eV Å6d, l
is the 1D density of carbon atoms in a nanotubesl
,15 Å−1d, R1,17 Å is the spacing between tube centers,
and k=10−3 eV/Å3 is the force constant per unit length as-
sociated with neighboring tubes’ interactions.37 The result,
d,0.15 Å, represents a nearly 5% compression of the lattice
constant of the rope relative to the separation of an isolated
pair. This shift in separation is consistent with estimates of
the analogous shift in breathing mode frequency.38 On the
basis of these arguments, the assumption of a continuum of
possible radii appears appropriate.

The transverse density of statesgsEd for a given sample
of tubes is expressed by the relation

gsEd =E dRnsRdd„E − EtsRd…. s5d

The total density of statesNsEd is found by summing over all
states of the ICs present in the sample:

NsEd =E dRo
p

d„E − EsR,pd…nsRd, s6d

NsEd =
L

p"
Sm

2
D1/2E

Emin

E

dEtgsEtdfE − Etg−1/2. s7d

Note that in the special case of a perfectly uniform distribu-
tion of NIC identical ICs, nsRd=NICdsR−R0d, yielding
gsEd=NICdsE−EtsR0dd; thenNsEd is preciselyNIC times the
single-tube density of states,hsE,R0d, given in Eq. (4)
above, as expected.

Figures 2 and 3 present the transverse densities of states
gsEtd for He and H2, respectively, computed numerically
from a distribution of 6003 tubes with radius values spread
uniformly over the interval 8.5 Å to 11.5 Å. In both cases,
the behavior ofgsEd at low energy is characterized by a
power-law dependence on energy above threshold:glowsEd
,sE−Emind1/2. At higher energy, there is a decrease ofgsEd
with energy, fit well by the expressionghighsEd,sE
−Emind−1/2. The initial behavior is explained by the following
argument. At low energy, the density of states is obtained by
counting the number of ICs whose energyEtsRd lies in an
interval betweenE andE+dE. Assume for simplicity that the
isoenergy surfaces are spherical surfaces centered about the
point R=Rmin [i.e., E−Emin=sk/2duR−Rminu2]. ThengsEd is
obtained from the number of points in the shell between

FIG. 2. Upper panel: transverse density of statesgsEd for 4He,
computed from the distribution of ICs as described in the text.
Lower panel: total density of statesNsEd. In both cases, the energy
is measured relative to the minimumEmin=−456.88 K.

FIG. 1. Contours of the ground-state transverse energyEtsRd
−Emin (relative to its minimum value) of an H2 molecule as a func-
tion of the radiiR=sR1,R2,R3d of the tubes bordering the IC. The
labels on the axes areDR=R−Rmin, i.e., R relative to the mini-
mum; the figure depicts behavior in a plane containing the symme-
try axisR1=R2=R3. Beginning with the contour closest to the mini-
mum (the closed curve), the contours correspond to relative energy
0.005, 0.01, 0.05, 0.1, 0.5, 1, and 5 K.
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spherical surfaces(corresponding toE andE+dE) centered
at Rmin. The result of this simple model is then

glowsEd = nsRmind4pS 2

k3D1/2

sE − Emind1/2. s8d

This dependence on the square root of the energy turns out to
be valid even in the extreme anisotropic case of interest
here.39 The result then is thatk3 is replaced bykanis

3 =kxkt
2,

wherex denotes the(1,1,1) direction in R space andt de-
notes the two directions transverse to that.

