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The electronic contributionDE to the segregation energy in diluted transition-metal alloys is investigated. It
is shown that quantum interference effects on the electronic states, which take place in the near-surface region,
significantly affect the screening of the potential of the minority alloy component and, as a consequence, the
electronic contribution to the segregation energy. An analytical approximation toDE, valid for sufficiently
large distances to the surface, is obtained, which evinces the relation between the spatial behavior ofDE and
specific features of the host Fermi surface.
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I. INTRODUCTION

It is experimentally well established that the chemical
composition of an alloy in its near-surface region may differ
from that in the bulk. The understanding of this phenom-
enon, known as surface segregation, is a subject of great
interest in condensed matter physics, materials science, and
catalytic chemistry. From the experimental point of view,
attention has been focused on the study of detailed
composition-depth profiles, which provide a fairly complete
description of the segregation process. Several methods, such
as low-energy electron, x-ray scattering diffraction, and
atom-probe techniques, have been used to investigate the
layer-by-layer atomic composition near the surface of vari-
ous materials. It has been found that some alloys, such as
Cu3Au,1 Pt-Ru,2 Pt-Ni, and Pt-Rh,3 exhibit complex surface
segregation behavior, with the composition oscillating about
the bulk value as a function of the distancez to the surface.
The amplitude of the oscillations diminishes asz increases,
making difficult the observation of such behavior well below
the surface plane. Nevertheless, oscillations down to over ten
atomic layers have been reported by Renet al.4 in one Pt-Rh
alloy.

Previous theoretical work on the problem of surface seg-
regation has been based on either electronic structure
calculations,5–7 mean-field theories for effective Ising
models,3,8–11 theories related to the order-disorder transfor-
mation in alloys,12,13 or embedded-atom methods.14 How-
ever, several important points such as the connection be-
tween the oscillation periods and the electronic structure of
the material have not been clearly established yet.

In this communication, we investigate the surface segre-
gation of the minority component element of diluted metallic
alloys. For such systems, we calculate the electronic contri-
butionDEszd to the segregation energy, defined as the change
in total electronic energy associated with the exchange in
position between an atom of the minority component within

the bulk and one atom of the host material placed at a dis-
tancez of the surface.5 We also derive an analytical approxi-
mation toDEszd, which makes clear the connection between
the spatial behavior of this quantity and the geometry of the
host Fermi surface(FS). According to such an expression,
DEszd should oscillate as a function ofz with well-defined
periods given by the extremal dimensions of the host Fermi
surface in the direction perpendicular to the surface plane. As
a consequence, the spatial behavior ofDEszd may depend on
the orientation of the alloy surface. The oscillation ampli-
tudes are found to decay as 1/z and to be determined basi-
cally by two factors—namely, the valence difference be-
tween host and impurity elements and the curvatures of the
host FS at its extrema. The theory is illustrated by numerical
and analytical calculations ofDEszd for a simple model, and
the agreement between the two sets of results confirms the
accuracy of the analytical approximation. The observed os-
cillatory behavior of the electronic contribution to the segre-
gation energy is interpreted in terms of quantum interference
effects near the host surface and their effects on the screen-
ing of the minority component potential.

II. ELECTRONIC CONTRIBUTION TO THE
SEGREGATION ENERGY

The systems we consider are substitutional binary alloys
A1−xBx, whereA and B are transition-metal elements andx
!1 (diluted alloys). In this composition range, multiple-
scattering processes involving two or more distinctB atoms
can be neglected; hence, they may be regarded as isolated
impurities in an otherwise pureA host. We regard the system
as consisting of atomic planes parallel to the alloy surface,
labeled by the indexl. The surface plane corresponds tol
=1. The atomic positions within each plane are labeledR.
For simplicity, we assume that the atomic planes are equiva-
lent; however, the extension of the theory to include the con-
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cept of principal layers is straightforward.15 We are inter-
ested in calculatingDEl =DEsldd, whered is the interplane
distance. Such a quantity can be readily obtained from elec-
tronic structure calculations.

