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Helium atoms or hydrogen molecules are believed to be strongly bound within the interstitial channels
(between three carbon nanotupesthin a bundle of many nanotubes. The effects on adsorption of a nonuni-
form distribution of tubes are evaluated. The energy of a single-particle state is the sum of a discrete transverse
energyE; (that depends on the radii of neighboring tubasd a quasicontinuous energy of relatively free
motion parallel to the axis of the tubes. At low temperature, the particles occupy the lowest-energy states, the
focus of this study. The transverse energy attains a global minimum VBlgeE, ;) for radii nearRy;,
=9.95 A for H, and 8.48 A for*He. The density of statd$(E) near the lowest energy is found to vary linearly
above this threshold value, i.\(E) is proportional to(E-E,,,). As a result, there occurs a Bose-Einstein
condensation of the molecules into the channel with the lowest transverse energy. The transition is character-
ized approximately as that of a four-dimensional gas, neglecting the interactions between the adsorbed par-
ticles. The phenomenon is observable, in principle, from a singular heat capacity. The existence of this
transition depends on the sample having a relatively broad distribution of radii values that include some near
Rmin-
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I. INTRODUCTION sample. We focus our calculations on the spectrum of par-

One of the most persistently interesting topics in con-licles (either H, or “He) confined within interstitial channels
densed matter physics is Bose-Einstein condensafi@t).  (ICs) formed by groups of three nanotubes. It has been ar-
First postulatetion the basis of an idealized modelonin-  gued that both of these species, if allowed access to such
teracting particles BEC was subsequently argued by Lon- channels, are more strongly bound there than on the surface
don to provide an explanation of superfluidityide, which  of graphite, the most strongly physisorbing planar surfdce.
is a system consisting of relatively strongly interacting There is ambiguous experimental evidence concerning the
atoms? The London hypothesis has been confirmed in bottrelative binding energy of these species in the IC and in the
detailed calculations and careful neutron scatteringyrooves on the outside surface of the burfdé?We inter-
experiments:* More recently, BEC has been observed topret the very large isotope effect seen in isosteric heat data of
occur in ultracold gases consisting of alkali or H atoms andWilson et al?? to indicate particle localization within the ICs
in systems of excitons at low temperat(ré’ for their sample. The specific behavior is evidently sample

A logical candidate for the occurrence of BEC is parg-H dependent, just as our calculations are very sensitive to the
which is the boson equilibrium form of hydrogen at Idw  assumptions that we make.

The apparent nonexistence of BEC for bulk id attributed Much recent research has been devoted to hydrogen
to its crystallization below 14 K, which preempts BEC. within nanotubes bundles, partly due to the exciting pros-
Some three decades ago, Ginzburg and Sobyanin proposedects of technologies related to hydrogen storage and isotope
search for BEC and superfluidity of,Hn confining geom-  separatiorf>-2° The vast majority of the theoretical research
etries (for which crystallization occurs at a lower tempera- to date(including that of our grouphas assumed a mono-
ture, if at al).2 This suggestion stimulated a number of disperse distribution of tubes. The present study was stimu-
searches involving both theory and experiménté There lated by recent results of Shi and Johngbmyho showed
has been at least one assertion of a successful observationtbit the distribution of tube sizes present in actual samples
BEC, involving the lack of damping of rotational motion of leads to predictions that are quite different from those based
an impurity surrounded by hydrogen fluid within a small on the monodisperse models, in better agreement with ex-
cluster®14 perimental data than the naive models’ predictions.

In this paper, we describe a different geometry that is The outline of this paper is the following. Section Il de-
predicted to allow BEC to occdf: X8 This host material is an  scribes our calculations of the energy spectrdrté and H
ensemble of carbon nanotube bundles. A crucial role igases within ICs. Section Il employs these results to com-
played in this phenomenon by the presence of nonuniformitypute a set of predictions related to BEC that are testable in
In particular, we assume that there exists a fairly broad disprinciple. Section IV presents a further discussion of the
tribution of nanotube radii present in the experimentalmodel and draws conclusions.
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IIl. ENERGY SPECTRA AND DENSITY OF STATES TABLE |. Numerical values oE,,, andR,,, defined in the text.
OF ADSORBED GASES The parameters of the potential used in each case are from Refs. 56,

. 57, and 34.
We focus here on those states having the lowest energy an

since they are the most important for the BEC phenomenon,;
higher-energy behavior can be explored with the same ap-

o R) € (K) Ruin (A) Emin (K)

proach but minor changes in the analysis are required. The H,2 2.97 42.8 8.75 -1159.2
energy of a particle confined within an IC is evaluated with H,P 3.23 32.19 9.95 -1052.4
the Schrddinger equation. Assuming that the particular IC is 4 274 16.2 719 -353.6

perfectly straight, this equation is separable; then the total b

;. . 2.98 16.9 8.48 -456.9
energy is given by the relation

2Reference 56.