Note that this square root energy dependence ofglowsEd
coincides with that of the density of states of a 3D gas. The
higher energy behaviors1/ÎEd of ghighsEd is quite different.
The relevant high-energy regime in Fig. 1 is that where the
energy surfaces inR space is perpendicular to the(1,1,1)
diagonal. Since this variation is essentially a 1D dependence,
the resulting high-energy form ofghighsEd is that of a 1D
system, as in Eq.(4) above; this gives rise to a behavior
ghighsEd,sE−Emind−1/2 (as is observed in Figs. 2 and 3). We
remark that this energy-dependent variation in effective di-
mensionality has analogs in electronic band structures, where
wave vector replaces theR variable as the source of the
unusual dependence.40

Figures 2 and 3, lower panels, depict the total densities of
statesNsEd derived from Eq.(7). In view of the power law
forms [e.g., Eq.(8)] of gsEd, we expect power laws forNsEd
in appropriate regimes ofE. For example, the very-lowest-
energy behavior is determined by the integral

E
Emin

E

dEtsEt − Emind1/2sE − Etd−1/2

= sE − EmindE
0

1

dyfy/s1 − ydg1/2

=
p

4
sE − Emind, s9d

NsEd = nsRmind
Lp

"
S m

kanis
3 D1/2

sE − Emind. s10d

Note that the prefactor of the energy difference(which we
call a) is proportional to the volume of the nanotubes, so that
NsEd /a is an intensive variable. The linear dependence on
energy above threshold(E−Emin) is the behavior character-
istic of a 4D gas. This initially unexpected result is a logical
consequence of convoluting a transverse spectrum character-
istic of a 3D system[Eq. (8)] with the 1D longitudinal de-
gree of freedom. Similarly, the behavior at higher energy is
obtained by convoluting an inverse square root dependence
of ghighsEd with the 1D inverse square root dependence. Then
the high-energy result is thatNsEd is independent of energy,
behavior characteristic of a 2D density of states. These ana-
lytic results for the spectra are consistent with the numerical
results seen in Figs. 2 and 3; that is, the low-energy density
of states is proportional tosE−Emind while the high-energy
behavior is independent of energy. By the word “high,” we
mean energies reasonably close toEmin (say E−Emin
<20 mK) but not the absolutely lowest energies.

To summarize this section, we note that unexpected be-
havior of NsEd emerges from a simple model. The low-
energy spectrum of the nonuniform system isqualitatively
different from the spectrum obtained when heterogeneity is
ignored. The latter corresponds to 1D physics, i.e.,NsEd pro-
portional to sE−Emind−1/2. With heterogeneity, instead, we
find thatNsEd exhibits a 4D form at very low energy and a
2D form at higher energy. At energy*1 K, the 1D behavior
is recovered.

III. PREDICTION OF BEC

In this section we explore the consequences of the anoma-
lous densities of states for thermal properties of these sys-
tems. In so doing, we assume that the adsorbed gas can
equilibrate. This entails the rearrangement of the particles as
the temperatureT is lowered by moving from ICs that have
high transverse energies to those with lower energies. Thus,
we assume a combination of sufficient particle mobility and
sufficiently patient experimentalists that the assumption is
valid. In the extreme opposite limit of negligible transport of
particles the thermal behavior is that of isolated and indepen-
dent 1D systems. The difference between these behaviors is
dramatic.

At very low density, one can ignore the effects of both
interparticle interactions and quantum statistics. Then, the
specific heatCsTd=dU/dT at fixed numbersNpd of particles
can be computed from the classical Boltzmann expression
for the mean energyU:

FIG. 3. Transverse and total densities of states, as in Fig. 2, for
H2. Emin=−1052.97 K.
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SUsTd
Np

D
classical

=
E dEENsEdexpf− bEg

E dEfNsEdexpf− bEg
. s11d

Here b−1=kBT. One can insert possible power law forms
NsEd,Esd/2−1d corresponding to a gas ind dimensions and
derive the familiar relation

S C

NpkB
D

classical
=

d

2
. s12d

Figure 4 presents the resulting classical behavior for the
systems of He and H2 in nanotubes. One observes that the
low-T regime does correspond to the expected 4D gas behav-
ior, C/ sNpkBd=2 while the high-T regime exhibits 2D gas
behavior,C/ sNpkBd=1. The initial rise above 2 at very lowT
is explained by a small upward deviation from linearity
found in NsEd at low E. That is, if NsEd at low E is propor-
tional to Es1+E/E1d, where E1 is some constant, then
fC/ sNpkBdgclassical=2f1+2/sbE1dg. The crossover between
the 4D and 2D regimes is gradual, beginning at a few mK
and complete by 20 mK; the latter value corresponds to the
energy above whichNsEd is virtually identical to the 2D
form.

