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Quantum interference effects on the segregation energy in diluted metallic alloys
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The electronic contributioAE to the segregation energy in diluted transition-metal alloys is investigated. It
is shown that quantum interference effects on the electronic states, which take place in the near-surface region,
significantly affect the screening of the potential of the minority alloy component and, as a consequence, the
electronic contribution to the segregation energy. An analytical approximatidrEtovalid for sufficiently
large distances to the surface, is obtained, which evinces the relation between the spatial behviandf
specific features of the host Fermi surface.
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I. INTRODUCTION the bulk and one atom of the host material placed at a dis-

It is experimentally well established that the chemicalt@ncez of the surfacé.We also derive an analytical approxi-
composition of an alloy in its near-surface region may differmation toAE(z), which makes clear the connection between
from that in the bulk. The understanding of this phenom-the spatial behavior of this quantity and the geometry of the
enon, known as surface segregation, is a subject of gre&ost Fermi surfacgFS). According to such an expression,
interest in condensed matter physics, materials science, addE(2) should oscillate as a function afwith well-defined
catalytic chemistry. From the experimental point of view, periods given by the extremal dimensions of the host Fermi
attention has been focused on the study of detailedurface in the direction perpendicular to the surface plane. As
composition-depth profiles, which provide a fairly completea consequence, the spatial behavioA&(z) may depend on
description of the segregation process. Several methods, suttie orientation of the alloy surface. The oscillation ampli-
as low-energy electron, x-ray scattering diffraction, andtudes are found to decay aszldnd to be determined basi-
atom-probe techniques, have been used to investigate tlally by two factors—namely, the valence difference be-
layer-by-layer atomic composition near the surface of varitween host and impurity elements and the curvatures of the
ous materials. It has been found that some alloys, such dtost FS at its extrema. The theory is illustrated by numerical
CuAu,! Pt-Ru? Pt-Ni, and Pt-RI, exhibit complex surface and analytical calculations @fE(z) for a simple model, and
segregation behavior, with the composition oscillating abouthe agreement between the two sets of results confirms the
the bulk value as a function of the distarcéo the surface. accuracy of the analytical approximation. The observed os-
The amplitude of the oscillations diminishes agicreases, cillatory behavior of the electronic contribution to the segre-
making difficult the observation of such behavior well below gation energy is interpreted in terms of quantum interference
the surface plane. Nevertheless, oscillations down to over tegffects near the host surface and their effects on the screen-
atomic layers have been reported by Re¢ml* in one Pt-Rh  ing of the minority component potential.
alloy.

Previous theoretical work on the problem of surface seg-
regation has been based on either electronic structure
calculations;” mean-field theories for effective Ising
models>®-1! theories related to the order-disorder transfor- The systems we consider are substitutional binary alloys
mation in alloyst>!3 or embedded-atom methotlsHow- A, B,, whereA and B are transition-metal elements amrd
ever, several important points such as the connection be<1 (diluted alloyg. In this composition range, multiple-
tween the oscillation periods and the electronic structure oécattering processes involving two or more distiBcatoms
the material have not been clearly established yet. can be neglected; hence, they may be regarded as isolated

In this communication, we investigate the surface segreimpurities in an otherwise purk host. We regard the system
gation of the minority component element of diluted metallicas consisting of atomic planes parallel to the alloy surface,
alloys. For such systems, we calculate the electronic contrilabeled by the index. The surface plane correspondslito
bution AE(2) to the segregation energy, defined as the change 1. The atomic positions within each plane are labeked
in total electronic energy associated with the exchange ifror simplicity, we assume that the atomic planes are equiva-
position between an atom of the minority component withinlent; however, the extension of the theory to include the con-

II. ELECTRONIC CONTRIBUTION TO THE
SEGREGATION ENERGY
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ested in calculating\E;=AE(ld), whered is the interplane E=Ea+Ef An+— [ doImTrin{[1]-v[G(w)]},

cept of principal layers is straightforwatél.We are inter- fEF
7)o

distance. Such a quantity can be readily obtained from elec-
tronic structure calculations. 3

We follow the approa<_:h of Rledmge.r and Dr.ey5sse|d whereE, is the total electronic energy of the pukanaterial.
assume that the change in the electronic potential due to thfehus AE,=E,-E®), whereE® is the total electronic energy

e e o TEUIIY 512 of the system when the impuriy is in he bul o U
9 PP Y material, which can be written as

tems we are interested in. Thus, within the framework of the
tight-binding model, the Hamiltonian of the system can be