We follow the approach of Riedinger and Dreysse5 and
assume that the change in the electronic potential due to the
introduction of theB atom is restricted to the impurity site,
which is a good approximation for the sort of metallic sys-
tems we are interested in. Thus, within the framework of the
tight-binding model, the Hamiltonian of the system can be
written as

H = HA + o
m

ulRmlvl,mklRmu, s1d

where HA is the host Hamiltonian,ulRml represents an
atomic function with orbital quantum numberm centered on
the sitesl ,Rd occupied by the impurity, andvl,m is the change
in the electronic potential on such site. We recall that, since
HA has translational symmetry parallel to the surface plane,
vl,m does not depend onR.

The condition of global charge neutrality requires the
change in the number of occupied states in the system to be
equal toDn=nB−nA, wherenA andnB are, respectively, the
numbers of valence electrons per atom(electronic concentra-
tion) of A and B. This condition leads to a simple relation
betweenDn and vl,m, known as Friedel’s sum rule, which
may be regarded as a self-consistency condition onv. In the
case of transition metals, two additional approximations may
be introduced at this point.5 First, since the screening of the
impurity potential is carried out mostly by thed states, the
changes in thes andp potentials on the impurity site can be
ignored to a first approximation. Second, since crystal field
effects on thed states are usually small, the dependence ofv
on the orbital indexm can be neglected. Thus, we are left
with a single parametervl describing the change in thed
potential on the site occupied by the impurity. By imposing
global charge neutrality we find that

Dn = −
1

p
Im Tr lnhf1g − vlfGl,lsEFdgj, s2d

where[1] is the identity matrix, Tr stands for the trace over
the d orbitals, fGl,lsEFdg is the host Green’s function matrix
for states withd symmetry at an arbitrary siteR in plane l,
andEF is the Fermi energy. It is worth noting that, in contrast
to the case in which the impurity is in the bulk of theA
material, the potentialv in the above equation depends on
the impurity position relative to the surface plane. As dis-
cussed below, such a dependence is due to quantum interfer-
ence effects which take place in the near-surface region. In
the present work, Eq.(2) is used to obtainvl for different
positionsl, in each case for fixed valence differenceDn.

Having determinedvl, the total electronic energy of the
system when the impurity is positioned in the atomic planel
can be readily obtained from ordinary scattering theory. It is
given by the expression

El = EA + EF Dn +
1

p
E

−`

EF

dv Im Tr lnhf1g − vlfGl,lsvdgj,

s3d

whereEA is the total electronic energy of the pureA material.
Thus,DEl =El −Esbd, whereEsbd is the total electronic energy
of the system when the impurity is in the bulk of theA
material, which can be written as

DEl =
1

p
E

−`

EF

dv Im Tr ln„hf1g − vlfGl,lsvdgj

3hf1g − vbfG0,0
sbdsvdgj−1

…. s4d

Herevb and fG0,0
sbdsvdg represent, respectively, the change in

the d potential and the local Green’s function matrix for
states withd symmetry for the impurity in the bulk of theA
material. The former can be obtained from Eq.(2) by replac-
ing fGl,lsEFdg with fG00

sbdsvdg.
As explained at length in the next section, forl @1 the

numerical calculations ofvl andfGl,lsEFdg become extremely
time consuming. In addition, in such a range of values ofl,
the integration over energy in Eq.(4) involves large cancel-
lations and has to be carried out with extremely high accu-
racy. On the other hand, as we show below, for sufficiently
large values ofl, those difficulties can be overcome and
simple analytical expressions forvl, fGl,lsEFdg, andDEl can
be derived. Even more interesting, such analytical expres-
sions forvl andDEl establish a clear connection between the
spatial behavior of these two quantities and specific features
of the electronic structure of the host material.