At higher density, one must consider the effects of inter-
actions and quantum statistics. In the present treatment we
ignore interparticle interactions, except for some comments
in the next section. While this is a common assumption, usu-
ally adopted for simplicity, there exists some justification for
it in the present instance because of electrodynamic screen-
ing of the van der Waals interaction by the surrounding me-
dium; there are additional elastic screening effects that have
yet to be studied.41 We do not know the resulting effective
interaction well enough to characterize it. In contrast, the
effects of quantum statistics are easily evaluated by the stan-
dard procedures. In particular, the assumed constraint of
fixed particle number yields an implicit relation for the
chemical potentialm, which depends onT, from which one
may derive the energy:

Np =E dEnsE,Td, s13d

UsTd =E dEEnsE,Td, s14d

nsE,Td = NsEdhexpfbsE − mdg − 1j−1. s15d

[As usual, the classical equations(11) and (12) are obtained
in the limit when the fugacityZ=expsbmd!1.] From UsTd,
one may computeCsTd. In evaluating these formulas, one
encounters a phenomenon that is well known to occur in 3D
Bose gases: BEC. This transition is derived here in the usual
way, by evaluating the implication for the variablem (at
fixed Np) asT is lowered: upon decreasingT, m increases up
to the point where it reaches its highest possible valuem
=Emin. Thus, the BEC condition for the transition tempera-
ture Tc=skBbcd−1 is

Np =E dENsEdhexpfbcsE − Emindg − 1j−1. s16d

Sincem cannot exceedEmin, asT falls belowTc (given im-
plicitly by this relation), there ensues a division into two
groups of particles—theNexcited particles accounted for by
the integral over excited statessE.Emind and the remaining
particles havingE=Emin that comprise the Bose condensate,
Ncond:

Ncond= Np − NexcitedsT , Tcd, s17d

Nexcited=E dENsEdhexpfbsE − Emindg − 1j−1. s18d

The results of these calculations appear in Figs. 5–8. Figure
5 depicts the dependence ofZ on the relative temperature
T/Tc for two different densities. Figure 6 displays the depen-
dence onT of the condensate fractionfsTd=Ncond/Np. Figure

FIG. 4. Specific heat of4He (full curve) and H2 (dots) as a
function of T computed using the classical Boltzmann approach.

FIG. 5. FugacityZ=expsbmd as a function ofT/Tc for two
different densities: 1310−5 Å−3 (full curve) and 0.5310−5 Å−3

(dots) within an inhomogeneous nanotube array while the dashed
curve corresponds to an ideal 4D gas having the same low energy
density of states.
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7 shows the functionCsTd, which exhibits singular behavior
at the transition. Finally, Figure 8 shows the dependence of
Tc on Np. Note that the transition temperature falls within the
mK range studied in many low-temperature laboratories, so
experimental observation of this transition is feasible.

In the preceding three figures, comparison is made with
results obtained for a purely 4D Bose gas defined to have the
same initial slope of the density of states as the real system.