En(p) = Egans+ Elong(p)’ @) bReference 57.
) ‘Reference 34.
long — p
E°™(p) = m’ ) followed. The inverse square root dependence on the energy

above threshold is characteristic of 1D motion. The last fac-
Here, the first term is thath eigenvalue of the Schrddinger tor involves the Heaviside step functié(x), which is unity
equation describing motion transverse to the axis of the IQere forE>E,(R) and zero otherwise.
and the second term is the quasicontinuous kinetic energy of Now let us consider an ensemble of nanotubes. The
motion parallel to the axis. We assume for simplicity that thelowest-energy state@hose dominating the low-temperature
longitudinal kinetic energy is determined by the free-particlebehavioj are concentrated near the minimum of the function
mass; if the potential were corrugated the band mass shoul(R). As might be expected, the global minimumm¢R) is
be used instead ofn to characterize the low-energy found for the symmetric caséR}=R,. We define the vec-
states’®32 Such a substitution would lead to a straightfor- tor specifying this IC aRRin=Rmin(1,1,1 and E.,;, as the
ward change in the numerical and analytical results below. corresponding energy. The numerical results for these quan-

In the present circumstance, the transverse eigenvalugsies appear in Table I.

are separated by energiésf order 100 K that are much The behavior of the functiok,(R) near this minimum is
larger than relevant temperature scafesience, we need remarkable. If one considers only symmetric I®®unded
consider only the lowest eigenval&®"™ of transverse mo- by tubes of identical radjj the energy varies rapidly as a
tion. We denote this quantity,(R), where the vectolR  function of the differencéR-R,|. However, the spectrum
=(R;,R»,R3) has components equal to the radii of the tubesof the very-lowest-energy states is dominatedabymmetric
surrounding the IC. We refer to the domain of possible ICs a$Cs for which one of the radii equal’,,;, and the two others
R space; a given IC is represented by one point in this spacdiffer from R, by equal, but opposite amounts, e.R,
while a sample with many ICs is described by a cloud of=R;(1,1+x,1-x), where x<1. The energy varies ex-
points in this space. The single-particle spectrum is nowremely slowly withx in such a case. This is depicted fog H

specified by the relation in Fig. 1, which shows the energy variation in a plane within
2 R space that contains both this varialsléine and the diag-
E(R,p) =E(R) + Zp_ (3) onal(1,1,) line. (Analogous behavior occurs for the case of
m

“He). One observes in the figure a very narrow valley of

Here,E(R) is computed following the procedure of Stan and!0W-lying states of variable, along the(0,1,-1 direction,
Cole3* To get a sufficiently accurate dependenc&pbn R, where. the origin is shifted t&R . $|m|lar small gra_d|ent
one must include anisotropic and anharmonic contribution®havior of£(R) is found along equivalent permutations of
to the potential in the IC. We note that alternative parametrithis direction. Note that the higher-energy contours are ex-
zations of the potential have been proposed. Table | presenignded, nearly straight lines perpendicular to the diagonal.
one such alternative result f&. The qualitative behavior These latter contours imply an energy dependence of the
presented in the remainder of this paper is the same for th@ensity of states that is qualitatively different from that based
case of that alternative potential. on contours of lower energinear the valleys

Of considerable interest is the density of statés, R) for ~We next evaluate the transverse density of states for a
a single IC. For a specific set of adjacent tuttgs, this  9iven experimental sample of tubes. We denoterldy) the

function is given by a sum over all momenta, which may pedensity distribution of ICs, defined so thatR)dR is the

replaced by an integral: number of ICs present in the sample within a voludiein
R space. In this paper, we focus on low-energy behavior
h(E,R) = X, (E-E(R,p)) corresponding to such close proximity Ry, that we may
p replace v(R) by v(Rp,); future studies will address more