III. ANALYTICAL APPROXIMATION

We first notice that the argument of the logarithmic func-
tion in Eq. (4) is expected to approach[1] as l increases.
Thus, for l @1, the expression forDEl can be approximated
by

DEl .
1

p
E

−`

EF

dv Im Tr„hf1g − vlfGl,lsvdgjhf1g − vbfG0,0
sbd

3svdgj−1 − f1g…, s5d

which reduces to

DEl .
1

p
E

−`

EF

dv Im Tr„hvbfG0,0
sbdsvdg − vlfGl,lsvdgjhf1g

− vbfG0,0
sbdsvdgj−1

…. s6d

We show below that, as expected,vl and fGl,lsvdg ap-
proachvb and fG0,0

sbdsvdg, respectively, with increasingl. Let
us look first at the behavior offGl,lsvdg. In the case in which
interplane hoppings are restricted to nearest-neighbor planes,
it can be shown that

fGl,lsvdg = fG0,0
sbdsvdg − V2dE d2q

s2pd2fGl,0
sbdsq,vdg

· fG0,0
sbdsq,vdg−1 · fG0,l

sbdsq,vdg, s7d

whereV2d is the area of the Wigner-Seitz cell of the two-
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dimensional(2D) lattice defined within the atomic planes
andq is a 2D wave vector parallel to the atomic planes. For
fixed values of q and v, the matrix elements offGl,0

sbd

3sq ,vdg andfG0,l
sbdsq ,vdg are oscillatory functions ofl. This

follows from the analytic expressions for the Green’s func-
tion in layered systems derived by Umerski.16 The oscillation
period is given bylsv ,qd=2p /ksq ,vd, whereksq ,vd is de-
termined by solving the material’s dispersion relationv
=Esq ,kd, which we assume to have a single sheet in recip-
rocal space; the extension to cases with more than one sheet
is straightforward.16,17 In such a case, the terms in the sum-
mation overq on the right-hand side of Eq.(7) can be ex-
panded in a Fourier series:

fGl,0
sbdsq,vdg · fG0,0

sbdsq,vdg−1 · fG0,l
sbdsq,vdg

= o
sù2

fcssq,vdgexpfisksq,vdldg, s8d

wherefcssq ,vdg is a matrix of Fourier coefficients. For large
l and fixedv, the exponential in Eq.(8) oscillates rapidly as
a function ofq, which leads to large cancellations when the
integration overq is carried out. This is the underlying rea-
son why the numerical calculation offGl,lsvdg becomes in-
creasingly difficult as larger values ofl are considered, as
pointed out in the previous section. As a consequence, the
nonvanishing contributions to theq integral in Eq.(7) come
just from the neighborhood of pointsq0

a in q space which
renderksq ,vd stationary. By expandingksq ,vd in a Taylor
series aboutq0

a up to second order inq and approximating
the remainingq-dependent factors by their values atq0

a, the
integral over the parallel wave vector reduces to Gaussian
integrals and can be evaluated analytically.18 Then, the ex-
pression forfGl,lsvdg reduces to

fGl,lsvdg = fG0,0
sbdsvdg + o

a
o
sù2

1

sld
fAssq0

a,vdgexpfisk0
asvdldg,

s9d

where

fAssq0
a,vdg =

V2d

2p
fcssq0

a,vdg
§

sukxx
a uukyy

a ud1/2.

Here,kjj
a =]2k/]qj

2 at q=q0
a sj=x,yd, k0

asvd=ksq0
a ,vd, and

z = 5 i if kxx . 0 andkyy . 0,

− i if kxx , 0 andkyy , 0,

1 if kxx . kyy , 0.
6

qx andqy are the components ofq in an orthogonal system of
axes chosen to diagonalize the Taylor expansion of the argu-
ment of the exponential in Eq.(8). According to Eq.(9),
fGl,lsvdg approachesfG0,0

sbdsvdg, upon increasingl, as ex-
pected. Using this result, it can be shown(see the Appendix)
that

Dvl = nl − vb = o
a

o
sù2

`
1

sld
ImhBssq0

a,EFdexpfisk0
asEFdldgj,

s10d

where

Bssq0
a,EFd =

vb

prisEFd
Tr„fAssq0

a,EFdghf1g − vbfG0,0
sbdsEFdgj−1

….

s11d

Here risEFd=−s1/pdIm Tr(fG0,0
sbdsEFdghf1g−vbfG0,0

sbdsEFdgj−1)
is the local density of states on the site of an impurity located
in the bulk. On the basis of Eqs.(7) and(10), the expression
for DEl in Eq. (6) can be approximated by