That ideal system satisfiesNsEd=aE, for all E.0, with the
analysis presented in the Appendix.[For the real system, the
a coefficient is the prefactor of the energy term in Eq.(10)].
The key results for the 4D system are

f4DsTd = 1 −S T

Tc,4D
D2

, s19d

C4DsTd =
36zs3d

p2 S T

Tc,4D
D2

sT , Tc,4Dd, s20d

Tc,4D = S6Np

a
D1/2 1

pkB
. s21d

Herezs3d=1.202 is a Riemann zeta function. TheT2 depen-
dences offsTd andCsTd are exhibited by the “real” system at
low T, as seen in the figures. At the very lowest tempera-
tures, only the lowest-energy states play a role; sinceNsEd is
the same for the ideal system in this region, the behaviors
coincide. The transition temperature is higher for the real
system than for the ideal one because at highE, NsEd is
lower in the real case than in the ideal case, implying that
(for the same value ofNp) m reaches its transition valueEmin
at a higher value ofTc.

Since the ground-state energy of the noninteracting clas-
sical system coincides with that of the noninteracting quan-
tum system, as does the energy at very highT, it follows that
the integral of the two heat capacities is the same. At any
particularT, of course, the values ofC are very different. In
particular, the quantum system manifests the reducedC at
low T expected in this Bose gas case. The quantum system
exhibits a much larger value ofC in the vicinity of Tc, which
is dominated by a large rate of excitation out of the conden-
sate; see Fig. 7. Figure 7 also shows for completeness the
heat capacity of a 1D Bose gas. In the absence of any tran-
sition, the behavior is monotonic(as derived in the
Appendix).

FIG. 6. Condensate fraction as a function of the temperature
computed for H2 in the nanotube system(full curve) and the 4D H2
gas(dots) for Np=1310−5 Å−3.

FIG. 7. Heat capacity for H2 as a function of the temperature in
nanotubes(full curve) and for the 4D H2 gas(dashed) (panel a) and
for 4He in nanotubes(full curve) and for the 4D4He gas(dashed)
(panel b). Panel(c) shows the specific heat of 1D4He at linear
densities 0.01(full curve), 0.05 (dotted curve), and 0.1(dashed
curve) Å−1. The corresponding densities for the case of H2 are
lower by a factor of 2−1/2.

FIG. 8. Density of H2 molecules(full curve) and 4He atoms
(dotted curve) as a function of transition temperatureTc. The short-
dash sH2d and long-dash(He) curves indicate the 4D ideal gas
limiting behavior.
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One interesting question is this: how are the particles dis-
tributed in energy as a function ofT. To address this, we
present in Fig. 9 the occupied energy distribution function
nsE,Td at various temperatures. One observes the increasing
relative occupation of low-energy states with decreasingT;
for T.Tc, their sum is justNp, the total number present. At
Tc there occurs a discontinuous jump in the occupation of the
lowest-energy states accompanying the BEC transition. Be-
low Tc, the numberNexcited of uncondensed particles de-
creases, vanishing atT=0, when all of the particles settle
into the condensate.

Our prediction of BEC in this anisotropic system raises a
question: What is the relationship between the transition con-
dition and that of more familiar homogeneus problems, e.g.,
the 3D Bose gas and the Kosterlitz-Thouless transition of a
superfluid film. In the latter examples, the relevant criterion
is of the formrld,1, wherer is the number density,d the
dimensionality, andl=s2pb"2/md1/2 is the de Broglie ther-
mal wavelength. We present now a heuristic argument that is
consistent with this homogeneus relation and yields a good
estimate of the transition temperature for the present BEC
problem. The argument estimatesTc by analyzing the condi-
tion for quantum degeneracy; the number of particlesNp
becomes comparable to the number of statesNstatessTcd lying
within kBTc of the ground state. The number of states within
that interval is essentially the product of the number of states
of longitudinal motion within that range and the number of
states of transverse motion within that range:

NstatessTd , NisTdN'sTd , S smkBTd1/2

"/L
DS n

sbkanisd3/2D .