1 (FF
written as AE = ;f_ do Im TrIn({[1] - v|[G ()]}

0

— (b) -1
HeHas S [Rudon (IR, " {11 - vl GPY @) ). (@)
P Here v, and[G\ )] represent, respectively, the change in
the d potential and the local Green’s function matrix for
where H, is the host Hamiltonian/IRu) represents an states withd symmetry for the impurity in the bulk of tha
atomic function with orbital quantum numbgrcentered on Material. The former can be obtained from E2). by replac-
the site(l,R) occupied by the impurity, and , is the change  ing [G(E)] with [Go(w)].
in the electronic potential on such site. We recall that, since As explained at length in the next section, for 1 the
Ha has translational symmetry parallel to the surface planeiumerical calculations af, and[G;,(Eg)] become extremely
v, does not depend oR. time consuming. In addition, in such a range of values, of
The condition of global charge neutrality requires thethe integration over energy in E(4) involves large cancel-
change in the number of occupied states in the system to Hations and has to be carried out with extremely high accu-
equal toAn=ng—n,, wheren, andng are, respectively, the racy. On the other hand, as we show below, for sufficiently
numbers of valence electrons per at@tectronic concentra- large values ofl, those difficulties can be overcome and
tion) of A and B. This condition leads to a simple relation simple analytical expressions for, [G, (Ef)], and AE, can
betweenAn and v, ,, known as Friedel's sum rule, which be derived. Even more interesting, such analytical expres-
may be regarded as a self-consistency condition.dn the  sions forv; andAE, establish a clear connection between the
case of transition metals, two additional approximations maypatial behavior of these two quantities and specific features
be introduced at this poifitFirst, since the screening of the of the electronic structure of the host material.
impurity potential is carried out mostly by the states, the
changes in the andp potentials on the impurity site can be IIl. ANALYTICAL APPROXIMATION
ignored to a first approximation. Second, since crystal field We first notice that the argument of the logarithmic func-
effects on thel states are usually small, the dependence of tion in Eq. (4) is expected to approadd] as| increases.
on the orbital indexu can be neglected. Thus, we are left Thus, forl>1, the expression foAE, can be approximated
with a single parametey; describing the change in thé by
potential on the site occupied by the impurity. By imposing

lobal ch l find th 1 (% (b)
global charge neutrality we find that AEIz;f_ de Im Tr({[1] - v|[Gy, (@) IH[1] - v, [ G

X (o) -[1]), ©)

1
An=-—ImTrin{[1] - v[G),(ER) I}, @
Ju which reduces to

Er
where[1] is the identity matrix, Tr stands for the trace over — AE, = lf do Im Tr({u[ Gy w)] - v[G)(0)TH[1]
the d orbitals,[G;|(Er)] is the host Green’s function matrix TJ '

for states withd symmetry at an arbitrary sit@ in planel, — o G® -1 6
andEg is the Fermi energy. It is worth noting that, in contrast ool Col@) ) ©
to the case in which the impurity is in the bulk of tie We show below that, as expected, and [G, (w)] ap-

material, the potentiad in the above equation depends on proachuy, and[Gy )], respectively, with increasiny Let
the impurity position relative to the surface plane. As dis-us look first at the behavior ¢G;(w)]. In the case in which
cussed below, such a dependence is due to quantum interfgfterplane hoppings are restricted to nearest-neighbor planes,
ence effects which take place in the near-surface region. If can be shown that
the present work, Eq2) is used to obtairy, for different )
positionsl, in each case for fixed valence differensa. [G ()] = [GP)(w)] _Qde d*q [G(b)(q )]

Having determined,, the total electronic energy of the ' 0.0 (2m)2- 1O

system when the impurity is positioned in the atomic plane b -1 D)
can be readily obtained from ordinary scattering theory. It is [Goo@. )] [Goj(a@)], (@)
given by the expression where(),q is the area of the Wigner-Seitz cell of the two-
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dimensional(2D) lattice defined within the atomic planes

andq is a 2D wave vector parallel to the atomic planes For Av =y -uvp=>, E <ld Im{B(qag,Er)exfisks(Eg)Id]},
fixed values ofq and o, the matrix elements o[G|0 a 5223
X(q,w)] and[G (q w)] are oscillatory functions aof. This (10

follows from the analytlc expressions for the Green'’s func-

tion in layered systems derived by Umer&kThe oscillation  where
period is given by (w,q)=27/k(q, w), wherek(q, w) is de-

termined by solving the material’s dispersion relatian

=E(q,k), which we assume to have a single sheet in recip-B¢(qg,Er) =

Tr([Ad(ag, Ep) HI L] - vo[ GEHERA T .