L /m\2 1 general situations for which that approximation is not ad-
= %(E) W(R)]”ZG(E_ E(R)). (4)  equate. In the following discussion, we assume iR is a
sufficiently broad distribution that ICs near this minimum
HerelL is the length of the channel and the usual procedurexist in sufficient numbers to treat adsorption statistically.
for quantizing the one-dimension&lD) motion has been Moreover, we assume that the set of tube sizes forms a con-
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FIG. 1. Contours of the ground-state transverse en&R)
—Enmin (relative to its minimum valueof an H, molecule as a func-
tion of the radiiR=(R;,R,,Ry) of the tubes bordering the IC. The
labels on the axes ar8R=R-R, i.e., R relative to the mini-
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by the following argument. Near radius 1 nm, there are many
values of the chiral indices that yield quite similar radii; the
mean spacing between successive values of the radius is
quite small, 0.002 nm. In addition, the ICs experience small
perturbations due to their environment; in particular, the ICs
at the center of a bundle are expected to be compressed rela-
tive to those near the perimeter. A model calculationpub-
lished yields an expression for the differenéeoetween the
tube-tube separation in an infinite rope and ttRy}) of an
isolated nanotube pair; apart from a constant of order one,
the result iss=[C\?]/[kRE], whereC is the van der Waals—
London intercarbon interaction coefficiei@ ~ 20 eV A%), \

is the 1D density of carbon atoms in a nanotube
~15 A1), R,~17 A is the spacing between tube centers,
andk=1072 eV/A3 is the force constant per unit length as-
sociated with neighboring tubes’ interactiotisThe result,
5~0.15 A, represents a nearly 5% compression of the lattice
constant of the rope relative to the separation of an isolated
pair. This shift in separation is consistent with estimates of
the analogous shift in breathing mode frequetfc@n the
basis of these arguments, the assumption of a continuum of
possible radii appears appropriate.

mum; the figure depicts behavior in a plane containing the symme- The transverse density of statgéE) for a given sample
try axis R; =R,=Rs. Beginning with the contour closest to the mini- of tubes is expressed by the relation

mum (the closed curve the contours correspond to relative energy

0.005, 0.01, 0.05, 0.1, 0.5, 1, and 5 K.

tinuum. The former assumption is well justified in experi-

g(E)=deV(R)5(E—Et(R))- (5

mental samples produced to date involving large numbers ofhe total density of statéd(E) is found by summing over all
tubes, which typically have a dispersion in radius values oktates of the ICs present in the sample:

order 20%°>36The latter(continuum assumption is justified
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FIG. 2. Upper panel: transverse density of stajés) for “He,

N(E) = J drRY 8(E-E(R,p)¥R), (6)
p

1/2 (E
ve- (3]

Emin

dEg(E)[E- Et]_l/z- (7)

Note that in the special case of a perfectly uniform distribu-
tion of Ny identical ICs, (R)=N,c8(R-Ry), yielding
g(E)=N,c8(E-E(Ry)); thenN(E) is preciselyN,c times the
single-tube density of statefi(E,Ry), given in Eg. (4)
above, as expected.

Figures 2 and 3 present the transverse densities of states
o(E;) for He and H, respectively, computed numerically
from a distribution of 608 tubes with radius values spread
uniformly over the interval 8.5 A to 11.5 A. In both cases,
the behavior ofg(E) at low energy is characterized by a
power-law dependence on energy above threshglgd(E)
~ (E-EninY2 At higher energy, there is a decreasegtE)
with energy, fit well by the expressiomgg,(E)~ (E
—Eqin Y2 The initial behavior is explained by the following
argument. At low energy, the density of states is obtained by
counting the number of ICs whose energyR) lies in an
interval betweert andE+dE. Assume for simplicity that the

computed from the distribution of ICs as described in the textiSO€nergy surfaces are spherical surfaces centered about the

Lower panel: total density of staté§E). In both cases, the energy
is measured relative to the minimuly,,=-456.88 K.

point R=R,i, [i.e., E-Epin=(k/2)|R—Rpmin|?]. Theng(E) is
obtained from the number of points in the shell between
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0.05 E
: | dEE-eniE-e
0.04 - Emin
T 0.03 — !
LA :(E_Emin)J dyly/(1-y)]"?
 002Ff 0
0.01 = (E~Enmp), (9)
0 : P |- P R R
0 0.02 0.04 0.06 0.08
B L7/ m 1/2
R N(E) = v(Rmiay(kg—_) (E-Emn. (10
0.0006 anis
i Note that the prefactor of the energy differeradich we
~ - call a) is proportional to the volume of the nanotubes, so that
& 0-0004 - N(E)/a is an intensive variable. The linear dependence on
ot - energy above thresholE-E,,,) is the behavior character-
Z 0.0002 istic of a 4D gas. This initially unexpected result is a logical
- consequence of convoluting a transverse spectrum character-
. istic of a 3D systeniEq. (8)] with the 1D longitudinal de-