The factorNi is the ratio of the thermal momentum in thez
direction to the spacing between discrete states. The factor
N' is derived from a thermal spread of states inR space
fdR,sbkanisd−1/2g and the corresponding number of states in

the experimental sample,N',ndR3. SettingNp=NstatessTcd
yields our estimate of the BEC transition condition:

Np ,
Ln

"b2

m1/2

kanis
3/2 . s22d

Apart from numerical factors, this result coincides with the
combination of Eqs.(10) and (21). Note that this last equa-
tion can be rewritten in the formr* l4,1 with r*
=Np/ sL l3d where l =n1/3" / sm kanisd1/2 is a characteristic
length defined by the energetic parameters and the distribu-
tion of radii.

IV. SUMMARY AND DISCUSSION

In this paper we describe a conceptually simple system
that turns out to exhibit remarkable behavior. The focus of
the study is the lowest-lying states of a system of hydrogen
or helium moving within a collection of nanotubes having
many ICs. Our analysis yields a density of statesNsEd that
fulfills the requirement of BEC(i.e., the maximum integrated
occupation number is finite). Equally interesting, perhaps, is
the finding that the calculated properties at lowT are char-
acteristic of a 4D gas in free space. Since(to the best of our
knowledge) no 4D gas has been observed previously, the
predicted low-T and critical behaviors of this system are par-
ticularly interesting.

A number of theoretical issues need to be discussed. First,
one must ask whether the ideal gas assumption is valid; in-
deed, our group has previously explored the vapor-liquid
transition of these gases using quasi-1D models of perfect
ICs.42 A concern is therefore that such condensation in a
somewhat disordered system would either preempt the BEC
or alter the nature of the BEC, as is the situation with 3D
superfluid 4He. However, it may well be that disorder re-
duces the temperature of the hypothetical condensation tran-
sition below that of the BEC transition, so that two separate
transitions occur.

A related question is the role of screening by the medium
of the interparticle interaction. On the bare surface of graph-
ite, experimental and theoretical evidence has indicated that
the well depth is reduced by some 10% to 20%.43 Intuition
and some calculations41 suggest that the attraction would be
reduced by a much greater factor for gases within a nanotube
array. That is consistent with the neglect of these interactions
in the present paper.

The requirements for observation of this phenomenon in
the laboratory are not trivial to satisfy. A particularly serious
concern is that equilibrium is difficult to achieve. It requires
particles to diffuse out of one IC and into another asT
changes. The slow equilibration is a potentially fatal problem
that is difficult to assess; experimental diffusion data would
be very helpful in this regard.44,45We note that one need not
imagine that particles are required to move macroscopic dis-
tances; one can employ tubes of quite finite length in order to
accelerate the process of equilibration. Evidently, one should
not underestimate this problem, which is an important con-
cern in much broader contexts involving nanotubes, such as
gas storage and isotope separation.

FIG. 9. The occupied state energy distributionnsE,Td (relative
to the total numberNp) defined in Eq.(15) is shown for H2 at
relative temperaturesT/Tc=0.5 (full curve), 1 (dots), 1.1 (short
dashes), and 1.5(long dashes). The integral of the curve at 0.5 is the
fraction (about 0.7) of excited particles while the other curves inte-
grate to 1, since then the condensate fraction vanishes.
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The problem at hand raises the venerable question of the
relation between BEC and superfluidity(SF).46 We know that
BEC and SF appear simultaneously at thel transition of
4He.3,4 However, the Kosterlitz-Thouless transition of 2D
films is one involving SF without BEC.47 Moreover, the 3D
ideal Bose gas exhibits BEC without SF, since the Landau
velocity criterion is not satisfied. The latter says that the
threshold velocity for superflow is the minimum of the ratio
of the excitation energy to the momentum.51 Our unusual
nanotube-hosted BEC state would also fail this test, implying
that no superflow is possible. Another aspect of SF is quan-
tized circulation, which is impossible in this environment.
Thus, we think that SF is unlikely to accompany the transi-
tion described above. If, however, one were to include a
weak interparticle interactions, SF could occur.