DEl .
1

p
E

−`

EF

dvIm Trhf− DvlG0,0
sbdsvd − vbdGl,lsvdg

3f1 − vbG0,0
sbdsvdg−1j,

where we have kept terms up to order 1/l and fDGl,lsvdg
=fGl,lsvdg−fGbsvdg. We recall that bothfDGl,lsvdg andDvl

decrease as 1/l for l @1 [cf. Eqs.(9) and (10)]. Therefore,

DEl . DvlS−
1

p
E

−`

EF

dv Im Tr„fG0,0
sbdsvdg

3hf1g − vbfG0,0
sbdsvdgj−1

…D
+

vb

l S−
1

p
o
a

o
sù2

1

sd
E

−`

EF

dv Im Tr„fAssq0
a,vdg

3hf1g − vbfG0,0
sbdsvdgj−1

… 3 expfisk0
asvdldgD . s12d

For sufficiently large values ofl, the exponential in the
last integrand oscillates very rapidly as a function of thev,
leading once more to large cancellations, this time when the
integration over energy is carried out. Thus, the main contri-
bution to this integral comes from the neighborhood ofEF,
where there may be an incomplete oscillation period. Then,
k0

asvd may be expanded in a Taylor series aboutEF and the
integral overv carried out analytically.18 As a result, an ad-
ditional dependence on 1/l appears in the second term on the
right-hand side of Eq.(12). Thus, the leading term in the
expression forDEl in the asymptotic regionsl @1d is given
by

DEl .
ni

sbd

ld
o
a

o
sù2

1

s
ImhBssq0

a,EFdexpf2isk0
asEFdldgj,

s13d

where
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ni
sbd = −

1

p
E

−`

EF

dv Im Tr„fG0,0
sbdsvdghf1g − vbfG0,0

sbdsvdgj−1
…

s14d

is the density of particles at the site of an impurity atom in
the bulk of the host material.

We remark that according to Eqs.(13) and (10), for suf-
ficiently large distances to the surface, the electronic contri-
bution to the segregation energy and change in the screened
impurity potential are related by the equation

DEl . ni
sbdDvl ,

which clearly establishes the relation between the quantum
interference effects in the near-surface region, the screening
of the impurity potential, and the segregation energy. In ad-
dition, Eqs.(13) and(10) imply that bothDvl andDEl should
oscillate as a function of distancez=sl −1dd to the surface,
with decaying amplitude and with a superposition of well-
defined periods given by

las =
2p

sk0
asEFd

, s15d

wheresù2 andk0
asEFd=ksq0

a ,EFd are the extremal dimen-
sions of the host Fermi surface in the direction perpendicular
to the host surface. Therefore, depending on the geometry of
the host Fermi surface, the oscillation periods may be either
long or short in the scale of the interplane distance. It is clear
from Eqs.(10) and (13) that the main contributions to both
Dvl and DEl are expected to come from the first Fourier
terms in each series. In both cases, however, the amplitude of
the oscillations depends on the curvatures of the host Fermi
surface at the extremal points and decays as 1/z towards the
bulk.

In the following section, we apply the above theory to a
rather simple model and calculate the segregation energy
based on both Eqs.(4) and(13). The comparison between the
results of the two calculations will enable us to assess the
accuracy of the asymptotic approximation and to confirm the
above-mentioned relation between the behavior ofDEl and
the geometry host Fermi surface.

IV. RESULTS AND CONCLUSIONS

In this section we present results for a simple model in
which the atoms of the system occupy sites of an underlay-
ing simple cubic lattice and the electronic structure is de-
scribed by a single-band tight-binding model with hoppingt
between nearest-neighbor sites. We recall that for such model
the host Fermi surface is given by

EF = eA + 2tfcosskxad + cosskyad + cosskzadg,

whereeA is the host site energy anda is the lattice parameter.
In which follows, the energy unit is taken such thatt=−0.5
andeA=0.