ot L L gree of freedom. Similarly, the behavior at higher energy is
0.02 _ 004(1() 0.06 0.08 obtained by convoluting an inverse square root dependence
iR of ghign(E) with the 1D inverse square root dependence. Then
FIG. 3. Transverse and total densities of states, as in Fig. 2, foih€ high-energy result is th&t(E) is independent of energy,
H,. Emin=—1052.97 K. behavior characteristic of a 2D density of states. These ana-
lytic results for the spectra are consistent with the numerical
results seen in Figs. 2 and 3; that is, the low-energy density
spherical surfacegcorresponding t& and E+dE) centered Of states is proportional t6E-Ey,) while the high-energy
at Ry The result of this simple model is then behavior is independent of energy. By the word “high,” we
mean energies reasonably close ., (say E-Emi
=20 mK) but not the absolutely lowest energies.
2\112 To summarize this section, we note that unexpected be-
gow(E) = V(Rmin)477(g> (E-Emn*2. (8)  havior of N(E) emerges from a simple model. The low-
energy spectrum of the nonuniform systemgigalitatively
different from the spectrum obtained when heterogeneity is
ignored. The latter corresponds to 1D physics, NEE) pro-
This dependence on the square root of the energy turns out [yrtional to (E-E,,;) Y2 With heterogeneity, instead, we
be valid even in the extreme anisotropic case of interesfing thatN(E) exhibits a 4D form at very low energy and a

here® The result then is thf'*s is replaced byGs=kf, 2D form at higher energy. At energy1 K, the 1D behavior
wherex denotes the1,1,1) direction inR space and de- s recovered.

notes the two directions transverse to that.
Note that this square root energy dependencgRfE) lll. PREDICTION OF BEC

coincides with that of the density of states of a 3D gas. The |, s section we explore the consequences of the anoma-
higher energy behavidil/VE) of gnigr E) is quite different. 5,5 gensities of states for thermal properties of these sys-
The relevant high-energy regime in Fig. 1 is that where thgems. In so doing, we assume that the adsorbed gas can
energy surfaces iR space is perpendicular to th&,1,)  equilibrate. This entails the rearrangement of the particles as
diagonal. Since this variation is essentially a 1D dependencehe temperaturd is lowered by moving from ICs that have
the resulting high-energy form dygn(E) is that of a 1D high transverse energies to those with lower energies. Thus,
system, as in Eq4) above; this gives rise to a behavior we assume a combination of sufficient particle mobility and
Onigh(E) ~ (E~Emin) 2 (as is observed in Figs. 2 and. Ve sufficiently patient experimentalists that the assumption is
remark that this energy-dependent variation in effective divalid. In the extreme opposite limit of negligible transport of
mensionality has analogs in electronic band structures, wheilgarticles the thermal behavior is that of isolated and indepen-
wave vector replaces thR variable as the source of the dent 1D systems. The difference between these behaviors is
unusual dependenég. dramatic.

Figures 2 and 3, lower panels, depict the total densities of At very low density, one can ignore the effects of both
statesN(E) derived from Eq(7). In view of the power law interparticle interactions and quantum statistics. Then, the
formsf[e.g., Eq(8)] of g(E), we expect power laws fdd(E)  specific heaC(T)=dU/dT at fixed numbefN,) of particles
in appropriate regimes d&. For example, the very-lowest- can be computed from the classical Boltzmann expression
energy behavior is determined by the integral for the mean energy:

o
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FIG. 4. Specific heat ofHe (full curve) and H, (doty as a FIG. 5. FugacityZ=exp(Bu) as a function ofT/T, for two

function of T computed using the classical Boltzmann approach. gitferent densities: ¥ 1075 A=3 (full curve) and 0.5< 1075 A-3
(doty within an inhomogeneous nanotube array while the dashed

curve corresponds to an ideal 4D gas having the same low energy
f dEENE)exd - BE] density of states.
u(m)
Ny Jeasscar v
p / classical _
f dE N(E)exi - 5] Np = f dENE,T), (13)
Here 8 1=kgT. One can insert possible power law forms
N(E) ~ E@2-D corresponding to a gas ih dimensions and ~
derive the familiar relation U(T)= | dEERET), (14)
C d -1
Nk =5 (12 n(E,T) =N(E{exd B(E - w)] -1} (15
p™B/ classical

As usual, the classical equatiofikl) and(12) are obtained

Figure 4 presents the resulting classical behavior for th the limit when the fugacitZ =
; gacitZ=exp Bu) <1.] From U(T),
systems of He and Hin nanotubes. One observes that theOne may computeS(T). In evaluating these formulas, one

low-T regime does correspond to the expected 4D gas behay- . .
ior, C/(Nokg)=2 while the highT regime exhibits 2D gas encounters a phenomenon that is well known to occur in 3D

behavior.C/ (Nykg) = 1. The initial rise above 2 at very low Bose gases: BEC. This transition is derived here in the usual