rocal space; the extension to cases with more than one sheet mpi(Ee)

is straightforward®'” In such a case, the terms in the sum- (11)
mation overqg on the right-hand side of Eq7) can be ex-

panded in a Fourier series: Here py(Eg)==(1/m)Im Tr(Gyy(E H1]-vel Gy y(ER )

is the local density of states on the site of an impurity located
[G{3(a, @] - [GPYa, »)] - [GP(G,w)] in the bulk. On the basis of EqeZ) and(10), the expression
. for AE, in Eqg. (6) can be approximated by
= 2 [cd(q, o) ]exisk(g, w)ld], (8)

s=2
1 (% (b)

where[c4(q, w)] is a matrix of Fourier coefficients. For large AR = Wf_w dolm Tr{- Av|Gy () ~ v,0G ()]
| and fixedw, the exponential in Eq8) oscillates rapidly as ®) 1
a function ofq, which leads to large cancellations when the X[1-vsGg (@) T,
integration over is carried out. This is the underlying rea-
son why the numerical calculation §6(w)] becomes in- where we have kept terms up to orderl bhd [AG(w)]
creasingly difficult as larger values o¢fare considered, as =[G (w)]-[Gp(w)]. We recall that bothAG, |(w)] and Av,
pointed out in the previous section. As a consequence, th@ecrease as 1for |>1 [cf. Egs.(9) and(10)]. Therefore,
nonvanishing contributions to tteeintegral in Eq.(7) come
just from the neighborhood of pointg; in q space which 1 (Er
renderk(q, w) stationary. By expanding(q, ) in a Taylor AE, = Av|<— —J dw Im Tr([GE,%(w)]
series about)y up to second order iq and approximating T e

the remainingy-dependent factors by their valuescg, the
integral over the parallel wave vector reduces to Gaussian x{[1] —vb[Gé%(w)]}_l)>
integrals and can be evaluated analyticillfthen, the ex-
pression fo G, |(w)] reduces to Er
+ —(— => 22 q do Im Tr([AJ(q8, »)]
a S= -

[Gii(@)]=[Ghyw)]+ 2 X ol d[As(qo ) Jexdiskg(w)ld],
« =28 X{[1] - ve[ Ry @) [} % exr{iskg(wnd]) (12)
)
For sufficiently large values df, the exponential in the
where last integrand oscillates very rapidly as a function of the
leading once more to large cancellations, this time when the
N Oy N integration over energy is carried out. Thus, the main contri-
[Ad(ag, @)1= Z[Cs(%"")]qk ||ky 12" bution to this integral comes from the neighborhoodEgf
Yy where there may be an incomplete oscillation period. Then,
kg(w) may be expanded in a Taylor series abBptand the
integral overw carried out analytically? As a result, an ad-
ditional dependence on Lappears in the second term on the
right-hand side of Eq(12). Thus, the leading term in the

Here, ki.=5%k/ o0 at q=q§ (£=x,y), kj(w)=k(qg, ), and

i if ke > 0 andk,, >0,

¢=\—1if k<0 andk,, <0, expression foAE; in the asymptotic regioiil > 1) is given
1 if Ky kyy < O. by

gx andg, are the components gfin an orthogonal system of n(b N i
axes chosen to diagonalize the Taylor expansion of the argu- = _E 2 'm{Bs(quEF)eXF[Z'Skg(EF)ld]}'
ment of the exponential in Eq8). According to Eq.(9), @29
(G (w)] approaches[Gg%(w)], upon increasing, as ex- (13
pected. Using this result, it can be shoggee the Appendix
that where
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1 (Er 0.06
1 =-2 [ o im TGN - 0 Gy )
— ] o
0.02 —
is the density of particles at the site of an impurity atom in = | \./ \./ Vo WO\ e
the bulk of the host material. |_ 002 o
We remark that according to Egdl3) and (10), for suf- ﬁ 004 ] 008
ficiently large distances to the surface, the electronic contri- >~ 4, ::\
bution to the segregation energy and change in the screened <1 -0.06 - . .
. . . . E < 0 YW W
impurity potential are related by the equation 0.08 o0z ] y v
AE, = nPAv,, -0.10 200 e
b 0 3 6 9 12 15
which clearly establishes the relation between the quantum 2T
interference effects in the near-surface region, the screening 0 3 6 9 12 15
plane index 1

of the impurity potential, and the segregation energy. In ad-

qun’ Eas(13) and(lO) |mp!y that bothAv, andAE, should FIG. 1. Change in the electronic potential at the impurity site
0§C|Ilate a‘c’, a functlpn of dlstang};(l ~Dd to th.e. surface, relative to the bulk valued vy= -, as a function of the indelxof
with decaying amplitude and with a superposition of well- e atomic plane where the impurity position@lid circles. The
defined periods given by energy unit is taken such thet-0.5. The distance of the impurity
om to the surface plane i&=(l-1)d, whered is the interplane distance.
=, (15 The solid curve represents the analytical approximatioA #o(see
sky(Eg) text). The surface plane ha®01l) orientation. The inset shows the