We first deal with the case in which the surface has(001)
orientation. The electronic densitynA of the host material is
chosen equal to 0.5, which corresponds toEF=0. In such a

case, the extrema of the host FS have extrema along the
direction perpendicular to the surface are located atq0

1,2

=s0, ±p /ad andq0
3,4=s±p /a,0d. The extremal dimension of

the FS at the four points isk0
asEFd=kz=p /2a, which accord-

ing to Eq. (15) corresponds tol=2d. Figure 1 showsDv
=nl −vb as a function ofl (solid circles), for nB=0.4, withnl
andvb obtained from Eq.(2). As regard the determination of
nl, the Green’s function matrix elementGl,lsEFd, which en-
ters Eq.(2), has been calculated from Eq.(7). We remark that
for the values ofl in Fig. 1, it was necessary to consider
more than 3.33107 q points in the irreducible wedge of the
two-dimensional Brillouin zone to achieve convergency. It is
clear thatDvl oscillates with a period predicted by the ana-
lytical approximation, which is represented by the solid line.
The agreement between the numerical and analytical results
is quite good, even close to the surface.

It is worth commenting at this point on the spatial behav-
ior of Dvl. According to Thomas-Fermi theory, the screening
of an impurity potential by an electron gas is carried out
mostly by the states at the Fermi energy. In fact, the screened
potential of a Coulomb charge is

Vscrsrd =
e−k0r

r
,

where k0=4pe2rsEFd. Here, rsEFd is the density of states
(DOS) at the Fermi energy. For the electronic density of
ordinary metals, the screening lengthlscr=2p /k0 turns out to
be of order 1 Å, which fully justifies the assumption that the
change in the electronic potential due to the introduction of
the impurity is restricted to the impurity site. In the bulk of a
crystalline material, the amplitude of the electronic states is

FIG. 1. Change in the electronic potential at the impurity site
relative to the bulk value,Dnl =nl −nb, as a function of the indexl of
the atomic plane where the impurity positioned(solid circles). The
energy unit is taken such thatt=−0.5. The distance of the impurity
to the surface plane isz=sl −1dd, whered is the interplane distance.
The solid curve represents the analytical approximation toDnl (see
text). The surface plane has(001) orientation. The inset shows the
changeDrl in the local density of states at the Fermi energyrlsEFd
with respect to the bulk valuerbsEFd of the unperturbed host ma-
terial as a function ofl.
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the same at all lattice sites and so is the local density of
states. However, in the near-surface region, quantum inter-
ference between states with the Fermi energy which are in-
cident on, and reflected by, the surface modulates the ampli-
tude of those states, giving rise to a position-dependent local
density of states atEF—i.e., rsz,EFd. According to Thomas-
Fermi theory, this should affect the screening of the impurity
potential. At those positions whererl =rsld ,EFd is larger, the
screened potential is expected to be weaker and vice versa.
This point is entirely confirmed by the data in Fig. 1, which
shows in the insetDrlsEFd=rlsEFd−rbsEFd as a function ofl,
where rlsEFd=rsld ,EFd and rbsEFd is the bulk density of
states of the pureA material.

Figure 2 showsDE as a function of the plane indexl
(solid circles) calculated from Eq.(4), for the same set of
parameters as in Fig. 1. Also, in this case, it was necessary to
consider more than 3.33107 q points in the irreducible
wedge of the two-dimensional Brillouin zone to achieve con-
vergency in the calculation ofGl,lsvd, within the range of
values ofl in the figure. The solid line represents the analyti-
cal approximation given by Eq.(13). We find thatDE oscil-
lates with the predicted period and that the two sets of results
are in quite good agreement, even for relatively small values
of l.