: . o T . b luating the implication for th iabjle (at
is explained by a small upward deviation from linearity way, by evaluating the implication for the variable (@

. e . fixed N,) asT is lowered: upon decreasifg u increases up
P
found inN(E) at low E. That is, ifN(E) at low E is propor- to the point where it reaches its highest possible value

tional to E(1+E/E,), where E; is some constant, then —g  Thys the BEC condition for the transition tempera-
[C/(NpKg)Jeiassica= 21 +2/(BE,)]. The crossover between ture T.=(kgB.) ! is

the 4D and 2D regimes is gradual, beginning at a few mK

and complete by 20 mK; the latter value corresponds to the :f e 3y -l
energy above whicitN(E) is virtually identical to the 2D Np AENE)}{exr] Bo(E = Emin) ] = 117 (16)

form. si t &y asT falls below T, (given |
At higher density, one must consider the effects of inter->"C€ cannot exceedty, asT falls below T, (given im-

actions and quantum statistics. In the present treatment weicitly by this relation, there ensues a division into two

ignore interparticle interactions, except for some comment roqpts of IpartlcIes—_tth(;Ne)t(cittedEpgrEtlcleS agct%unted fpr. by
in the next section. While this is a common assumption, usu- € integral over excited staté min) and the remaining

ally adopted for simplicity, there exists some justification for Particles havinge=Ep, that comprise the Bose condensate,

it in the present instance because of electrodynamic screePcond

ing of the van der Waals interaction by the surrounding me- Neond= Np = Nexcited (T < To), (17)
dium; there are additional elastic screening effects that have

yet to be studied* We do not know the resulting effective

interaction well enough to characterize it. In contrast, the Nexcited™ f dENE){exdB(E-Enn] -1 (18
effects of quantum statistics are easily evaluated by the stan-

dard procedures. In particular, the assumed constraint ofhe results of these calculations appear in Figs. 5-8. Figure
fixed particle number yields an implicit relation for the 5 depicts the dependence @fon the relative temperature
chemical potentia, which depends oif, from which one  T/T, for two different densities. Figure 6 displays the depen-
may derive the energy: dence o of the condensate fractiditT) =N¢ond Np. Figure
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FIG. 8. Density of B molecules(full curve) and “He atoms

FIG. 6. Condensate fraction as a function of the temperatur%dotted curvgas a function of transition temperatufg The short-

computed for H in the nanotube systerfull curve) and the 4D H
gas(dots for N;=1x 1075 A3,

7 shows the functio©(T), which exhibits singular behavior

at the transition. Finally, Figure 8 shows the dependence

dash (H,) and long-dashiHe) curves indicate the 4D ideal gas
limiting behavior.

ofhat ideal system satisfidd(E)=aE, for all E>0, with the

T. onN,. Note that the transition temperature falls within the analysis presented in the Appendjkor the real system, the
mK range studied in many low-temperature laboratories, s& Coefficient is the prefactor of the energy term in Et0)].

experimental observation of this transition is feasible.

In the preceding three figures, comparison is made with
results obtained for a purely 4D Bose gas defined to have the
same initial slope of the density of states as the real system.

4
3
2

C/(Nkg)

C/(Nkg)

C/(Nkg)

o
=

o

o T T[T [T T [T T [T T T T T[T AT [T T [T T AT [ TITTTT

0.01 0.02

T (K)

FIG. 7. Heat capacity for FHas a function of the temperature in
nanotubesfull curve) and for the 4D H gas(dashedl (panel @ and
for “He in nanotubesfull curve) and for the 4D*He gas(dashedl
(panel b. Panel(c) shows the specific heat of 1fHe at linear
densities 0.01(full curve), 0.05 (dotted curvg and 0.1(dashed
curve AL The corresponding densities for the case of aie
lower by a factor of 212,

The key results for the 4D system are

T 2
fan(T)=1- , 19
4D() (Tc,4D> ( )
360(3)( T \2
c4D<T>:%<T 4D> (T<Teww)r (20
~ %)ﬂzi
Tc,4D_< a ke (21)

Here (3)=1.202 is a Riemann zeta function. Thé depen-
dences of (T) andC(T) are exhibited by the “real” system at
low T, as seen in the figures. At the very lowest tempera-
tures, only the lowest-energy states play a role; sWd®) is

the same for the ideal system in this region, the behaviors
coincide. The transition temperature is higher for the real
system than for the ideal one because at HgHN(E) is
lower in the real case than in the ideal case, implying that
(for the same value dfl,) u reaches its transition valugy,

at a higher value of..