@ _ @ . changeAp, in the local density of states at the Fermi eng )
V\{hereSBZ andkO(E,:).—k(qo,E,:). are thg ex'tremal dlmgn- with ?espﬁl,ct to the bulk Va|l?;b(E|:) of the unperturbed hpgsmea-
sions of the host Fermi surface in the direction perpendlcula{ fial as a function of
to the host surface. Therefore, depending on the geometry o? '
the host Fermi surface, the oscillation periods may be either
long or short in the scale of the interplane distance. It is cleaf2Se, the extrema of the host FS have extrema along the
from Egs.(10) and (13) that the main contributions to both direction perpengacular to the surface are 'QCatGOH%ﬁ
Av, and AE, are expected to come from the first Fourier =(0; t7/@) andqy”=(+m/a,0). The extremal dimension of
terms in each series. In both cases, however, the amplitude §te FS at the four points igj(Eg) =k,=/2a, which accord-
the oscillations depends on the curvatures of the host Fernild to Eg. (15 corresponds to.=2d. Figure 1 showsAv
surface at the extremal points and decays astdwards the =¥ 1~vp as a function of (solid circles, for ng=0.4, with »
bulk. anduvy, obtained from Eq(2). As regard the determination of
In the following section, we apply the above theory to a¥. the Green’s function matrix eleme@; (Er), which en-
rather simple model and calculate the segregation enerd@rs Eq(2), has been calculated from E). We remark that
based on both Eq¢4) and(13). The comparison between the for the values ofl in Fig. 1, it was necessary to consider
results of the two calculations will enable us to assess th&ore than 3.3 107 q points in the irreducible wedge of the
accuracy of the asymptotic approximation and to confirm théwo-dimensional Brillouin zone to achieve convergency. It is
above-mentioned relation between the behavioABf and  clear thatAy, oscillates with a period predicted by the ana-
the geometry host Fermi surface. lytical approximation, which is represented by the solid line.
The agreement between the numerical and analytical results
is quite good, even close to the surface.
IV. RESULTS AND CONCLUSIONS It is worth commenting at this point on the spatial behav-
. ) . _ior of Av,. According to Thomas-Fermi theory, the screening
In this section we present results for a simple model inof an impurity potential by an electron gas is carried out
which the atoms of the system occupy sites of an underlaymostly by the states at the Fermi energy. In fact, the screened
ing simple cubic lattice and the electronic structure is de'potential of a Coulomb charge is
scribed by a single-band tight-binding model with hopping
between nearest-neighbor sites. We recall that for such model g kor
the host Fermi surface is given by Vsalr) = P

Er = ea+ 2 coska) + codkya) + codka)], where ky=4m€’p(Er). Here, p(Ef) is the density of states
wheree, is the host site energy arads the lattice parameter. (DOS) at the Fermi energy. For the electronic density of
In which follows, the energy unit is taken such that-0.5  ordinary metals, the screening length,=2#/k, turns out to
and ex=0. be of order 1 A, which fully justifies the assumption that the

We first deal with the case in which the surface (@®&1) change in the electronic potential due to the introduction of
orientation. The electronic density of the host material is the impurity is restricted to the impurity site. In the bulk of a
chosen equal to 0.5, which correspond<te=0. In such a  crystalline material, the amplitude of the electronic states is
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FIG. 2. Electronic contribution to the segregation enek@y as FIG. 3. Change in the electronic potential at the impurity site

a function of the index of the atomic plane where the impurity elative to the bulk valuel = -, as a function of the indeixof
positioned(solid circles. The solid curve represents the analytical (€ atomic plane where the impurity positionelid circley. The

approximation taAE, (see text The energy unit is taken such that ©Nergy unit is taken such thet-0.5. The distance of the impurity
t=-0.5. The distance of the impurity to the surface plane=i¢ to the surface plane is=(I-1)d, whered is the interplane distance.