A question was raised of the existence of off-diagonal
long-range order(ODLRO), which accompanies BEC in fa-
miliar model systems. This property, atT=0, may be evalu-
ated from the behavior of the one-particle density matrix,
rsr ,r 8d derived from the(anomalous) average of a product
of particle creation,c†sr 8d, and annihilation,csr d, operators:

rsr ,r 8d = kc†sr 8dcsr dl. s23d

This function represents the amplitude for destroying a par-
ticle at positionr and creating it atr 8; its nonvanishing at
infinitely large separationur −r 8u is ODLRO. Equivalently,
rsr ,r 8d may be written in terms of the first-quantized many-
body wave function of the ground statefshr ijd:

rsr ,r 8d = NE dr 2 ¯ dr Nf * sr ,r 2, . . . ,r Ndfsr 8,r 2, . . . ,r Nd.

s24d

At low T, instead, one must take thermal averages of these
quantities. In our system, below the transition temperature,
we need consider only those states confined within the
lowest-energy channel since that is the macroscopically oc-
cupied state. This means that the separationur −r 8u should be
taken along thez axis of the channel; this is anisotropic
ODLRO. Furthermore, we need consider only the transverse
ground state. In this case, the density matrix is manifestly
equal to the condensate function,n0sTd, which becomes one
at T=0. At finite T, the contribution to ODLRO from the
excited single particle states vanishes because of phase can-
cellation, leaving the same result found in three dimensions:
limhrsr ,r 8dj=n0sTd. The value of this function for our ge-
ometry is shown in Fig. 6. We note that theorems48,49 pro-
hibiting BEC and ODLRO in reduced dimensionalities are
not relevant to the system considered in this paper. The rea-
son is that thek-space integrations yielding divergent fluc-
tuations in those translationally invariant systems are re-
placed by quite finite integrations when the distribution of
channels is taken into account; this avoidance of the singu-
larity has the same mathematical origin as the nondivergence
of the integral in Eq.(16) whenm=Emin.

We contrast this system’s behavior(anisotropic ODLRO,
BEC) with that of a toy model system of reduced dimension-
ality, described by Mattis.50 That model involves states of a
2D ideal gas, accompanied by a localized state at specified

energy below the continuum. Because of the latter’s pres-
ence, BEC occurs but ODLRO does not; this unusual behav-
ior arises because that system is not translationally invariant
in any direction.

The ideal nanotube radii for the lowest-energy states fall
in the range 0.8 to 1 nm, which is an advantageous size
because typical samples contain many such tubes. If, for ex-
ample, only smaller tubes are present in a particular sample,
one would have to explore the behavior without all of the
simplifying mathematics employed here. We have yet to
tackle that problem in general, but do note some interesting
results found in one case. Suppose for simplicity that the
transverse density of states for a given sample(consisting of
NIC ICs) has a form(that is quantitatively wrong but quali-
tatively reasonable in that it consists of a spread of transverse
energies) given by the “uniform barrier” function:

gsEtd =
NIC

sE. − E,d
,E, , Et , E. s25d

gsEtd = 0, otherwise. s26d

The result in this case[from Eq. (7)] is

NsEd =
2NIC

sE. − E,d
L

p"
Sm

2
D1/2

fsE − E,d1/2QsE − E,d

− sE − E.d1/2QsE − E.dg. s27d

This expression yields the 1D limiting case of Eq.(4) when
the barrier widthsE.−E,d falls to zero. In the case of non-
zero width, this expression yields 3D behavior forNsEd at
low E and 1D behavior at highE. The reason for the 3D limit
is that the constant transverse density of states in the finite
uniform barrier model mimics the constant density of states
of a 2D gas. In this model, one derives a BEC transition from
this form ofNsEd, with thermal behavior quite different from
that described elsewhere in this paper, i.e., when the lowest
possible transverse energies(near Emin) play the dominant
role in determining the behavior. The transition temperature
of a system ofNp molecules, obtained for the uniform barrier
model with the conventional 3D theory, satisfies

skBTcd3 =
2p

m
SNpsE. − E,d"

LNICzs3/2d D2

. s28d

This proportionality ofTc to Np
2/3 is characteristic of 3D be-

havior, in contrast with the 4D proportionality toNp
1/2 in Eq.