Since the ground-state energy of the noninteracting clas-
sical system coincides with that of the noninteracting quan-
tum system, as does the energy at very High follows that
the integral of the two heat capacities is the same. At any
particularT, of course, the values & are very different. In
particular, the quantum system manifests the reduCeat
low T expected in this Bose gas case. The quantum system
exhibits a much larger value & in the vicinity of T;, which
is dominated by a large rate of excitation out of the conden-
sate; see Fig. 7. Figure 7 also shows for completeness the
heat capacity of a 1D Bose gas. In the absence of any tran-
sition, the behavior is monotonidas derived in the
Appendix.
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60 the experimental sampl&y, ~ voR3. SettingNy=Ngaed Tc)
. yields our estimate of the BEC transition condition:

Ly m'2
Np~ =25 - 22
T, 2
Apart from numerical factors, this result coincides with the
combination of Eqs(10) and (21). Note that this last equa-
tion can be rewritten in the formp*A\*~1 with p*
=N,/(L I3 where |=v"3/(m k92 is a characteristic
length defined by the energetic parameters and the distribu-
tion of radii.

n(E,T)/N,

0 0.01 E_ES;OZ(K) 0.08 0.04 IV. SUMMARY AND DISCUSSION
In this paper we describe a conceptually simple system
that turns out to exhibit remarkable behavior. The focus of
the study is the lowest-lying states of a system of hydrogen
or helium moving within a collection of nanotubes having
many ICs. Our analysis yields a density of stai#g) that
fulfills the requirement of BE@i.e., the maximum integrated
occupation number is finifeEqually interesting, perhaps, is
the finding that the calculated properties at ldvware char-
acteristic of a 4D gas in free space. Siritethe best of our
knowledge no 4D gas has been observed previously, the
redicted lowT and critical behaviors of this system are par-
ularly interesting.

FIG. 9. The occupied state energy distributioiE, T) (relative
to the total numbem,) defined in Eq.(15) is shown for B at
relative temperature3/T,=0.5 (full curve), 1 (doty, 1.1 (short
dashey and 1.5long dashes The integral of the curve at 0.5 is the
fraction (about 0.7 of excited particles while the other curves inte-
grate to 1, since then the condensate fraction vanishes.

One interesting question is this: how are the particles dis
tributed in energy as a function af. To address this, we
present in Fig. 9 the occupied energy distribution function
n(E,T) at various temperatures. One observes the increasi
relative occupation of low-energy states with decreading A nimber of theoretical issues need to be discussed. First,
for T>T, their sum is jusNy, the total number present. At one st ask whether the ideal gas assumption is valid; in-
T, there occurs ad|scont|nuou31ulmp in the occupation of th%leed, our group has previously explored the vapor-liquid
lowest-energy states accompanying the BEC transition. Begansition of these gases using quasi-1D models of perfect
low T, the numberNe,jeq Of uncondensed particles de- cg22 A concern is therefore that such condensation in a

creases, vanishing at=0, when all of the particles settle g,me\what disordered system would either preempt the BEC
into the condensate. o _ _ or alter the nature of the BEC, as is the situation with 3D
Ou_r predlct|o_n of BEC in th|§ anisotropic system raises asuperfluid“He. However, it may well be that disorder re-
question: Whatis the relathnshlp between the transition Cong,ceq the temperature of the hypothetical condensation tran-
dition and that of more familiar homogeneus problems, €.9.gjion pelow that of the BEC transition, so that two separate
the 3D Bose gas and the Kosterlitz-Thouless transition of ., nsitions occur.
superfluid film. In the latter examples, the relevant criterion 5 related question is the role of screening by the medium
i d i i . oSl ;
:js. of th‘? forlr_np)\ d\ll Where‘g/'s tlr,lze nurr]nb((jar de”S'IFY’ tr?e of the interparticle interaction. On the bare surface of graph-
imensionality, and.=(2zh°/m)~* is the de Broglie ther- o "oynerimental and theoretical evidence has indicated that
mal v_vavelength. We present now a heL_mst|c arggment that ig,e well depth is reduced by some 10% to 28¥ntuition
consistent with this homogeneus relation and yields a good,q some calculatiofssuggest that the attraction would be
estimate of the transition temperature for the present BEGqqced by a much greater factor for gases within a nanotube
problem. The argument estimaf€sby analyzing the condi-  5ray That is consistent with the neglect of these interactions
tion for quantum degeneracy; the number of partidgs i, the present paper.
becomes comparable to the number of staigge{Tc) IYing  The requirements for observation of this phenomenon in
within kgT, of the ground state. The number of states withinhe |aporatory are not trivial to satisfy. A particularly serious
that interval is essentially the product of the number of stateggncern is that equilibrium is difficult to achieve. It requires
of longitudinal motion within that range and the number of particles to diffuse out of one IC and into another Bs