~1)d, whered is the interplane distance. The surface plane has! N€ SOlid curve represents the analytical approximatiof #o(see

(001) orientation. text). The surface plane ha410) orientation.

the same at all lattice sites and so is the local density ofith a superposition of two periods—namely ,=3d and
states. However, in the near-surface region, quantum intef,;=3d/2, whered=a\2/2. This is confirmed by the results
ference between states with the Fermi energy which are inin Figs. 3 and 4, which show, respectivelyy and AE plot-
cident on, and reflected by, the surface modulates the amplied as functions of (both forn,=0.5 andng=0.4). In these
tude of those states, giving rise to a position-dependent locaigures, solid circles represent the results of numerical calcu-
density of states &r—i.e., p(z,Eg). According to Thomas- Ilations, whereas solid lines correspond to analytical approxi-
Fermi theory, this should affect the screening of the impuritymations. The agreement between the two sets of results is
potential. At those positions whepg=p(Id,Er) is larger, the  quite good. The present results give support to the work of
screened potential is expected to be weaker and vice versBreysee and Riedingérwho have numerically studied the
This point is entirely confirmed by the data in Fig. 1, which

shows in the inseApy(Er) =p|(Ef) - pp(EF) as a function of, 0.03
where p|(Eg)=p(ld,E¢) and p,(Er) is the bulk density of .
states of the puré material. 0.02 —

Figure 2 showsAE as a function of the plane index i
(solid circleg calculated from Eq(4), for the same set of 0.01 |

®
parameters as in Fig. 1. Also, in this case, it was necessary to |
consider more than 3:310’ q points in the irreducible /\ /'\ A

wedge of the two-dimensional Brillouin zone to achieve con- ‘Lﬂ 0.00 \/ \/\J VAYARVAVAR R
[ ]

vergency in the calculation o (w), within the range of 1
values ofl in the figure. The solid line represents the analyti- -0.01 —|
cal approximation given by Eq13). We find thatAE oscil- i
lates with the predicted period and that the two sets of results

: : _ -0.02
are in quite good agreement, even for relatively small values
of I. T e
Finally, to illustrate the dependence of both the screening VBT T 1 T 1 T T T
of the impurity potential and the segregation energy on sur- 0 3 6 9 12 15

face orientation, which arises as a consequence of the non- plane index 1

sphericity of the hO.St F.S’ we consider the case ¢LE0) FIG. 4. Electronic contribution to the segregation enek@y as
SF”face- ,The 2D B””c’u'n,zone QOW correspo@s to the '€ function of the index of the atomic plane where the impurity
gion defined by the relationsm2/2a<qc<mv2/2a and  sitioned(solid circles. The energy unit is taken such thit
—zTZ/aS qy=mla, andgthe host FS has extrema at the points_g 5. The solid curve represents the analytical approximatiavEfo
do°=(0, £m/a) andg;=(0,0). The corresponding extremal (see text The distance of the impurity to the surface planezis
dimensions arég%(Eg)=/(3d) andk3(Eg)=27/(3d); thus,  =(1-1)d, whered is the interplane distance. The surface plane has

both Av and AE are expected to oscillate as a functionlof (110 orientation.
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influence of surface orientation on the band contribution to 1 ® ®
the segregation energy. The dependencBbn the surface An=-—ImTr In{[1] = w[Gpo(Ep)] — An[Go o Er)]
orientation in the case of diluted alloys is made totally clear
by the analytical expression in E¢L3). - [AG (Ep)] + Ay[AG (ER)]}, (16)

In conclusion, we have investigated the electronic contri-
bution to the segregation energy in diluted metallic alloys.where [AGH(EF)]:[G|,|(EF)]—[GE%(EF)]. Since bothAy
We have shown that quantum interference effects which ocand [AG (Ef)] are expected to vanish dsincreases, for
cur in the near-surface region significantly affect the screensufficiently large values dfthe last term in the argument of

ing of the potential of the minority alloy component and, the logarithmic function in the above equation can be ne-
consequently, the segregation energy. As we have demogiected. Then, Eq(16) reduces to

strated numerically and analytically, in such a region, both

Av and AE exhibit an oscillatory behavior as functions lof 1 ®

with well-defined periods determined by the geometry of the = IM TrIn([1] = {An[Go o Er)] + [ AG, (Er) ]}
host Fermi surface and the relative orientation of the surface.

This is a clear example of the important role played by quan- x{[1] - n[GPHER T =0.

tum interference effects due to sharp changes in the elec- , )
tronic potential, which appear near surfaces and in modiioreover, forl>1, the latter equation can be approximated
nanostructured systems. by
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APPENDIX

We first notice that Eq(2) (Friedel's sum rulg can be  Making use of Eq(9), we immediately obtain the expression
rewritten as for Ay in Eq. (10).
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