(21).
One might ask whether similar BEC phenomena occur in

a related environment, the groove between two nanotubes
(e.g. at the external surface of a bundle). Adsorption in this
region has been much studied in theory and experiments.52

We have therefore investigated the consequence of heteroge-
neity for that problem, with interesting results. One finding is
that the symmetric situation(two identical radii) provides a
local maximum(in 2D R space) of the transverse energy.
Hence, the methodology and results of the present paper are
not applicable, for the most part. The one related result is
that there occurs in the groove case an anomalous signature
of inhomogeneous broadening in the excitation spectrum.
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This is qualitatively analogous to the behavior ofNsEd here,
except that spectroscopy is the tool of choice for its
investigation.17

In closing, we emphasize an intriguing fact: this transition
is a consequence of the nonuniformity of the ICs within ex-
perimental samples. A perfectly uniform set of ICs would
exhibit 1D physical properties instead of the transition de-
scribed here. Such a remarkable consequence of heterogene-
ity has precedents in other physical systems, of which the
spin glass phenomenon is a well-known example.53–55
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APPENDIX: 4D AND 1D IDEAL BOSE GASES

We consider an ideal Bose gas in four dimensions whose
density of statesNsEd satisfies

NsEd = aEsE . 0d. sA1d

For this system, we evaluate the number of particles, energy,
and specific heat in the usual way, using Eqs.(13)–(15).
Straightforward calculations yield

Np = ag2sZdskBTd2 + Ncond, sA2d

whereNcond is the number of Bose condensed particles, and

U = 2ag3sZdskBTd3. sA3d

Here the functionsg2 and g3 are second and third “Bose
Einstein integrals,”

gnsZd =
1

GsndE0

` xn−1dx

Z−1ex − 1
. sA4d

The fugacityZsTd is determine from Eq.(A2). Moreover,
from this equation we obtain the critical temperatureTc for a
given number of particlesNp, given that the maximum value
of Z is 1 andg2sZd is a monotonically increasing function,

kBTc =Î Np

zs2da
. sA5d

From Eqs.(A5) and (A2) the condensate fraction results,

f =
Ncond

Np
= 1 −S T

Tc
D2

. sA6d

Now we evaluate the specific heat. To do so we have to be
aware that the fugacity depends on the temperature only for
T.Tc while it is equal to 1 forTøTc. Then we obtain

CN

NpkB
= 6

g3sZd
g2sZd

− 4
g2sZd
g1sZd

sT ù Tcd sA7d

=6
zs3d
zs2d

S T

Tc
D2

sT ø Tcd sA8d

Note thatCN is a continuous function ofT, with its value at
the critical temperatureCvsTcd=4.4NpkB.

In the these derivations we have used some properties of
the functionsgnsZd,

gns1d = zsnd sA9d

and

Zgn8sZd = gn−1sZd. sA10d

These, together with Eq.(A2), give the following relation-
ship,

]g2sZd
]T

= −
2

T
g2sZd. sA11d

In 1D, a standard treatment51 yields the specific heat

C/sNkBd = s3/4dg3/2szd/g1/2szd − s1/4dg1/2szd/g−1/2szd,

sA12d

where one determinesg−1/2 from the general relationzgn8
=gn−1 and z is determined from the density via the relation
rl=g1/2szd.

The limiting behavior at lowT srl@1d that results is

z= expf− p/srld2g, sA13d

CsTd = s3/4dzs3/2d/srld. sA14d

ThusCsTd is proportional toT1/2 at low T rising monotoni-
cally to the classical valueNkB/2 at highT.
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