states of transverse motion within that range: changes. The slow equilibration is a potentially fatal problem
1 that is difficult to assess; experimental diffusion data would
Neo (T) ~ No(TIN ([ (migT) v be very helpful in this regartf-*>We note that one need not
stateé ) H( ) J_( ) 3/2 )" . . . . . .
hiL (BKanis) imagine that particles are required to move macroscopic dis-

tances; one can employ tubes of quite finite length in order to
The factorN; is the ratio of the thermal momentum in tee accelerate the process of equilibration. Evidently, one should
direction to the spacing between discrete states. The facterot underestimate this problem, which is an important con-
N, is derived from a thermal spread of statesRnspace cern in much broader contexts involving nanotubes, such as
[ 6R~ (Bkqnid Y] and the corresponding number of states ingas storage and isotope separation.
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The problem at hand raises the venerable question of thenergy below the continuum. Because of the latter’s pres-
relation between BEC and superfluidii§P.*¢ We know that  ence, BEC occurs but ODLRO does not; this unusual behav-
BEC and SF appear simultaneously at theransition of ior arises because that system is not translationally invariant
“He34 However, the Kosterlitz-Thouless transition of 2D in any direction.
films is one involving SF without BE€” Moreover, the 3D The ideal nanotube radii for the lowest-energy states fall
ideal Bose gas exhibits BEC without SF, since the Landaun the range 0.8 to 1 nm, which is an advantageous size
velocity criterion is not satisfied. The latter says that thebecause typical samples contain many such tubes. If, for ex-
threshold velocity for superflow is the minimum of the ratio ample, only smaller tubes are present in a particular sample,
of the excitation energy to the momentdmOur unusual one would have to explore the behavior without all of the
nanotube-hosted BEC state would also fail this test, implyingsimplifying mathematics employed here. We have yet to
that no superflow is possible. Another aspect of SF is quartackle that problem in general, but do note some interesting
tized circulation, which is impossible in this environment. results found in one case. Suppose for simplicity that the
Thus, we think that SF is unlikely to accompany the transi-transverse density of states for a given sangptesisting of
tion described above. If, however, one were to include aN,c ICs) has a form(that is quantitatively wrong but quali-
weak interparticle interactions, SF could occur. tatively reasonable in that it consists of a spread of transverse

A question was raised of the existence of off-diagonalenergies given by the “uniform barrier” function:
long-range orde(ODLRO), which accompanies BEC in fa-

miliar model systems. This property, &0, may be evalu- 9(Ey) = L,& <E<E. (25)

ated from the behavior of the one-particle density matrix, (E~-E-)

p(r,r') derived from the(anomalouy average of a product

of particle creationy'(r’), and annihilationy(r), operators: g(E;) =0, otherwise. (26)
p(r,r") = (T (r")(r)). (23)  The result in this casgrom Eq.(7)] is

This function represents the amplitude for destroying a par- _ 2Ne L [m)\¥? o

ticle at positionr and creating it at’; its nonvanishing at N(E) = _ —\5) [(E-E)™O(E-E.)

S . : . (E=-E.)mh\2

infinitely large separatiorr —r’| is ODLRO. Equivalently, .

p(r,r') may be written in terms of the first-quantized many- - (E-E>)"O(E-E>)]. (27)

body wave function of the ground stafé{r;}): This expression yields the 1D limiting case of E4) when

the barrier width(E~ —E_.) falls to zero. In the case of non-
p(r,r')= Nfdrz---dr,\,qs* (P O I (A PR O B zero width, this expression yields 3D behavior f#(E) at
low E and 1D behavior at higk. The reason for the 3D limit
(24) is that the constant transverse density of states in the finite

At low T, instead, one must take thermal averages of thes%_!.niform barrier model mimics the constant density of states
guantities. In our system, below the transition temperatureor:.gfz()?n?i?Nl(nEgh's.';Eotﬂilr’n?gleb‘ligv?;a B.tEeC dt.;faer;Z':]'tofr:JrrT?m
we need consider only those states confined within th(g ! W viorqurte cl

lowest-energy channel since that is the macroscopically OCthat described elsewhere in this paper, i.e., when the lowest

cupied state. This means that the separdtiem’| should be possible transverse energigwear Enin) play the dominant
taken along thez axis of the channel; this is anisotropic

role in determining the behavior. The transition temperature
ODLRO. Furthermore, we need consider only the transvers