Finally, to illustrate the dependence of both the screening
of the impurity potential and the segregation energy on sur-
face orientation, which arises as a consequence of the non-
sphericity of the host FS, we consider the case of a(110)
surface. The 2D Brillouin zone now corresponds to the re-
gion defined by the relations −pÎ2/2aøqxøpÎ2/2a and
−p /aøqyøp /a, and the host FS has extrema at the points
q0

1,2=s0, ±p /ad and q0
3=s0,0d. The corresponding extremal

dimensions arek0
1,2sEFd=p / s3dd andk0

3sEFd=2p / s3dd; thus,
both Dn andDE are expected to oscillate as a function ofl

with a superposition of two periods—namely,l1,2=3d and
l3=3d/2, whered=aÎ2/2. This is confirmed by the results
in Figs. 3 and 4, which show, respectively,Dn andDE plot-
ted as functions ofl (both for nA=0.5 andnB=0.4). In these
figures, solid circles represent the results of numerical calcu-
lations, whereas solid lines correspond to analytical approxi-
mations. The agreement between the two sets of results is
quite good. The present results give support to the work of
Dreysee and Riedinger,6 who have numerically studied the

FIG. 2. Electronic contribution to the segregation energyDEl as
a function of the indexl of the atomic plane where the impurity
positioned(solid circles). The solid curve represents the analytical
approximation toDEl (see text). The energy unit is taken such that
t=−0.5. The distance of the impurity to the surface plane isz=sl
−1dd, where d is the interplane distance. The surface plane has
(001) orientation.

FIG. 3. Change in the electronic potential at the impurity site
relative to the bulk value,Dnl =nl −nb, as a function of the indexl of
the atomic plane where the impurity positioned(solid circles). The
energy unit is taken such thatt=−0.5. The distance of the impurity
to the surface plane isz=sl −1dd, whered is the interplane distance.
The solid curve represents the analytical approximation toDnl (see
text). The surface plane has(110) orientation.

FIG. 4. Electronic contribution to the segregation energyDEl as
a function of the indexl of the atomic plane where the impurity
positioned(solid circles). The energy unit is taken such thatt=
−0.5. The solid curve represents the analytical approximation toDEl

(see text). The distance of the impurity to the surface plane isz
=sl −1dd, whered is the interplane distance. The surface plane has
(110) orientation.
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influence of surface orientation on the band contribution to
the segregation energy. The dependence ofDE on the surface
orientation in the case of diluted alloys is made totally clear
by the analytical expression in Eq.(13).

In conclusion, we have investigated the electronic contri-
bution to the segregation energy in diluted metallic alloys.
We have shown that quantum interference effects which oc-
cur in the near-surface region significantly affect the screen-
ing of the potential of the minority alloy component and,
consequently, the segregation energy. As we have demon-
strated numerically and analytically, in such a region, both
Dn andDE exhibit an oscillatory behavior as functions ofl,
with well-defined periods determined by the geometry of the
host Fermi surface and the relative orientation of the surface.
This is a clear example of the important role played by quan-
tum interference effects due to sharp changes in the elec-
tronic potential, which appear near surfaces and in most
nanostructured systems.
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APPENDIX

We first notice that Eq.(2) (Friedel’s sum rule) can be
rewritten as

Dn = −
1

p
Im Tr lnhf1g − nbfG0,0

sbdsEFdg − DnlfG0,0
sbdsEFdg

− nbfDGl,lsEFdg + DnlfDGl,lsEFdgj, s16d

where fDGl,lsEFdg=fGl,lsEFdg−fG0,0
sbdsEFdg. Since both Dnl

and fDGl,lsEFdg are expected to vanish asl increases, for
sufficiently large values ofl the last term in the argument of
the logarithmic function in the above equation can be ne-
glected. Then, Eq.(16) reduces to

−
1

p
Im Tr ln„f1g − hDnlfG0,0

sbdsEFdg + nbfDGl,lsEFdgj

3hf1g − nbfG0,0
sbdsEFdgj−1

… = 0.

Moreover, forl @1, the latter equation can be approximated
by

1

p
Im Tr„hDnlfG0,0

sbdsEFdg + nbfDGl,lsEFdgj

3hf1g − nbfG0,0
sbdsEFdgj−1

… = 0,

from which we get

DnlrisEFd =
nb

p
Im Tr„fDGl,lsEFdghf1g − nbfG0,0

sbdsEFdgj−1
….

Making use of Eq.(9), we immediately obtain the expression
for Dnl in Eq. (10).
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