8f a system ofN, molecules, obtained for the uniform barrier
ground state. In this case, the density matrix is manifestyedel with the conventional 3D theory, satisfies

equal to the condensate function(T), which becomes one 27 ( N(E- —E_)%\2
at T=0. At finite T, the contribution to ODLRO from the (kgTe)®= F(JJ—LN}(B/Z) ) - (28)
IC

excited single particle states vanishes because of phase can-
cellation, leaving the same result found in three dimensionsThis proportionality ofT, to N’2)/3 is characteristic of 3D be-
lim{p(r,r")}=ng(T). The value of this function for our ge- havior, in contrast with the 4D proportionality N%’Z in Eq.
ometry is shown in Fig. 6. We note that theoré®f€ pro-  (21).
hibiting BEC and ODLRO in reduced dimensionalities are  One might ask whether similar BEC phenomena occur in
not relevant to the system considered in this paper. The rea related environment, the groove between two nanotubes
son is that thek-space integrations yielding divergent fluc- (e.g. at the external surface of a bundikdsorption in this
tuations in those translationally invariant systems are reregion has been much studied in theory and experinfénts.
placed by quite finite integrations when the distribution of We have therefore investigated the consequence of heteroge-
channels is taken into account; this avoidance of the singuaeity for that problem, with interesting results. One finding is
larity has the same mathematical origin as the nondivergendbat the symmetric situatiottwo identical radij provides a
of the integral in Eq(16) when w=E local maximum(in 2D R spaceg of the transverse energy.
We contrast this system’s behavi@nisotropic ODLRO, Hence, the methodology and results of the present paper are
BEC) with that of a toy model system of reduced dimension-not applicable, for the most part. The one related result is
ality, described by Matti8? That model involves states of a that there occurs in the groove case an anomalous signature
2D ideal gas, accompanied by a localized state at specifiedf inhomogeneous broadening in the excitation spectrum.
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This is qualitatively analogous to the behaviorN(E) here, N

: ) . _ p
except that spectroscopy is the tool of choice for its keTe= (2)a (A5)
investigationt’

In closing, we emphasize an intriguing fact: this transitionFrom Eqgs.(A5) and(A2) the condensate fraction results,
is a consequence of the nonuniformity of the ICs within ex- N T\2
perimental samples. A perfectly uniform set of ICs would f = —cond 1—(—) . (AB)
exhibit 1D physical properties instead of the transition de- Np Te
scribed here. Such a remarkable consequence of heterogemgow we evaluate the specific heat. To do so we have to be
ity has precedents in other physical systems, of which theware that the fugacity depends on the temperature only for

spin glass phenomenon is a well-known exantpté> T>T, while it is equal to 1 forT<T.. Then we obtain
C Z Z
N :693( ) _492( ) (T=T,) (A7)
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APPENDIX: 4D AND 1D IDEAL BOSE GASES 9n(L) = £(n) (A9)
We consider an ideal Bose gas in four dimensions whosgnd
density of state®N(E) satisfies Z9\(2) = gn-1(2). (A10)
N(E) = aE(E > 0). (A1) These, together with EqA2), give the following relation-
ship,
For this system, we evaluate the number of particles, energy, P
and specific heat in the usual way, using E¢E3)~(15). 99(2) _ 2 @) (A11)
Straightforward calculations yield aT ng '
N, = agx(2)(kgT)? + Neong (A2) In 1D, a standard treatméntyields the specific heat
whereNgonqis the number of Bose condensed particles, and ~ C/(Nkg) = (3/4)93/2(2)/91/2(2) = (1/14)91/2(2)/9-1/2(2) ,
U = 2ag5(2) (kg T)°. (A3) (A12)

where one determineg_,;, from the general relatiorzg,
=g, andz is determined from the density via the relation
PN=01/2(2).

X" 1dx The limiting behavior at lowTl (pA> 1) that results is

1 ee)
n(Z) = - . A4
%(2) I'(n) fo Zle -1 (A9 z=exfd- 7/(p\)?], (A13)

The fugacityZ(T) is determine from Eq(A2). Moreover, _
from this equation we obtain the critical temperattigdor a C(T) = (/423721 (p) (AL4)
given number of particlesl,, given that the maximum value ThusC(T) is proportional toT2 at low T rising monotoni-
of Z is 1 andg,(Z) is a monotonically increasing function, cally to the classical valublkg/2 at highT.

Here the functiong, and g; are second and third “Bose
Einstein integrals,”
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